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Abstract: Let X be a smooth projective variety and f : X → Pr a morphism birational onto its image.
We define the Terracini loci of the map f . Most results are only for the case dim X = 1. With this
new and more flexible definition, it is possible to prove strong nonemptiness results with the full
classification of all exceptional cases. We also consider Terracini loci with restricted support (solutions
not intersecting a closed set B ( X or solutions containing a prescribed p ∈ X). Our definitions
work both for the Zariski and the euclidean topology and we suggest extensions to the case of real
varieties. We also define Terracini loci for joins of two or more subvarieties of the same projective
space. The proofs use algebro-geometric tools.
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1. Introduction

Zero-dimensional schemes, i.e., algebro-geometric generalizations of finite sets [1,2],
entered the applied mathematic world at least from two paths:

(a) interpolation;
(b) describing the dimension of many varieties relevant to applications, e.g., the set of all

tensors with fixed format and rank.

In the interpolation path, there are multivariate extensions of Hermite and Birkhoff
interpolation in which, at certain nodes, one fixes the values of certain (or all up to a fixed
order) partial derivatives [3,4]. Terracini loci correspond to taking all first-order deriva-
tives. We recommend [5] and references therein if one wants to extend these interpolation
problems (over the reals) with partially real solutions. We think it would be a rich topic
of research and we explain the connection at the end of Section 4. These interpolation
problems for multivariate polynomials are used in number theory and geometry and,
thanks to the Terracini Lemma [6] (Cor. 1.11), enter the topic described in (b) [1,2,7–9],
which is related to the present paper. For old and recent results on (b) related to partially
symmetric tensors, see [10–12].

Let X be a smooth and connected curve of genus g defined over an algebraically closed
field of characteristic 0. Fix a base point-free gr

d, r ≥ 2, and let Y ⊂ Pr be the image of X
by the morphism v associated to the base point free gr

d. We assume deg(Y) = d, i.e., we
assume that v : X → Y is the normalization map. For any zero-dimensional scheme A ⊂ Pr,
let 〈A〉 denote its linear span, i.e., the intersection of the hyperplanes of Pr containing A,
with the convention 〈A〉 = Pr if no hyperplane contains A. For any effective divisor Z ⊂ X,
let v(Z) be the scheme-theoretical image. For any zero-dimensional scheme Z ⊂ X, we
say that Z ∈ T̃ (gr

d) or that Z ∈ T̃ (gr
d, deg(Z)/2) if all connected components of Z have an

even degree, dim〈v(Z)〉 ≤ deg(Z)− 2 and 〈v(Z)〉 6= Pr. Set T̃ (gr
d) := ∪x>0T̃ (gr

d, x).
We recall that, in the usual definitions of Terracini loci of Y, only smooth points of Y are

considered (for very good reasons!) [13–15]. We believe that our definition is flexible and,
perhaps, may be linked to the singularities of maps and their enumerative geometry [16,17].
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The big restriction is that we are assuming that the connected components of Z have an
even degree. In the original Terracini Lemma the points are general in Y and so of course
they are smooth points of Y. But in the set-up of [6], tangent spaces at singular points
may be used. In the case dim Y = 1, there is a natural smooth variety associated to Y, its
normalization, and a base point-free gr

d, d := deg(Y), inducing the normalization map.
However, even when v is the identity map with Y smooth, our definition here is different
from the standard one (see Example 2). We give the following examples to help the reader.

Example 1. Assume that the differential of the map X → Pr obtained composing v with the
inclusion Y ⊂ Pr is zero at some p ∈ X. Then v(2p) = v(p) scheme-theoretically and, hence,
2p ∈ T̃ (gr

d, 1). In all the quoted definitions of T (Y, x), we have T (Y, 1) = ∅.

Example 2. Assume r = 2 and Y smooth, i.e., X = Y and v the identity map. If d ∈ {2, 3}, then
T̃ (g2

d, 2) = ∅ by the Bezout theorem and the same is true for all quoted sets T (Y, 2). Now assume
d ≥ 4. We have T̃ (g2

d, 2) 6= ∅ and T (Y, 2) 6= ∅, but T (Y, 2) is the set of all points of contact of
the bitangent lines of Y, while T̃ (g2

d, 2) is the union of T (Y, 2) and the non-ordinary inflectional
points of Y, if any.

Example 3. Assume r = 2, d ≥ 3 and Y singular. We saw that T̃ (g2
d, 1) 6= ∅ if it has at least one

cusp (or a singular point with a non-smooth branch). Fix o ∈ Sing(Y) and take p ∈ X such that
v(p) = o. Assume that Y at o has at least 2 branches that are tangent at o. The scheme 4p ⊂ X is
an element of T̃ (g2

d, 2). Thus, if d ≥ 3 and Y has at least one non-ordinary singularity (a point
whose tangent cone is not formed by distinct lines with multiplicity one), then T̃ (g2

d) 6= ∅ and
these schemes Z ⊂ X contributing to T̃ (g2

d) do not contribute to the usual Terracini locus T (X).

See Remark 3 for the explanation of our assumption that our gr
d is assumed to be base

point free. See Remark 4 for the case deg(Y) < d.

Proposition 1. Assume r ≥ 3 and that Y is singular. Then either T̃ (gr
d, 1) 6= ∅ or T̃ (gr

d, 2) 6= ∅.

The following result extends [15] (Proposition 7) to the case in which Y is singular. It
shows that, using our definition, we may extend and simplify previous results.

Theorem 1. Assume r ≥ 3 and odd. Then T̃ (gr
d) = ∅ if and only if d = r, i.e., if and only if Y is

the rational normal curve of Pr.

The proof of Theorem 1 is 2 lines: if Y is smooth, use [15] (Proposition 7), if Y is
singular, use Proposition 1. However, our point here is that not only the new definition
allows some proofs in new and more general cases, but that it works fine in the set up
of [14,15], e.g., it would be easy to copy the proof of [15] (Proposition 7) in our language
and then at a critical step, the case r = 3, we use our definition and Proposition 1.

If r ≥ 7, the proof gives that if Y is not a rational normal curve, then at least one among
T̃ (gr

d, 1), T̃ (gr
d, 2) and T̃ (gr

d, (r + 1)/2) is not empty. However, the added generality is an
illusion if Y is smooth (Remark 5).

The following result (the main result of the paper) shows that it is far easier to prove
a nonemptiness theorem for T̃ (gr

d), even when gr
d gives an embedding, than with the

usual definition of Terracini loci. The drawback is that T̃ (gr
d) 6= ∅ does not imply the

corresponding result for the usual Terracini locus, even if we assume Y smooth.

Theorem 2. Assume r even. We have T̃ (gr
d) = ∅ if and only if Y is either a rational normal curve

or a linearly normal degree r + 1 smooth curve of genus 1 or r = 2 and Y is a nodal plane cubic.

In the set up of Theorem 2 for r ≥ 4, we have d ∈ {r, r + 1} and if d = r + 1, we are
also assuming that Y is smooth and linearly normal (equivalently, smooth and not rational).
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For any smooth point o of a positive dimensional quasi-projective variety W, let (2o, W)
denote the closed subscheme of W with (Io,W)2 as its ideal sheaf. We have deg(2o, W) =
dim W + 1 and (2o, W)red = {o}. For any finite set S contained in the smooth locus of W,
set (2S, W) := ∪o∈S(2o, W). We can extend in several different ways the definition to an
arbitrary smooth and connected projective variety. The following definition differs from
both [14,15] in that it allows points with image singular points of Y. However, it restricts
the definition to ’first-order data,’ specifically ’first-order zero-dimensional schemes.’ For
example, in the setup of Example 3, higher-order flexes at most points would not contribute
according to the following definition.

Definition 1. Let X be a smooth and connected projective variety and f : X → Pr a morphism
birational onto its image Y := f (X) with Y not contained in a hyperplane of Pr. Let Z ⊂ X
be a zero-dimensional scheme. We say that Z ∈ T̂ ( f , x) if there is a finite set S ⊂ X such
that #S = x, Z ⊆ 2S, 〈 f (2S)〉 6= Pr and dim〈 f (Z)〉 ≤ deg(Z) − 2. Let Ť ( f , x) denote
the set of all Z ∈ T̂ ( f , x) such that #Zred = x. If we drop the assumption Z ⊆ 2S, we get a set
T̃ ( f , deg(Z)/2). Set T̂ ( f ) := ∪x>0T̂ ( f , x), Ť ( f ) := ∪x>0Ť ( f , x) and T̃ ( f ) := ∪x>0T̃ ( f , x).

Remark 1. Note that T̂ ( f ) = Ť ( f ). A classical observation due to Chandler shows that, to see
if T̂ ( f , x) 6= ∅, it is sufficient to check the zero-dimensional subschemes of X whose connected
components have degree ≤ 2 [18,19], [13] (Lemma 2.8). Easy examples show that sometimes
one needs to allow that some connected components have degree 1 [13] (Th. 4.2 4.2 for nd odd]).
If dim X = 1, we have T̃ (gr

d, x) = T̃ ( f , x) and, hence, T̃ (gr
d) = T̃ ( f ), where f is the morphism

associated to the base point-free gr
d.

Remark 2. If dim X > 1, Definition 1 often gives huge families of solutions (see Examples 10
and 11). When there are huge families, the point is to study the set of all solution Z, which is an
algebraic set (Remark 6). Hence a good project is the study the geometry of T̂ ( f , x).

We devote a full section (Section 4) to the discussion of a few important related defini-
tions:

• minimal Terracini loci;
• Terracini loci with restricted support;
• allowable points.

The minimality for Terracini loci is very important, as stressed with many examples
in [13]. They are the building blocks for all Terracini loci.

The Terracini Lemma is true even for joins of finitely many varieties embedded in the
same projective space [6] (Cor. 1.11]). We devote a full section (Section 6) to the definitions
of joins for finitely many varieties. There are two options for the notions of minimality:
minimality and weak minimality.

Structure of the Paper

Section 2 contains some remarks used in the proofs later. Some of them also clarify
some elementary properties of our definitions.

Section 3 contains the proofs of the proposition and the 2 theorems stated in the intro-
duction.

Section 4 is concerned with minimality (it also introduces weak minimality), Terracini
loci with restricted support and allowable points. In the last part of the section, we discuss
“restricted support” for the euclidean topology and show how it may be adapted to real
solutions and partially complex solutions.

Section 5 gives examples (with X a surface) concerning the Terracini loci.
Section 6 contains the definition of Terracini loci for joins of different varieties, proves

one result (Proposition 5) and shows that joins of different varieties are easier than the one
of a single variety (Example 12 for joins, Example 11 in Section 5 for the secant variety of a
variety).
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2. Remarks and Preliminary Results

We first give the following 2 observations for the case of curves and then give 2 easy
foundational statements for arbitrary n := dim X (Remarks 6 and 7)

Remark 3. Assume that the gr
d on X is not base point free and call B its base locus. Fix p ∈ B.

Since r ≥ 1, there is D ∈ gr
d(−B) such that p ∈ D. Thus, B + D is an element of the gr

d in which
p occurs with multiplicity of at least 2. Thus, if we allow this gr

d in the definition of T̃ , we get
2p ∈ T̃ (gr

d, 1) 6= ∅.

Remark 4. Assume deg(Y) < d and let u : C → Y be the normalization map. Since X is a
smooth curve, v factors through u, i.e., there is a morphism w : X → C such that v = u ◦ w.
Moreover, deg(w)deg(Y) = d with deg(w) ≥ 2. Assume for the moment that w is ramified,
i.e., assume the existence of o ∈ X such that the differential of w vanishes at o and, hence, 2o
would give T̃ (gr

d, 1) 6= ∅. Now assume that w is unramified. Thus, C has genus ≥ 1 and, hence,
deg(Y) > r. Assume for the moment r > 1. Our gr

d is the composition of a gr
deg(Y) on C and the

unramified morphism w. Take a general p ∈ Y and set w−1(p) = {o1, . . . , odeg(w)}. If r > 1,
the scheme 2o1 + 2o2 is an element of T̃ (gr

d, 2). Of course, if r = 1, then w ramifies and, hence,
T̃ (g1

d, 1) 6= ∅.

Remark 5. Take Z ∈ T̃ (gr
d, x) and set a := dim〈v(Z)〉. If r ≥ a+ 3, then Z ∪ 2p ∈ T̃ (gr

d, x + 1)
for all p ∈ X \ Zred. The same holds for a variety X of dimension > 1 taking Z ∪ v, where v is a
degree 2 connected zero-dimensional scheme.

Remark 6. Let X be a smooth and connected projective variety. For any positive integers z the set
Hilbz(X) of all degree z zero-dimensional subschemes of X is a projective scheme. If dim X ≤ 2,
this scheme is smooth, connected and of dimension z dim X and an open subset of it is formed by
the set of all subsets of X with cardinality z. The other conditions in the definitions of T̃ and T̂
are locally closed conditions and, hence, the set of the zero-dimensional schemes satisfying all these
conditions is a finite union of irreducible quasi-projective varieties. If X is a smooth curve, the subset
Γz of Hilbz(X) formed by subschemes whose connected components have an even degree is either
empty (case z odd) or an irreducible and smooth projective variety whose general element has z/2
connected components, each of them of degree 2. Note that Γz is projective, not only an open subset
of a smooth projective variety.

Remark 7. In Definition 1, there is a key condition “〈 f (2S)〉 6= Pr”. Assume n := dim X > 1.
Fix a hyperplane H ⊂ Pr and set X1 := f−1( f (X) ∩ H). Set f1 := f|X1

: X1 → H. Assume that
X1 is smooth. Since f is birational onto its image, n > 1 and 〈 f (X)〉 = Pr, X1 is connected and
dim X1 = n− 1. For any p ∈ X1 let (2p, X1) denote the closed subscheme of X1 with (Ip,X1)

2

as its ideal sheaf. For any finite set S ⊂ X1, set (2S, X1) := ∪p∈S(2p, X1). Take a finite set
S ⊂ X1 and assume 〈 f1(S)〉 6= H. Since 2S ∩ X1 = (2S, X1), every zero-dimensional scheme
Z ⊂ (2S, X1) contributing to T̃ ( f1) contributes to T̃ ( f ).

Notation 1. Take f : X → Pr and Z ⊂ X a zero-dimensional scheme. Set δ(Z) := deg(Z)−
1− dim〈 f (Z)〉.

3. Proofs of the Results Stated in the Introduction

Proof of Proposition 1: If the differential of the map X → Pr obtained composing v with
the inclusion Y ⊂ Pr is zero at some p ∈ X, then T̃ (gr

d, 1) 6= ∅ (Example 1). If the
differential is non-zero everywhere, then there are p1, p2 ∈ X such that p1 6= p2 and
v(p1) = v(p2). Thus, dim〈v(2p1 + 2p2)〉 ≤ 2 and hence 2p1 + 2p2 ∈ T̃ (gr

d, 2) 6= ∅.

Proof of Theorem 1: If Y is smooth, we use [15] (Proposition 7). If Y is singular, we use
Proposition 1.
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Example 4. Take r = 2 and d ∈ {2, 3}. Let Y ⊂ P2 be the image of the g2
d. If d = 2, then obviously

T̃ (g2
2) = ∅. Now assume d = 3. By Bezout T̃ (g2

3, x) = 0 for all x > 1. Thus, T̃ (g2
3) 6= ∅ if and

only if Y is a cuspidal cubic.

Example 5. Let Y ⊂ Pr, r ≥ 4, r even, be a smooth rational curve of degree r + 1. Thus,
there is a rational normal curve C ⊂ Pr+1 and o ∈ Pr+1 \ C such that Y = `o(C), where
`o : Pr+1 \ {o} → Pr is the linear projection from o. Now assume r = 4. Call g4

5 the linear series
on Y induced by the inclusion Y ⊂ P4. Set ` := `o|C.

Claim: We have T̃ (g4
5, 1) = ∅ and T̃ (g4

5, 2) 6= ∅.

Proof of Claim: Since C is a degree 5 rational normal curve, all its zero-dimensional
schemes of degree ≤ 6 are linearly independent. Thus, for every zero-dimensional scheme
Z ⊂ Y with deg(Z) ∈ {2, 4}, we have dim〈Z〉 ≤ deg(Z)− 2 if and only if o ∈ 〈`−1(Z)〉.
Since Y is smooth, o is not contained in a tangent line of C. Hence, T̃ (g4

5, 1) = ∅. Let
Z be the family of all zero-dimensional schemes Z ⊂ Y such that deg(Z) = 4 and its
connected components have an even degree (so either Z is connected or it has 2 connected
components, each of them of degree 2). Note that T̃ (g4

5, 2) 6= ∅ if and only if there is
Z ∈ Z such that o ∈ `−1(Z). We have dim〈`−1(Z)〉 = 3 for all Z ∈ Z . Note that Z is
parametrized by the second symmetric power of C and in particular it is a 2-dimensional
irreducible projective variety. Thus, ∪Z∈Z 〈`−1(Z)〉 = P5 (here we have equality and not
just the density of the union; it is here where we use that we allow the case Z connected,
i.e., we use our definition of Terracini locus).

Proof of Theorem 2: If Y is a rational normal curve, i.e., if d = r, T̃ (gr
r) = ∅ because every

zero-dimensional scheme Z ⊂ Y with deg(Z) ≤ r + 1 is linearly independent.
Now assume that Y is a linearly normal smooth curve of genus 1. Thus, d = r + 1.

The integer r + 1 is a minimal degree of a linearly dependent zero-dimensional scheme
Z ⊂ Y. Take one such scheme. Since r is even, r + 1 is odd and, hence, not all connected
components of Z have an even degree. Thus, T̃ (gr

r+1) = ∅.
Now assume T̃ (gr

d) = ∅.
(a) Assume r = 2. The case d ≤ 3 is described in Example 4. Thus, we may assume

d ≥ 4. Let g be the genus of Y. Let Y∨ denote the dual curve of Y. Call d∗, δ∗ and k∗ the
invariant of Y∨ (the degree, the drop of genus and the cuspidal contribution). In the set up of
the Plücker’s formulas of [20] (p. 482), we have r1 = d∗. By assumption, Y has no bitangent.
By Examples 1–3, all singular points of Y are ordinary singular points, all flexes at smooth
point of Y are ordinary flexes, i.e., the tangent line of Y at the point has order of contact 3
with the curve and Y∨ has only unibranch singularities. Since all flexes of Y are ordinary,
Y∨ has only ordinary flexes [21] and, hence, g = (d∗ − 1)(d∗ − 2)/2− k∗, where k∗ is the
number of cusps of Y∨. We have k∗ ≤ d∗(d∗ − 2)/3 and, hence, g ≥ (d∗ − 2)(d∗ − 3)/6.
Since Y has no cuspidal locus, another of the Plücker formulas gives d∗ = 2d + 2g− 2,
contradicting the inequality g ≥ (d∗ − 2)(d∗ − 3)/6.

(b) Assume r = 4. Proposition 1 implies that Y is smooth. By Example 5, we may
assume d ≥ 6. We take a general p ∈ Y. Since p is general, the tangent line TpY has order
of contact 2 with Y at p. By Remark 5, to get a contradiction, we reduce to prove that
T̃ (g2

d−2) 6= ∅ for a certain base point free and birational onto its image g2
d−2 on X. We

apply step (a) to this g2
d−2.

(c) Assume r ≥ 6. We use induction on the even integer r. We project from a general
tangent line of Y and reduce to the case r− 2 for a curve if degree d− 2, as we did in step
(b) and use the inductive assumption.

4. Minimal Terracini Loci and Allowed Support

For all the notions T̃ , T̂ and Ť of Terracini loci, there are at least 2 notions of minimality.
We call T any T̃ , T̂ and Ť and, for instance, we write T( f , x) instead of T̃ (gr

n, x) or
T̂ ( f , x) or Ť ( f , x). We recall that for every zero-dimensional scheme Z ⊂ X, X the
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smooth projective variety such that we are looking at the Terracini locus of f : X → Pr,
δ(Z) := deg(Z)− dim〈 f (Z)〉 − 1. Fix Z ∈ T( f ). We say that Z is minimal if Z′ /∈ T( f )
for any Z′ ( Z. We say that Z is weakly minimal if δ(Z′) < δ(Z) for all Z′ ( Z such that
Z′ ∈ T( f ). Call T( f )′ (resp. T( f )′′) the set of all minimal (resp. weakly minimal) elements
of T( f ).

Remark 8. Assume T( f ) 6= ∅ and let x be the first integer such that T( f , x) 6= ∅. Obviously,
T( f , x) = T( f , x)′. Thus, in the set-up Theorems 1 and 2, we have T̃ (gr

d)
′ 6= ∅, except in the

listed cases with T̃ (gr
d) = ∅. Moreover, (for any X) if there is p ∈ X at which the differential of f

is not injective, then T( f )′ 6= ∅.

The following examples show that sometimes minimality is stronger than weak mini-
mality (easy examples also exist for all r > 2).

Example 6. Take a plane curve Y ⊂ P2 with a cuspidal point, a1, whose tangent cone is formed by
a line L (with multiplicity 2) tangent to Y at some a2 ∈ Yreg. Let X → Y denote the normalization
map. Call g2

d the linear series on X mapping X to Y. Take p1, p2 ∈ X with images a1 and a2 in Y.
Since L 6= P2, we have 2p2 /∈ T̃ (g2

d). We have δ(2p1 + 2p2) > δ(2p1) and δ(2p2) = 0. Since
L 6= P2, 2p1 + 2p2 ∈ T̃ (g2

d). Hence, 2p1 + 2p2 is weakly minimal, but not minimal.

Example 7. Take a plane curve Y1 with 2 different cusps, b1 and b2, and let γ the associated linear
system on the normalization X1 → Y1. Take o1, o2 ∈ X1 with images b1 and b2. Since {b1, b2}
spans a line, 2o1 + 2o2 ∈ T̃ (γ), 2o1 ∈ T̃ (γ), 2o2 ∈ T̃ (γ) and δ(2o1 + 2o2) > δ(2oi) for all i.
Thus, 2o1 + 2o2 is weakly minimal, but not minimal.

Now we discuss two important refinements of the Terracini loci:

(1) closed subsets of X that we are forced to avoid;
(2) points of X or finite subsets of X that we may allow.

Obviously, (1) is important if we may take interpolation data only outside a closed
subset B of X (see the end of the section for a discussion of more general B for the eu-
clidean topology). This is important if we cannot access a small part, B, of the database.
Nonemptiness outside B means that our problem has at least one solution without points
in B.

Obviously, (2) can be used to shorten the computational task, if we computed in
advance the data at the allowed point (or more that one point).

Take a smooth projective variety X and a morphism f : X → Pr, r ≥ 2, birational
onto its its image and with 〈 f (X)〉 = Pr. We write T( f ) and T( f , x) for any of T̃ , T̂ and Ť ,
since the definitions in this section work for all definitions of Terracini loci. Take a closed
subset B ( X for the Zariski topology. Take any Z ∈ T( f , x). We say that Z ∈ T( f , \B, x)
if Zred ⊂ X \ B. Set T( f , \B) := ∪x>0T( f , \B, x). Since X \ B is an open subset of X,
T( f , \B, x) is an open subset of T( f , x) and T( f , \B) (it may be empty). The same definition
applies to the minimally Terracini and weakly minimal Terracini loci, T( f )′ and T( f )′′.
If dim X = 1, then B is an arbitrary finite subset of X.

Fix p ∈ X. We say that p is allowed or that it is an allowed point for T( f ) (or T( f )′ or
T( f )′′ or T( f , x) or T( f , x)′ or T( f , x)′′) if there is Z ∈ T( f ) (or Z ∈ T( f )′ or Z ∈ T( f )′′

or Z ∈ T( f , x) or Z ∈ T( f , x)′ or Z ∈ T( f , x)′′) such that p ∈ Zred. Fix a finite set A ⊂ X,
A 6= ∅. We say that A is allowed for T( f ) (or T( f )′ or T( f )′′ or for T( f , x) or T( f , x)′ or
T( f , x)′′) if there is Z ∈ T( f ) (or Z ∈ T( f )′ or Z ∈ T( f )′′ or Z ∈ T( f , x) or Z ∈ T( f , x)′ or
Z ∈ T( f , x)′′) such that A ⊆ Zred.

The exceptional case in the next proposition is described in Example 8.

Proposition 2. Let X be a smooth curve. Take a base point-free gr
d, d > r ≥ 3, on X birational

onto its image. Assume r is odd. Fix p ∈ X. Let f : X → Pr be morphism associated to the gr
d. Set
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Y := f (X). Then p is an allowed point for T̃ (gr
d), unless d = r + 1, X ∼= P1, f is an embedding

and the tangent line of Y at f (p) has order of contact 3 with Y at f (p).

Proof. If the differential of f vanishes at p, then p is allowed for T̃ (gr
d, 1)′. Thus, we may

assume that the differential of f is non-zero at p. Now assume f (p) ∈ Sing(Y). Since
the differential of f is non-zero at p, there is q ∈ X \ {p} such that f (p) = f (q). Thus,
dim〈 f (2p + 2q)〉 ≤ 2 and, hence, 2p + 2q ∈ T̃ (gr

d, 2). Thus, we may assume that Y is
smooth at p. Let L be the tangent line of Y at f (p). If L has a contact order of at least
4 with Y at f (p), then 4p ∈ T̃ (gr

d, 2). Now assume that L meets Y at some a 6= p say
a = f (b). In this case 2p + 2b ∈ T̃ (gr

d, 2). Let ` : Pr \ L→ Pr−2 denote the linear projection
from L. Since L meets only at f (p) and Y is smooth at p, `Y\L∩Y extends to a morphism
µ : Y → Pr−2.

(a) Assume that L meets Y only at f (p) and that L has order of contact 2 with X at
f (p). If r = 3, we just use that any morphism X → P1 of degree d− 2 > 1 is ramified,
because P1 is algebraically simply connected. Thus, we may assume r ≥ 5. We have
d− 2 = deg(µ)deg(µ(Y)).

(a1) Assume that µ is not birational onto its image. Call C the normalization of µ(Y).
The morphism µ induces a degree deg(µ) morphism u : X → C. If u ramifies, there is a
degree 2 subscheme Z′ ⊂ X such that 2p+ Z′ ∈ T̃ (gr

d, 2). Now assume that u is unramified.
Thus, C has genus ≥ 1. Thus, z := deg(µ(Y)) > r − 2. Theorem 1 gives T̃ (gr−2

z ) 6= ∅.
Lifting it to X by the map u and adding 2p, we get an element of T̃ (gr

d).
(a2) Assume that µ is birational onto its image. Thus, the normalization map X → µ(Y)

is a gr−2
d−2. Since r− 2 > d− 2, Theorem 1 gives the existence of Z ∈ T̃ (gr−2

d−2). Since µ is
induced by the linear projection from the tangent line of Y at f (p), 2p + Z ∈ T̃ (gr

d).
(b) Assume that L has order of contact 3 with Y at p. If d ≥ r + 2, then we conclude

as in step (a) (note that in steps (a1) and (a2) we only used Theorem 1, not the statement
of Proposition 2 for the integer r− 2). Now assume d = r + 1. Thus, either Y is smooth
and rational, but not linearly normal, or pa(Y) = 1. The first possibility is the exceptional
case in the statement of the proposition. Now assume pa(Y) = 1. In this case d + 1 is the
minimal degree of a linearly dependent zero-dimensional subscheme of Y and, hence, L
cannot have order of contact > 2 with Y at the smooth point f (p).

Example 8. Take a smooth degree r + 1 rational curve X ⊂ Pr spanning Pr, r ≥ 3. Fix p ∈ X
and let L be the tangent line of X at p. There are a degree r + 1 rational normal curve C ⊂ Pr+1

and o ∈ Pr+1 \ C such that X = `(C), where ` : Pr+1 \ {o} → Pr denote the linear projection
from o. Take q ∈ C such that `(q) = p. Note that q is the unique point of C such that `(q) = p.
Since every subscheme of degree ≤ r + 2 of C is linearly independent, the tangent line of X at p has
order of contact > 2 if and only if o is contained in the osculating plane of C at q. In particular, this
is not the case if, for a fixed X, we take a general p ∈ X. Now assume that X is a general smooth
degree r + 1 rational curve of Pr, i.e., assume that o is a general point of Pr+1. Since o is general
and r + 1 ≥ 4, o is contained in no osculating plane of C. Thus, every point of X is allowed for the
gr

r+1 on X induced by the inclusion X ⊂ Pr.

Proposition 3. Let X be a smooth curve. Take a base point free g3
d, d > 3, on X inducing a

morphism f : X → P3 birational onto its image, with nowhere vanishing differential and with
〈 f (X)〉 = P3. Then a general p ∈ X is allowable for T̃ (g3

d)
′.

Proof. Set Y := f (X). Since we chose p general after fixing the g3
d, f (p) is a smooth point

of Y and the tangent line, L, of Y at f (p) has order of contact 2 with Y at f (p). Assume
for the moment that L meets Y at a point f (o) with o 6= p. Thus 2p + 2o ∈ T̃ (g3

d, 2). Since
the differential of f does not vanish at o, 2o /∈ T̃ (g3

d) and, hence, 2p + 2o ∈ T̃ (g3
d, 2). Thus,

we may assume deg(L ∩ f (X)) = 2. Thus, the linear projection from L induces a degree
d− 2 morphism µ : X → P1. Since d− 2 > 1 and P1 is algebraically simply connected,
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there is b ∈ X at which µ ramifies. Thus, 2p + 2b ∈ T̃ (g3
d). Since f is a local embedding,

2p /∈ T̃ (g3
d) and 2b /∈ T̃ (g3

d). Thus, 2p + 2b ∈ T̃ (g3
d)
′.

Remark 9. In the set-up of Theorem 1, one expects that T̃ (gr
d) has a dimension of 1. Of course,

sometimes it has a higher dimension, e.g., if the morphism associated to the gr
d is ramified, say at

the point p, and r ≥ 5, then 2p + 2S ∈ T̃ (gr
d) for all S ⊂ X \ {p} such that #S = (r− 1)/2 and,

hence, dim T̃ (gr
d) ≥ (r− 1)/2. We believe that, for “most” gr

d’s, T̃ (gr
d) has pure dimension 1.

Proposition 2 and Example 8 show that T̃ (gr
d) has at least one component of positive dimension.

There are gr
d ’s such that T̃ (gr

d) has isolated points. For instance, all points at which the gr
d has a

cusp, i.e., all points of T̃ (gr
d). Smooth plane curves of degree ≥ 4 give other examples.

Proposition 4. Fix an integer d > 3. Let X be a smooth projective curve and B ⊂ X a finite set.
Let g3

d be a base point-free linear series such that the induced map f : X → P3 is birational onto
its image and its differential is everywhere non-zero. Then T̃ (g3

d, \B) 6= ∅ and a general p ∈ X is
allowable for T̃ (g3

d, \B).

Proof. Write B = {o1, . . . , os} and let L1, . . . , Ls be the tangent lines to f (X) at f (oi). Since
we are in characteristic zero, a general tangent line of f (X) contains no point of f (B). Since
we are in characteristic zero, the differential of the rational map fi from X to P1 induced
by the linear projection from Li has a non-zero differential at a general point of X. Fix a
general p ∈ X and let L ⊂ P3 the tangent line to f (X) at f (p). We just see that L ∩ Li = ∅
for all i. If there is f (a) ∈ L ∩ f (Y), a 6= p, then a /∈ B and 2p + 2a ∈ T̃ (g3

d). Now assume
that L meets f (X) only at f (p). Since p is general, the order of contact of L and f (X) at
f (p) is 2. Thus, the linear projection from L induces a degree d− 2 morphism µ : X → P1.
Since d − 2 > 1, µ is ramified at some b ∈ X. Since L ∩ Li = ∅ for all i, b /∈ B. Thus,
2p + 2b ∈ T̃ (g3

d, \B).

The following example shows that Proposition 4 is not always true in P2.

Example 9. Take a smooth plane curve X ⊂ P2 of degree d ≥ 4 and call g2
d the linear series on X

associated to |OX(1)|. Since X has bitangents , T (X, 2) 6= ∅ and, hence, T̃ (g2
d, 2) 6= ∅. Since X

has only finitely many bitangents and flexes, there is a finite set B such that T (g2
d, \B) = ∅.

Remark 10. In the definition of T( f , \B), we must be alert to the logical quantifier: we first fix
B and then take f hopefully to prove that T( f , \B) 6= ∅. If T( f ) 6= ∅, then finding B such that
T ( f , \B) 6= ∅ is trivial.

Here we are using the Zariski topology. Now assume that the base field is the complex
number field C. We write X(C) for the points of X with the euclidean topology. Thus,
X(C) is a compact and connected complex manifold of dimension n := dim X and, hence,
a compact and connected orientable 2n-dimensional topological manifold. In the definition
of T( f , \B), we may take as B any closed set B ( X(C). Proposition 2 shows that often
at least one point of some solution of T( f ) may be found in X(C) \ B. For any closed
set T ⊆ X, we write T(C) for the set T(C) with the euclidean topology induced by the
topology of X(C). Even if T is very singular, T(C) is not topologically very bad (it is a
compact complex analytic space and in particular it is a compact CW complex and it has
a triangulation). Fix any metric d on X(C), inducing the euclidean topology, e.g., the one
induced by an embedding of X(C) in a big projective space equipped with the Fubini-Study
metric. For all real numbers ε > 0, let T(C)ε denote the set of all p ∈ X(C) whose distance
from T(C) is at most ε. Each T(C)ε is a compact subset of X(C). If T ( X, then there is a
real number ε0 such that T(C)ε ( X(C) for all 0 < ε ≤ ε0, because X is irreducible and,
hence, dim T < dim X. Fix a Zariski closed set B ( X and assume T( f , \B) 6= ∅. Take
Z ∈ T( f , \B). Since Zred is a finite set ε1 := d(Zred, B(C)) is a positive real number. Note
that T( f , \B)ε 6= ∅ for all 0 < ε < ε1.
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Now assume that the algebraically closed base field is the complex number field C
and that both X and f are defined over R. Since X is smooth, the set X(R) of all real
p ∈ X(C) is the union of finitely many connected components, each of them a compact
differentiable manifold of dimension n. In this case, T( f ) (or T( f , \B) if B is defined over
R) has an involution σ : T( f )→ T( f ) induced by the complex conjugation of C. Thus, it is
natural to check if the involution σ has fixed points. These fix points, T( f )(R), are the “real
solutions”, but Z ∈ T( f )(R) may have Zred * X(R). For instance, take a smooth plane
curve X ⊂ P2 with an ordinary bitangent tangent to X at 2 complex conjugate points of
X(C). Even worse, X(R) = ∅ may occur (for any genus g ≥ 0 there is a smooth genus g
defined over R and with X(R) = ∅ [22]. The reader is encouraged to look at “partially real”
solutions in the sense of [5] and references therein.

5. Examples

Example 10. Let X ⊂ P4 be a smooth and non-degenerate surface of degree d. Let j : X ⊂ P4

denote the inclusion. We have T (X, 2) 6= ∅ if and only if there is a hyperplane H tangent to X at 2
different points. If d = 3, then X is a ruled surface and the tangent plane at 2 different points of a
line L ⊂ X are contained in a hyperplane, because their intersection contains L. Now assume d > 3.
Fix any hyperplane H ⊂ P4 such that X ∩ H is smooth and call g3

d the linear series on X ∩ H we
may apply Theorem 1. Thus, T̃ (g3

d) 6= ∅. Hence, T̃ (j) is huge.

Example 11. Let X be a smooth and connected projective surface and f : X → P5 be an embedding
such that 〈 f (X)〉 = P5. Set Y := f (X). Y is a smooth surface. As in Example 10, using Theorem 2
instead of Theorem 1, we get that a general hyperplane H contains elements of T̃ ( f ). We want
to prove more. We have T (Y, 2) 6= ∅ if and only if at least 2 different tangent planes of Y meet.
Assume that X is not isomorphic to P2. Fix p ∈ Y and assume that TpY meets Y only at p.
We claim that there is o 6= p such that ToY = TpY. Assume that this is not the case. Since
TpY meets Y only at p, the linear projection from TpY induces a morphism u : Y \ {p} → P2.
By assumption, the differential of u is an isomorphism at all points of Y \ {o}. There is a birational
morphism v : Y1 → Y such that u extends to a morphism w : Y1 → P2. Assume for the moment
deg(u) > 1, i.e., deg(w) > 1. Since P2 is algebraically simply connected the branch locus B ⊂ P2

is a non-empty effective divisor of P2 and in particular it is ample. Thus, its counterimage in Y1 is
not contained in the exceptional locus of w, i.e., there is o ∈ Y \ {p} such that ToY ∩ TpY 6= ∅.
Now assume deg(u) = 1, i.e., that u is generically injective. Since Y \ {o} and P2 are smooth,
Zariski Main Theorem (or a topological fact) gives that u is an open embedding. Since Y \ (Y \ {p})
is finite and u is an algebraic map, we get that P2 \ u(Y \ {p}) is finite. Thus, u extends to an
isomorphism and, hence, Y ∼= P2.

6. Joins of Two or Finitely Many Embedded Varieties

Fix an integer s ≥ 2 and s integral and non-degenerate varieties Yi ⊂ Pr, 1 ≤ i ≤ s.
The join J(Y1, . . . , Ys) of Y1, . . . , Ys is the closure in Pr of the union of all linear spans of
sets {p1, . . . , ps} with pi ∈ Yi for all i. In the usual definition, one allows the case Yi = Yj
for some i 6= j, but we prefer to consider the case in which Yi 6= Yj for all i 6= j and we
have positive integers a1, . . . , as such that each Yi appears exactly ai times in the join. Thus,
we are looking at Terracini loci coming from the join of σa1(Y1), . . . , σas(Ys), where σai (Yi)
denote the ai-th secant variety of Yi [2]. Set x := a1 + · · ·+ as. We are assuming Yi 6= Yj
for all i 6= j, but Yi and Yj are allowed to be projectively equivalent. Let Xi be a smooth
projective variety and let fi : Xi → Yi be a morphism with Yi = f (Xi) and fi : Xi → Yi
birational. We take X1, . . . , Xs as distinct abstract varieties (even if they are isomorphic) so
that no point of Xi is a point of Xj for i 6= j. For all finite sets Si ⊂ Xi, we write (2Si, Xi)
as the union of the double points 2p of Xi, p ∈ S. We assume #Si = ai for all i and take
zero-dimensional schemes Zi ⊂ (2S, Xi), 1 ≤ i ≤ s. In the case dim Xi = 1, we assume that
each connected component of Xi has an even degree. We say that (Z1, . . . , Zs) contributes to
T̃ ( f1, . . . , fs; a1, . . . , as) if 〈∪s

i=1 f (2Si, Xi)〉 6= Pr and dim〈∪s
i=1 fi(Zi)〉 ≤ ∑s

i=1 deg(Zi)− 2.
We get the same formula if ai = 0 for some i taking Si = Zi = ∅, with the only restriction
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that a1 + · · · + as > 0. Set T̃ ( f1, . . . , fs) := ∪a1≥0,...,as≥0,a1+···+as>0T̃ ( f1, . . . , fs; a1, . . . , as)
and T̃( f1, . . . , fs) := ∪a1>0,...,as>0T̃ ( f1, . . . , fs; a1, . . . , as). The notions of minimality and
weak minimality for joins are different if we consider T̃ ( f1, . . . , fs) or T̃( f1, . . . , fs).

Note that, in the next proposition, we allow the case in which both Y1 and Y2 are
rational normal curves, we only assume Y1 6= Y2 as subsets of the same projective space.

Proposition 5. Fix an odd integer r ≥ 3 and irreducible and non-degenerate curves Yi ⊂ Pr,
i = 1, 2, such that Y1 6= Y2. Let fi : Xi → Yi denote the normalization map. Fix an integer
0 < x < (r + 1)/2 and set y := (r + 1)/2 − x. Then T̃ ( f1, f2; x, y) 6= ∅. Moreover,
T̃ ( f1, f2; x, y) has at least 2 irreducible families of elements of dimension x + y − 1 and, as an
allowable set for T̃ ( f1, f2; x, y), we may take the union of x general points of X1 and y− 1 general
points of X2.

Proof. By Remark 5, it is sufficient to find integers 0 ≤ a ≤ x and 0 ≤ b ≤ y, a +
b > 0, such that T̃ ( f1, f2; a, b) 6= ∅. Fix a general S1 ⊂ X1 such that #S1 = x and set
Z1 := 2S1. Since Y1 6= Y2, Y1 ∩ Y2 is finite. Since S1 is general in X1, f1(S1) ∩ Y2 = ∅. Set
V := 〈 f (Z1)〉 If dim V ≤ 2x − 2, then T̃ ( f1, f2; x, 0) 6= ∅ and, hence, T̃ ( f1, f2; x, y) 6= ∅.
Now assume dim V = 2x− 1. If Y2 ∩V 6= ∅, say f2(o) ∈ V, the pair of schemes (Z1, 2o)
gives T̃ ( f1, f2; x, y) 6= ∅. Thus, we may assume V ∩Y2 = ∅. Let µ : X2 → P2r−2 denote the
morphism induced by the composition of f2 with the linear projection Pr \V → Pr−2x. Set
d := deg(Y2). Since Y2 is non-degenerate, d ≥ r and, hence, d > r− 2x. If y = 1, and, hence,
r− 2x = 1, we use the ramification formula to say that µ is ramified at some o ∈ X2 and,
hence, we use the scheme Z1 ∪ 2o. Now assume r− 2x ≥ 3. If deg(µ) > 1, one mimics step
(a1) of the proof of Proposition 2. If deg(µ) = 1, we may use the statement of Theorem 1,
because d > r− 2x.

Now we prove the “Moreover” assertion. We may take as first x points on X1 x general
points of X1. So these x points of X1 are parametrized by a family of dimension x. If y = 1,
then we proved the existence of our first irreducible family and even described it. Now
assuming y ≥ 2, instead of quoting Theorem 1, we take the proof of Proposition 2 and see
that we may take y− 1 general points of X2 as part of our solution.

The other family is obtained first taking y general points of X2 and then x− 1 general
points of X1.

The following example (the equivalent for joins of Example 11) shows how much
easier it is to get results for joins of different varieties. We hope that the readers will give
many more examples.

Example 12. Take smooth and non-degenerate surfaces Xi ⊂ P5, i = 1, 2, such that X1 6= X2.
Call f1 and f2 the inclusion of X1 and X2. Fix any p ∈ X1 \ X1 ∩ X2. We claim that p is
allowable for T̃ ( f1, f2; 1, 1). If TpX1 ∩ X2 6= ∅, then we may take any o ∈ TpX1 ∩ X2 and use
that TpX ∩ ToX contains o (o 6= p, because p ∈ X1 \ X1 ∩ X2). Now assume TpX ∩ X2 = ∅.
In this case, the linear projection from TpX induces a morphism u : X2 → P2 of degree deg(X2).
We have deg(X2) > 1, because X2 spans P5. Since P2 is algebraically simply connected, the purity
of the branch locus shows that u ramifies over a curve, i.e., there is a 1-dimensional family of a ∈ X2
such that TpX ∩ TaX 6= ∅.

7. Methods

There are no experimental data and no part of a proof is completed numerically. All
results are given with full proofs. Computers are not used for algebraic manipulations or
computer graphics; however, a look at the references in [5] shows that they may be very
useful for both branches discussed at the beginning of the introduction.



AppliedMath 2023, 3 700

8. Conclusions

We gave a few related flexible definitions of Terracini loci and proved their power
to prove that some Terracini loci are not empty. We consider stronger properties, which
elements of Terracini may have: minimality, containing a prescribed point or omitting a
prescribed bad set. Our main results are for the 1-dimensional case, but the definitions are
general. We gave several examples in higher dimensions. We briefly mentioned at the end
of Section 4 the case of real solutions and partially real solutions [5], which we believe may
be greatly expanded by the readers.
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