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Abstract

:

In the first part of this article, we present a new proof for Korn’s inequality in an n-dimensional context. The results are based on standard tools of real and functional analysis. For the final result, the standard Poincaré inequality plays a fundamental role. In the second text part, we develop a global existence result for a non-linear model of plates. We address a rather general type of boundary conditions and the novelty here is the more relaxed restrictions concerning the external load magnitude.
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1. Introduction


In this article, we present a proof for Korn’s inequality in   R n  . The results are based on standard tools of functional analysis and on the Sobolev spaces theory.



We emphasize that such a proof is relatively simple and easy to follow since it is established in a very transparent and clear fashion.



About the references, we highlight that related results in a three-dimensional context may be found in [1]. Other important classical results on Korn’s inequality and concerning applications to models in elasticity may be found in [2,3,4].



Remark 1.

Generically, throughout the text we denote


     ∥ u ∥   0 , 2 , Ω   =    ∫ Ω    | u |  2   d x   1 / 2   ,  ∀ u ∈  L 2   ( Ω )  ,   








and


     ∥ u ∥   0 , 2 , Ω   =    ∑  j = 1  n    ∥  u j  ∥   0 , 2 , Ω  2    1 / 2   ,  ∀ u =  (  u 1  , … ,  u n  )  ∈  L 2   ( Ω ;  R n  )  .   











Moreover,


     ∥ u ∥   1 , 2 , Ω   =     ∥ u ∥   0 , 2 , Ω  2  +  ∑  j = 1  n    ∥  u  x j   ∥   0 , 2 , Ω  2    1 / 2   ,  ∀ u ∈  W  1 , 2    ( Ω )  ,   








where we shall also refer throughout the text to the well-known corresponding analogous norm for   u ∈  W  1 , 2    ( Ω ;  R n  )  .  





At this point, we first introduce the following definition.



Definition 1.

Let   Ω ⊂  R n    be an open, bounded set. We say that   ∂ Ω   is    C ^  1   if such a manifold is oriented and for each    x 0  ∈ ∂ Ω  , denoting    x ^  =  (  x 1  , . . . ,  x  n − 1   )    for a local coordinate system compatible with the manifold   ∂ Ω   orientation, there exist   r > 0   and a function   f  (  x 1  , . . . ,  x  n − 1   )  = f  (  x ^  )    such that


   W =  Ω ¯  ∩  B r   (  x 0  )  =  { x ∈  B r   (  x 0  )   |   x n  ≤ f  (  x 1  , . . . ,  x  n − 1   )  }  .   











Moreover,   f (  x ^  )   is a Lipschitz continuous function, so that


    | f   (  x ^  )  − f  (  y ^  )   | ≤   C 1    |  x ^  −  y ^  |  2  ,  on  its  domain ,   








for some    C 1  > 0  . Finally, we assume


      ∂ f (  x ^  )   ∂  x k      k = 1   n − 1    








is classically defined, almost everywhere also on its concerning domain, so that   f ∈  W  1 , 2    .





Remark 2.

This mentioned set Ω is of a Lipschitzian type, so that we may refer to such a kind of sets as domains with a Lipschitzian boundary, or simply as Lipschitzian sets.





At this point, we recall the following result found in [5], at page 222 in its Chapter 11.



Theorem 1.

Assume    Ω ⊂  R n     is an open bounded set, and that    ∂ Ω    is     C ^  1   . Let    1 ≤ p < ∞ ,    and let V be a bounded open set such that    Ω ⊂ ⊂ V   . Then there exists a bounded linear operator


   E :  W  1 , p    ( Ω )  →  W  1 , p    (  R n  )  ,   








such that for each    u ∈  W  1 , p    ( Ω )     we have:




	1. 

	
   E u = u ,   a . e .   in  Ω ,   ;




	2. 

	
   E u    has support in V;




	3. 

	
     ∥ E u ∥   1 , p ,  R n    ≤ C   ∥ u ∥   1 , p , Ω   ,    where the constant depends only on    p ,  Ω ,  and  V .   











Remark 3.

Considering the proof of such a result, the constant   C > 0   may be also such that


    ∥   e  i j      ( E u )  ∥   0 , 2 , V   ≤  C ( ∥   e  i j      ( u )  ∥   0 , 2 , Ω   +   ∥ u ∥   0 , 2 , Ω    ) ,  ∀ u ∈   W  1 , 2    ( Ω ;  R n  )  ,  ∀ i , j ∈  { 1 , … , n }  ,   








for the operator   e :  W  1 , 2    ( Ω ;  R n  )  →  L 2   ( Ω ;  R  n × n   )    specified in the next theorem.





Finally, as the meaning is clear, we may simply denote   E u = u .  




2. The Main Results, the Korn Inequalities


Our main result is summarized by the following theorem.



Theorem 2.

Let   Ω ⊂  R n    be an open, bounded and connected set with a    C ^  1   (Lipschitzian) boundary   ∂ Ω  .



Define   e :  W  1 , 2    ( Ω ;  R n  )  →  L 2   ( Ω ;  R  n × n   )    by


   e  ( u )  = {  e  i j    ( u )  }   








where


    e  i j    ( u )  =  1 2   (  u  i , j   +  u  j , i   )  ,  ∀ i , j ∈  { 1 , … , n }  ,   








and where generically, we denote


    u  i , j   =   ∂  u i    ∂  x j    ,  ∀ i , j ∈  { 1 , ⋯ , n }  .   








Define also,


     ∥ e  ( u )  ∥   0 , 2 , Ω   =    ∑  i = 1  n   ∑  j = 1  n    ∥  e  i j ( u )   ∥   0 , 2 , Ω  2    1 / 2   .   











Let   L ∈  R +    be such   V =   [ − L , L ]  n    is also such that    Ω ¯  ⊂  V 0  .  



Under such hypotheses, there exists   C  ( Ω , L )  ∈  R +    such that


     ∥ u ∥   1 , 2 , Ω   ≤ C  ( Ω , L )     ∥ u ∥   0 , 2 , Ω   +   ∥ e  ( u )  ∥   0 , 2 , Ω    ,  ∀ u ∈  W  1 , 2    ( Ω ;  R n  )  .   



(1)









Proof. 

Suppose, to obtain contradiction, that the concerning claim does not hold.



Thus, we are assuming that there is no positive real constant   C = C ( Ω , L )   such that (1) is valid.



In particular,   k = 1 ∈ N   is not such a constant C, so that there exists a function    u 1  ∈  W  1 , 2    ( Ω ;  R n  )    such that


   ∥   u 1    ∥   1 , 2 , Ω   > 1    ∥   u 1    ∥   0 , 2 , Ω   +   ∥ e  (  u 1  )  ∥   0 , 2 , Ω    .  











Similarly,   k = 2 ∈ N   is not such a constant C, so that there exists a function    u 2  ∈  W  1 , 2    ( Ω ;  R n  )    such that


   ∥   u 2    ∥   1 , 2 , Ω   > 2    ∥   u 2    ∥   0 , 2 , Ω   +   ∥ e  (  u 2  )  ∥   0 , 2 , Ω    .  











Hence, since no   k ∈ N   is such a constant C, reasoning inductively, for each   k ∈ N   there exists a function    u k  ∈  W  1 , 2    ( Ω ;  R n  )    such that


   ∥   u k    ∥   1 , 2 , Ω   > k   ∥   u k    ∥   0 , 2 , Ω   +   ∥ e  (  u k  )  ∥   0 , 2 , Ω    .  











In particular, defining


   v k  =   u k    ∥   u k    ∥   1 , 2 , Ω      








we obtain


   ∥   v k    ∥   1 , 2 , Ω   = 1 > k   ∥   v k    ∥   0 , 2 , Ω   +   ∥ e  (  v k  )  ∥   0 , 2 , Ω    ,  








so that


    ∥   v k    ∥   0 , 2 , Ω   +   ∥ e  (  v k  )  ∥   0 , 2 , Ω    <  1 k  ,  ∀ k ∈ N .  











From this we obtain


   ∥   v k    ∥   0 , 2 , Ω   <  1 k  ,  








and


   ∥   e  i j    (  v k  )    ∥   0 , 2 , Ω   <  1 k  ,  ∀ k ∈ N ,  








so that


   ∥   v k    ∥   0 , 2 , Ω   → 0 ,  as  k → ∞ ,  








and


   ∥   e  i j    (  v k  )    ∥   0 , 2 , Ω   → 0 ,  as  k → ∞ .  











In particular,


   ∥    (  v k  )   j , j     ∥   0 , 2 , Ω   → 0 ,  ∀ j ∈  { 1 , … , n }  .  











At this point, we recall the following identity in the distributional sense, found in [3], page 12:


   ∂ j   (  ∂ l   v i  )  =  ∂ j   e  i l    ( v )  +  ∂ l   e  i j    ( v )  −  ∂ i   e  j l    ( v )  ,  ∀ i , j , l ∈  { 1 , … , n }  .  



(2)







Fix   j ∈ { 1 , … , n }   and observe that


   ∥    (  v k  )  j    ∥   1 , 2 , V   ≤ C   ∥   (  v k  )  j  ∥   1 , 2 , Ω   ,  








so that


   C   ∥    (  v k  )  j    ∥   1 , 2 , V     ≥  1    ∥    (  v k  )  j    ∥   1 , 2 , Ω     ,  ∀ k ∈ N .  











Hence,


        ∥    (  v k  )  j    ∥   1 , 2 , Ω         =     sup  φ ∈  C 1   ( Ω )       〈 ∇   (  v k  )  j  , ∇ φ 〉    L 2   ( Ω )    +   〈   (  v k  )  j  , φ 〉    L 2   ( Ω )     :    ∥ φ ∥   1 , 2 , Ω   ≤ 1        =     ∇   (  v k  )  j  , ∇     (  v k  )  j    ∥    (  v k  )  j    ∥   1 , 2 , Ω         L 2   ( Ω )           +     (  v k  )  j  ,     (  v k  )  j    ∥    (  v k  )  j    ∥   1 , 2 , Ω         L 2   ( Ω )          ≤    C    ∇   (  v k  )  j  , ∇     (  v k  )  j    ∥    (  v k  )  j    ∥   1 , 2 , V         L 2   ( V )    +     (  v k  )  j  ,     (  v k  )  j    ∥    (  v k  )  j    ∥   1 , 2 , V         L 2   ( V )           =    C  sup  φ ∈  C c 1   ( V )       〈 ∇   (  v k  )  j  , ∇ φ 〉    L 2   ( V )    +   〈   (  v k  )  j  , φ 〉    L 2   ( V )     :    ∥ φ ∥   1 , 2 , V   ≤ 1  .     



(3)







Here, we recall that   C > 0   is the constant concerning the extension Theorem 1. From such results and (2), we have that


        sup  φ ∈  C 1   ( Ω )       〈 ∇   (  v k  )  j  , ∇ φ 〉    L 2   ( Ω )    +   〈   (  v k  )  j  , φ 〉    L 2   ( Ω )     :    ∥ φ ∥   1 , 2 , Ω   ≤ 1        ≤    C  sup  φ ∈  C c 1   ( V )       〈 ∇   (  v k  )  j  , ∇ φ 〉    L 2   ( V )    +   〈   (  v k  )  j  , φ 〉    L 2   ( V )     :    ∥ φ ∥   1 , 2 , V   ≤ 1        =    C  sup  φ ∈  C c 1   ( V )       〈  e  j l    (  v k  )  ,  φ  , l   〉    L 2   ( V )    +   〈  e  j l    (  v k  )  ,  φ  , l   〉    L 2   ( V )              −   〈  e  l l    (  v k  )  ,  φ  , j   〉    L 2   ( V )    +   〈   (  v k  )  j  , φ 〉    L 2   ( V )    ,  :    ∥ φ ∥   1 , 2 , V   ≤ 1  .     



(4)







Therefore,


        ∥    (  v k  )  j    ∥    W  1 , 2    ( Ω )          =     sup  φ ∈  C 1   ( Ω )     {    〈 ∇   (  v k  )  j  , ∇ φ 〉    L 2   ( Ω )    +   〈   (  v k  )  j  , φ 〉    L 2   ( Ω )       :  ∥ φ ∥   1 , 2 , Ω    ≤ 1 }        ≤    C   ∑  l = 1  n    ∥   e  j l    (  v k  )    ∥   0 , 2 , V   +   ∥  e  l l    (  v k  )  ∥   0 , 2 , V    +   ∥   (  v k  )  j  ∥   0 , 2 , V          ≤     C 1    ∑  l = 1  n    ∥   e  j l    (  v k  )    ∥   0 , 2 , Ω   +   ∥  e  l l    (  v k  )  ∥   0 , 2 , Ω    +   ∥   (  v k  )  j  ∥   0 , 2 , Ω          <      C 2  k  ,     



(5)




for appropriate    C 1  > 0   and    C 2  > 0 .  



Summarizing,


   ∥    (  v k  )  j    ∥    W  1 , 2    ( Ω )    <   C 2  k  ,  ∀ k ∈ N .  











From this we obtain


   ∥   v k    ∥   1 , 2 , Ω   → 0 ,  as  k → ∞ ,  








which contradicts


   ∥   v k    ∥   1 , 2 , Ω   = 1 ,  ∀ k ∈ N .  











The proof is complete. □





Corollary 1.

Let   Ω ⊂  R n    be an open, bounded and connected set with a    C ^  1   boundary   ∂ Ω  . Define   e :  W  1 , 2    ( Ω ;  R n  )  →  L 2   ( Ω ;  R  n × n   )    by


   e  ( u )  = {  e  i j    ( u )  }   








where


    e  i j    ( u )  =  1 2   (  u  i , j   +  u  j , i   )  ,  ∀ i , j ∈  { 1 , … , n }  .   











Define also,


     ∥ e  ( u )  ∥   0 , 2 , Ω   =    ∑  i = 1  n   ∑  j = 1  n    ∥  e  i j ( u )   ∥   0 , 2 , Ω  2    1 / 2   .   











Let   L ∈  R +    be such   V =   [ − L , L ]  n    is also such that    Ω ¯  ⊂  V 0  .  



Moreover, define


     H ^  0  =  { u ∈  W  1 , 2    ( Ω ;  R n  )   :  u = 0 ,  on   Γ 0  }  ,   








where    Γ 0  ⊂ ∂ Ω   is a measurable set such that the Lebesgue measure    m  R  n − 1     (  Γ 0  )  > 0 .  



Assume also   Γ 0   is such that for each   j ∈ { 1 , ⋯ , n }   and each   x = (  x 1  , ⋯ ,  x n  ) ∈ Ω   there exists    x 0  =  (   (  x 0  )  1  , ⋯ ,   (  x 0  )  n  )  ∈  Γ 0    such that


     (  x 0  )  l  =  x l  ,  ∀ l ≠ j ,  l ∈  { 1 , ⋯ , n }  ,   








and the line


    A   x 0  , x   ⊂  Ω ¯    








where


    A   x 0  , x   =  {  (  x 1  , ⋯ ,  ( 1 − t )    (  x 0  )  j  + t  x j  , ⋯ ,  x n  )   :  t ∈  [ 0 , 1 ]  }  .   











Under such hypotheses, there exists   C  ( Ω , L )  ∈  R +    such that


     ∥ u ∥   1 , 2 , Ω   ≤ C  ( Ω , L )     ∥ e  ( u )  ∥   0 , 2 , Ω   ,  ∀ u ∈   H ^  0  .   













Proof. 

Suppose, to obtain contradiction, that the concerning claim does not hold.



Hence, for each   k ∈ N   there exists    u k  ∈   H ^  0    such that


   ∥   u k    ∥   1 , 2 , Ω   > k    ∥ e  (  u k  )  ∥   0 , 2 , Ω   .  











In particular, defining


   v k  =   u k    ∥   u k    ∥   1 , 2 , Ω      








similarly to the proof of the last theorem, we may obtain


   ∥    (  v k  )   j , j     ∥   0 , 2 , Ω   → 0 ,  as  k → ∞ ,  ∀ j ∈  { 1 , … , n }  .  











From this, the hypotheses on   Γ 0   and from the standard Poincaré inequality proof we obtain


   ∥    (  v k  )  j    ∥   0 , 2 , Ω   → 0 ,  as  k → ∞ ,  ∀ j ∈  { 1 , … , n }  .  











Thus, also similarly as in the proof of the last theorem, we may infer that


   ∥   v k    ∥   1 , 2 , Ω   → 0 ,  as  k → ∞ ,  








which contradicts


   ∥   v k    ∥   1 , 2 , Ω   = 1 ,  ∀ k ∈ N .  











The proof is complete. □






3. An Existence Result for a Non-Linear Model of Plates


In the present section, as an application of the results on Korn’s inequalities presented in the previous sections, we develop a new global existence proof for a Kirchhoff–Love thin plate model. Previous results on the existence of mathematical elasticity and related models may be found in [2,3,4].



At this point we start to describe the primal formulation.



Let   Ω ⊂  R 2    be an open, bounded, connected set which represents the middle surface of a plate of thickness h. The boundary of  Ω , which is assumed to be regular (Lipschitzian), is denoted by   ∂ Ω  . The vectorial basis related to the cartesian system   {  x 1  ,  x 2  ,  x 3  }   is denoted by   (  a α  ,  a 3  )  , where   α = 1 , 2   (in general, Greek indices stand for 1 or 2), and where   a 3   is the vector normal to  Ω , whereas   a 1   and   a 2   are orthogonal vectors parallel to   Ω .   Furthermore,  n  is the outward normal to the plate surface.



The displacements will be denoted by


   u ^  =  {   u ^  α  ,   u ^  3  }  =   u ^  α   a α  +   u ^  3   a 3  .  











The Kirchhoff–Love relations are


         u ^  α   (  x 1  ,  x 2  ,  x 3  )  =  u α   (  x 1  ,  x 2  )  −  x 3  w   (  x 1  ,  x 2  )   , α             and    u ^  3   (  x 1  ,  x 2  ,  x 3  )  = w  (  x 1  ,  x 2  )  .     



(6)







Here,   − h / 2 ≤  x 3  ≤ h / 2   so that we have   u = (  u α  , w ) ∈ U   where


    U   =     (  u α  , w )  ∈  W  1 , 2    ( Ω ;  R 2  )  ×  W  2 , 2    ( Ω )  ,           u α  = w =   ∂ w   ∂ n   = 0   on  ∂ Ω        =     W 0  1 , 2    ( Ω ;  R 2  )  ×  W 0  2 , 2    ( Ω )  .     











It is worth emphasizing that the boundary conditions here specified refer to a clamped plate.



We define the operator   Λ : U → Y × Y  , where   Y =  Y *  =  L 2   ( Ω ;  R  2 × 2   )   , by


  Λ ( u ) = { γ ( u ) , κ ( u ) } ,  










   γ  α β    ( u )  =    u  α , β   +  u  β , α    2  +    w  , α    w  , β    2  ,  










   κ  α β    ( u )  = −  w  , α β   .  








The constitutive relations are given by


   N  α β    ( u )  =  H  α β λ μ    γ  λ μ    ( u )  ,  



(7)






   M  α β    ( u )  =  h  α β λ μ    κ  λ μ    ( u )  ,  



(8)




where   {  H  α β λ μ   }   and   {  h  α β λ μ   =   h 2  12   H  α β λ μ   }  , are symmetric positive definite fourth-order tensors. From now on, we denote    {   H ¯   α β λ μ   }  =   {  H  α β λ μ   }   − 1     and    {   h ¯   α β λ μ   }  =   {  h  α β λ μ   }   − 1    .



Furthermore,   {  N  α β   }   denote the membrane force tensor and   {  M  α β   }   the moment one. The plate stored energy, represented by   ( G ∘ Λ ) : U → R  , is expressed by


   ( G ∘ Λ )   ( u )  =  1 2   ∫ Ω   N  α β    ( u )   γ  α β    ( u )   d x +  1 2   ∫ Ω   M  α β    ( u )   κ  α β    ( u )   d x  



(9)




and the external work, represented by   F : U → R  , is given by


  F  ( u )  =   〈 w , P 〉    L 2   ( Ω )    +   〈  u α  ,  P α  〉    L 2   ( Ω )    ,  



(10)




where   P ,  P 1  ,  P 2  ∈  L 2   ( Ω )    are external loads in the directions   a 3  ,   a 1  , and   a 2  , respectively. The potential energy, denoted by   J : U → R  , is expressed by


  J ( u ) = ( G ∘ Λ ) ( u ) − F ( u )  











Finally, we also emphasize from now on, as their meaning are clear, we may denote    L 2   ( Ω )    and    L 2   ( Ω ;  R  2 × 2   )    simply by   L 2  , and the respective norms by     ∥ · ∥  2  .   Moreover, derivatives are always understood in the distributional sense,  0  may denote the zero vector in appropriate Banach spaces, and the following and relating notations are used:


   w  , α   =   ∂ w   ∂  x α    ,  










   w  , α β   =    ∂ 2  w   ∂  x α  ∂  x β    ,  










   u  α , β   =   ∂  u α    ∂  x β    ,  










   N  α β , 1   =   ∂  N  α β     ∂  x 1    ,  








and


   N  α β , 2   =   ∂  N  α β     ∂  x 2    .  












4. On the Existence of a Global Minimizer


At this point, we present an existence result concerning the Kirchhoff–Love plate model.



We start with the following two remarks.



Remark 4.

Let    {  P α  }  ∈  L ∞   ( Ω ;  R 2  )   . We may easily obtain by appropriate Lebesgue integration   {   T ˜   α β   }   symmetric and such that


     T ˜   α β , β   = −  P α  ,  in  Ω .   











Indeed, extending   {  P α  }   to zero outside Ω if necessary, we may set


     T ˜  11   ( x , y )  = −  ∫ 0 x   P 1   ( ξ , y )   d ξ ,   










     T ˜  22   ( x , y )  = −  ∫ 0 y   P 2   ( x , ξ )   d ξ ,   








and


     T ˜  12   ( x , y )  =   T ˜  21   ( x , y )  = 0 ,  in  Ω .   











Thus, we may choose a   C > 0   sufficiently big, such that


    {  T  α β   }  =  {   T ˜   α β   + C  δ  α β   }    








is positive definite    in  Ω  , so that


    T  α β , β   =   T ˜   α β , β   = −  P α  ,   








where


   {  δ  α β   }   








is the Kronecker delta.



Therefore, for the kind of boundary conditions of the next theorem, we do not have any restriction for the   {  P α  }   norm.



In summary, the next result is new and it is really a step forward concerning the previous one in Ciarlet [3]. We emphasize that this result and its proof through such a tensor   {  T  α β   }   are new, even though the final part of the proof is established through a standard procedure in the calculus of variations.



Finally, more details on the Sobolev spaces involved may be found in [5,6,7,8]. Related duality principles are addressed in [5,7,9].





At this point, we present the main theorem in this section.



Theorem 3.

Let   Ω ⊂  R 2    be an open, bounded, connected set with a Lipschitzian boundary denoted by   ∂ Ω = Γ .   Suppose   ( G ∘ Λ ) : U → R   is defined by


   G  ( Λ u )  =  G 1   ( γ  ( u )  )  +  G 2   ( κ  ( u )  )  ,  ∀ u ∈ U ,   








where


    G 1   ( γ u )  =  1 2   ∫ Ω   H  α β λ μ    γ  α β    ( u )   γ  λ μ    ( u )   d x ,   








and


    G 2   ( κ u )  =  1 2   ∫ Ω   h  α β λ μ    κ  α β    ( u )   κ  λ μ    ( u )   d x ,   








where


   Λ  ( u )  =  ( γ  ( u )  , κ  ( u )  )  = (  {  γ  α β    ( u )  }  ,  {  κ  α β    ( u )  }  ) ,   










    γ  α β    ( u )  =    u  α , β   +  u  β , α    2  +    w  , α    w  , β    2  ,   










    κ  α β    ( u )  = −  w  , α β   ,   








and where


      J ( u )    =    W  ( γ  ( u )  , κ  ( u )  )  −   〈  P α  ,  u α  〉    L 2   ( Ω )            −   〈 w , P 〉    L 2   ( Ω )    −   〈  P α t  ,  u α  〉    L 2   (  Γ t  )            −   〈  P t  , w 〉    L 2   (  Γ t  )    ,      



(11)




where,


     U   =    { u =  (  u α  , w )  =  (  u 1  ,  u 2  , w )  ∈  W  1 , 2    ( Ω ;  R 2  )  ×  W  2 , 2    ( Ω )   :          u α  = w =   ∂ w   ∂ n   = 0 ,  on   Γ 0   } ,       



(12)




where   ∂ Ω =  Γ 0  ∪  Γ t    and the Lebesgue measures


    m Γ   (  Γ 0  ∩  Γ t  )  = 0 ,   








and


    m Γ   (  Γ 0  )  > 0 .   











We also define


       F 1   ( u )     =    −   〈 w , P 〉    L 2   ( Ω )    −   〈  u α  ,  P α  〉    L 2   ( Ω )    −   〈  P α t  ,  u α  〉    L 2   (  Γ t  )            −   〈  P t  , w 〉    L 2   (  Γ t  )    +   〈  ε α  ,  u α 2  〉    L 2   (  Γ t  )          ≡    −   〈 u , f 〉   L 2   +   〈  ε α  ,  u α 2  〉    L 2   (  Γ t  )          ≡    −   〈 u ,  f 1  〉   L 2   −   〈  u α  ,  P α  〉    L 2   ( Ω )    +   〈  ε α  ,  u α 2  〉    L 2   (  Γ t  )    ,      



(13)




where


     〈 u ,  f 1  〉   L 2   =   〈 u , f 〉   L 2   −   〈  u α  ,  P α  〉    L 2   ( Ω )    ,   











   ε α  > 0 ,  ∀ α ∈  { 1 , 2 }    and


   f =  (  P α  , P )  ∈  L ∞   ( Ω ;  R 3  )  .   











Let   J : U → R   be defined by


   J  ( u )  = G  ( Λ u )  +  F 1   ( u )  ,  ∀ u ∈ U .   








Assume there exists    {  c  α β   }  ∈  R  2 × 2     such that    c  α β   > 0 ,  ∀ α , β ∈  { 1 , 2 }    and


    G 2   ( κ  ( u )  )  ≥  c  α β     ∥  w  , α β   ∥  2 2  ,  ∀ u ∈ U .   











Under such hypotheses, there exists    u 0  ∈ U   such that


   J  (  u 0  )  =  min  u ∈ U   J  ( u )  .   













Proof. 

Observe that we may find    T α  =  {   (  T α  )  β  }    such that


  d i v  T α  =  T  α β , β   = −  P α  ,  








and also such that   {  T  α β   }   is positive, definite, and symmetric (please see Remark 4).



Thus, defining


   v  α β    ( u )  =    u  α , β   +  u  β , α    2  +  1 2   w  , α    w  , β   ,  



(14)




we obtain


     J ( u )    =     G 1   (  {  v  α β    ( u )  }  )  +  G 2   ( κ  ( u )  )  −   〈 u , f 〉   L 2   +   〈  ε α  ,  u α 2  〉    L 2   (  Γ t  )          =     G 1   (  {  v  α β    ( u )  }  )  +  G 2   ( κ  ( u )  )  +   〈  T  α β , β   ,  u α  〉    L 2   ( Ω )    −   〈 u ,  f 1  〉   L 2   +   〈  ε α  ,  u α 2  〉    L 2   (  Γ t  )          =     G 1   (  {  v  α β    ( u )  }  )  +  G 2   ( κ  ( u )  )  −    T  α β   ,    u  α , β   +  u  β , α    2     L 2   ( Ω )            +   〈  T  α β    n β  ,  u α  〉    L 2   (  Γ t  )    −   〈 u ,  f 1  〉   L 2   +   〈  ε α  ,  u α 2  〉    L 2   (  Γ t  )          =     G 1   (  {  v  α β    ( u )  }  )  +  G 2   ( κ  ( u )  )  −    T  α β   ,  v  α β    ( u )  −  1 2   w  , α    w  , β      L 2   ( Ω )    −   〈 u ,  f 1  〉   L 2   +   〈  ε α  ,  u α 2  〉    L 2   (  Γ t  )            +   〈  T  α β    n β  ,  u α  〉    L 2   (  Γ t  )          ≥     c  α β     ∥  w  , α β   ∥  2 2  +  1 2     T  α β   ,  w  , α    w  , β      L 2   ( Ω )    −   〈 u ,  f 1  〉   L 2   +   〈  ε α  ,  u α 2  〉    L 2   (  Γ t  )    +  G 1   (  {  v  α β    ( u )  }  )          −   〈  T  α β   ,  v  α β    ( u )  〉    L 2   ( Ω )    +   〈  T  α β    n β  ,  u α  〉    L 2   (  Γ t  )    .     



(15)







From this, since   {  T  α β   }   is positive definite, clearly J is bounded below.



Let   {  u n  } ∈ U   be a minimizing sequence for J. Thus, there exists    α 1  ∈ R   such that


   lim  n → ∞   J  (  u n  )  =  inf  u ∈ U   J  ( u )  =  α 1  .  











From (15), there exists    K 1  > 0   such that


   ∥    (  w n  )   , α β     ∥  2  <  K 1  , ∀ α , β ∈  { 1 , 2 }  ,  n ∈ N .  











Therefore, there exists    w 0  ∈  W  2 , 2    ( Ω )    such that, up to a subsequence not relabeled,


    (  w n  )   , α β   ⇀   (  w 0  )   , α β   ,   weakly  in   L 2  ,  








  ∀ α , β ∈ { 1 , 2 } ,  as  n → ∞ .  



Moreover, also up to a subsequence not relabeled,


    (  w n  )   , α   →   (  w 0  )   , α   ,   strongly  in   L 2   and   L 4  ,  



(16)




  ∀ α , ∈ { 1 , 2 } ,  as  n → ∞ .  



Furthermore, from (15), there exists    K 2  > 0   such that,


   ∥    (  v n  )   α β    ( u )    ∥  2  <  K 2  , ∀ α , β ∈  { 1 , 2 }  ,  n ∈ N ,  








and thus, from this, (14) and (16), we may infer that there exists    K 3  > 0   such that


   ∥    (  u n  )   α , β   +   (  u n  )   β , α     ∥  2  <  K 3  , ∀ α , β ∈  { 1 , 2 }  ,  n ∈ N .  











From this and Korn’s inequality, there exists    K 4  > 0   such that


   ∥   u n    ∥    W  1 , 2    ( Ω ;  R 2  )    ≤  K 4  ,  ∀ n ∈ N .  











Therefore, up to a subsequence not relabeled, there exists    {   (  u 0  )  α  }  ∈  W  1 , 2    ( Ω ,  R 2  )  ,   such that


    (  u n  )   α , β   +   (  u n  )   β , α   ⇀   (  u 0  )   α , β   +   (  u 0  )   β , α   ,   weakly  in   L 2  ,  








  ∀ α , β ∈ { 1 , 2 } ,  as  n → ∞ ,   and


    (  u n  )  α  →   (  u 0  )  α  ,   strongly  in   L 2  ,  








  ∀ α ∈ { 1 , 2 } ,  as  n → ∞ .  



Moreover, the boundary conditions satisfied by the subsequences are also satisfied for   w 0   and   u 0   in a trace sense, so that


   u 0  =  (   (  u 0  )  α  ,  w 0  )  ∈ U .  











From this, up to a subsequence not relabeled, we obtain


   γ  α β    (  u n  )  ⇀  γ  α β    (  u 0  )  ,  weakly  in   L 2  ,  








  ∀ α , β ∈ { 1 , 2 } ,   and


   κ  α β    (  u n  )  ⇀  κ  α β    (  u 0  )  ,  weakly  in   L 2  ,  








  ∀ α , β ∈ { 1 , 2 } .  



Therefore, from the convexity of   G 1   in  γ  and   G 2   in  κ , we obtain


      inf  u ∈ U   J  ( u )     =    α 1       =     lim inf  n → ∞   J  (  u n  )        ≥    J (  u 0  ) .     



(17)







Thus,


  J  (  u 0  )  =  min  u ∈ U   J  ( u )  .  











The proof is complete. □






5. Conclusions


In this article, we have developed a new proof for Korn’s inequality in a specific n-dimensional context. In the second text part, we present a global existence result for a non-linear model of plates. Both results represent some new advances concerning the present literature. In particular, the results for Korn’s inequality known so far are for a three-dimensional context such as in [1], for example, whereas we have here addressed a more general n-dimensional case.



In a future research, we intend to address more general models, including the corresponding results for manifolds in   R n  .
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