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Abstract: Hepatocellular carcinoma (HCC) is the primary liver cancer that occurs the most frequently.
The risk of developing HCC is highest in those with chronic liver diseases, such as cirrhosis brought
on by hepatitis B or C infection and the most common type of liver cancer. Knowledge-based interpre-
tations are essential for understanding the HCC microarray dataset due to its nature, which includes
high dimensions and hidden biological information in genes. When analyzing gene expression data
with many genes and few samples, the main problem is to separate disease-related information
from a vast quantity of redundant gene expression data and their noise. Clinicians are interested in
identifying the specific genes responsible for HCC in individual patients. These responsible genes
may differ between patients, leading to variability in gene selection. Moreover, ML approaches,
such as classification algorithms, are similar to black boxes, and it is important to interpret the
ML model outcomes. In this paper, we use a reliable pipeline to determine important genes for
discovering HCC from microarray analysis. We eliminate redundant and unnecessary genes through
gene selection using principal component analysis (PCA). Moreover, we detect responsible genes
with the random forest algorithm through variable importance ranking calculated from the Gini
index. Classification algorithms, such as random forest (RF), naïve Bayes classifier (NBC), logistic
regression, and k-nearest neighbor (kNN) are used to classify HCC from responsible genes. However,
classification algorithms produce outcomes based on selected genes for a large group of patients
rather than for specific patients. Thus, we apply the local interpretable model-agnostic explanations
(LIME) method to uncover the AI-generated forecasts as well as recommendations for patient-specific
responsible genes. Moreover, we show our pathway analysis and a dendrogram of the pathway
through hierarchical clustering of the responsible genes. There are 16 responsible genes found using
the Gini index, and CCT3 and KPNA2 show the highest mean decrease in Gini values. Among four
classification algorithms, random forest showed 96.53% accuracy with a precision of 97.30%. Five-fold
cross-validation was used in order to collect multiple estimates and assess the variability for the RF
model with a mean ROC of 0.95± 0.2. LIME outcomes were interpreted for two random patients
with positive and negative effects. Therefore, we identified 16 responsible genes that can be used to
improve HCC diagnosis or treatment. The proposed framework using machine-learning-classification
algorithms with the LIME method can be applied to find responsible genes to diagnose and treat
HCC patients.

Keywords: microarray data; machine learning; AI-based explanation; bioinformatics; hepato-cellular
carcinoma; predictive analysis

MSC: 92-08; 68T01; 62P10

1. Introduction

HCC is the most common liver cancer and the fastest growing cause of cancer-related
death in the United States.

AppliedMath 2023, 3, 417–445. https://doi.org/10.3390/appliedmath3020022 https://www.mdpi.com/journal/appliedmath

https://doi.org/10.3390/appliedmath3020022
https://doi.org/10.3390/appliedmath3020022
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/appliedmath
https://www.mdpi.com
https://orcid.org/0000-0003-2446-7425
https://orcid.org/0000-0003-0672-2955
https://orcid.org/0000-0003-3026-4480
https://doi.org/10.3390/appliedmath3020022
https://www.mdpi.com/journal/appliedmath
https://www.mdpi.com/article/10.3390/appliedmath3020022?type=check_update&version=1


AppliedMath 2023, 3 418

HCC causes more than 85 percent of all primary liver cancers. It is the sixth most
prevalent cancer worldwide and the second leading factor in cancer-related fatalities [1].
The high mortality rate of HCC results from metastasis or the development of newly
generated tumors within the diseased liver. Research has revealed that 90% of all cancer-
related fatalities are caused by metastasis [2].

Since HCC’s genome sequence changes over time and the gene expression patterns
are so diverse among patients, it is nearly impossible to pinpoint the mechanisms and
pathways of the disease. This is why ineffective therapy is to blame for poor patient
outcomes in the HCC patient group. Recurrence after surgery is a major factor in HCC’s
poor prognosis, and there are currently few therapeutic approaches that successfully reduce
recurrence due to metastasis. In the clinical setting, one of the difficulties is in identifying
HCC patient subgroups at high risk of developing metastatic illness in advance.

The efficacy of a metastatic signature made up of 153 genes that might identify HCC
patients as a risk classifier for HCC recurrence and survival was examined using two
independent cohorts totaling 386 HCC patients [3]. There are insufficient significant
machine learning-based studies to predict HCC in the early stages of cancer development.
We aimed to discover the HCC-causing genes so that medical professionals could take the
necessary precautions to stop HCC in its early stages of development.

According to the conventional tumor evolution model, a primary tumor is initially
benign but develops mutations over time, allowing a small number of tumor cells to
spread. To enhance patient survival, early diagnosis of tumors that have already mutated
is extremely important. Using genes whose copy counts correspond with gene expression
and cancer development as the standard for HCC driver genes, Roessler et al. employed
an integrated strategy to find these genes, even though the mechanisms underlying the
aggressive cancer HCC genesis and progression are poorly understood [4]. This study
directed us to apply state-of-the-art artificial-intelligence techniques to determine the
responsible genes for developing HCC.

Although surgical resection and liver transplantation are possible, the recurrence
rate is significant. Furthermore, surgery is usually out of the question since the disease
has progressed too far. Given these patients with HCC, especially those incompetent for
surgical resection or liver transplant, it is crucial to identify the key drivers and potential
treatment targets [5]. Zhao et al. showed the viability and strength of a novel approach
by identifying key pathways associated with prognostically significant HCC subtypes
using well-defined patient samples and integrated genomics [4], in this study, they used
clustering algorithms to find the key pathways. This can be improved significantly by
applying the machine-learning algorithms to high dimensional genomics data to determine
the key genes that cause the HCC disease.

It is common practice to extract a biological sample and then use microarrays to express
the genes; however, this is not the approach used in our study. Statistical approaches are
used to assess the data and discover meaningful content that biologists can utilize to give
them biological significance once the data have been transformed into numbers. Numerous
genome-wide tools, including microarrays and, more recently, next-generation sequencing
platforms, have been used to analyze thousands of clinical HCC samples in an effort to
identify promising treatment targets [5].

Moreover, there are minimal applications of machine-learning methods in genomics
datasets for identifying the key genes responsible for HCC apart from bioinformatic analy-
sis. Wang et al. discovered 13 clinically significant target genes with therapeutic promise
utilizing genome-wide growth-depletion screens and combining real HCC tumor expres-
sion data and clustered, regularly spaced, short palindromic repeats [6]. Thus, there
is a great possibility to discover significant target genes by applying machine-learning
algorithms in addition to bioinformatics analysis.

Lu et al. investigated Numb mRNA expression in tumors and surrounding healthy tis-
sues using either χ̃2 or Mann-Whitney U-tests on a microarray dataset of 241 HCC patients
to determine the relationship between clinicopathological traits and HCC subtypes [7].
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In this case, machine-learning methods could be very useful for analyzing a high-
dimensional dataset to determine additional marker genes that cause HCC. A microarray
is a type of experimental setup where probes are created or attached to solid substrates to
expose them to the target molecules. The microarray dataset holds experimental data in
a matrix, where the columns typically correspond to sample IDs, and the rows correspond
to the names of genes or probes.

Microarray genomic data analysis is useful for finding differentially expressed long
non-coding RNA (lncRNA). According to Chen et al.’s bioinformatic analysis of liver tissue
in brain-dead donor liver transplantation, microarray probes effectively identified hundreds
of transcripts by displaying differentially expressed lncRNA and circRNA profiles [8]. Thus,
using machine-learning techniques, we may decipher nuanced connections and identify
intricate patterns in microarray data. To better understand diseases and discover treatments,
medical researchers use the analysis of microarrays and gene expression. Particularly
complex disorders, such as HCC, might be the subject of significant knowledge.

Due to its poor prognosis and ineffective response to systemic therapy, HCC ranked
fourth among the top causes of cancer-related fatalities in 2018. Considering this situation,
the HCC survival rate is still below tolerable levels. It is essential to continue looking
for possible HCC prognostic and therapeutic targets by improving our comprehension
of the cellular biological processes [9]. The genetic machinery responsible for metastasis
is hard-wired into tumors from the start, which motivates tumor profiling to forecast
patient progress.

Gene ontology is an area of study where we investigate the roles of genes and proteins
in cells [10]. Pathway-analysis techniques are used in bioinformatics to find important
genes/proteins within a previously known pathway in connection to a certain experiment
or pathogenic state. Pathway analysis is a common technique to understand and analyze
biological data, such as gene datasets. This is a useful tool that is based on the collection
and use of knowledge that includes biomolecular functioning, as well as statistical testing
and other algorithms [11]. Moreover, methods of pathway analysis assist cancer researchers
in determining the biological roles of genes and gene sets inside malignant tissues [12].

Machine-learning techniques have lately become more precise and effective compared
with conventional parametric algorithms when used for large area modeling and working
with high-dimensional and complex datasets [13–15]. Since these algorithms do not rely
on data distribution assumptions, such as normality, they are more accurate, efficient, and
effective [17? ]. For two class situations, recent research showed that random forests are
equal to a kernel operating on the true margin in distribution space [18]. The symmetry
of the kernel is said to be enforced by randomness (poor correlation), while strength
increases a desirable skewness at abruptly curved boundaries. This should clarify the dual
functions of correlation and strength. Understanding may also be aided by [19]’s theoretical
framework for stochastic discrimination.

Santos et al. employed logistic regression and neural network classifiers to classify the
165 patients in the Coimbra Hospital and University Centre database, with NN achieving an
accuracy of 75.2% and LR achieving 73.3% [20]. Proper preprocessing of the dataset might
considerably enhance their model to achieve better accuracy. Thus, we focused on the data
pre-processing to obtain better accuracy in our developed models. Acharya et al. introduced
a hybrid system that used three algorithms, including linear discriminant analysis to
minimize the number of features, a support vector machine (SVM) for classification, and
a genetic algorithm to improve the model, and produced accuracy of 90.30%, specificity of
96.07%, and sensitivity of 82.25% [21].

Muflikhah et al. proposed a unitary singular matrix feature selection approach for
facilitating hepatoma detection and classification. To calculate the pattern k-rank, the
feature was deconstructed using a single vector. They applied several machine-learning
algorithms, including KNN, naïve Bayes, decision tree, and SVM, and the experimental
outcome had an AUC of above 90% [22].
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To achieve the best HCC detection accuracy, Ksia̧żek et al. developed a unique
machine-learning model that uses seven classifiers in a stacking learning (ensemble) manner,
including KNN, random forest, naïve Bayes, and four additional classifiers. The maximum
accuracy and F1-score were reached by their suggested approach at 0.9030 and 0.8857,
respectively, [23].

The random forest classifier has been tested against the NBC, logistic regression, and
k-NN classifiers. It is based on probability models with strong assumptions of indepen-
dence. NBC models are created using Bayes’ theorem. Despite their simple design and
assumptions, naïve Bayes classifiers [24] have performed excellently in various challenging
real-world settings. However, a comprehensive comparison with different classification
algorithms in 2006 revealed that more advanced methods, such as boosted trees or random
forest, outperformed Bayes classification.

The naïve Bayes classifier [25] model was employed to determine if it yielded the same
conclusions as the gene expression data. The random forest method does not require the
researcher to propose any particular model structure. This is essential in early genome-wide
or candidate-area prospective studies where the feature’s genetic structure is ambiguous.
However, combining a vast number of genes and relatively small microarrays introduces
new challenges for statistical models. They are also gaining popularity because of their
extensive use in microarray data analysis with the capacity to handle numerous genes
without using traditional feature selection and in having robustness to outliers.

Models must be understandable by users if humans are to trust AI technologies. AI
interoperability sheds light on what is happening inside these systems and aids in the
detection of potential problems, including causality, information leakage, model bias, and
robustness. The concept comes from a work published in 2016 by the title “Why should
I trust you?”, referring to explaining the predictions of any classifier [26] in which the
researchers perturbed the initial data points, fed them into the black box model, and
watched what happened.

The approach then adjusted the weights of those additional data points based on how
close they were to the original point. It used those sample weights to fit a substitute model,
such as linear regression, to the dataset with variations. The newly trained explanation
model can then be used to explain each original data point. Local interpretable model-
agnostic explanations (LIME) provide a general framework to decipher black boxes and
explain the “why” behind forecasts or suggestions made by AI. LIME was studied by many
researchers for improving diagnoses of patients [27–29].

In this study, we are interested in how doctors and patients can trust machine-learning
prediction when each patient is different from the other, and when multiple parameters can
decide between HCC or not. To solve this problem, LIME was used in the test model. The
method of explanation should be applicable to all ML models. We use this as an explanation
that is model-agnostic along with the individual predictions, and the model should be
explainable in its entirety, i.e., a global perspective was considered. In the past, researchers
have not conducted any studies for the HCC microarray dataset. There are a few studies
that exist for the classifications of liver cancers, but they are not related to AI explanations.

Foremost, a comprehensive and proficient framework for the gene expression data of
HCC is proposed in this article. The classification accuracy of ML models among different
classification algorithms is used to determine which model is the best among them. The
trained model then passes through an AI-explainable approach. We applied existing
algorithms using the HCC gene dataset and proposed an effective framework. Under the
current framework used in the present study, no one has considered this gene expression
data of HCC with ID GSE14520 [30].

In brief, we want to find patterns in the gene changes to assess whether they are normal
or indicative of HCC disease. To select the important variables, we use the Gini index
and entropy with information. To visualize and reduce dimensionality, a heat map, and
principal components are used. ROC and biostatistical analyses are reported to compare
model validity.
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LIME is used to interpret the responsible genes for a particular HCC patient. Biological
references are included with rigorous literature reviews to examine connections between
genes and the disease. Pathway analysis is shown to present the clusters of genes with their
biological importance in HCC prediction.

2. Methodology and Framework
2.1. Samples from Gene Data

Data were collected from the National Center for Biotechnology Information (NCBI).
The title of the dataset is Gene Expression Data of HCC with ID GSE14520 [30], and the
access date of this gene expression dataset was 1 March 2022. To study the gene expression
patterns in HCC patient tumors and non-tumor tissue matched with healthy donor liver
tissue, Affymetrix microarray profiling was used by lab technicians. Using a single channel
array technology, tumors and matching non-tumor tissues were assessed independently
for gene expression profiling.

On Affymetrix GeneChip HG-U133A 2.0 arrays, data providers used the manufac-
turer’s instructions to evaluate tumor and non-tumor samples from 22 patients in cohort 1
as well as normal liver samples. They measured the fluorescence intensities using GCOS
Affymetrix software and an Affymetrix GeneChip Scanner 3000. On the 96 HT HG-U133A
microarray platform, all samples from cohort 2 as well as 42 tumors and paired non-tumor
samples from cohort 2 were processed. Thus, we extracted the gene expression microarray
data GSE14520 from the NCBI GEO website.

Four hundred forty-five samples were taken from patients between 2002 and 2003
at the Liver Cancer Institute (LCI), Fudan University in China, and the Liver Tissue Cell
Distribution System (LTCDS), the University of Minnesota in the United States. The dataset
contained 222 cases and 212 controls; however, no case-control data were provided for
11 cases. The majority of HCC patients had a history of hepatitis B infection (96.31%).

2.2. Mathematical Framework Machine-Learning Approaches

For mathematical framework, we use the methodology in the diagram of Figure 1.
Let us consider that the predictor gene data matrix is X ∈ Rnxr and the target/response
variable is T ∈ Rr. The prepossessed microarray dataset was retrieved from the NCBI
GEO repository and cleaned using R software’s LIMMA package and Bio conductor [31];
the version and description of the package are given in Appendix A.1. The dimensions
of this dataset are 445 by 22,268, with 445 samples and 22,268 genes. Additionally, of
the dataset’s 46 phenotypic features, tumor and non-tumor tissue types are employed as
response variables and are factorized into 0 and 1 to facilitate the analysis.

The dataset was additionally cleaned to eliminate any “NA”, which means not
available in the data point, and a response variable column was added to the gene dataset
along with sample ID matching between the phenotypic dataset and the gene dataset.
This dataset was used for machine learning and statistical analysis to predict HCC. Four
different classification methods were used. These were random forest, naïve Bayes classifier,
k-NN, and logistic regression. We showed the final results in the form of plots, such as
a confusion matrix, and ROC analysis was compared to obtain the results.
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Figure 1. Diagram for ML/AI approach for microarray analysis of gene expression data. There are
two main process steps: the first is a classification processing unit where training and test data are
used to select the best model, and the second one is an AI processing unit for the global explanation.

2.3. Variable Selection for Classification, Pathway Analysis, and Statistical Analysis
2.3.1. Dimension Reduction and HCC Gene Mining

PCA is the process of transforming high-dimensional data into an orthogonal basis in
such a way that the first principal component (PC) is aligned with the source of variance that
contributes the most variation. The second PC is aligned with the source of variance that
contributes the most variation that remains, and so on. After this, high-dimensional data
are now more suitable for visual investigation, since we are able to investigate projections
on the first two (or few) PCs. The samples’ PC scores serve as the coordinates on the new
PC axis.

The eigenvalue for a given principal component measures the amount of that PC’s
explained variance. Using this, we can determine how much of the total variation in the
initial data is explained by each axis. Each variable’s “weight” on a given PC is represented
by its variable loading (eigenvector). These may be seen as the relationship that exists
between the principal component and the underlying variable.

In statistical software R, the prcomp() function is used to calculate a PCA. This function
requires a data matrix, with columns containing the variables that will be used to transform
the samples. In this study, we are interested in comparing the gene expression levels
among samples to find similarities. As a result, we must provide the prompt() method
with a transposed version of the data. By using prcomp(), we are able to determine the
percentage of total variation that is explained by each PC in our dataset.

Finally, we investigate which genes have the largest impact on each PC axis. This data
can be found in the prcomp() object’s rotational value, which represents the PCA’s variable
loadings. Mathematically, r-dimensional data matrix X ∈ Rnxr and new lower dimension
is d << r, mean X̄ = 1

n ∑n
n=1 xi, and the covariance is Σx = 1

n ∑n
n=1(xi − x̄i)(xi − x̄i)

T .
Then, we find the spectral decomposition of Σx is Σx = QΛQ−1, where the eigenvectors
are {q1, q2, . . . , qr}, and their corresponding eigenvalues are λ1, λ2, . . . , λr. Therefore, with
singular value decomposition, the sorted eigenvalues in lower dimension λ1 ≥ λ2 ≥ . . . ,≥
λd. Thus, the lower dimensional representation of the microarray HCC dataset is as follows,

y = (λT
1 (x− x̄)λ1, λT

2 (x− x̄)λ2, . . . , λT
d (x− x̄)λd)

T ∈ Rd (1)
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Since all 22,269 genes are not responsible for HCC, and there might be multicollinearity
in the features, we instead focused on the top 100 genes (Figure 2) in terms of PC loading.
To identify the most 100 important variables/genes, the above PCA technique [32,33]
was employed. The top 17 genes were obtained from variable importance ranking [34].
Moreover, random forest was used for classification, and RF was the average of multiple
decision trees.

Figure 2. Heatmap of top 100 genes obtained from PCA. Due to lack of space, this plot represents only
25 gene names in the horizontal line. The names of the top 100 genes are presented in Appendix C.

As a result, the following discussions were incorporated into the framework. The
datasets must first be divided into parts in order to form an intermediate decision tree with
root nodes at the top, which is fundamental to decision trees. Then, the decision tree’s strat-
ification model leads to the final result through the tree pass-over nodes. A comprehensive
discussion of the entropy, Gini index, and information gain, as well as their roles in the
decision tree method implementation, may be found here [35,36].

Furthermore, because many factors influence decision making, the significance and
impact of each factor must be studied. The root node is assigned as the required feature,
and the node division is traversed downwards. At each node, descending downward
reduces impurity and uncertainty levels, resulting in enhanced classification or an exclusive
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split. Splitting measures, such as entropy, information gain, and the Gini index have been
used to solve the problem. Entropy quantifies the impurity or randomness of data points.

It is a value between 0 and 1. Entropy close to 1 indicates that the model has a higher
level of disorder. The concept of entropy is crucial for computing information gain. By
determining which feature provides the most information about the classification based
on the idea of entropy, information gain is used to determine which feature provides the
most information about the classification, with the goal of reducing the amount of entropy
starting from the top (root node) to the bottom (leaves nodes). Mathematically, entropy is
defined as follows:

Entropy = −
n

∑
k=1

pklog2(pk), (2)

where pk denotes the probability that it is a function of entropy. The Gini index is defined
as follows: The Gini index ranges from 0 to 1. A Gini index of 0 corresponds to absolute
classification, meaning that all of the items belong to a single class or that only one class
is present. A Gini index of 1 shows the uneven distribution of components across several
categories. A Gini index of 0.5 indicates that items in some classes are distributed equally.
The Gini index can be represented mathematically as:

GiniIndex = −
n

∑
k=1

P2
k , (3)

where Pk is known as the chance that an element will be assigned to a specific class. Each
feature’s importance is determined by the Gini importance or mean decrease in impurity
(MDI) method, which adds up all of the splits (across all trees) that include the feature in
proportion to the number of samples it splits. This idea was used in the RF algorithm after
discussing the other classification algorithms below.

2.3.2. Classification of Gene Expression Data

Four different machine-learning techniques are applied to classify HCC from the gene
expression data. The foremost technique is the naïve Bayes Classifier, which is asymp-
totically equivalent to logistic regression if the naïve Bayes assumption holds. Another
well-known technique is the k-nearest neighbor (k-NN) classifier. The Euclidean distance
between the test and training samples is used as the basis for the k-NN determination of
the class level for the test samples.

For microarray profiling, gene expression patterns in healthy donor livers, as well as
tumor and paired non-tumor tissue from HCC patients, were analyzed. k-NN classifies
whether it is a tumor and paired non-tumor tissue of HCC patients or not based on the
Euclidean distance. Finally, the random forest method is applied, and its result is produced
from the aggregation of the decision trees.

Naïve Bayes Classifier for HCC Classification:

Although the naïve Bayes classifier is not linear in general, it corresponds to a linear
classifier in a given feature space provided the probability likelihood factors p(ti|c) come
from exponential families. In this instance, the information is based on HCC, and the label
is either cancer or not. The naïve Bayes assumption states that the variables in the data are
conditionally independent, both liver cancer and non-liver cancer are picked independently
at random regardless of whether we are aware that a patient has cancer. Although this
assumption can be fragmented, the resulting classifiers can still perform well in real-world
applications [37,38]. Let us assume the naïve Bayes assumption holds for now and define
the Bayes classifier by:

h(x) = argmaxP(t|x) = argmax
P(x|t)P(t)

P(x)
= argmaxP(x|t)P(t)
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= argmax
d

∏
α=1

P(xα|t)P(t) = argmax
d

∑
α=1

log(P(xα|t)) + log(P(t)). (4)

One dimension estimating log(P(xα|t)) should be considered because it is easy to
calculate. Now, suppose that ti ∈ (−1,+1) and that the features are multinomial. The goal
is to show that

h(x) = argmaxP(t)
d

∏
α−1

P(xα|t) = sign(wTx + b), (5)

that is,
wTx + b > 0 =⇒ h(x) = + 1.

Since P(xα|t = + 1) ∝ θxα
α+ and P(T = + 1) = π+ :

Wα = log(θα+)− log(θα−), b = log(π+)− log(π−)

One can compute the wTx + b by applying the above for performing classification. By
further simplification,

wTx + b > 0,

which implies

d

∑
α=1

xα(log(θα+)− log(θα−) + log(π+)− log(π−)) > 0,

⇐⇒ exp(
d

∑
α=1

xα(log(θα+)− log(θα−) + log(π+)− log(π−)) > 1

⇐⇒
d

∏
α=1

exp(log(θxα
α+) + log(π+))

exp(log(θxα
α−) + log(π−))

> 1 ⇐⇒
d

∏
α=1

(θxα
α+π+)

(θxα
α−π−)

> 1

⇐⇒ ∏d
α=1 P(xα|T = + 1)π+

∏d
α=1 P(xα|T = − 1)π−

> 1 ⇐⇒ P(x|T = + 1)π+

P(x|T = − 1)π−
> 1 ⇐⇒ P(T = + 1|x)

P(T = − 1|x) > 1

⇐⇒ P(T = + 1|x) > P(T = − 1|x) ⇐⇒ argmaxP(T = t|x) = + 1.

If naïve Bayes predicts +1, this demonstrates that point x is located on the positive
side of the hyperplane. Note that, in this paper, tumor and non-tumor tissue types are
employed as response variables and are factorized into 0 and 1 to facilitate the analysis.
In this gene expression dataset, all the variables are continuous; therefore, Gaussian naïve
Bayes can be considered. As a result, if the naïve Bayes hypothesis is true, both the naïve
Bayes classifier and the logistic regression generate asymptotically identical models.

Moreover, NBC is fast and simple to implement, works well with high-dimensional
datasets, requires a relatively small amount of training data, and can handle both contin-
uous and discrete data. It also assumes independence between features, which is rarely
true in real-world scenarios. On the other hand, logistic regression is simple to implement,
works well with small to medium-sized datasets, and outputs a probability score that can
be interpreted. However, it requires careful feature selection and may not perform well
with non-linear data.

Logistic Regression Classifier for HCC Classification:

The logistic regression model is used to model the relationship between a binary target
variable and a set of independent variables. In logistic regression, the model predicts the
logistic regression transformation of the probability of the event, which is used for the high
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dimensional gene expression data [39]. The following mathematical formula is used to
generate the final output:

ti = logit
(

Pi
1− Pi

)
= b0 + b1x1 + b2x2 + . . . + bnxn. (6)

The odds ratio is represented by Pi in the equation above, and its formula is as follows:

odds =
Pi

1− Pi
,

where Pi stands for the probability of “presence of HCC”, and 1− Pi is for the “absence
of HCC”. The predicted values from the above model, the log odds of the event, can be
transformed into the probability of an event as follows:

Pi = 1− 1
1 + eti

. (7)

In matrix–vector form, ti = b0 + bTX. Then, (b0, b1, . . . , bn) is fitted through the maxi-
mum likelihood estimator. Then, the log-likelihood function is l(b0, b) = ∑d

i=1 log(P(T =
ti|X = xi)). Therefore,

(b̂0, b̂) = argmax
d

∑
i=1

[
log(ti ∗ (b0 + bTxi))− log(1 + exp(b0 + bTxi))

]
.

Another well-known classifier is the k-nearest neighbor classifier, which depends on
a distance metric [40,41]. The more accurately the metric captures label similarity, the more
accurately the classification is determined. k-NN is discussed in the next subsection. k-NN
is non-parametric and flexible, can handle both regression and classification problems, and
is simple to understand and implement. It can be computationally expensive, sensitive to
irrelevant features and noisy data, and requires tuning of hyperparameters.

k-NN Classifier for HCC Classification:

k-NN is based on a distance metric. The Minkowski distance is the most popular
option. Mathematically, the Minkowski distance is denoted by d(x, t) for data points x and
t and is defined by

d(x, t) =

[
n

∑
k=1
|xk − tk|p

] 1
p

.

When p = 2, it becomes the l2 distance. Here, t are the test points, and the set of the k
nearest neighbors of t is given as St. Formally St is defined as a subset of the dataset D s.t.
|St| = k and (t′, x′) ∈ D− St; therefore, the metric has the following property:

d(t′, t) ≥ max
(x′′ ,t′′)∈St

d(t, t′′),

i.e., every point in D, but not in St, is at least as far away from t as the furthest point in St.
We can then define the classifier c(.) as a function returning the most common label in St.
Specifically,

c(x) = mode(x′′ : (t′′, x′′) ∈ St), (8)

where mode(.) means selecting the highest occurrence label. Here, k is determined before
training the algorithm, and a good solution is to return the result of k-NN with smaller
k [42]. Moreover, for binary classification, another method known as the random forest is
based on the average of many decision trees. Each tree is weaker than the combination of
all trees; however, together, they are powerful.
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Therefore, it yields better performance. RF is highly accurate and robust, able to
handle complex datasets, can handle both continuous and discrete data, and can perform
feature selection. It can be computationally expensive, not easy to interpret, and requires
careful tuning of hyperparameters.

Random Forest Classifier for HCC Classification:

Random forest is a supervised learning approach that employs a tree-based ensemble
in which each tree is dependent on a set of random variables. It is a combination of the two
classification trees that differ in two important aspects. Each tree is first fitted to a random
bootstrap sample selected from the entire dataset. To obtain the bootstrap sample, we
randomly sample microarrays from the underlying data with replacement until our sample
is the same size as the original. Out-of-bag data refer to microarrays that did not make it
into the bootstrap sample, and these serve as a natural test set for the tree that is fitted to
the bootstrap sample.

The trees differ because we do not choose the best feasible split for all genes. Instead,
we take a sample of a few genes for each node and determine the optimal split on the
selected genes. In general, the number of genes selected at each node is the square root
of the total number of genes. We assume that the random vector X = (X1, X2, . . . , Xk)
(denoting the real-valued predictor variables) and the random variable T (denoting the
response variable) [43] have an unknown joint distribution fXT(X, T). The main goal
is to find a prediction function f (X) for predicting T. The prediction function is deter-
mined by minimizing the loss function L(T, f (X)); for classification, the zero-one loss is
commonly used.

L(T, f (X)) =

{
0 i f T = f (X)

1 otherwise.
(9)

Let T = (x1, t1), (x2, t2), . . . , (xN , tN) represent the training dataset, where i = 1, 2, . . . , N.
Take a Tm bootstrap sample of size N from T . Fit a tree using binary recursive partitioning
using the bootstrap sample Tm as the training data. Begin by grouping all observations
into a single node. Choose m predictors randomly from the p available predictors, and
then determine the optimal binary split on the m predictors. Finally, using the split, divide
the node into two descendant nodes and repeat the process until the stopping criterion
is satisfied.

2.4. Pathway Analysis

Pathway analysis has been introduced for the top genes that are found from the mean
decrease Gini. Pathways are made by networks of interacting genes that are responsible
for performing biological activities. Pathways are comprised of interactions that include
biochemical reactions as well as events of control and signaling. The pathways reflect the
consensus systems that have been developed over the course of this HCC study [44], and
they are shown as a comprehensive linear diagram. On the other hand, networks are made
up of connections that span the whole genome.

Interactions in networks are simplifications and abstractions of the more sophisticated
logic of cells. Despite the fact that the networks of the pathways are noisy and difficult
to observe and analyze, it is quite probable that they include fresh information that is
not covered in well-defined channels. We investigate HCC genomics data at the level of
individual genes. The pathway analysis aggregates molecular events across numerous
genes that are located in the same pathway or network neighborhood.

As a result, the probability that the occurrences will satisfy a statistical detection
threshold is enhanced. Furthermore, the number of hypotheses that are presented for
testing is minimized. It is often less difficult to understand the findings since the genetic
modifications are connected to well-known concepts, such as the cell cycle or apoptosis.
Plausible causative pathways are discovered by identifying a specific microRNA that
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explains changes in expression between tumor samples and controls. The results generated
from connected HCC gene datasets are now more comparable to one another since route
information enables interpretation in a shared feature space.

Furthermore, this strengthens the statistical and interpretive power of this investiga-
tion. The present work aims to discover and functionally analyze the distinctively expressed
genes HCC and non-HCC. This is achieved through microarray data analysis and unveiling
a series of key genes and pathways that may be involved in liver cancer development.

2.5. Statistical Hypothesis Test on Accuracy

To compare models statistically, the statistical k-fold paired t test was implemented
by previous researchers [45]. If we attempt to use the t-test here, we will almost certainly
make a Type-I error. Due to the low variance, the t-stat denominator approaches 1. As
t-stat values are merely the difference in classifier averages, the findings are significantly
impacted by outliers. The t-stat loses its testing capacity because the standard error
increases significantly. As a result, we may come to the wrong conclusion. There were
three paired tests considered before implementation. This test is ignored for the logistic
regression classifier since NBC and logistic regression play the same role. The hypothesis
test setup between RF and NBC is:

H0 : pj(RF)− pj(NBC) = 0

HA : pj(RF)− pj(NBC) 6= 0

The hypothesis test setup between RF and k-NN is:

H0 : pj(RF)− pj(k-NN) = 0

HA : pj(RF)− pj(k-NN) 6= 0

The hypothesis test setup between NBC and k-NN is:

H0 : pj(NBC)− pj(k-NN) = 0

HA : pj(NBC)− pj(k-NN) 6= 0,

where “j” stands for accuracy. The Wilcoxon signed-rank test [46,47] is applied to compare
the accuracy. Let us consider the estimators (e.g., classifiers) for j = 1 and j = 2. It is
a non-parametric version of the k-fold paired t-test. The k-fold paired t-test is a statistical
hypothesis test used to evaluate the effectiveness of two machine-learning models on
a particular dataset. This test involves splitting the dataset into k subgroups, and then
training and testing both models k times, with a single instance of the testing set used for
each subset of the dataset. The performance measures of the two models are compared
using a paired t-test, which tests the statistical significance of the difference between the
means of the two samples.

However, one drawback of the k-fold paired t-test is that it assumes a normally
distributed distribution for the performance indicator under comparison. This assumption
may not hold true for all measures or datasets, leading to inaccurate results. Additionally,
the test may be sensitive to outliers or imbalanced datasets.

An alternative to the k-fold paired t-test is the Wilcoxon signed-rank test, which does
not rely on the assumption of normality. Instead, it tests whether the median difference
between the two samples is statistically significant. This test is often used when the data
are not normally distributed or contains outliers. In the context of machine learning, the
Wilcoxon signed-rank test [47] may be more appropriate when comparing the performance
of two models on a dataset, especially when the performance metric is not normally
distributed. However, it is important to note that the Wilcoxon signed-rank test is less
powerful than the t-test, meaning that it may be less likely to detect a significant difference
between the two models.
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To apply these hypothesis tests to the models in a study, the performance metric for
each model is computed on each subset of the dataset. The means (or medians) of the
performance metric for each model are then compared using either the k-fold paired t-test
or the Wilcoxon signed-rank test. If the p-value of the test is less than a predefined thresh-
old (usually 0.05), the difference in performance between the two models is considered
statistically significant.

2.6. Model Accuracy and Analysis of the Receiver Operating Characteristic Curve

The measures for ML model performance are the specificity, sensitivity, accuracy,
precision, F1 score, and Matthew correlation coefficient (MCC). These are described in
terms of true positive as TP true negative as TN, false negative as FN, and false positive as
FP obtained from the confusion matrix. The first measure is

Sensitivity =
TP

TP + FN
.

The measures for sensitivity indicate the likelihood that a diagnostic test will identify
people who truly have the condition. As the sensitivity value rises, the probability of
a diagnostic test yielding false positive results falls. For example, if the sensitivity is
95 percent, there is a 95 percent likelihood that the problem will be discovered in this
patient. Therefore, utilizing a test with high sensitivity to detect the illness has become
standard practice. Next,

Specificity =
TN

TN + FP
.

The specificity score indicates the likelihood that a test will correctly detect a certain
condition without producing false positive results. If a test’s specificity, for instance, is 95 per-
cent, it means that, when we perform a diagnosis for a patient, there is a 95 percent chance
that the results will be negative if they do not have a certain disease condition. Moreover,

Precision =
TP

TP + FP
.

Precision, or the positive predictive value, is the fraction of positive values out of the
total predicted positive instances.

Accuracy =
TN + TP

TN + TP + FN + FP
. (10)

The accuracy score is a measure of the percentage of true positive and true negative
outcomes in the chosen population. It is important to remember that the equation for
accuracy indicates that the test’s accuracy may not be as high as its sensitivity and specificity.
Accuracy is affected by the sensitivity, specificity, and prevalence of the disease in the target
population. A diagnosis may have high sensitivity and specificity but low accuracy for
rare illnesses in the population of interest. Moreover, the F1 score is the harmonic mean of
precision and sensitivity; it gives importance to both factors:

F1 = 2 ∗ Precision ∗ Sensitivity
Precision + Sensitivity

.

The two measures that are the most frequently used in binary classification tasks
are the accuracy and F1 score, which are computed using confusion matrices. However,
especially when applied to unbalanced datasets, these statistical metrics have a serious
tendency to provide overly optimistic outcomes. The Matthews correlation coefficient
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(MCC) only produces a high score if the prediction was accurate in each of the confusion
matrix’s four categories. The MCC is defined by

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP) ∗ (TP + FN) ∗ (TN + FP) ∗ (TN + FN)
. (11)

A direct and natural connection may be made between cost-benefit analysis and diag-
nostic decision making using ROC analysis [48]. The Gini index measures the homogeneity
of variables and is related to the ROC. The Gini index is the area between the ROC curve
(AUC) and two times the no-discrimination line (linear). Thus, the formula for the Gini
index is:

Gi = 2AUC− 1.

Moreover, plotting the true positive rate (TPR) against the false positive rate (FPR) at
various threshold levels yields the receiver operating characteristic (ROC) curve [49]. Other
names for the true positive rate include sensitivity, recall, and the likelihood of detection.
The probability of a false alarm, which is another name for the false positive rate, may be
computed as (1-specificity). It may also be considered a plot of the power as a function
of the decision rule’s Type I error (estimators of these quantities may be derived from the
performance of the population as a whole when that performance is derived from only
a sample of the population). After analyzing the ML classification model, the relatively
best approach is chosen based on the model’s accuracy. Mathematically, to describe the
behavior of the ROC curve, the following numerical measure is used,

AUC =
∫ 1

0
ROC(r) dr, (12)

where r is the false positive rate. In the next subsection, AI techniques for model explanation
are introduced.

2.7. Explainable AI among Best Predictive Model Applied to Gene Expression Data

To obtain the local explanation of the disease with responsible genes, we applied
LIME [26]. How can doctors and patients trust machine-learning predictions when each
patient is different from the other and multiple parameters can decide whether a patient
has HCC or not? To solve this problem, LIME was used in the test model. It is important
that the manner of explanation be relevant to all of the models. Therefore, the researchers
refer to this aspect of the explanation as having a “model-agnostic” status. More precisely,
the explanation for a data point x is the model φ that minimizes the locality-aware loss
L( f , φ, Πx), which measures how unfaithful φ approximates the model to be explained by
f in its vicinity Πx, while keeping the model complexity low. Mathematically,

explain(x) = arg min
φ∈Φ

L( f , φ, Πx) + Ω(φ) (13)

where model φ belongs to class Φ, and Πx is the neighborhood of data point x.
Note that models f and φ may operate on different data spaces. The black-box model

(function) f : X → R is defined on a large, p-dimensional space X corresponding to the
p explanatory variables used in the model. The glass-box model (function) φ : X̄ → R is
defined on a q-dimensional space X̄ with q << p, often called the “space for interpretable
representation”. As with the RF/NBC/k-NN models that are trained and fit the data, the
LIME method is used to train this explainer, and then new predictions are made using the
explain(x) function.

Moreover, the LIME model focuses on the decision-making process of the machine-
learning models, thereby establishing the basis for their use in practical applications. The
framework analyzes individual observations at the local level. The user should be able
to comprehend what a model produces if it is interpretable. The responsible genes for
HCC are not the same in different patients, so it is essential to know this information
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for individual patients. The machine-learning models that we used in this research can
perform classification based on the attributes of future patients. The patient can be well
treated if the physicians know which genes are responsible for HCC.

3. Results and Discussion

After implementing supervised learning, such as RF, NBC, logistic regression, and
k-NN algorithms, on the gene expression HCC dataset, the following results were obtained
to identify marker genes. PCA reduced the complexity of multidimensional data while
preserving trends and patterns.

We used the top 100 genes, which were obtained from PCs (see Appendix C). Then,
the dataset was split into a training (66.67%) and a test set (33.33%) by using a simple
random sampling technique [50]. The seed was set before splitting for reproducibility.
The hyperparameters for each model are listed in Appendix B of this article. Some hy-
perparameters were set to default, and some of them were obtained by grid search and
cross-validation methods. The five-fold test was used to statistically compare models.
Three pairs of hypothesis tests were performed. If the obtained p-value is less than 0.05
for each pair of tests, then it implies that the null hypotheses are rejected at the 5% level
of significance.

The variance importance ranking in Figure 3 uses the mean decrease Gini index to
determine which variables (genes in this case) are important. The most and least essential
variables are arranged from top to bottom with high mean decrease values.

Figure 3. The left panel indicates errors for a growing number of trees in the random forest algorithm.
For different values of the mtry parameter, the random forest error rates (calculated from out-of-bag
situations) are shown as a function of the number of trees. This is based on the random forest voting
method used to estimate gene expression response 1 in early testing. The right panel displays the
top 17 variables (genes) based on variable importance rankings calculated from the Gini index. The
mean decrease Gini is between 0 and 15. For example, CCT3 and KPNA2 show the highest values of
the mean decrease Gini.

Figure 4 shows the comparison of confusion matrices where the random forest classifier
produces the best results. Random forest produced the lowest false positive and false
negative cases, and the k-NN classifier showed the highest false positive and false negative
cases. A histogram in Figure 5 describes the comparison of models perfectly. The accuracy
score of the random forest classifier is very close to 1. Among all, k-NN shows the lowest
accuracy, which is 94.92%. Furthermore, to verify the final results obtained from RF, the
accuracy of the model was examined both with PCA and without PCA. The accuracy of RF
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after feature selection was 96.54%, and, before feature selection, it was 87.41%. Therefore,
after dimension reduction, RF still produced better accuracy.

Figure 4. Comparison of confusion matrices for four different classifiers. Position (0,0) is the true
positive, and (1,1) is the true negative. Position (1,0) is the false positive, and (0,1) is the false negative.

Figure 5. Plot that shows the comparison of the accuracy for four different classifiers measured in
percentage. The names of the ML classifiers are given on the horizontal axis.

Table 1 gives the performances of the ML classifiers using different measures. All
measures are very important for explaining model behaviors and classification performance.
An F1 score is used as a statistical measure to rate performance and is defined as the
harmonic mean between precision and recall. Almost all the models yielded a 96% F1
score. Moreover, the MCC scores are presented in Table 1. The MCC score is above 90%,
which suggests all the models produce highly accurate predictions. Here, σ2 is the variance
of the accuracy of the ML model, and it is added in Table 1. RF shows less variance
than other models. Figure 6 shows the diagnostic performance of the applied ML models
mentioned above.
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Table 1. Performancefor HCC gene expression data classifiers.

Methods Sensitivity Speci f icity Precision F1 MCC σ2

RF 0.9601 0.9710 0.9730 0.9664 0.9303 0.0335
NBC 0.9600 0.9565 0.9600 0.9600 0.9165 0.0390

Logistic Regression 0.9600 0.9565 0.9600 0.9600 0.9165 0.0391
k-NN 0.9263 0.9828 0.9888 0.9565 0.9117 0.0482

Figure 6. The left panel shows the area under the ROC curves for different ML models. The green
line indicates RF, the red line indicates NBC/logistic regression, and the blue line indicates k-NN
classifiers for AUC under ROC curves. In the right panel, the five-fold cross-validation was used in
order to collect multiple estimates and assess variability for the RF model.

An ROC curve is a graph that shows how a binary classifier system’s diagnostic
capacity changes when its discriminating threshold is altered. The rate, which is deviant
from the true positive or sensitivity, is on the y-axis, and the specificity, which is deviant
from the false positive, is on the x-axis. ROC might be seen as a power plot that depends
on a Type I error. The ROC curves were plotted for RF, NBC, k-NN, and logistic regression
based on the most important predictors determined by PCA for comparing 1-specificity
versus sensitivity.

The metric that effectively averages the diagnostic accuracy over the range of test
results is summarized by the overall area under the ROC curve. As the diagnostic test accu-
racy improves, the value becomes closer to 1.0, which is the gold standard AUC (AUC = 1).
Since the sensitivity and 1-specificity are calculated nonparametrically, the nonparametric
approach produces a jagged curve. The sensitivity/specificity pair associated with each
point on the ROC curve corresponds to a specific decision threshold.

From Figure 6, the ROC curve that goes through the upper left corner indicates a test
that has perfect discrimination, i.e., there is no overlap between the two distributions, mean-
ing 100% sensitivity and 100% specificity. From Figure 6, the AUC values under the ROC
are almost 0.96, 0.95, and 0.94 for RF, NBC/logistic regression, and k-NN, respectively. All
the following models had an AUC close to 1, thereby indicating a high level of separability.
Paired t-test to evaluate the comparison between machine learning classifiers are given in
Table 2 below. It shows each model is statistically different.

Table 2. Hypothesis testing for comparing classifiers.

Methods H0 : RF & NBC Are Equivalent H0 : RF & k-NN Are Equivalent H0 : NBC & k-NN Are Equivalent

p-value 0.0157 0.0253 0.083
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LIME was applied to determine the responsible features for HCC, and this gives us the
order of importance of the features that either positively or negatively impact the response
for each particular observation. Using variable importance ranking, the information for
the top 17 genes was collected (see Appendix C). Pathway analysis was performed and
is described in Appendix D. Figure 7 depicts two instances of a random forest model
predicting that one patient has HCC while the other does not. An “explainer” then explains
the prediction by emphasizing the features that are essential to the model.

Figure 7. LIME outcomes for the RF classifier for HCC patients. Left panel (a) the credentials of
sample 9 of the gene dataset. Right panel (b) the credentials of sample 20 of the gene dataset. The
blue color suggests that the gene causes negative effects, and the orange color suggests that the gene
causes positive effects on HCC.

LIME was used under an ML model with a relatively high accuracy score in this case.
We selected two patients randomly from the dataset to apply LIME. The most significant
16 characteristics (genes) causing HCC in the two individuals are displayed in Figure 7.
The model also classified the first person as a positive HCC patient with 98% confidence,
and the second person was classified as a negative HCC patient with 98% confidence. Out
of the top 16 most crucial features for the first patient, fifteen had positive effects on their
response and two had a negative impact.

However, for the second patient, thirteen of them negatively impacted the response,
and four of them positively impacted the response. It unambiguously shows that respon-
sible genes can vary from patient to patient. Moreover, TUBA1B, CCT6A, ILF2, UTP18,
CSE1L, CCT3, CNH4, ACLY, SMC4, CBX1, MCM6, RFC4, SNRPD1, TP53TG1, NUP205,
and KPNA2 are the 16 important genes responsible for HCC, which are also confirmed by
several authors in their articles.

KPNA2, and SMC4 showed up twice in the list of the top 18 genes. Therefore, only
16 gene names are listed above. TUBA1B expression was increased in HCC tumor tissues
and proliferating HCC cells. In addition, poor overall survival and paclitaxel resistance in
HCC patients is associated with increased TUBA1B expression [51]. CCT6A could stimulate
HCC cell proliferation. As a prognostic biomarker for HCC, CCT6A could be considered as
an oncogene of HCC [52].

ILF2 expression is associated with cell proliferation and apoptosis progression. ILF2
in HCC indicates that both in vitro and in vivo liver cancer cell proliferation are greatly
affected by ILF2 [53]. UTP18 was obtained as one of the target genes in HCC [54]. Lasso–
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Cox regression analysis identified a four-gene prognostic model that incorporates clinical
and gene expression data and has a positive effect. In addition, CSE1L was associated with
survival time and status in HCC patients as determined by a univariate Cox regression
analysis [55].

The comprehensive search for a clustered subset of genes comprises four genes up-
regulated in HCC and located in CCT3, demonstrating the significance of this gene in the
expression analysis of HCC [56]. Time-dependent receiver operating characteristic (ROC),
multivariable Cox regression analysis of clinical information, nomogram, and decision
curve analysis (DCA) validated CNIH4 for more accurate prognosis prediction of HCC
(DCA) [54]. ACLY, a novel gene with significance in metabolism and immune function and
a prognostic gene panel in HCC are being studied.

It was suggested that inhibiting ACLY and immune checkpoints may shed light on
HCC treatment [57]. CBX1 expression was significantly higher in HCC tissues compared
with in non-tumor tissues [58]. Furthermore, CBX1 expression was associated with enor-
mous tumor growth, poor tumor differentiation, and tumor vascular invasion [58]. MCM6
was found to be significantly upregulated in HCC tissues [59]. In HCC patients, increased
MCM6 expression was associated with aggressive clinicopathological features and a worse
prognosis [59].

These findings supported the findings from the Cancer Genome Atlas database
(TCGA). Moreover, knocking down MCM6 significantly reduced HCC cell proliferation and
migratory/invasive capability in vitro, as well as tumor volume, weight, and the number of
pulmonary metastases in vivo. In addition, MCM6 promoted EMT and activated MEK/ERK
signaling, according to mechanistic analyses [59]. More importantly, HCC patients had sig-
nificantly higher serum MCM6 levels than did cirrhotic and healthy controls [59]. KPNA2
participates in cell differentiation, proliferation, apoptosis, immunological response, and
viral infection to promote tumor growth and progression [60].

RFC4 is from the replication factor C (RFC) family [61], which is biologically active
in various malignant liver tumors, and plays an important role in the proliferation, pro-
gression, invasion, and metastasis of cancer cells [62]. NUP205 is overexpressed in HCC
tumors compared to neighboring normal tissues [63]. This gene may be associated with
human HCC cell proliferation [63]. SNRPD1 was identified as part of a nine-gene signature
associated with HCC prognosis [64].

High expression of this signature indicates a poor prognosis for HCC. In addition,
increased levels of SNRPD1 are associated with HCC metastasis [64]. The overexpression
of TP53TG1 enhanced HCC proliferation [65]. It was found that TP53TG1 has an oncogenic
role in HCC, which gives a novel insight into the cell-type-specific function of TP53TG1 in
HCC [65].

Overall, all the identified genes are significantly responsible for HCC and biologically
connected to liver diseases. A hierarchical clustering tree is used to break down and
summarize the association between the significant pathways identified in the enrichment.
Since physicians now know which genes are responsible for HCC for a particular patient, it
will help them to better treat the patient.

Moreover, we discuss some limitations and the future directions of this study. If
random forest is not calibrated appropriately, it may overfit the data, which would cause it
to perform well on training data but badly on test data. Large datasets may be constrained
by the fact that, as the forest’s number of trees grows, so does the calculation time. Further-
more, LIME can be computationally expensive, especially for large datasets or complex
models. The interpretation may not be representative of the entire dataset. LIME generates
local explanations for specific instances, which may not represent the overall behavior of
the model. The choice of hyperparameters in LIME can affect the interpretation of the
model, and it may require tuning to obtain reliable results.

While random forest and LIME are effective methods overall, they have drawbacks
and should only be used with care and a thorough grasp of both their advantages and
disadvantages. PCA is a linear technique and may not capture complex interactions
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between the original features, which can limit its ability to model complex relationships
in the data. Thus, in the future, instead of using PCA, one could use UMAP, t-SNE, or
autoencoders. We recommend autoencoders. These are neural network models that learn
to encode high-dimensional data into a lower-dimensional representation and then decode
it back into the original space.

Moreover, instead of using LIME, one could use SHapley Additive exPlanations
(SHAP), or anchors, which are a rule-based method for explaining the predictions of
black-box models. Anchors generate human-readable and understandable rules that are
interpretable and can be used to explain model predictions. Moreover, ML models rely on
data to make predictions, and if the amount or quality of the data is limited, the accuracy
of the model may be reduced.

In some cases, the data may be biased or incomplete, leading to errors in the predic-
tions. In practice, AI and ML models are designed to optimize for accuracy while balancing
other factors, such as the speed, efficiency, and interpretability. While 100% accuracy may
not be achievable in all cases, the goal is to build models that are as accurate as possible
given the constraints of the problem and the available data.

4. Conclusions

Our findings support prior research by demonstrating that machine-learning ap-
proaches may be used to discover responsible genes that have a substantial influence on
HCC. According to Lee et al., precision medicine has shown that the genetic properties of
cancer cells may be used to predict the treatment response, and new research suggests that
gene–drug links may be predicted very precisely by investigating the cumulative impact of
multiple genes at the same time [66]. By identifying the genes responsible for HCC using
the RF model, we can develop novel treatments or improve existing therapies to prevent
HCC in its early stages.

Due to the limited number of training instances, the availability of a large number of
genes, and the various inherent uncertainties, microarray data analysis poses a challenge
to conventional machine-learning approaches. One of the most important advantages
of machine learning in the healthcare sector is its capacity to recognize and diagnose
illnesses and ailments that would otherwise be challenging to diagnose. Due to the high
dimensionality of the HCC microarray data, it is necessary to include feature selection to
reduce the dimensionality of the data.

To reduce the dimensionality of the data, we used PCA for feature selection, selecting
the 100 most essential genes to train the different machine-learning models. The accuracy of
RF after feature selection using PCA was 96.54% and, before feature selection, was 87.41%.
Based on the model’s classification accuracy, the random forest model was chosen as the
final model, which fitted the LIME model as the explainable AI model based on the 16 top
genes. The names of these genes are TUBA1B, CCT6A, ILF2, UTP18, CSE1L, CCT3, CNH4,
ACLY, SMC4, CBX1, MCM6, RFC4, SNRPD1, TP53TG1, NUP205, and KPNA2.

The explainable AI addresses the challenges of understanding the model at the local
level, allowing health professionals to choose whether or not the model should be adopted.
When physicians recognize the most critical genes associated with HCC in a particular
patient, they can treat that patient more effectively. The proposed framework may help
clinicians to understand the gap between clinical and machine-intelligent reports based on
an AI explanation. HCC is still associated with poor prognosis in patients with advanced
disease [67].

This study shows how to improve HCC diagnosis in the early stages so that clinicians
can obtain early information. AI or ML models are a modern technique for predicting
diseases; however, these models are highly reliant on the available data; therefore, they
cannot replace or challenge the current clinical practices, such as CT, MRI, biopsy, and other
clinical techniques.
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Appendix A. Used Python and R Packages

Appendix A.1

The name of the package is Linear Models for Microarray and RNA-seq Data (LIMMA).
Bioconductor version: Release (3.15) [31]. Use: Data analysis, linear models, and differential
expression for microarray data.

Appendix A.2

Names of the Python packages: numpy, pandas, mlxtend.plotting, sklearn.model
_selection, classifications models, etc.

Appendix B. Hyper-Parameters in the ML Models

• Method: RF

Hyperparameter: n estimators: int, default = 100, criterion: gini, max depth: de-
fault = None, min samples split: default = 2, max features = ‘auto’, max leaf nodes = None,
min impurity decrease = 0.0, min impurity split = None, bootstrap = True, oob score = False,
n jobs =−1, random state = 0, verbose = 0, warm start = False, and class weight = ’balanced’.

• Method: NBC

Hyperparameter: Priors: array-like of shape (n classes = 2). The class proportions for
the training set used var smoothing: float, 1e-9; class prior: array of shape (n classes = 2),
and the probability of each class.

var: ndarray of shape (n classes = 2, and n features = 100). Variance of each feature
per class.

Method: Logistic Regression
Hyperparameter: Penalty: none. Tol: float. 1e−4. The other parameters are the default.

• Method: k-NN

https://www.ncbi.nlm.nih.gov
https://www.ncbi.nlm.nih.gov/geo/query
https://www.ncbi.nlm.nih.gov/geo/query
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Hyperparameter: n neighbors: k = 3. The other parameters are the default.

Algorithm A1: The algorithm for the proposed framework.
Input: HCC dataset. Output: Final trained and tested model.
Step 1: Initialize the dataset.
- Load the HCC dataset.
Step 2: Preprocess the full dataset.
- Remove missing data and duplicates and normalize the dataset.
Step 3: Feature selection of the HCC dataset.
- Perform PCA to select the top 100 genes.
Step 4: Divide the dataset into two sets:
i. Training Set (66.67% of the dataset).
ii. Test Set (33.37% of the dataset).
- Randomly split the dataset into training and test sets.
Step 5: Train the models with the Training Set.
- Train multiple machine-learning models, such as random forest, SVM, logistic

regression, and NBC using the 16 top genes by variable importance ranking.
Step 6: Test the trained models with the Test Set.
- Evaluate the performance of the trained models on the test set.
Step 7: Generate the confusion matrix and ROC analysis.
- Calculate the confusion matrix, ROC curve, and confidence interval.
Step 8: Generate the final trained and tested model.
- Select the best-performing model based on evaluation metrics.
Step 9: Send the final model to Explainable AI.
- Use the LIME algorithm to generate the top 16 genes that contribute to the final
model’s decision.

Appendix C. HCC Gene Mining

The top 100 genes using PCA are presented below. Genes are listed here with Column
ID notations. Based on the Gini index, the 17 top responsible genes are indicated in blue.

AFFYMETRIX
Name Species Column ID

3PRIME IVT ID

210987_x_at tropomyosin 1 (TPM1) Homo sapiens V10434
210986_s_at tropomyosin 1 (TPM1) Homo sapiens V10433
220917_s_at WD repeat domain 19 (WDR19) Homo sapiens V20281
221223_x_at cytokine-inducible SH2 containing protein (CISH) Homo sapiens V20586
215605_at nuclear receptor coactivator 2 (NCOA2) Homo sapiens V14978
204718_at EPH receptor B6 (EPHB6) Homo sapiens V4245
219828_at RAB, member RAS oncogene family like 6 (RABL6) Homo sapiens V19192
211072_x_at tubulin alpha 1b (TUBA1B) Homo sapiens V10516
204690_at syntaxin 8 (STX8) Homo sapiens V4217
201327_s_at chaperonin containing TCP1 subunit 6A (CCT6A) Homo sapiens V855
200750_s_at RAN, member RAS oncogene family (RAN) Homo sapiens V278
218421_at ceramide kinase (CERK) Homo sapiens V17786
213455_at family with sequence similarity 114 member A1 (FAM114A1) Homo sapiens V12836
202146_at interferon related developmental regulator 1 (IFRD1) Homo sapiens V1674
221351_at 5-hydroxytryptamine receptor 1A (HTR1A) Homo sapiens V20714
200052_s_at interleukin enhancer binding factor 2 (ILF2) Homo sapiens V73
214037_s_at coiled-coil domain containing 22 (CCDC22) Homo sapiens V13416
203721_s_at UTP18 small subunit processome component (UTP18) Homo sapiens V3248.
221760_at mannosidase alpha class 1A member 1 (MAN1A1) Homo sapiens V21120
209030_s_at cell adhesion molecule 1 (CADM1) Homo sapiens V8524
212168_at RNA-binding motif protein 12 (RBM12) Homo sapiens V11554
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AFFYMETRIX
Name Species Column ID

3PRIME IVT ID

203477_at collagen type XV alpha 1 chain (COL15A1) Homo sapiens V3004
201112_s_at chromosome segregation 1 like (CSE1L) Homo sapiens V640
212519_at ubiquitin conjugating enzyme E2 E1 (UBE2E1) Homo sapiens V11904
217889_s_at cytochrome b reductase 1 (CYBRD1) Homo sapiens V17254
202291_s_at matrix Gla protein (MGP) Homo sapiens V1819
221664_s_at F11 receptor (F11R) Homo sapiens V21025
216867_s_at platelet derived growth factor subunit A (PDGFA) Homo sapiens V16237
205463_s_at platelet derived growth factor subunit A (PDGFA) Homo sapiens V4990
200612_s_at adaptor related protein complex 2 subunit beta 1 (AP2B1) Homo sapiens V140
200910_at chaperonin containing TCP1 subunit 3 (CCT3) Homo sapiens V438
210385_s_at endoplasmic reticulum aminopeptidase 1 (ERAP1) Homo sapiens V9863

218010_x_at
pancreatic progenitor cell differentiation and proliferation
factor (PPDPF)

Homo sapiens V17375

218728_s_at cornichon family AMPA receptor auxiliary protein 4 (CNIH4) Homo sapiens V18092
209071_s_at regulator of G protein signaling 5 (RGS5) Homo sapiens V8565
218353_at regulator of G protein signaling 5 (RGS5) Homo sapiens V17718
202011_at tight junction protein 1 (TJP1) Homo sapiens V1539
201873_s_at ATP-binding cassette subfamily E member 1 (ABCE1) Homo sapiens V1401
209373_at mal, T cell differentiation protein like (MALL) Homo sapiens V8866
202469_s_at cleavage and polyadenylation specific factor 6 (CPSF6) Homo sapiens V1997
212473_s_at microtubule associated monooxygenase,

calponin and LIM domain containing 2 (MICAL2)
Homo sapiens V11858

218622_at nucleoporin 37 (NUP37) Homo sapiens V17987
201128_s_at ATP citrate lyase (ACLY) Homo sapiens V656
201909_at ribosomal protein S4 Y-linked 1 (RPS4Y1) Homo sapiens V1437
55872_at uridine-cytidine kinase 1 like 1 (UCKL1) Homo sapiens V22108
204020_at purine rich element binding protein A (PURA) Homo sapiens V3547
202565_s_at supervillin (SVIL) Homo sapiens V2093
208683_at calpain 2 (CAPN2) Homo sapiens V8178

211974_x_at
recombination signal binding protein for immunoglobulin
kappa J region (RBPJ)

Homo sapiens V11361

203021_at secretory leukocyte peptidase inhibitor (SLPI) Homo sapiens V2550
213139_at snail family transcriptional repressor 2 (SNAI2) Homo sapiens V12522
218531_at transmembrane protein 134 (TMEM134) Homo sapiens V17896
201663_s_at structural maintenance of chromosomes 4 (SMC4) Homo sapiens V1191
201664_at structural maintenance of chromosomes 4 (SMC4) Homo sapiens V1192
211833_s_at BCL2 associated X, apoptosis regulator (BAX) Homo sapiens V11229
201177_s_at ubiquitin-like modifier activating enzyme 2 (UBA2) Homo sapiens V705
200985_s_at CD59 molecule (CD59 blood group) (CD59) Homo sapiens V513
212463_at CD59 molecule (CD59 blood group) (CD59) Homo sapiens V11848
213911_s_at H2A.Z variant histone 1 (H2AZ1) Homo sapiens V13290
200853_at H2A.Z variant histone 1 (H2AZ1) Homo sapiens V381
201518_at chromobox 1 (CBX1) Homo sapiens V1046
202543_s_at glia maturation factor beta (GMFB) Homo sapiens V2071
204347_at adenylate kinase 4 (AK4) Homo sapiens V3874

205968_at
potassium voltage-gated channel modifier subfamily S
member 3 (KCNS3)

Homo sapiens V5495

219215_s_at solute carrier family 39 member 4 (SLC39A4) Homo sapiens V18579

201930_at
minichromosome maintenance complex component 6
(MCM6)

Homo sapiens V1458

203041_s_at lysosomal associated membrane protein 2 (LAMP2) Homo sapiens V2570
202597_at interferon regulatory factor 6 (IRF6) Homo sapiens V2125
212766_s_at interferon stimulated exonuclease gene 20 like 2 (ISG20L2) Homo sapiens V12151
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AFFYMETRIX
Name Species Column ID

3PRIME IVT ID

217755_at Jupiter microtubule associated homolog 1 (JPT1) Homo sapiens V17120
208789_at caveolae associated protein 1 (CAVIN1) Homo sapiens V8284
205361_s_at prefoldin subunit 4 (PFDN4) Homo sapiens V4888
200795_at SPARC-like 1 (SPARCL1) Homo sapiens V323
201181_at G protein subunit alpha i3 (GNAI3) Homo sapiens V709
212371_at desumoylating isopeptidase 2 (DESI2) Homo sapiens V11756
203953_s_at claudin 3 (CLDN3) Homo sapiens V3480
202790_at claudin 7 (CLDN7) Homo sapiens V2318
204440_at CD83 molecule (CD83) Homo sapiens V3967
221578_at Ras association domain family member 4 (RASSF4) Homo sapiens V20940
204023_at replication factor C subunit 4 (RFC4) Homo sapiens V3550
213882_at TM2 domain containing 1 (TM2D1) Homo sapiens V13262
201200_at cellular repressor of E1A stimulated genes 1 (CREG1) Homo sapiens V728
213506_at F2R-like trypsin receptor 1 (F2RL1) Homo sapiens V12887
218418_s_at KN motif and ankyrin repeat domains 2 (KANK2) Homo sapiens V17783
204106_at testis associated actin remodelling kinase 1 (TESK1) Homo sapiens V3633
202690_s_at small nuclear ribonucleoprotein D1 polypeptide (SNRPD1) Homo sapiens V2218
208541_x_at transcription factor A, mitochondrial (TFAM) Homo sapiens V8039
211754_s_at solute carrier family 25 member 17 (SLC25A17) Homo sapiens V11154

207996_s_at
low density lipoprotein receptor class A domain containing 4
(LDLRAD4)

Homo sapiens V7507

213242_x_at centrosomal protein 170B (CEP170B) Homo sapiens V12624
202072_at heterogeneous nuclear ribonucleoprotein L (HNRNPL) Homo sapiens V1600
205542_at STEAP family member 1 (STEAP1) Homo sapiens V5069.
220264_s_at G protein-coupled receptor 107 (GPR107) Homo sapiens V19628
209917_s_at TP53 target 1 (TP53TG1) Homo sapiens V9403
210740_s_at inositol-tetrakisphosphate 1-kinase (ITPK1) Homo sapiens V10201
212043_at trans-golgi network protein 2 (TGOLN2) Homo sapiens V11429
212247_at nucleoporin 205 (NUP205) Homo sapiens V11633
211762_s_at karyopherin subunit alpha 2 (KPNA2) Homo sapiens V11161
201088_at karyopherin subunit alpha 2 (KPNA2) Homo sapiens V616
222344_at Information Unknown V21703

Appendix D. Pathway Analysis

A controlled vocabulary is provided by gene ontology (GO) analysis, which may
be used to characterize the properties of genes and gene products in any organism. In
order to determine the molecular functions of differentially expressed genes, we conducted
our analysis using ShinyGO 0.76 (http://bioinformatics.sdstate.edu/go/) (accessed on 12
November 2022)

ShinyGO 0.76 is a collection of tools for integrating and visualizing data based on path-
ways. It visualizes and maps user data on appropriate route graphs. We use Figures A1–A4
to describe the pathway analysis of the HCC data.

Network interpretation: This interactive map also demonstrates the connection be-
tween several enriched pathways. If two nodes share at least 20% of their genes, then they
are linked. Darker nodes indicate more highly enriched gene sets. Larger nodes reflect
larger gene sets. More genes have overlapping regions if the margin is thicker.

Tree interpretation: The association between the significant pathways identified in
the Enrichment is broken down and summarized using a hierarchical clustering tree. The
pathways that share a large number of genes are grouped together. Larger dots represent
more significant p-values. Adjusting the width of your browser window will result in
a corresponding change to the width of the plot.

http://bioinformatics.sdstate.edu/go/
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Figure A1. Bar plot indicates the fold enrichment versus pathways.

Figure A2. Integrating and visualizing the top 17 genes based on pathways.
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Figure A3. Dendogram that shows the pathway hierarchical clustering.

Figure A4. Gene set enrichment score.
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