
Citation: Muñoz, D.F. Estimation of

Expectations and Variance

Components in Two-Level Nested

Simulation Experiments. AppliedMath

2023, 3, 582–600. https://doi.org/

10.3390/appliedmath3030031

Academic Editor: Tommi Sottinen

Received: 7 May 2023

Revised: 28 July 2023

Accepted: 1 August 2023

Published: 7 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Estimation of Expectations and Variance Components in
Two-Level Nested Simulation Experiments
David Fernando Muñoz

Department of Industrial and Operations Engineering, Instituto Tecnológico Autónomo de México, Rio Hondo 1,
Mexico City 01080, Mexico; davidm@itam.mx; Tel.: +52-55-5628-4118

Abstract: When there is uncertainty in the value of parameters of the input random components
of a stochastic simulation model, two-level nested simulation algorithms are used to estimate the
expectation of performance variables of interest. In the outer level of the algorithm n observations
are generated for the parameters, and in the inner level m observations of the simulation model are
generated with the values of parameters fixed at the values generated in the outer level. In this article,
we consider the case in which the observations at both levels of the algorithm are independent and
show how the variance of the observations can be decomposed into the sum of a parametric variance
and a stochastic variance. Next, we derive central limit theorems that allow us to compute asymptotic
confidence intervals to assess the accuracy of the simulation-based estimators for the point forecast
and the variance components. Under this framework, we derive analytical expressions for the point
forecast and the variance components of a Bayesian model to forecast sporadic demand, and we
use these expressions to illustrate the validity of our theoretical results by performing simulation
experiments with this forecast model. We found that, given a fixed number of total observations
nm, the choice of only one replication in the inner level (m = 1) is recommended to obtain a more
accurate estimator for the expectation of a performance variable.

Keywords: Bayesian forecasting; stochastic simulation; parameter uncertainty; two-level simulation

1. Introduction and Notation

Simulation is usually regarded as a powerful tool for producing forecasts, evaluating
risk (see, e.g., [1]), and animating and illustrating a system’s performance over time (see,
e.g., [2]). When a component of a simulation model has a certain degree of uncertainty, it
is said to be a random component, and it is modeled by using a probability distribution
and/or a stochastic process that is sampled throughout the simulation run to produce a
stochastic simulation. A random component typically depends on the value of certain
parameters; we denote by θ a particular value for the vector of parameters of the random
components of a stochastic simulation, and Θ denotes a random vector that corresponds to
the parameter values when there is uncertainty in the values of these parameters.

Following the notation of [1], the output of a stochastic (dynamic) simulation can
be regarded as a stochastic process {Y(s) : s ≥ 0; Θ}, where Y(s) is a random vector (of
arbitrary dimension d) representing the state of the simulation at time s ≥ 0. The term
transient simulation applies to a dynamic simulation that has a well-defined termination
time, so the output of a transient simulation can be viewed as a stochastic process {Y(s) :
0 ≤ s ≤ T; Θ}, where T is a stopping time (which may be deterministic); see, e.g., [3] for a
definition of stopping time.

A performance variable W in a transient simulation is a real-valued random variable
(r.v.) that depends on the simulation output up to time T, i.e., W = f (Y(s), 0 ≤ s ≤ T; Θ),
and the expectation of a performance variable W is a performance measure that we usually
estimate through experimentation with the simulation model. When there is no uncertainty
in the parameters of the random components, the accepted technique for estimating a
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performance measure in transient simulation is the method of independent replications.
This method consists of running experiments with the simulation model to produce n
replications W1, W2, . . . , Wn that can be regarded as independent and identically distributed
(i.i.d.) random variables (see Figure 1).

For i = 1 to n
Run a simulation experiment with Θ = θ to obtain an independent replication

Wi = f (Yi(s), 0 ≤ s ≤ T; θ)
End Loop
Compute a point estimator and an ACI for the expectation α: α̂(n) = ∑n

i=1 Wi
n .

Figure 1. Algorithm for the method of independent replications with a parameter fixed at the value θ.

In the method of independent replications, a point estimator for the expectation

α = E[W1] is the average α̂(n) = ∑n
i=1 Wi

n . If E[|W1|] < ∞, it follows from the classical Law
of Large Numbers (LLN) that α̂(n) is consistent, i.e., it satisfies α̂(n)⇒ α, as n→ ∞ (where
⇒ denotes weak convergence of random variables); see, e.g., [3] for a proof. Consistency
ensures that the estimator approaches the parameter as the number of replications n
increases, and an asymptotic confidence interval (ACI) for the parameter is often used to
evaluate the accuracy of the simulation-based estimator. Typically, a Central Limit Theorem
(CLT) for the estimator is used to derive the expression for an ACI (see, for example, chapter
3 of [4]). For the case of the expectation α in the algorithm of Figure 1, if E[W2

1 ] < ∞, the
classical CLT implies that √

n(α̂(n)− α)

σ
⇒ N(0, 1), (1)

as n → ∞, where σ2 = E[(W1 − α)2], and N(0, 1) denotes an r.v. distributed as normal
with a mean of 0 and variance of 1. Then, if E[W2

1 ] < ∞, it follows from (1) and Slutsky’s
Theorem (see Appendix A) that

√
n(α̂(n)− α)

σ̂(n)
⇒ N(0, 1),

as n→ ∞, where σ̂(n) denotes the sample standard deviation, i.e., σ̂2(n) = ∑n
i=1(Wi−α̂(n))2

n−1 .
This CLT implies that

lim
n→∞

P[|α̂(n)− α| ≤ zβσ̂(n)/
√

n] = 1− β,

for 0 < β < 1, where zβ is the (1− β/2)-quantile of a N(0, 1), so the CLT of Equation (2) is
sufficient to establish a 100(1− β)% ACI for α with the following halfwidth:

HWα = zβσ̂(n)/
√

n. (2)

The standard measurement used in simulation software (e.g., Simio; see [2]) to evaluate the
accuracy of α̂(n) as an estimator of expectation α is a halfwidth in the form of (2).

The parameters of the random input components of a simulation model are typically
estimated from real-data observations (denoted by a real-valued vector x), in contrast to
an estimation of output performance measures that uses observations from simulation
experiments. While the majority of applications covered in the related literature assume that
there is no uncertainty in the value of input parameters, the uncertainty can be significant
when these parameters are estimated by using small amounts of data. In these situations,
Bayesian statistics can be used to incorporate this uncertainty in the output analysis of
simulation experiments via the use of a posterior distribution p(θ|x). A two-level nested
simulation algorithm (see, e.g., [5–7]) is a methodology that is currently proposed for the
analysis of simulation experiments under parameter uncertainty. In the outer level, we
simulate n observations for the parameters from a posterior distribution p(θ|x), while in the
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inner level, we simulate m observations for the performance variable with the parameters
fixed at the value θ generated in the outer level. In this paper, we focus on the case where the
observations at both levels of the algorithm are independent (as illustrated in Figure 2). We
first show how the variance of a simulated observation can be decomposed into parametric
and stochastic variance components, and then we obtain CLTs for the estimator of the point
forecast and the estimators of the variance components. Our CLTs allow us to compute
an ACI for each estimator. Our results are validated through experiments with a forecast
model for sporadic demand reported in [8]. The main theoretical results reported in this
paper were first stated in [9] (although the proofs were omitted), and in this paper, we
provide the missing proofs, a more comprehensive literature review, and a more complete
set of experiments with different values for the parameters of our experiments.

For i = 1 to n
Generate (independently) a value θi from p(θ|x)
For j = 1 to m

Run a simulation experiment with Θ = θi to obtain an independent replication
Wij = f (Yij(s), 0 ≤ s ≤ T; θi)

End Loop
End Loop

Compute a point estimator and an ACI for the expectation α: α̂(n) = ∑n
i=1 α̂i

n , α̂i =
∑m

j=1 Wij
m .

Figure 2. Algorithm for a two-level nested simulation experiment to calculate a point estimator for
the expectation of a performance variable under parameter uncertainty.

The existing literature on quantifying the impact of uncertainty on the input com-
ponents of a stochastic simulation is very extensive; detailed reviews can be found, e.g.,
in [10–12] and the references therein. However, in order to situate our results within the
framework of the bibliography related to the input analysis of simulation experiments,
next, we present a brief discussion of the different approaches that have been proposed on
this topic.

According to Barton et al. [13], input analysis in the simulation literature has been
addressed essentially in two ways: sensitivity analysis and the characterization of the im-
pact of input uncertainty to provide an ACI (to evaluate the accuracy of a point estimator)
that explicitly considers this uncertainty. A sensitivity analysis is performed by running
simulation experiments under different distributions for the random components and/or
different parameters in order to investigate and describe the changes in the main perfor-
mance measures of the simulation experiments (see [14,15] for early proposals). Although
formalization of this approach was initially proposed by using techniques (e.g., design of
experiments and/or regression; see [16]) that were previously proposed to analyze real-
world experiments (see, e.g., [17]), some other techniques were proposed for the special
purpose of simulation; for example, Freimer and Schruben [18] discussed methods for the
design of experiments to search for the sample size of input data that ensured that the
difference in the results of two simulation experiments was dominated by the stochastic
variance (induced by the simulation experiments) so that the parametric variance (induced
by input uncertainty) was not significant for decision making. As pointed out by Bruce
Schmeiser in his discussion in [19], sensitivity analysis has a wide range of applications,
since it can handle model uncertainty, as well as situations where no real-world data exist;
however, a significant drawback is that it does not provide a statistical characterization of
input uncertainty. This characterization can be achieved through the construction of an
ACI that explicitly considers input uncertainty based on sample data.

According to several authors (e.g., [10,13]), for the construction of an ACI that explicitly
considers the impact of input uncertainty, there have been essentially three approaches: the
delta method, resampling, and Bayesian methods. Let us denote by η(θ) the expectation of
W1 (of Figure 1) as a function of θ, and let θ̂r be an estimator for parameter θ (where r is the
sample size of real-world observations); in this notation, the main idea of the delta method
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is to consider a Taylor series expansion for η(θ̂r) around θ to investigate convergence
properties (as r → ∞) of η(θ̂r) as an estimator of η(θ). Cheng and Holland ([20–22])
introduced the use of the delta method to propose the construction of confidence intervals
for the expectation of a performance variable of a stochastic simulation under uncertainty
in the parameters of a proposed (known) parametric family of distributions for a random
component. In [20,22], the authors did not formally prove the asymptotic validity of their
proposed confidence intervals but justified them by appealing to the asymptotic normality
(as r → ∞) of the estimator θ̂r (which is the case, under regularity conditions, when θ̂r is the
maximum likelihood estimator). In a later publication ([23]), Cheng and Holland provided
proof of the asymptotic validity of their confidence intervals based on the delta method
under regularity conditions as r → ∞ and n → ∞. In [20,23], the authors also proposed
the construction of asymptotic confidence intervals under parameter uncertainty based
on a resampling technique known as parametric bootstrapping; this proposal basically
consisted of using the algorithm of Figure 1 but sampling the values for parameter θ from
the likelihood evaluated at the maximum likelihood estimator. Some other proposals for the
construction of an ACI are based on resampling from the empirical distribution of real-data
observations (see, e.g., [13,24,25]). A drawback of proposed confidence intervals based
on the delta method and resampling is that their asymptotic validity (see the Theorem
of [23] and Theorem 1 of [13]) requires that the sample size of real observations be large
(r → ∞), which is a condition that is probably true for big data, in which case parameter
uncertainty may not be significant. Another drawback of techniques based on the delta
method and parametric bootstrapping is that parameter θ is assumed to be deterministic
(although unknown) so that, at some point, the value of θ is replaced by θ̂, and this is one
reason for why these methods are called frequentists in the statistics community. On the
contrary, under a Bayesian approach, a parameter is regarded as a random variable Θ, and
the uncertainty about Θ is assessed through a posterior distribution p(θ|x) that explicitly
incorporates available information from sample data x.

Bayesian methods have solid theoretical foundations (see, e.g., [26]), and they have
been proposed to assess not only parameter uncertainty, but also model uncertainty
(see [27]). Bayesian methods for input analysis in simulation experiments were intro-
duced by Chick in [28], and since then, there has been a fair number of publications on
Bayesian methods for input simulation analysis (see, e.g., [7,29–31]). Bayesian methods
require the specification of a prior distribution on the input parameters of the simulation
model, and some users object to this requirement; however, there is a well-developed
theory on objective priors (see, e.g., [32]), and some authors (e.g., [10,33]) consider that this
requirement is actually a strength of the approach. Another strength of Bayesian methods
for input analysis in stochastic simulation is that some Bayesian methods have been de-
veloped to construct an ACI for parameters that are not the expectation—for example, the
variance and quantiles for a consistent estimation of a credible interval for the performance
variable W (see [34]). It is worth mentioning that some methods need the extra assumption
that the simulation output satisfies a meta-model in order to justify the asymptotic validity
of their proposed confidence intervals (e.g., [13,35]); as we will see, this extra assumption is
not required to establish an ACI for the expectation and variance components of two-level
simulation experiments in a Bayesian framework.

The organization of this article is as follows. After this introduction, our proposed
methodologies for the computation of an ACI for the point forecast and the variance
components in a two-level simulation experiment are then described, and the mathematical
results that support the validity of the proposed ACIs are stated (the corresponding proofs
are provided in Appendix A). In the next section, we illustrate our notation by obtaining
the analytical solutions for the point forecast and the variance components of a Bayesian
model to forecast sporadic demand. This solution is used in the next section to illustrate
and support, through simulation experiments, the validity of the ACIs proposed in this
article. In the final section, we summarize our findings and suggestions for future research.
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2. Theoretical Results

To identify the parameters that we wish to estimate by using the two-level nested

algorithm in Figure 2, we denote µ(Θ)
de f
= E[W11|Θ], and σ2(Θ)

de f
= E[W2

11|Θ]− µ2(Θ). In
this notation, the point forecast is the expectation α = E[µ(Θ)], and the variance of each
Wij is:

V[Wij]
de f
= E[W2

ij]− E[Wij]
2 = E[E[W2

ij|Θ]− µ(Θ)2] + E[µ(Θ)2]− E[µ(Θ)]2 = σ2
S + σ2

P, (3)

for i = 1, . . . , n; j = 1, . . . , m, where σ2
P = V[µ(Θ)]

de f
= E[µ(Θ)2] − E[µ(Θ)]2, and

σ2
S = E[σ2(Θ)], where σ2(Θ) was previously defined. We mention that, in the relevant

literature, σ2
S is usually referred to as stochastic variance, and σ2

P is usually referred to as
parametric variance.

2.1. Point Estimators

In this paper, we are interested in both the estimation of the point forecast α = E[µ(Θ)]
and the estimators of the variance components of every observation generated in the
algorithm in Figure 2 and defined in (3); thus, we first consider the natural point estimators

α̂(n) =
1
n

n

∑
i=1

α̂i, σ̂2
T(n) =

1
n− 1

n

∑
i=1

(α̂i − α̂(n))2, σ̂2
S(n) =

1
n

n

∑
i=1

S2
i , (4)

where α̂i = m−1 ∑m
j=1 Wij, and S2

i = (m− 1)−1 ∑m
j=1(Wij − α̂i)

2, i = 1, . . . , m. Note that the
α̂is are i.i.d. with expectation E[α̂1] = α and variance

σ2
T

de f
= E[(α̂1 − α)2] = m−2(mE[(W11 − α)2] + m(m− 1)E[(W11 − α)(W12 − α)])

= m−1(σ2
S + σ2

P) + m−1(m− 1)σ2
S = σ2

S + m−1σ2
P. (5)

In addition, note that the S2
i values are i.i.d. with expectation E[S2

1] = σ2
S , i = 1, . . . , n. Thus,

the next proposition follows from the classical LLN.

Proposition 1. If m ≥ 1 and E[W2
11] < ∞, then α̂(n) and σ̂2

T(n) are unbiased and consistent (as
n→ ∞) estimators for α and σ2

T (as defined in (5)), respectively.
Furthermore, if m ≥ 2 and E[W2

11] < ∞, then σ̂2
S(n) is an unbiased and consistent (as

n→ ∞) estimator for σ2
S (as defined in (3)).

2.2. Accuracy of the Point Estimators

As we stated in Proposition 1, under mild assumptions, the point estimators proposed
in (4) are consistent and, thus, converge to the corresponding parameter value (as n→ ∞).
However, to determine the degree of accuracy of these estimators, we must establish a CLT
for each estimator to derive a valid expression for the corresponding ACI. Note that both
α̂(n) and σ̂2

S(n) are averages of i.i.d observations; thus, the next proposition follows from
the classical CLT for i.i.d. observations.

Proposition 2. If m ≥ 1 and E[W2
11] < ∞, then

√
n(α̂(n)− α)

σT
⇒ N(0, 1),

as n→ ∞.
Furthermore, if m ≥ 2 and E[W4

11] < ∞, then

√
n(σ̂2

S(n)− σ2
S)√

VS
⇒ N(0, 1),
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as n → ∞, where σ2
S is defined in (3), σ2

T is defined in (5), α̂(n), σ̂2
S(n) are defined in (4), and

VS = E[(S2
1 − σ2

S)
2], where S2

1 is defined in (4).

Since we have consistent estimators for σ2
T and VS (under mild assumptions), the next

corollary follows from Proposition 1 and Slutsky’s Theorem; the details of the proof are
given in Appendix A.

Corollary 1. Under the same notation and assumptions as in Proposition 2, for m ≥ 1, we have
√

n(α̂(n)− α)√
σ̂2

T(n)
⇒ N(0, 1),

as n→ ∞, and for m ≥ 2, we have
√

n(σ̂2
S(n)− σ2

S)√
V̂S(n)

⇒ N(0, 1),

as n→ ∞, where σ̂2
S(n) and σ̂2

T(n) are defined in (4), and

V̂s(n) =
1

n− 1

n

∑
i=1

(S2
i − S2)2, S2 =

1
n

n

∑
i=1

S2
i .

In order to obtain a CLT for σ̂2
T(n), note that this estimator is the sample variance of

i.i.d. observations; thus we can use the following lemma. A proof using the delta method
(see, e.g., Proposition 2 of [36] for a proof) is provided in Appendix A.

Lemma 1. If X1, X2, . . . is a sequence of i.i.d. random variables with E[X4
1 ] < ∞, then

√
n(S2(n)− σ2

1 )√
σ2

2

⇒ N(0, 1),

as n→ ∞, where σ2
1 = µ2− µ2

1, σ2
2 = µ2

1µ2− 4µ4
1− 4µ1µ3 + µ4− µ2

2, µk = E[Xk
1], k = 1, 2, 3, 4;

S2(n) = (n− 1)−1 ∑n
i=1(Xi − µ̂1)

2, µ̂1 = n−1 ∑n
i=1 Xi.

Note that, for k = 1, 2, 3, 4, µ̂k of Lemma 1 is an unbiased and consistent estimator for
µk, so the next corollary follows directly from Lemma 1.

Corollary 2. Under the same assumptions as those in Lemma 1, we have
√

n(S2(n)− σ2
S)√

σ̂2
2 (n)

⇒ N(0, 1),

as n→ ∞, where σ̂2
2 = 8µ̂2

1µ̂2 − 4µ̂4
1 − 4µ̂1µ̂3 + µ̂4 − µ̂2

2, µ̂k = n−1 ∑n
i=1 Xk

i .

Since σ̂2
T(n) is the sample variance of α̂i, i = 1, . . . , n, the next corollary follows directly

from Lemma 1.

Corollary 3. If m ≥ 1 and E[W4
11] < ∞, then

√
n(σ̂2

T(n)− σ2
T)√

V̂T(n)
⇒ N(0, 1),
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as n→ ∞, where V̂T(n) = 8ᾱ2
1ᾱ2 − 4ᾱ4

1 − 4ᾱ1ᾱ3 + ᾱ4 − ᾱ2
2, ᾱk = n−1 ∑n

i=1 α̂k
i , k = 1, 2, 3, 4.

Corollaries 1, 2, and 3 are the CLTs required to establish an ACI for the point forecast
α, the stochastic variance σ2

S , and the variance σ2
T = σ2

S + m−1σ2
P, respectively. According to

these corollaries, for 0 < β < 1, the 100(1− β)% ACIs are centered in the corresponding
point estimator, and have halfwidths are given by:

HWα = zβ

√
σ̂2

T(n)√
n

, HWσ2
S
= zβ

√
V̂S(n)√

n
, and HWσ2

T
= zβ

√
V̂T(n)
√

n
, (6)

for α, σ2
S , and σ2

T , respectively, where σ̂2
T(n) is defined in (4), and V̂S(n) and V̂T(n) are

defined in Corollary 1 and in Corollary 3, respectively.
As we have seen, by using the algorithm in Figure 2, we can build valid ACIs for the

parameters of interest in this article, although a relevant question is that of how to distribute
the computing time between the two loops to obtain more accurate point estimators—that
is, given a budget k = nm, which value of m provides the most accurate estimators? For the
case of the estimation of the point forecast α, we can answer this question, as we explain
below. Since the point estimator α̂(n) is an average of i.i.d. random variables, for fixed
values of k = nm, it follows from Equation (5) that the variance of α̂(n) is given by

n−1σ2
T = k−1(mσ2

S + σ2
P), (7)

and takes its minimal value when m = 1, suggesting that the point estimator α̂(n) defined
in (4) is more accurate when m is smaller (i.e., it takes the value of 1). However, note that a
smaller value of m is convenient (from the point of view of running time) for a fixed budget
of k = nm when the computing time needed to generate a random variate from p(θ|x) in
the algorithm in Figure 2 is negligible compared to the computing time needed to generate
Wij, as is the case in most real applications.

Note that the TLCs stated in Xorollaries 1, 2 and 3 were obtained for a fixed value of m
as n→ ∞ in the algorithm in Figure 2, which means that the accuracy of the corresponding
point estimator increases as the number of observations in the outer level increases and m
remains fixed. An interesting result is that we can also obtain a TLC for the point forecast α
if we allow m to increase with n, as we state in the following proposition (a proof using the
Lindeberg–Feller theorem is provided in Appendix A).

Proposition 3. Given 0 < p ≤ 1, if m =
⌊

n−1+1/p
⌋

and E[W2
11] < ∞, then

√
n(α̂(n)− α)√

σ2
T

⇒ N(0, 1),

as n→ ∞, where σ2
T is defined in (5) and, for any real number s, bsc denotes the integer part of s.

Note that the last proposition implies that the ACI defined in Equation (6) for the point
forecast α is also valid under the assumptions of Proposition 3. If, once again, we set the
total number of iterations in the algorithm in Figure 2 to k = nm, we let n ≈ kp, m ≈ k1−p,
and nm = k, as in Proposition 3, and it follows from Equation (5) that the variance of α̂(n)
is n−1σ2

T ≈ k−p(σ2
S + k−(1−p)σ2

P) = k−pσ2
S + k−1σ2

P for every 0 < p ≤ 1. In this case, for a
fixed value of k, n−1σ2

T reaches its minimum value when p = 1, that is, when n = k and
m = 1. However, note that we need m ≥ 2 in order to estimate σ2

S . In Section 4, we report
some empirical results that confirm our theoretical results. It is worth mentioning that
the case of n = k and m = 1 has been reported in the literature as the posterior sampling
algorithm (see, e.g., [34,37]).
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3. A Forecast Model for Inventory Management with an Analytical Solution

The following model was proposed in [8] to forecast sporadic demand by incorporating
data on times between arrivals and customer demand, and uncertainty in the model
parameters was incorporated by using a Bayesian approach. For this model, we will show
analytical expressions for the performance measures defined in Section 2. These expressions
are used in Section 4 to provide empirical evidence of the validity of the ACIs proposed
in Section 2. This application example will also illustrate the notation that we used in the
previous sections.

The arrivals of customers who enter a store to buy a certain item follow a Poisson
process. There is uncertainty in the value of the arrival rate Θ0, although we assume that
given [Θ0 = θ0], the times between customer arrivals are i.i.d. with exponential density:

f (y|θ0) =

{
θ0e−θ0y, y > 0,

0, otherwise,
(8)

where θ0 ∈ S00 = (0, ∞). We assume that any client can order j units of this item with
probability Θ1j, j = 1, . . . , q, q ≥ 2. Let Θ1 = (Θ11, . . . Θ1(q−1)) and Θ1q = 1− ∑

q−1
j=1 Θ1j;

then, Θ = (Θ0, Θ1) is the vector of parameters, and S0 = S00
⊗

S01 is the parameter space,
where S01 = {(θ11, . . . , θ1(q−1)) : ∑

q−1
j=1 θ1j ≤ 1; θ1j ≥ 0, j = 1, . . . , q− 1}.

We are interested in forecasting the total demand for this item over a period of
length T:

D =

{
∑

N(T)
i=1 Ui, N(T) > 0

0, otherwise,
(9)

where, for any s ≥ 0, N(s) is the number of customers who came to buy the item during
the interval [0, s], and U1, U2, . . . are the individual demands, which are assumed to be
conditionally independent relative to Θ0. The vector of real-data observations is denoted
by x = (v, u) and consists of i.i.d. observations v = (v1, . . . , vr), u = (u1, . . . , ur) of past
customers, where vi is the interarrival time between customer i and customer (i − 1),
and ui is the number of units ordered by client i. By taking Jeffrey’s non-informative
prior as the prior density for Θ, we obtain the posterior density (see [8] for details)
p(θ|x) = p(θ0|v)p(θ1|u), where θ = (θ0, θ1), and

p(θ0|v) =
θr−1

0 (∑r
i=1 vi)

re−θ0 ∑r
i=1 vi

(r− 1)!
, p(θ1|u) =

(1−∑
q−1
j=1 θ1j)

cq−1/2Πq−1
j=1 θ

cj−1/2
1j

B(c1 + 1/2, . . . , cq + 1/2)
, (10)

where cj = ∑r
i=1 I[ui = j], and B(a1, . . . aq) = Πq

j=1Γ(aj)/Γ(∑
q
j=1 aj) for a1, . . . , aq > 0. With

this notation, we can show that (see [1] for details)

α = E[TΘ0]
q

∑
j=1

jpj,

σ2
P =

E[T2Θ2
0]

(q0 + 1)

q

∑
j=1

j2 pj +
E[TΘ0]

2[(q0/n)− 1]
(q0 + 1)

(
q

∑
j=1

jpj)
2,

σ2
S = E[TΘ0]

q

∑
j=1

j2 pj,

where E[TΘ0] = Tr(∑r
i=1 vi)

−1, E[T2Θ2
o ] = T2r(1+ r)(∑r

i=1 vi)
−2, pj = qj/q0, qj = cj + 1/2,

j = 1, . . . , q, q0 = ∑
q
j=1 qj, and cj is defined in (10).
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4. Empirical Results

To validate the ACIs proposed in (4), we conducted some experiments with the
Bayesian model of Section 3 to illustrate the estimation of α, σ2

S , and σ2
T . We considered

the values T = 15, r = 20, ∑r
i=1 xi = 10, q = 5, c1 = 5, c2 = 3, c3 = 2, c4 = 3, and

c5 = 7. With these data, the point forecast is α ≈ 95.333, and the variance components are
σ2

S ≈ 380.667 and σ2
P ≈ 568.598. Note that σ2

S < σ2
P in this case, for which we also ran the

same experiments with T = 5, so α ≈ 31.778, σ2
S ≈ 162.889, σ2

P ≈ 62.066, and σ2
S > σ2

P in
the latter case. The empirical results that we report below illustrate a typical behavior that
we should experiment with for any other feasible dataset.

In each of the estimation experiments carried out for this research, we considered
1000 independent replications of the algorithm in Figure 2 for different numbers of obser-
vations in the outer loop (n) and in the inner loop (m); in each replication, we computed
the point estimators for α, σ2

S , and σ2
T , as well as the corresponding halfwidths of 90% ACIs

according to Equation (6). Because we are estimating parameters whose values we know
a priori, we can report (for a given n and m) the empirical coverage (i.e., the proportion
of independent replications in which the corresponding ACI covers the true value of the
parameter), the average and the standard deviation of halfwidths, and the square root of
the empirical mean squared error defined by

RMSE =

√
1
n0

n0

∑
i=1

(θ̂i − θ)2,

where θ̂i is the value obtained in replication i for the point estimation of a parameter
θ, i = 1, 2, . . . , n0 (we set the number of replications to n0 = 1000).

In the first set of experiments, we considered nm = 240, 2400, 24, 000 and m =
1, 2, 3, 4, 5 for each value of nm to compare the effect of increasing the number of observa-
tions in the inner loop for a given value of nm. The main results of this set of experiments
are summarized in Figures 3–8. Note that we do not consider m = 1 in Figures 5 and 6 to
be able to construct an ACI for the stochastic variance σ2

S .

Figure 3. Performance of the estimation of the point forecast α for T = 15 and fixed nm with different
values of m.
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Figure 4. Performance of the estimation of the point forecast α for T = 5 and fixed nm with different
values of m.

Figure 5. Performance of the estimation of the stochastic variance σ2
S for T = 15 and fixed nm with

different values of m.

In Figure 3, we illustrate the performance measures for the quality of the estimation
procedure that we obtained for the estimation of the point forecast α when T = 15. As we
can observe in Figure 3, the coverages are acceptable (very close to the nominal value of 0.9,
even for nm = 240). These results validate the ACI defined in (6) for the point forecast α. We
also observe in Figure 3 that the RMSE, average halfwidth, and standard deviation of the
halfwidths improve (decrease) as the number of observations in the outer loop (n) increases,
as suggested by Corollary 1. Note also in Figure 3 that a smaller value of m provides smaller
RMSEs, average halfwidths, and standard deviations of the halfwidths, thus validating our
suggestion that m should be as small as possible to improve the accuracy in the estimation
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of α. In Figure 4, we illustrate the corresponding results for T = 5, where we can observe
that the same conclusions mentioned for T = 15 are fulfilled, and the main difference
from the previous case is that the RMSE, average halfwidths, and standard deviation of
halfwidths are smaller, which is consistent with the fact that the point forecast α is smaller
than in the case in which T = 15. Note that both in the case of Figure 3 and in the case of
Figure 4, the RMSE, average halfwidth, and average standard deviation of the halfwidths
seem to be a linear function of m.

Figure 6. Performance of the estimation of the stochastic variance σ2
S for T = 5 and fixed nm with

different values of m.

In Figure 5, we illustrate the performance measures for the quality of the estimation
procedure that we obtained for the estimation of the stochastic variance σ2

S when T = 15.
As we can observe in Figure 5, the coverages are acceptable (very close to the nominal value
of 0.9, even for nm = 240). These results validate the ACI defined in (6) for the stochastic
variance σ2

S . We also observe in Figure 5 that the RMSE, average halfwidth, and standard
deviation of halfwidths improve (decrease) as the number of observations in the outer level
(n) increases, as suggested by Corollary 2. However, contrary to what we observed for
the estimation of α, a larger value of m provides smaller RMSE, average halfwidths, and
standard deviations of the halfwidths, suggesting that, for a fixed value of nm, the quality
of the estimation for the stochastic variance σ2

S improves as the number of the observations
in the inner loop (m) increases, although the values are very close for nm = 2400, 24,000. In
Figure 6, we illustrate the corresponding results for T = 5, where we can observe that the
same conclusions as those mentioned for T = 15 are fulfilled, and the main difference from
the previous instance that we observed is that, now, the RMSE, average halfwidths, and
standard deviation of halfwidths are smaller, which is consistent with the fact that the point
forecast α is smaller than in the case T = 15. Contrary to what we observed for the case of
the estimation of α, note that both in the case of Figure 5 and in the case of Figure 6, the
RMSE, average halfwidth, and average standard deviation of the halfwidth do not seem to
be a linear function of m. We emphasize that the case in which m = 1 is not considered in
Figures 5 and 6 because σ2

S cannot be estimated when m = 1.
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Figure 7. Performance of the estimation of the total variance σ2
T for T = 15 and fixed nm with different

values of m.

Figure 8. Performance of the estimation of the total variance σ2
T for T = 5 and fixed nm with different

values of m.

For the estimation of the total variance σ2
T (illustrated in Figure 7 for T = 15, and

in Figure 8 for T = 5), we obtained results for the quality of the estimation that were
similar to those for the estimation of the point forecast α, except that larger values of n
were required to obtain reliable coverages. As we can observe in Figures 7 and 8, the
coverages are acceptable (very close to the nominal value of 0.9, only for n = 2400 and
24,000). These results validate the ACI defined in (6) for the total variance σ2

T . We can also
observe in Figures 7 and 8 that the RMSE, average halfwidth, and standard deviation of the
halfwidths improve (decrease) as the number of observations in the outer loop (n) increases,
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as suggested by Corollary 3. Note also in Figure 7 that a smaller value of m provides smaller
RMSEs, average halfwidths, and standard deviations of halfwidths. However, for the case
in which T = 5 (illustrated in Figure 8), where σ2

S > σ2
P, we observe that the RMSE and the

average halfwidth decrease from m = 1 to m = 2 and then increase, showing that the best
value of m for the estimation of σ2

T depends on the value of the ratio of σ2
S/σ2

P.
In a second set of experiments, we considered nm = 100, 1000, 10, 000, with m = 1,

m ≈ (nm)1/3, and m ≈ (nm)1/2 for each value of nm, to compare the quality of the estima-
tion procedures by using the value of m that we suggested as appropriate for the estimation
of the point forecast α with other choices of p to illustrate the validity of Proposition 3.

Note that m ≈ (nm)1/3 is equivalent to p = 2/3 in Proposition 3, and m ≈ (nm)1/2

corresponds to p = 1/2. Note also that m ≈ (nm)1/3 corresponds to the value of m
suggested in [5], which is a good option for the case of biased estimation in the inner loop
of the algorithm in Figure 2. The results of this set of experiments are summarized in
Figures 9–12. Note that we do not consider the estimation of the stochastic variance σ2

S in
this set of experiments because m ≥ 2 is required to construct an ACI for the stochastic
variance σ2

S . Note also that we consider a = 100, b = 1000, c = 10, 000, a1/3 ≈ 5, c1/3 ≈ 20,
and c1/2 ≈ 32, and we use the same color (red) for m = a1/3, b1/3, and c1/3, as well as the
same color (yellow) for m = a1/2, b1/2, and c1/b, to report our results in Figures 9–12.

In Figures 9 and 10, we illustrate the performance measures for the quality of the
estimation procedure that we obtained for the estimation of the point forecast α in our
second set of experiments. As we can observe in Figures 9 and 10, the coverages are
acceptable (very close to the nominal value of 0.9, even for n = 100). These results validate
the ACI defined in (6) for the point forecast α and the ACI suggested by Proposition 3.
We can also observe in Figures 9 and 10 that the RMSE, average halfwidth, and standard
deviation of the halfwidths are worse than m = 1 for m ≈ (nm)1/3, and they are even
worse for m ≈ (nm)1/2, thus confirming our finding that, for a fixed number of simulated
observations k = nm, a smaller value of m produces better point estimators for α, confirming
the result of Proposition 3.

Figure 9. Performance of the estimation of the point forecast α for T = 15 and fixed nm to compare
m = 1, m ≈ (nm)1/3, and m ≈ (nm)1/2.
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Figure 10. Performance of the estimation of the point forecast α for T = 5 and fixed nm to compare
m = 1, m ≈ (nm)1/3, and m ≈ (nm)1/2.

Finally, in Figures 11 and 12, we show our results for the second set of experiments
and the estimation of the total variance σ2

T .

Figure 11. Performance of the estimation of the total variance σ2
T for T = 15 and fixed nm to compare

m = 1, m ≈ (nm)1/3, and m ≈ (nm)1/2.

In Figures 11 and 12, we found similar results to those for the case of the estimation of
the point forecast α, the coverages were very good (even for n = 100), and all measures of
the quality of the point estimation (RMSE, average and standard deviation of halfwidths)
were worse than those in the case in which m = 1 for m ≈ (nm)1/3, and they were even
worse for m ≈ (nm)1/2, suggesting that, as in the case of the estimation of α, a smaller
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value of m produces better point estimators for σ2
T given a fixed number of replications

k = nm, with the only exception in Figure 12 (σ2
S > σ2

P) being for the case of the average
halfwidths and nm = 100, where the average halfwidth seems to decrease with the value
of m.

Figure 12. Performance of the estimation of the total variance σ2
T for T = 5 and fixed nm to compare

m = 1, m ≈ (nm)1/3, and m ≈ (nm)1/2.

5. Conclusions

In this article, we discussed methods for the estimation of both the point forecast
and the variance components of Bayesian forecast models from the output of stochastic
simulations by using a two-level nested algorithm in which the simulated observations at
both levels of the algorithm are independent. Our main contribution is the development
of valid asymptotic confidence intervals for assessing the accuracy of the simulation-
based point estimators. These methods are particularly useful when there is uncertainty
in the parameter values of the random input components of a forecast model, and we
wish to incorporate this uncertainty into the simulation-based forecasting of the model’s
performance measures.

The proposed point estimators and their corresponding halfwidths are asymptotically
valid, as shown by the theoretical and experimental results, which show that the point
estimators converge to the corresponding parameter values and that the halfwidths con-
verge to the nominal coverage as the number of replications n of the outer level increases.
In addition, the halfwidths corresponding to the proposed ACIs tend to zero (as n→ ∞),
which normally occurs with the appropriate simulation-based estimators of performance
measurements from the outputs of simulation experiments.

We also investigated the best option for the number of observations m in the inner
loop of the algorithm given a fixed number of observations k = nm, and we found that the
choice of only one observation (m = 1) is the best option for obtaining the smallest variance
of the point estimator for the expectation of a performance variable. However, for the
estimation of the stochastic variance σ2

S in a two-level nested algorithm, m ≥ 2 is required.
On the other hand, for the estimation of the stochastic variance σ2

S , our experimental results
show that larger values of m are better, and the best choice of m depends on the ratio of
σ2

S/σ2
P for the case of the estimation of the total variance (σ2

T).
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We remark that we did not consider the case of correlated observations in the outer
loop of the two-level algorithm or the case of steady-state simulations, which may have
important applications for simulation-based estimation by using Markov chain Monte Carlo
(see [38]). In addition, experimentation with other computational procedures, such as quasi-
Monte Carlo (see [6]) or Simpson integration, may be other directions for future research.
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Appendix A

For completeness, we first cite three well-known theorems. Proofs of Theorems A1 and A2
can be found, e.g., in [39], and a proof of Theorem A3 can be found, e.g., in [36]. In what
follows, we write⇒ for weak converge (as n→ ∞ without explicit mention). In addition, <
will denote the space of real numbers, and, for an integer k,<k will denote the k-dimensional
space of real numbers.

Theorem A1. (Slutsky). Let X, Y, X1, X2, . . . , Y1, Y2, . . . be random variables and let c be a real
constant. If Xn ⇒ X and Yn ⇒ c, then:

(i) Xn + Yn ⇒ X + c
(ii) XnYn ⇒ cX
(iii) Xn/Yn ⇒ X/c, if c 6= 0.

Theorem A2. (Continuous mapping). Let X, X1, X2, . . . be <k-valued random vectors, and let
g : <k → < be a function such that P[X ∈ D(g)] = 0, where D(g) = {x : g(x) is not continuous
at x}; then, g(Xn)⇒ g(X).

Theorem A3. (Delta method). Let Y1, Y2, . . . be <k-valued random vectors, and let g:IRk → < be
a function that is differentiable in a neighborhood of µ ∈ <k. If there exists a k× k matrix G such
that the TLC √

n[Ȳ(n)− µ]⇒ GNk(0, 1)

is satisfied, where Ȳ(n) = n−1 ∑m
i=1 Yi, and Nk(0, I) denotes a (k-variate) normal distribution with

a mean of 0 and variance of I (the identity), then
√

n[g(Ȳ(n))− g(µ)]⇒ σN(0, 1),

where σ =
√
∇g(µ)TGGT∇g(µ)).

Proof of Corollary 1. Since α̂1, α̂2, . . . are i.i.d. with E[α̂2
1] < ∞, it follows from the Law of

Large Numbers that n−1(∑n
i=1 α̂2

i , ∑n
i=1 α̂i) ⇒ (E[α̂2

1], E[α̂1]). Therefore, by taking

g(x1, x2) =
√

x1 − x2
2 for x1 − x2

2 ≥ 0 in Theorem A2, we have
√
(n− 1)σ̂2

T(n)/n⇒
√

σ2
T ,

https://www.mdpi.com/article/10.3390/appliedmath3030031/s1
https://www.mdpi.com/article/10.3390/appliedmath3030031/s1
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so Yn =
√

σ̂2
T(n)/

√
σ2

T ⇒ 1. Finally, by taking Xn =
√

n(α̂(n)− α)/
√

σ2
T in Theorem A1,

it follows from Proposition 2 that
√

n(α̂(n)− α)√
σ̂2

T(n)
⇒ N(0, 1)

Similarly, since S2
1, S2

2, . . . are i.i.d. with E[S4
1] < ∞, it follows from Theorem A1 and

Proposition 2 that √
n(σ̂2

S(n)− σ2
S)√

V̂S(n)
⇒ N(0, 1).

Proof of Lemma 1. Let k = 2, Yi = (Xi, X2
i ), µ = (µ1, µ2); then, the TLC of Theorem A3 is

satisfied for

GGT =

[
µ2 − µ2

1 µ3 − µ1µ2
µ3 − µ1µ2 µ4 − µ2

2

]
.

Taking g(µ) = µ2 − µ2
1 = σ2

1 , we have g(Ȳ(n)) = (n− 1)S2(n)/n, ∇g(µ)T = (−2µ1, 1),
and

∇ f (µ)TGGT∇ f (µ) = 8µ2
1µ2 − 4µ4

1 − 4µ1µ3 + µ4 − µ2
2 = σ2

2 .

It follows from Theorem A3 that
√

n
⌊
(n− 1)S2(n)/n− σ2

1

⌋
⇒ σ2N(0, 1),

and the final conclusion follows from Theorem A1.

Proof of Proposition 3. In this proof, we follow the notation of the Lindeberg–Feller Theo-
rem as stated in Theorem 7.2.1 of [3].

For n = 1, 2, . . . , let mn =
⌊

n−1+1/p
⌋

and αj(n) = (∑mn
i=1 Wij)/mn, j = 1, . . . , n. Then,

α1(n), α2(n), . . . , αn(n) are independent, and for Xnj = (αj(n)− α)/
√

nσ2
T , we also have

that Xn1, Xn2, . . . Xnn are independent.
Then, if Ynj = (αj(n)− α)/σT , we have E[Ynj] = 0 and E[Y2

nj] = 1, so given ε > 0,

there exists η0 > 0 such that
∫
|y|<η0

y2dFynj(y) < ε.

Therefore, given η > 0, for n ≥ max{1, (η0/η)2}, we have

n

∑
j=1

∫
|x|<η

x2dFxnj(x) ≤
n

∑
j=1

1
n

∫
|y|<η0

y2dFynj(y) < ε,

so (1) of Theorem 7.2.1 of [3] is satisfied, and it follows from this Theorem that Sn ⇒ N(0, 1),
where

Sn =
n

∑
j=1

Xnj =

√
n(α̂(n)− α)√

σ2
T

.
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