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Abstract: Based on the geometry of a radial function, a sequence of approximations for arcsine, arcco-
sine and arctangent are detailed. The approximations for arcsine and arccosine are sharp at the points
zero and one. Convergence of the approximations is proved and the convergence is significantly
better than Taylor series approximations for arguments approaching one. The established approxima-
tions can be utilized as the basis for Newton-Raphson iteration and analytical approximations, of

0716, and lower, can be defined.

modest complexity, and with relative error bounds of the order of 1
Applications of the approximations include: first, upper and lower bounded functions, of arbitrary
accuracy, for arcsine, arccosine and arctangent. Second, approximations with significantly higher
accuracy based on the upper or lower bounded approximations. Third, approximations for the square
of arcsine with better convergence than well established series for this function. Fourth, approxima-
tions to arccosine and arcsine, to even order powers, with relative errors that are significantly lower
than published approximations. Fifth, approximations for the inverse tangent integral function and

several unknown integrals.

Keywords: arcsine; arccosine; arctangent; two point spline approximation; upper and lower bounded
functions; Newton-Raphson
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1. Introduction

The elementary trigonometric functions are fundamental to many areas of mathematics
with, for example, Fourier theory being widely used and finding widespread applications.
The formulation of trigonometric results was pre-dated by interest in the geometry of
triangles and this occurs well in antiquity, e.g., [1]. The fundamental functions of sine and
cosine have a geometric basis and are naturally associated with an angle from the positive
horizontal axis to a point on the unit circle. From angle addition and difference identities
for sine and cosine, the derivatives of these functions can be defined and, subsequently,
Taylor series approximations for sine and cosine can be established. Such approximations
have reasonable convergence with a ninth order expansion having a relative error bound
of 3.54 x 107 for the interval [0, 7r/2]. Naturally, many other approximations have been
developed, e.g., [2—4].

The inverse trigonometric functions of arcsine, arccosine and arctangent are naturally
of interest and find widespread use for both the general complex case and the real case.
The arctangent function, for example, is found in the solution of the sine-Gordon partial
differential equation for the case of soliton wave propagation, e.g., [5]. In statistical analysis
the arcsine distribution is widely used and the arctangent function is the basis of a wide
class of distributions, e.g., [6]. The graphs of sine, cosine, arcsine and arccosine are shown
in Figure 1.
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Figure 1. Graph of y = f(x) = sin(x), x = f~1(y) = asin(y), y = g(x) = cos(x) and x = g7 (y) =
acos(y) for 0 < x < 5 0 <y < 1. Arcsine and arccosine are, respectively, written as asin and acos.

Taylor series expansions for arcsine and arccosine, unlike those for sine and cosine,
have relatively poor convergence properties over the interval [0, 1] and a potential problem
with respect to finding approximations is that both arcsine and arccosine have undefined
derivatives at the point one. An overview of established approximations for arcsine and
arctangent is provided in Section 2. In this paper, a geometric approach based on a radial
function, whose derivatives are well defined at the point one, is used to establish new
approximations for arccosine, arcsine and arctangent. The approximations for arccosine
and arcsine are sharp (zero relative error) at the points zero and one and have a defined
relative error bound over the interval [0,1]. Convergence of the approximations is proved
and the convergence is significantly better, for arguments approaching one, than Taylor
series approximations. The established approximations can be utilized as the basis for
Newton-Raphson iteration and analytical approximations, of modest complexity, and with
relative error bounds of the order of 1071¢, and lower, can be defined.

Applications for the established approximations are detailed and these include: First,
approximations for arcsine, arccosine and arctangent to achieve a set relative error bound.
Second, upper and lower bounded approximations, of arbitrary accuracy, for arcsine, ar-
ccosine and arctangent. Third, approximations to arccosine and arcsine, of even order
powers, which have significantly lower relative error bounds than published approxima-
tions. Fourth, approximations for the inverse tangent integral function with significantly
lower relative error bounds, over the interval [0, o), than established Taylor series based
approximations. Fifth, examples of approximations for unknown integrals.

1.1. Fundamental Relationships

For the real case the following relationships hold:

asin(—y) = —asin(y), acos(—y) = m —acos(y), y € [0,1]
) = — )
atan(—y) = —atan(y), y € [0,00)
Thus, it is sufficient to detail approximations over the interval [0, 1] for arcsine and arccosine
and approximations over the positive real line for arctangent.

Fundamental relationships for arcsine, arccosine and arctangent, e.g., [7] (1.623, 1.624,
p- 57) are:

asin(y) = g —acos(y), asin(y) = acos[ 1— yz}
] @)

acos(y) = g —asin(y), acos(y) = asin[ 1—y?

. y 1— 2
asin(y) = atan Nt acos(y) = atan | ~———|,0<y <1 (©)]
-y
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. y 7T y
atan =aASMN | —F———— | = — —aAcos | —F——
) Vi+y2| 2 V1+y2 W
4
1 T ) 1
am”(y) = acos Tyz = E — asin T}/Z ’ < Yy < 0.

These relationships imply, for example, that approximations for arcsine and arctangent
follow from an approximation to arccosine and approximations for arcsine and arccosine
follow from an approximation to arctangent.

1.2. Notation

For an arbitrary function f, defined over the interval [, B], an approximating function
fa has a relative error, at a point x1, defined according to re(x1) =1 — fa(x1)/f(x1). The
relative error bound for the approximating function, over the interval [«, f], is defined
according to

reg = max{|re(x1)| : x1 € [, B]} )

The notation f (k) is used for the kth derivative of a function. In equations, arcsine,
arccosine and arctangent are abbreviated, respectively, as asin, acos and atan.

Mathematica has been used to facilitate analysis and to obtain numerical results. In
general, the relative error results associated with approximations to arcsine, arccosine
and arctangent have been obtained by sampling specified intervals, in either a linear or
logarithmic manner, as appropriate, with 1000 points.

1.3. Paper Structure

A review of published approximations for arcsine and arctangent is provided in
Section 2. In Section 3, the geometry, and analysis, of the radial function that underpins the
proposed approximations for arccosine, arcsine and arctangent, is detailed. In Section 4,
convergence of the approximations is detailed. In Section 5, the antisymmetric nature
of the arctangent function is utilized to establish spline based approximations for this
function. In Section 6, iteration, based on the proposed approximations, is utilized to detail
approximations with quadratic convergence. Applications of the proposed approximations
are detailed in Section 7 and conclusions are stated in Section 8.

2. Published Approximations for Arcsine and Arctangent

The Taylor series expansions for arcsine and arctangent, respectively, are, e.g., [8] (eqns.
424.1,424.3,4244,p. 121)

3 5 9 o |TTEC) 2i + 1|y
. oy 3y 5y 35y [ }
asin(y) y+ + 10 +112+1152 —y+k§1 (2k+1)H T ©
00 2k!2k+l
- Lz 0<y<1
k=0 22k (2k + 1) (k!)
3 5 k. 2k+1
vovr v,y (=D <
VY=g tE o et g T Oy <t
atan(y) = k41 (7)
L WS SR R S SR G
2y B s o0 T k@ T Y=

For a set order, the relative error in a Taylor series approximation for arcsine increases
sharply as y — 1 (see Figure 2).
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2.1. Approximation Form for Arcsine

The nature of arcsine is such that it has a rate of change of 1 at the origin and an
infinite rate of change at the point one which complicates finding suitable approxima-
tions. An approximation form that has potential is 1 — /1 — y, whose rate of change is
1/2+/1 — y, with the rate of change being 1/2 at the origin. As a starting point, consider
the approximation form

s(y):oco{l—\/l—y] —i—ocly—i-zxzyz (8)

The three coefficients can be chosen to satisfy the constraints consistent with a sharp ap-
proximation at the points zero and one: s(0) = 0, 5(1) = /2,51 (0) = 1 and sV (1) = co.
The constraints imply a1 =1 — ay/2, ap = 71/2 — a9 /2 — 1, with g being arbitrary. For the
case of wy = 71/2, the approximation is

_Th_o. A= L P L
sy =5 [1 ! y]+[1 4}y {1 4}y ©)
which has a relative error bound, for the interval [0, 1], of 2.66 x 102.

2.1.1. Optimized Coefficients

The coefficient a9 can be optimized consistent with minimizing the relative error
bound over the interval [0, 1]. The optimum coefficient of xy = 7r/2 — 1306/10,000 leads
to the approximation

s2(y) = a1 — /1T —y] + a1y + ay?,

1306 10,653 7 T 9347 (10)
_ =

f =7 4 10,000

2~ 10,000” “' T 10,000 4’

which has a relative error bound, for the interval [0, 1], of 3.62 x 1073.

2.1.2. Pade Approximants

Given a suitable approximation form, Pade approximants can be utilized to find approx-
imations with lower relative error bounds. For example, the form 77/2 — \/1 — y?-pum(y),
where py, 1, is an approximant of order 7, m, can be utilized.

2.2. Published Approximations

The arcsine case is considered as related approximations for arccosine and arctangent
follow from Equations (2) and (4). The following approximations are indicative of published
approximations. First, the approximation

T
53(y) = f——r, y € [0,1] a

2 [y + 41— yz]
arises from the simple approximation for arctangent, e.g., [9] (eqn. 5), of

Ty

atan(y) = Aty

, Y €1[0,00) (12)

The maximum error in this approximation has a magnitude of 0.0711, but the relative error
bound is 0.571, which occurs as y approaches zero.
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asin(y)

ﬁ, e.g., [10] (eqn. 4) or M e.g. [11],
-y

VI i

Second, a Taylor series expansion for

can be used. The latter yields the nth order approximation:

n 72k-1 (k!)Zka—l

san(y) =+1- y? kgl k(2K)!

23 8y 16y’ 128y° 19
_ ) <y oy Y LA
VIV 35 T35 T e T }

Consistent with a Taylor series, the relative error is low for |y| < 1 but, for a set order,
becomes increasingly large as y — 1.
Third, the following approximations are stated in [12] (eqns. 1.5 and 3.7):

— 12
80y 1+5”16y1
ny
ss(y) = — Y se(y) = 14
W) = 5 5o 57{ _2y2+16W1 (14
19 19

The first approximation is part of the Shafer-Fink inequality (e.g., [13]) is not sharp at the
origin and has a relative error bound, for the interval [0, 1], of 4.72 x 10~2. The second
approximation is not sharp at y = 1 but has a relative error bound for the interval [0, 1],
of 1.38 x 1072,

Fourth, the following approximation is detailed in [14] (eqn. 4.4.46, p. 81):

s7(y) = g —V1-y [“0+0€1y+0¢2y2+-~+0¢7?/7} (15)
where
ny = g, w1 = —0.2145988016, w, = 0.0889789874,
a3 = —0.0501743046, a4 — 0.0308918810, a5 = —0.0170881256, (16)

ag = 0.0066700901, ay = —0.0012624911.

The relative error bound is 3.04 x 10~® which occurs at the origin.

Fifth, [15] (Section 6.4), provides a basis for determining approximations for arcsine,
arccosine and arctangent of arbitrary accuracy. Explicit formulas and results are detailed
in Appendix A. For example, the following approximation for arcsine (as defined by

22 { 1— yz} —see Equation (A13)) is

ss(y) =

121\/27\/Z/1+«/17y2 [ 1+/1-12
1=
120 121v/2 N

\/2—\5\/1+\/1—y2 -178+74W+38\ﬁ\/1+\/1—y2] (17
52| 15 15 5
[2+\/§\/1+\/1—y2} L

and has a relative error bound of 1.71 x 10~ that occurs at y = 1.
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Comparison of Approximations

The graphs of the relative errors associated with the above approximations are shown
in Figure 2.

re(y)
1

0.100 ;

0.010 ¢
0.001
107*

L 108
87(.1‘”)“—#
0.0 0.2 0.4 0.6 0.8 1.0 V

Figure 2. Graphs of the magnitude of the relative error in approximations to arcsine as defined in the
text. Taylor series approximations, of orders 3, 7, 11, 15, 19, 23, are shown dotted.

3. Radial Based Two Point Spline Approximation for Arccosine Squared

Consider the geometry, as illustrated in Figure 3, associated with arcsine and arccosine
and which underpins the four radial functions defined according to

2

T .
r2(y) = y2 + {E — asm(y)} = y2 + acos(y)z, (18)
T . 2
Ry) = A=y + |5 —asin(y)|” = (1—y) +acos(y)?, 19)
3(y) = v* +asin(y)?, 3(y) = (1 —y)* +asin(y)?, y € [0,1). (20)
L e A e
r(v,) () : acos(y)  73() :
| a7 :
asin(y,)@ - - - - - - - - -8 R . !
. ) 1 ; 1
"20) asin (1) : I 7o) : I
I | 177 (7, NN
4 ) 4 ¥
Yo 1 Yo 1

Figure 3. Illustration of four radial functions associated with arcsine and arccosine.

The graphs of these functions are shown in Figure 4. The functions 73 and 73 have
undefined derivatives at the point y = 1, which does not facilitate function approximation.
The function r? is smoother than 72 and can be utilized as a basis for approximation. If there

exists an nth order approximation, f,, to 72, then the relationships acos(y) ~ /fu(y) — 2,
asin(y) ~ g —acos(y) and atan(y) = acos [1/ V1+ yz} can be utilized to establish approx-

imations for arccosine, arcsine and arctangent.
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i /4

Figure 4. Graph of r2(y), r%

(v), 3(y) and 3(y).

3.1. Approximations for Radial Function

The two point spline approximation detailed in [15] (eqn. 40), and the alternative form
given in [16] (eqn. 70) can be utilized to establish convergent approximations to the radial
function r? defined by Equation (18).

Theorem 1. Two Point Spline Approximations for Radial Function.
The nth order two point spline approximation to the radial function r?, based on the points

zero and one, is
2n+1

fuly) =Y Cuxf, me{0,1,2,...} 1)
k=0

where the coefficients C,, . are defined according to:

koo (=D 41 F0(0)
P <<

rgo(”‘f'l—‘rf’—k)!(k—r)! fn,r i 0<k<n

. (=) "(n+1)!

Cnk = r:k;nq (m+14+r—k)!k—r)! An,r+ (22)
n (_1)k—n—1r!
’ <k<

B e o T R

Here f(y) = r2 (y) and

r, flr-u n+u)! r(=1) ) n4u)!
Ay, = Z f (O') ( + ) , bn,r — Z ( 1) f (1) ( + ) (23)
u=0 u=0

(r—u)!  uln! (r—u)! " uln!

r € {0,1,...,n}. The derivative values of f,at the points zero and one, are defined according to

£(0) = 72/4, f(0) = fR(0) = —m, f2(0) =4, fH(0) =8,

R 0) = (k—2)*f*k2(0), k € {5,6,7,...} 9
fy=1, fOa)y=0, f@1)=8/3,  fO(1)=-8/15
(1) —1)? (25)

FO) = T‘fUH)(l) ke {456, }.

Proof. The proofs for these results are detailed in Appendix F. [J
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3.1.1. Notes on Coefficients

Explicit expressions for the coefficients C,;, n € {0,1,...,6}, k € {0,1,...,2n + 1},
are tabulated in Table A1 (Appendix B).

As Cpx = f0(0) /K, k € {0,1,...,n}, and f®)(0) = (k—2)*f*k-2(0), k € {5,6,...},
it follows that

c, = PO k=22 [0 -2/ { ne {56} 6

K=k T k(k=1) (k=2)t ~ 1-1/k ke {56,...,n}

As Cyy = fW(0) /41 = 1/3,Cpp = fD(0)/2 = 2,Cyp = 72/4, Cpp = f19(0)/3! =
—m/6,and C,1 = FM(0) = —n, itis the case that ’Cn,k‘ < |Cp_a| fork € {2,3,...,n},
n > 2. Hence, for n fixed, n > 3, the magnitudes of both even and odd order coefficients
monotonically decrease as k increases and for k € {3,4,...,n}.

3.1.2. Explicit Approximations

Explicit approximations for 72, of orders zero and one, are:

2 2
foly) = 4+y[1—4} (27)

m? 372 2
fl(]/):4—7'fy+{3+271—4}y2+[_2_n+2]y3 (29)

Higher order approximations, up to order six, are detailed in Appendix B along with the
relevant coefficients C, r, k € {0,1,...,2n + 1} (see Table A1).

3.1.3. Approximations for Arccosine, Arcsine and Arctangent
With the definition of

-1, n=0k=2
k=14 Cox—1, k=2ne{1,2,..} (29)
Curr k€{0,1,3,...,2n+1}, ne{0,1,...}

the approximations, as stated in Corollary 1, follow.
Corollary 1. Approximations for Arccosine, Arcsine and Arctangent.

The approximations for arccosine, arcsine and arctangent arising from the approxima-
tions specified in Theorem 1 are:

2n+1 " T
acos(y) = eay) = | Y cust, acos(y) ~ cih(y) = 5 -
k=0
2n+1 A 2n+1 k2
— | X enndhs asin(y) =i (y) = | Y cax(1-92)"7, (31
k=0 k=0

2n+1 k
_ Z C}’l,ky 73 (32)
=0 (1+y2)

2n+1
Y cnx(1—y2)"%, (30)
k=0

NI

asin(y) ~ su(y) =

N[N

1)~ 1) = || 32— atan(y) ~ ()
atan(y) =~ ty(y) = — 73 atan(y) = £, (y) =
n = (1+]/2)k/2 n

forn € {1,2,3,...}. The superscript A denotes alternative approximation forms. For the
case of n= 0, the upper limit of the summations is 2 rather than 1.
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Proof. These results follow directly from the definition acos(y) = \/r?(y) — y* (Equation (18)),
and the approximations f, (y) = r*(y) detailed in Theorem 1, leading to

2n+1 max{2,2n+1}
”COS(]/) ~ \/ fn (]/) -y = Z Cn,kyk - yZ = \l Z Cn,k]/k (33)
k=0

k=0

The approximations for the other results arise from the fundamental relationships detailed
in Equations (2)—(4), and according to

) =3l ) = |
n\Y 5 n\Y), n\Y n W ’
(34)
ArN 2| A — 2| A — Y
t) = e[ VI=] el ) = o[ VI=9) ) = 50| s |
O
3.1.4. Explicit Approximations for Arccosine, Arcsine and Arctangent
Explicit approximations for arccosine, of orders zero, one and two, are:
2 2
- _ e
2
aly) =\ 7 — 7wty +asy’ (36)
T2
c2(y) =\ 7 — Ty a3y’ +eayt sy’ (37)

Approximations, of orders three to six, are detailed in Appendix C. Explicit approxi-
mations for arcsine, of orders zero to six, can then be specified by utilizing the rela-

tionships s;(y) = 7/2 —c;(y) and s#(y) = cl{ 1 —yﬂ, i € {0,1,...,6}. Explicit ap-
proximations for arctangent follow from the relationships t;(y) = c¢; [l/ V1+ yz} and

t (y) = s [y /v/1+ yz} ,i€{0,1,...,6}. For example, the second order approximation for
arctangent is

t(y) = LA U S MR ¥ S5 (38)
4 Vityr 1Y 2P Dy 1

3.1.5. Relative Error Bounds for Arcsine, Arccosine and Arctangent

The relative error bounds for the approximations to 12, arcsine, arccosine and arctan-
gent, arising from the approximations stated in Theorem 1 and Corollary 1 are detailed
in Table 1. The relative errors in the approximations, of orders one to five, for arcsine,
arccosine and arctangent are shown in Figures 5 and 6. For example, the relative error
bound associated with the fourth, s4(y), and sixth, s¢(y), order approximations to arcsine,
respectively, are 2.49 x 107 and 2.28 x 1078.
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Table 1. Relative error bounds for approximations to 2, arcsine, arccosine and arctangent. The
interval [0, 1] is assumed for 2, arcsine and arccosine whilst the interval [0, o) is assumed for

arctangent.
Order of Relative Error Relative Error Bound: Relative Error Bound:
Approx. Bound: 2 sn(y), X (y), A (y) s W), cn(y), tay)
0 3.01 x 1071 533 x 107! 3.17 x 1071
1 422 %1073 579 x 1073 292 %1073
2 2.77 x 1074 3.64 x 1074 1.81 x 104
3 220 x 107° 2.84 x 107° 142 x 107>
4 1.95 x 10~ 249 x 107° 1.24 x 107
5 1.84 x 107 2.33 x 1077 1.16 x 1077
6 1.81 x 1078 2.28 x 108 1.14 x 1078
8 1.92 x 10~10 241 x 10710 1.20 x 1010
10 221 x 10712 2.76 x 10712 1.38 x 10712
12 2.68 x 10714 334 x 10714 1.66 x 1014
16 435 x 10718 541 x 10718 2.70 x 10718
re(y)|
0.010
0.001 ¢
10-4 E
Cr (v)—
105 7
c;(»v) :
e4)— T N
0.0 0.2 0.4 0.6 0.8 1.0

Figure 5. Graph of the relative error in approximations, of orders 1 to 5, for arcsine and arccosine.
The dotted curves are for the approximations s

re(y)

0.010F

0.001

10
105 ¢

108

100 »

(y) and ¢} (y), n€{1,2,...,5}.

Figure 6. Graph of the relative error in approximations, of orders 1 to 5, for arctangent.

3.2. Alternative Approximations I: Differentiation of Arccosine Squared

Based on differentiation of the square of arccosine, alternative approximations for

arccosine, arcsine and arctangent can be determined.

Theorem 2. Alternative Approximations I: Differentiation of Arccosine Squared.

Alternative approximations, of order n, n € {1,2,...}, for arcsine and arccosine, over the

interval [0, 1], and arctangent, over the interval [0, c0), are:
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asin(y) ~ —4/1-= 2 d, k]/ , asin(y) ~ =y Z d”k(l — ) 2, (39)

2n
acos(y =,/1— Z d, ky , acos(y) = ci(y) = g —y ) dug (1 - y2>k/2, (40)
k=0

y B du 12 gy

7T
atan(y) = tu(y) = , atan(y) =t (y) = 5 — :
O T B S e B e

(41)

— (k + 1)Cn,k+1

where d,, j = >

,k€{0,1,...,2n}, with ¢, i being defined by Equation (29).

Proof. Consider the nth order approximation for arccosine, as defined in Corollary 1:
2n+1

acos(y) = \/pn(y), where pu(y) = ¥ coxyf, n € {1,2,...}. Assuming convergence, it
k=0

follows that acos(y)? = peo(v). Differentiation yields

—2acos(y)

1
= - S (), y e 01), (42)
which implies

wilic,; . .
i-1 2

acos(y) = Y5 pl ) menly) = —VI-9-

(43)

2n
= V1= L i

after the index change of k = i — 1 and where d,, y = —(k + 1)c;, x+1/2. The approximation,
defined by s, for arcsine follows from the relationship asin(y) = 7/2 — acos(y); the
approximation for arctangent, defined by ¢,, follows according to

1 y 2n dn r
atan(y) = acos ~t = . . (44)
v | MW = e k;) L
The alternative approximations follow according to
) =en1-¢] ) =su [ Vi-p] ) =a| L] @
O
3.2.1. Note

The same approximations can be derived by considering the relationship

;/atan(y)z = 2atan(y)/ (1 +y*) which implies

2
atan(y) = ! —;y ~;/atan(y)2 (46)
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Use of the arctangent approximation, t, (i), specified in Corollary 1 leads to the approximation

1 +y2 2n+1 —lCn 1y

atan(y) ~ — Z — =y 2 W
i=1 7+1 (1+y?)
(1+y?)2 (47)
d, = —(k+1)cnjes1
1t 2

after the change of index k = i — 1. This result is consistent with ¢, (y) stated in Theorem 2.

3.2.2. Explicit Approximations for Arcsine and Arctangent

Approximations for arcsine, of orders one and two, are

s1(y) = T V1—y? {g +di1y + duyz}

2
7T
siy) = |5 +daVI=P +dia(1-9)] (48)
3772 3 3772
d1,1:—2—2n+%, d1,2:3+7n—%
7T
sz(y):z—vl—yz [*—y+d22y +dosy? +d24y}
3
. 3
4 (y) y[2v1y2+dz,z(1y2) +d3(1-y?)2 +dpa(l—y2 )2] (49)
1572 70 1572 40 157 1572
drp = ’ d23—?+16 5 dyy = 3*_7“1‘ 1

Approximations, of orders three and four, are detailed in Appendix D. As an example, the
approximations for arctangent, of order two, are:

b= LT Ly D2 Dy, G
VIR (2 Vs T ) ()

(50)
T 1

15 (y) = 5_7Ty2.

3.2.3. Results

The relative error bounds associated with the approximations to arcsine, arccosine
and arctangent, as specified by Theorem 2, are detailed in Table 2. The relative errors for
arcsine, arccosine and arctangent are shown, respectively, in Figures 7-9.

T__ ¥y droy? n do3y° n ds 4y*
VIH2 1+ 1+ (14+2)
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Table 2. Relative error bounds, over the interval [0, 1] (arcsine and arccosine) and [0, o) (arctangent),
associated with the approximations to arcsine, arccosine and arctangent as defined in Theorem 2.

Order of Approx. Relative Error Bound: s,,,c4,t4 Relative Error Bound: s2,¢,,t,
1 1.19 x 1071 751 x 1073
2 3.14 x 1073 554 x 1074
3 213 x 1074 489 x 107>
4 1.78 x 1075 472 x 1076
5 1.66 x 1070 4.80 x 1077
6 1.64 x 1077 5.05 x 1078
8 1.79 x 10~° 599 x 10~10
10 214 x 1071 7.54 x 10712
12 2.69 x 10713 9.85x 10714
16 471 x 10717 1.81 x 10~
re(»)]
0.100 F
0.010} 31-14(}’)
0.001 ¢
- 155
104 -
; 1)
10° ¢ ] 4
! sp()
0.0 10 y

Figure 7. Graph of the relative errors in the approximations, as defined in Theorem 2, to arcsine.

lre ()|

0.100 =
0.010

0.001

] )
. 0'24(_\;)

‘ C‘;(,‘;)

Al

Figure 8. Graph of the relative errors in the approximations, as defined in Theorem 2, to arccosine.

|re(v)|

0.100 f

0.010L

0.001F .

10 ¢

10k A

r4(y)_--""" /.

1, ()

0.01

Figure 9. Graph of the relative errors in the approximations, as defined in Theorem 2, to arctangent.
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3.2.4. Notes

The form of the approximation, as stated in Theorem 2, for arcsine:

T 2n
Sn(y) = E -V 1- yZ Z dn,kyk (51)
k=0

is consistent with the optimum Pade approximant form specified by Abramowitz [14] and
stated in Equation (15). The relative error bound for the Abramowitz approximation is
3.04 x 107°. The relative error bound for the 4th order approximation, s4, as specified by
Equation (A27), is 1.78 x 10~° whilst a fifth order approximation, ss, has a relative error
bound of 1.66 x 10~°.

A comparison of the results detailed in Tables 1 and 2 indicate that the approxima-
tions, as stated in Corollary 1, are more accurate than those specified in Theorem 2. For
comparison, the fourth order approximations, s4, for arcsine have the respective relative
error bounds of 2.49 x 107 and 1.78 x 10™°.

3.3. Alternative Approximations II: Integration of Arcsine
The integral of arcsine, e.g., [8] (4.26.14, p. 122), is:

Y
in(A)dA = yasi +/1-y* -1, <1 52
| asin(1)dA = yasin(y) +/1 -y vl < 52

which implies
Y
asin(y) = ; [/ asin(A)dA +1 — /1 — yz] (53)
0

There is potential with this relationship, and based on approximations to arcsine that are
integrable, to define new approximations to arcsine, with a lower relative error bound, than
the approximations detailed in Corollary 1 and Theorem 2. The approximations to arcsine,
as defined by sf, in Theorem 2, are integrable and lead to the following approximations.

Theorem 3. Alternative Approximations II—Integration of Arcsine.
Alternative approximations, of order n,n € {0,1,2, - - -}, for arcsine, arccosine and arctan-
gent, are:

k
1+2
. 1 2n 1—(1=v2) 2
asin(y) ~ sa(y) = & |1~ VT=7+ 3 dye - 0¥
’ . (54)
. 7T 1 2n 1 — 2tk
asin(y) ~ 57/ (y) = 5 ﬁ ll -y +kgodn,k'27j{k
1k
m 1 2n 1—(1—9y3) 2
(55)

1 o 1— 2+k
acos(y) ~ ca(y) = Tyz ll —y+ kgo d”’k'fzk




AppliedMath 2023, 3 357

\/1+y2 1 1 2n dn,k 1 1

atan(y) ~ ¢ =—|1- 11—
(y) ~ ta(y) y i 2tk F
(14+y2) 2 (56)
k
Ay T sl oy | 2
atan(y) ~ t; (y) 5~V T+y2|1 m + kgo 2+ k 1 1+ 2]1+k/2
—(k+1
where d,, | = % with c,, i being defined by Equation (29).

Proof. Consider the approximation for arcsine defined by s4 and stated in Theorem 2. Use
of this approximation in Equation (53) leads to

2n k
asin(y) ~ ;[1 12 +k;0dn,k /Oy [t(1 - t2) /2} dt (57)

The result k)2
Y k2, 1-(1-y")
/O t(1-2) e = ST r (58)
leads to the approximation s, defined in Equation (54). The alternative approximations
: _ T Al — .2 _ ¥
follow according to c,(y) = 7 sn(y), cn(y) = sn[ 1-y }, th(y) = su Niearik

si(y) = cn[\/l —yﬂ and t4(y) = ca[1//1+y2. O

3.3.1. Explicit Approximations for Arcsine

A second order approximations for arcsine is:

[16 167 372 1 -32 87 1572
= |24+ 22 2 21— /1=2 Tt
2= |31 Z}y{ y}+[3 5 * 4]y+
[26 45712} 5 {—zo 51 5n2} 5

T 9 4 '8

(59)

and has a relative error bound of 1.56 x 10~%. A fourth order approximation has a relative
error bound of 1.00 x 107°.

3.3.2. Results

The relative error bounds associated with the approximations s, (), ¢ (y) and t,(y)
to arcsine, arccosine and arctangent, as specified by Theorem 3, are detailed in Table 3. The
relative errors associated with s (y), ¢, (y) and #4 (i) become unbounded, respectively, at
the points zero, one and zero. The graphs of the relative errors for s,(y) and s3 (y) are
shown in Figure 10.
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Table 3. Relative error bounds associated with the approximations, specified in Theorem 3, for
arcsine, arccosine (interval [0, 1]) and arctangent (interval [0, c0)).

Order of Approx. Relative Error Bound: s, (y), c2(y), t,(y)

0 0.145

1 263 x 1073
2 1.56 x 1074
3 1.18 x 105
4 1.00 x 10~°
5 9.22 x 108
6 891 x 1077
8 9.19 x 10~ 11
10 1.03 x 1012
12 123 x 10714
16 1.95 x 10718

re(y)|
0.100 .
0.0101
0.001 | s1(0)
107 N 5,(v)
AV
0°F S . . e N s3(0)
0.0 0.2 0.4 0.6 0.8 10 ¥

Figure 10. Graph of the relative errors in the approximations, as defined in Theorem 3, to arc-sin.

3.4. Alternative Approximations

Alternative approximations can be determined. For example, the relationship:
Y
/asin(A)zd/\ = —2y+24/1 — y2asin(y) + yasin(y)* (60)
0

leads to a quadratic equation for arcsine when an integrable approximation for asin (y)2 is
utilized. As a second example, the relationship

Y .
"2~ V2 asin()
0/\/1 par =4y 1- 2 20 61)

implies
Y
asin(y) = 2/ V1—=A2dA —yy /1 —y? (62)
0

and, thus, an approximation for arcsine can be determined when a suitable approximation
for 1/1 — y?, which is integrable, is available.

4. Error and Convergence

Consider the definition of the square of the radial function r? as defined by Equation (18)
and the error ¢, in the nth order approximation, f;, to 2, as defined in Theorem 1, i.e.,

(y) = acos(y)> + 17 = fu(y) +en(y), 0<y<1L (63)
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Consistent with the nature of a nth order two point spline approximation based on the

points zero and one, it is the case that elb) (0) = el (1)=0, ke {0,1,...,n}.
From Equation (63) it follows that

acos(y \/fn —y2+en(y \/fn — 2+ (y) = cn(y) +cn(y) 64)
Sen(y)= \/fn(y ) —y* +enly) — \/fn ) -y
where ¢, (y) = \/fa(y) — y? is the nth order approximation to arccosine defined in Corollary

1 and the error in this approximation is J,(y). For y fixed, and for the convergent case
where lim 1 En (y) = 0, it is the case that lim d¢e,n(y) = 0. Hence, for y fixed, convergence of
n—oo

fu(y) to r ( ) as n increases, is sufficient to guarantee the convergence of ¢, (y) to acos(y).
Consider the nth order approximation to arcsine, s, (y) = 71/2 — c,(y), as given in
Corollary 1. It then follows that

asin(y) = 2 — cn(y) = Sen(y) = su(y) = on(y) (65)

Again, for y fixed, a sufficient condition for convergence of s, (1) to asin(y) is for nl 1_)1720 en(y) =0.
As atan(y) = acos {1 /14 yZ} , it follows that the error J; , () in the approximation,
ty, to arctangent, as given by Corollary 1, yields the relationship

1 1

V1+y? VT2

and, thus, 6, (y) = d¢n [1 /v/1+ yz} . Again, for y fixed, convergence of t,(y) to atan(y) is
guaranteed if nlgm en(y) = 0.

atan(y) = tu(y) +0tn(y) = cu (66)

The goal, thus, is to establish convergence of the approximations specified by Theorem 1,
i.e., to show that I ;m £,(y) = 0. To achieve this goal, the approach is to determine a series
n—oo

for the error function ¢, and this can be achieved by first establishing a differential equation
for &,.
4.1. Differential Equation for Error

Consider Equation (64): acos(y) = +/fa(y) +en(y) —y2%y € [0,1]. Differentia-
tion yields

_ €Dy
\/1_1y2 ;@;)1”8()_2;,;/6[01) (67)

and after squaring and simplification the equation becomes

2
4lfaly) +ealy) =12 = (1= A7 () + e (9) — 29 (68)
Rearrangement leads to the differential equation for the error function:
2
(=) [ )] +20 =) A" ) — 29[l () — denv)+

: ) (69)
(1= [ ~29] = 4[fay) =12 =0, ex(0) = 0.

A polynomial expansion can be used to solve for ¢, (y).
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Theorem 4. Polynomial Form for Error Function.
A polynomial form for the error function, €, as defined by the differential equation specified in
Equation (69), is

2n+1 )
en(y) = Y [Cox—Caply*+ Y Gt ne{3,4,..} (70)
k=n-+1 k=2n+2

where C,, . is the kth coefficient defined in Theorem 1 and Cyy = f%)(0)/k!.

Proof. The proof is detailed in Appendix E. [

Explicit Approximations

Polynomial expansions for e, of orders three and four, are:

—964 62 35m%] ,  [994 1837w
= |- == i — 21772
es(y) { 5 3 4 ] {15 BTy ”]y +
—2584 1107 | 357%] ,  [785  3401m )]
_ 700 _ 71
{ 45 3 T } [45 336 5”}y+ 7
4y® 35y’ 128y e3my!!
35 1152 ' 1575 2816
[—8704 29037 6372 5 [98,176 6927
— _ ’ -1 2,6
V)= | 705 0 2 ] { 35 3 05"]y +
[—45,056 32,2057 5504 31572
= 13572 |y7 + | = + 16471 — 8 72
105 1 +357r]y+{21+6n 1 }y—l— (72)
[—18,944 41,3157  357%] o  128y10 637yl
- — + ...
315 1152 2 1575 2816

4.2. Convergence

First, consistent with Equation (22), C,, = f(0)/n!. Second, consistent with
Equation (26), it is the case that

(1-2/n)?

Con = A= 1/n)

Cun—2 (73)

As discussed in Section 3.1.1, it is the case that |Cy| < |Cpyu—2| and with |Cy | < 1
for n > 2. It then follows that li)m Cnn = 0 and the decrease in magnitude is mono-
n—oo

tonic as n increases for even and odd values. Third, from Equation (70) and the result
|Cn| < |Cun—2| = |Cnu2,n—2|, it follows, for the case of 0 < y < 1, y fixed, that

2n+1 3 ) k
len(y)] < X |Cik— Cuply* + [Cong2ont2l Xy
k=n+1 k=2n+2
(74)
1 2n+1 2n+2
<Y Y |Cok — Cuxl | + |Cons22n42] 1
k=n+1 -y

The graph of S, = Zif};il |Ckx — Cn x| is shown in Figure 11. As this is bounded, and as

0 <y < 1, it follows that rllgm en(y) =0for0 <y < 1.
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+
04l 1 2n+1
Sn - Z ‘(k.f.'f(n.f;

03[ . ] k=n+1
0.2
B ]
0.0L . L L L E

0 10 20 30 40 50 V

Figure 11. Graph of S, for the case of n € {1,2,...,50}.

5. Direct Approximation for Arctangent

The approximations for arctangent detailed in Corollary 1, Theorem 2 and Theorem 3
are indirectly established. Direct approximations for arctangent can be established by
utilizing the fundamental relationships atan(y) + acot(y) = /2, acot(y) = atan(1/y)
which implies

atan(y) = g —atan(1/y), y>0 (75)

5.1. Approximations for Arctangent
The following theorem details a spline based approximation for arctangent.

Theorem 5. Approximations for Arctangent.
Given a nth order spline based approximation, g, (y), for atan(y), 0 <y < 1, based on the
points zero and one, it is the case that

gn(y), O<y<1
atan(y) =~ ¢ ™ 1 (76)
=~ —gul- 1
2 g?l y 7 y >
The resulting nth order approximation, t,, n € {0,1,2,...}, for arctangent is
Sn1y +0n2y? + -+ Sy, 0<y<1
R T 1 Q7 S /7 VEE | leycw 7
2 y y yZ?H“l
where the coefficients 6, ;,i € {1,...,2n + 1}, are defined according to:
i (=D (n+1)! .
: 1<i<
L rnri—g—n =i=n
()1
f — . 78
C IR e (R T 7%)
n (=11 ,
. <i <
L GTari-mGoa—n e ntlsis2ntl
Here: () ()
r r—u T —U,(r—u
g 0(0) (n4u)! (—1) g (1) (n+u)!
= . = : 7
fnr u;) (r—u)  unt "~ u;) (r—u)! uln! @)

where g(y) = atan(y) and

® o — 49 ke {0,2,4,...}
§710) {@Jﬂk””@—1n ke {1,3,5,...} (80)
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g/ k - O
_1\k—1
( 12) , k=1,2,3

01y = 0 ke{4,8,..}

SO 2o nw-2) @)

) k(1) ke {5913,...}

—(k—1)g*k=1(1), ke {6,10,14,...}
#-g““”(l), ke {7,11,15,...}

Proof. Consider the approximation g,(y) for atan(y), 0 < y < 1. The relationship
atan(y) = 7t/2 — atan(1/y) implies

atan(z) = % —atan [ﬂ R~ g —n(y), z>1y= %,0 <y<l (82)

The formulas for g(¥)(0), ¢¥)(1) and 6,, ; can be established in a manner consistent with the
nature of the proof detailed in Appendix F. OJ

5.1.1. Analytical Approximations

Approximations for arctangent, of orders zero to two, are:

=, 0<y<1
to(y) = T o1 (83)
77 Y
5 3n 3 7
y—[2—4}yz+[2—2}y3, 0<y<l1
hW=Y7 1 5 sr]1 3 A1 ®4)
TAIEEE PRl R
_[3B_57]s _bm) e |1 375
el e e
W a1 s, a1 e s
2y a2 AT e 2 y

Approximations, of orders three and four, are detailed in Appendix G.

5.1.2. Approximations for Arccosine and Arcsine

. y
The relationships asin(y) = atanl ,y € [0,1) and acos(y) = atan [\ /1—y%/ y} ,
V1—1?

y € (0, 1], imply the following approximations for arcsine and arccosine:

On 1Y O 2y2 On 271-5—1]/211Jr1 1
A4 20y Tndntld 0<y<—
o) VIE T ey <
su(y) = (86)
7T 511,1 v1— }/2 571,2 (1 - ]/2) ‘Sn,2n+1 [1 - yZ} e 1
5 - 2 T Znt1 7z <y=sl
2 y y y V2
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T Oy Supy® . Snoni1y”" ! , 0<y< 1
2 -2 (1-y) (1—y2)"1/2 V2
Cn(y) - \n+1/2 (87)
5711 1-—- ]/2 n2(1_ )+ +5n,2n+1(1_y) 7<y<1
y 2 Y2 V2
Alternative approximations for arcsine and arccosine specified according to
s (y) = /2 —acos(y) and ci(y) = m/2 — asin(y) lead to identical expressions, i.e.,
sit (y) = su(y) and cii (y) = ca(y),
As an example, the third order approximation for arcsine is
55 357 4 265 5
y v _{2 4} [4 217‘[]1/_
I L A L G 1y
6 2 4 1
R 772 Osy=s—
1y 1=y V2 "
s3(y) = Ny 55 357 1—y22 265 SREE (88)
-y [1-v] 2 4 4 !
y 3y? vt v
331 35 63 4
i 3 5
[6‘2}[1—%] _[4—5ﬂ][l—y2}2 1
ye v oY

5.1.3. Results

The relative errors associated with the approximations for arctangent, of orders one to
six, are shown in Figure 12. The relative error bounds associated with the approximations to
arctangent, arcsine and arccosine are detailed in Table 4. The relative error bound associate
with the third order approximation for arcsine, as specified by Equation (88), is 3.73 x 107>
which is comparable with the third order approximation specified in Corollary 1 whose
relative error is 2.84 x 107°.

|re(y)|

0.010

0.001 0.010 0.100 1 10 100 1000 V

Figure 12. Graphs of the relative errors in approximations, of orders 1 to 6, for arctangent as defined
in Theorem 5.
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Table 4. Relative error bounds, associated with the approximations detailed in Theorem 5 and
Theorem 6 for arcsine, arccosine and arctangent. The interval [0,1] is assumed for arcsine and
arccosine; the interval [0, oo] for arctangent.

Order of Theorem 5—Relative Theorem 6—Relative Error Bound for Arctangent.
Spline Error Bounds : s. c. £ The Value Assumed for J,, ¢ is the Second Value
Approx. T Stated in Equation (92).

0 2.15x 1071

1 218 x 1072 431 x 1073

2 1.68 x 1073 321 x 10~*

3 3.73 x 107° 6.77 x 1070

4 334 x107° 6.34 x 1070

5 6.39 x 10 1.17 x 1076

6 6.22 x 1077 1.10 x 107

8 1.82 x 1078 3.09 x 1077

10 3.74 x 10710 6.06 x 1011

5.2. Improved Approximation: Use of Integral for Arctangent

Consider the known integral

Y B y?atan(y) atan(y) Y
| /0 patan(A)dA = LR 4 SR S (89)
which implies
atan(y) = 2 |y + /y Aatan(A)dA (90)
=15 (27 b ’

An integrable approximation for yatan(y), for [0, 1], leads to an approximation for arctangent.

Theorem 6. Improved Approximations for Arctangent.
The nth order approximation for arctangent, based on Equation (90), is defined according to

[ (Sn 1y3 (sn 2]/4 5n 2n+1y2n+3 1
— Lt <y<
3 T Tt Ty Osvsl
2 m(y* —1 1
) = 1oz | 548 s+ T - - same ) -aaf1- 1] | o
571,4 _ l _ _ 5n,2n+1 _ 1
I T[l y2:| e 2]/1_1 1 y2n_1 ’ 1<y<00 |
where the coefficients J,, ; are defined in Equation (78) and
T 1 Ou1 | On2 On2n+1
ono=——7 S = — TR S 2
no=7 "5 OF =3ttty (92)

Here 6, is associated with f01 Aatan(A)dA and with the first value being exact. The second value
yields a lower relative error bound for the interval (1, oo).

Proof. The approximations for arctangent, as defined in Theorem 5, when used in the
integral in Equation (90), lead to the approximations specified by Equation (91).
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5.2.1. Explicit Expressions
Explicit approximations for arctangent, of orders one and two, are:
1 202 [5 3m] 4, [3 m]s
- A 2 A, 0<y<1
1+y2{y+ 3 [4 8]y+[5 5]-’/ =Y=
ti(y) = ) (93)
#_?4_277”4’_3_7”_ +5_3£ ln()+n—7y >1
1+2] 60 40 'y VY 2 | "W Y
1 22 33 15 [, 57| [19 3m],
1+y2{y+7 [E ”]1”{4 ﬂy w7 |V Osvsl
b(y) = 1016 187 [19 11 [, 15m)1 (94)
1 105 7 6 ¥ 4 |y
112 33 1 oy »ooy>1
g {7 - 5”} y Yt

Third and fourth order approximations are detailed in Appendix H.
Explicit approximations for arcsine and arccosine can be defined by utilizing the

relationships asin(y) = atan {y/\/l - yz} and acos(y) = atan[\/l - yz/y]

5.2.2. Results

The relative error bounds associated with the approximations to arctangent are detailed
in Table 4 and the improvement over the original approximations is evident.

6. Improved Approximations via Iteration

Given an initial approximating function j for the inverse, f 1, of a function f, the
ith iteration of the classical Newton-Raphson method of approximation leads to the ith
order approximation

flhia)] —y -
hi(y)=hi_1(y) — , ho(y) known, i € {1,2,...}. (95)
6.1. Newton-Raphson Iteration: Approximations and Results for Arcsine

The arcsine case is considered: An initial approximation to arcsine of
ho(y) = sn(y) n € {0,1,2,...}, as specified by Corollary 1, Theorem 2, Theorem 3 or Section 5.1.2,
leads to the ith order iterative Newton-Raphson approximation:

) = hia() — Y ) =),

(96)
= hi—1(y) — tanlhi_1(y)] + ysec[hi—1(y)].
Iteration of orders one and two lead to the approximations:
) = 50(6) ~ oD () tanlsa )]+ yseclsa)] 07)
- _sinfsn ()] —y] _
o) = suly)- sl =y 1~ Tt ¥
T T - 2]
! cos(su(y)] (98)
=5 —  tanls secs — tan sn(y) — tanfsn(y)]+
= su(y)= )]+ ysecl ()] tan| ) 2T ]

ysec[sn(y) — tan[sn (y)] + ysec[sn (y)]]
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) = g1y)

The approximation arising from a third order iteration is detailed in Appendix I.

Example and Results

As an example, consider the second order approximation for arcsine arising from
Theorem 2 and defined by Equation (49):

7T 7T
ho(y) = Sz(y) = 77 v/ 11— ]/2 [E —y+ dzlzyz + d2,3]/3 + d2,4y4], VAS [O, 1]. (99)

The relative error bound associated with this approximation is 3.14 x 10~3. The first order
iteration of the Newton-Raphson method yields the approximation

s

7T
i y) = m(y) = 77V 1—y? [E —y+dopy? + dozy® + d2,4y4] -

cos [ 1-— y2 [% —y+ d2,2y2 + d2,3y3 + d2/4y4H -y (100)

sin [\/@ {g —y+dopy? +dogy + d2,4y4H

The relative error bound for this approximation, and associated with the interval [0, 1], is
2.13 x 10~7. Second order iteration yields the approximation detailed in Equation (A62).
The relative error bound associated with this approximation, for the interval [0, 1], is
5.68 x 10715 The use of hyo(y) = s4(y), as specified by Equation (A27), rather than
ho(y) = s2(y), leads to a relative error bound of 3.05 x 10~22.

Consider the fourth order approximation, s4, defined by Equation (A27). A first order
iteration of the Newton-Raphson method yields the approximation

— g_ 1—y* g_y+%}/2_23£+d4,43/4+d4,5y5+d4,6y6+
dazy” + dagy®
cos [ 1—y> [ g A nTy2 N % +daay* +dasy’ +daey®+ ] ] —y (101)
dazy’ + dagy®
T my? 20 4 5 6
sin[/1—y2-| 2 —y+ = — 3 tdaay” Hdasy +daeyt
daz7y” + dygy®

The relative error bound associated with this approximation is 1.44 x 10711,

The improvement that is possible with Newton-Raphson iteration is illustrated in
Table 5 where the original approximations to arcsine and arctangent, based on s»(y), s5'(y),
t2(y) and t(y) as defined in Theorem 2 and specified by Equations (49) and (50), are
used. The quadratic convergence, with iteration, is evident. It is usual for the relative
error improvement, with iteration, to be dependent on the relative error in the initial
approximation. However, as the results in Table 5 indicate, the approximations of s,(y)
and t4 (y), with higher relative error bounds, lead to lower relative bounds with iteration

than s2'(y) and t,(y). This is due to the nature of the approximations.
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Table 5. Relative error bounds for Newton-Raphson iterative approximations to arcsine and arc-
tangent and based on s;(y), s5\(y), t2(y) and t5'(y) as defined in Theorem 2 and specified by
Equations (49) and (50).

Relative Error

Relative Error

Relative Error

Relative Error

g:f;li‘:j Bound: Bound: Bound: Bound:
ho(y)=s2(y) ho(y)=s5 (y) ho(y)=t2(y) ho(y)=t5(y)
0 3.14 x 1073 5.54 x 1074 554 x 1074 3.14 x 1073
1 2.13 x 1077 6.52 x 1077 1.31 x 10~° 426 x 1077
2 5.68 x 1015 1.43 x 10712 1.15 x 10711 455 x 10714
3 1.31 x 10~%° 7.98 x 10~ 1.03 x 1021 1.68 x 10~%7
4 7.27 x 1075 2.68 x 10740 9.00 x 10~42 2.39 x 1074
5 2.29 x 10~ 117 3.13 x 107! 7.10 x 1082 495 x 10~ 108

7. Applications
7.1. Approximations for a Set Relative Error Bounds: Arcsine

With the requirement of a set relative error bound in an approximation for arsine,
arccosine or arctangent, an approximation form and a set order of approximation can be
specified. The following details examples of approximations for arcsine and the interval
[0, 1] is assumed.

For a relative error bound close to 107, the approximation

7T2 2 23/2 2\2
Z—m/l—y2+(1—y)+czlg(1—y) +ca(1—9?)"+

o (102)
05(1—v?) /

as given by Corollary 1, yields a relative error bound of 1.81 x 10~%. The approximation,
s, defined by Equation (59) yields a relative error bound of 1.56 x 107%.

For a relative bound close to 1079, the approximation s4(y) = T ca(y), where c4 is

2
defined by Equation (A22), is
T 4 oy 5 6 7 8 9
sa(y) = 57—\ 7 WY T o g sy Hoagy® F cagy’ +casy” +caoy (103)

and has a relative error bound of 2.49 x 107°.

sa1(y) = ca1 [\/ 1— yz} (see Equation (A14)) is

The approximation defined by

54,1 (y) =442 —

10 1+7\/2—0—\/2+ﬁ\/1—0—«/1—y2
10

2+\/2+f2 T+4/1—y2 |1+ 7

3 2+\/2+\/2+ﬁ\/1—|—\/1—y2

(104)

and has a relative error bound of 1.19 x 10~°. The approximation given by Abramowitz,
as stated in Equation (15), has a relative error bound of 3.04 x 10~°.

If a high accuracy approximation is required then two approaches can be used. First,
higher order approximations as specified in Corollary 1, Theorem 2, Theorem 3 and
Theorem 5 can be used. For example, the fifteenth order approximation, s;s5, for arcsine
detailed in Corollary 1 yields a relative error bound of 4.74 x 10~'7. Second, iterative
approaches can be used. For example, the second order approximation, s, for arcsine
arising from Theorem 2 and defined by Equation (49) and a second order iteration leading
to Equation (A62) has a relative error bound of 5.68 x 107!, An alternative approxi-
mation can be defined by utilizing the zero order spline approximation, as specified by
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Equation (117), and the sixth and seventh order approximations (the function fy¢7) which
yields a relative error bound of 7.65 x 10718 (see Table 6).

7.2. Upper and Lower Bounds for Arcsine, Arccosine and Arctangent

Lower, L, and upper, U, bounds for arcsine, i.e.,
L(y) <asin(y) < U(y), 0 <y <1, (105)

lead to the following lower and upper bounds for arccosine and arctangent:

g — U(y) < acos(y) < g —L{y), 0<y<1, (106)
) <atan(y) < U N — , 0<y <oo. (107)
V1+y? V1+ty?

7.2.1. Published Bounds for Arcsine

There is interest in upper and lower bounds for arcsine, e.g., [17-21]. The classic upper
and lower bounded functions for arcsine are defined by the Shafer-Fink inequality [13]:

3y 0y 0<y<l. (108)

2+ /1—2 24+ /1—y2

The relative error bound associated with the lower bounded function is 4.51 x 10~2; the
relative error bound associated with the upper bounded function is 4.72 x 10~2.
Zhu [20] (eqn. 1.8), proposed the bounds:

n(2—ﬁ)
6lVity—vi-y| < asin(y) < m—2V2 Wity Vil
4+ /1+y+/1-y ~ Y —M+M+m
7[72\/5

where the lower relative error bound is 2.27 x 1073 and the upper relative error bound is
561 x 1074,
Zhu [21] (Theorem 1), proposed the bounds

< asin(y) <

,0<y<1 (109)

n—1 )
unyZn-‘rl + Z aiy21+1:| S ﬂSin(y) S

1
2+\/1—y2{ i=0

) i (110)
e
— byl Y g 2i+1},ne 2,3,...}, 0<y<1,
2+W|:”y iEO ly { } —y—
B 1 (i1 21141 -
a0 =3, ”"2i+1[ 21t i[(2i — D)I] ’b'_”_kg)“k (111)

The lower bound is equivalent to the bound proposed by Malesevi et al. [19] (eqn. 21). The
relative errors in the bounds are low for y < 1 but increase as y increases. For the case
of n = 4 the relative error bound for the lower bounded function is 0.0324; for the upper
bounded function the relative error bound is 0.0159.

7.2.2. Proposed Bounds for Arcsine and Arccosine

Consider the approximations defined in Corollary 1 and whose relative errors are
shown in Figure 5. As the graphs in this figure indicate, the approximations are either upper
or lower bounds for arcsine and arccosine and this is confirmed by numerical analysis (for
the orders considered) which shows that there are no roots, in the interval (0,1), for the error
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function associated with the approximations. The evidence is that the approximations, s;,
of orders 0,2, 4, ..., are lower bounds for arcsine whilst the approximations of orders 1, 3,
5, ... are upper bounds. Thus, for example, second, sy, and third, s3, order approximations,
as defined in Corollary 1, yield the inequalities

2
s 7T .
- — \/ — Y +y* + co3Y° + coay* + co5y° < asin(y) <
2 4 (112)

2 3
7T 7T 7T
5 \/4 — Ty + yZ — Ty + C3,4y4 + C3,5y5 + C3,6]/6 + C3,7y7

for y € [0,1], where, as detailed in Table 1, the lower relative error bound is 3.64 x 104
and the upper relative error bound is 2.84 x 107°.
It then follows, from Equation (106), that

2 3
7T s
\/ 2y + 2 — T cuyt + o3P+ caey + cazy” < acos(y) <
4 6 (113)

7
T
\/4 — 1ty + y% + 233 + coay* + c259°

for y € [0,1]. An analytical proof that the approximations for arcsine and arccosine, as
detailed in Corollary 1, are upper/lower bounds is an unsolved problem.

7.2.3. Upper/Lower Bounds for Arctangent

As an example of upper and lower bounds that have been proposed for arctangent,
consider the bounds proposed by Qiao and Chen [22] (Theorem 3.1 and Theorem 4.2) for y > 0:

3y < atan(y) <
24 — 2 + /432 — 24712 + 7t* — 1271(12 — 712)y + 367122 114)
3%y
24 — 12 4 /576 — 19272 + 1677 — 127t(12 — 712)y + 367122
2 4
2 12;1[?5743;57}/0;4?4:3?/4] T, 66549y11 - 464T§§2y13 <atan(y) <
T 64+ 735y + 945y* 64 (1)

2 15y[15 + 7042 + 63y%] T, 659y11

The lower bounded function in Equation (114) has a relative error bound of 0.0520; the
upper bounded function has a relative error bound of 0.0274. The error in the upper and
lower bounded functions specified in Equation (115) diverges as y — 0 but converges
rapidly to zero for y > 1.
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7.2.4. Proposed Bounds for Arctangent

As atan(y) = acos it follows, from Equation (113), that the functions t

1
N

and t3 defined in Corollary 1 are, respectively, upper and lower bounds for arctangent, i.e.,

12 _ 7T + 1 _ 7T i C3r4 C3,5 +
LY o O I S 2 S V) M
C3,6 C3,7
L+’ [+ (116)
<atan(y) <
2 1
= - Z - I 22 32 T - 3+ 22 5/2
doVIHy Y ) Ly 1+

for y € [0, c0). As detailed in Table 1, the relative error bound for the lower bounded
function is 1.42 x 107> and 1.81 x 10~* for the upper bounded function.

7.3. Spline Approximations Based on Upper/Lower Bounds

Consider upper, f1;, and lower, f7, bounded functions for arcsine as illustrated in Figure 13.
For y fixed at y,, a spline approximation, based on the points (sin(u,), u,), 4o = f1(yo) and
(sin(vy), o), Vo = fu(Yo), can readily be determined. From such an approximation, an
approximation to x, = asin(y,) can then be determined.

) /i U(J")
spline approx. based on asin(y)
Vo = Ffv,)
x, = asin(y,)
m, = fr(v,)

.‘)O

sin(u,,) sin(v,)
Figure 13. Illustration of upper and lower bounded approximations to arcsine and the two basis
points (sin(uo), 1), (sin(vy ), vo) for two point spline based approximations.

Theorem 7. Spline Approximations Based on Upper/Lower Bounds.
Consider lower, f1,, and upper, fu1, bounded approximations for arcsine. The zero order spline
approximation for arcsine, based on the approximationsfy and fy;, is

_ fiy)sinlfuy)] — fu)sin[fLy)] +ylfuy) — fr{y)]
foly) = sinlfu(y)] — sinlfuy)] o yeln.

The nth order spline approximation for arcsine, based on the approximations f; and fy;, is
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@) -y
In¥) = inon) — sin(ug) !
(n47r)tu,
. ' ) rin![sin(v,) — sin(u,)]"
E W =sinCo)l ™1yt o) sinuy)] (n+ )t 1 !
=0  (r—u)! uln!  [sin(v,) — sin(u,)]"
[y — sin(u,)]" ! . (118)
[sin(v,) — sin(u,)]" !
(n+r)lo,
i rin![sin(v,) — sin(u,)]"
rEO[SIH(UO) - r=1 (*1)yiuf(77u) [Sin(%)} (ntu)! 1
=0 (r—u)! uln!  [sin(v,) — sin(u,)]"
fory € (0,1),uo = fry), vo = fu(y), f(y) = asin(y) and
k+i
k—1d[k’i] H(_?_W]yi
=1 VmHJl cke{L2..) (119)
-yl 2 12
where
d[1,0] =1,
d2,00=0, d2,1 =1, (120)
d[3,00=1, d[3,1 =0, d[32 =3
and for k > 3:
dlk—1,1],i =0
di = | (+Ddl—1i+1] +2Hk+;‘—1J _ %}d[k— Li—11<i<k=3
zH“;;lJ - ﬂd{k—l,i—l],k—z <i<k-1

Proof. The proof is detailed in Appendix J. [

Results

Consider the approximations the approximation s;, i € {0,1,2,...}, for arcsine as
detailed in Corollary 1 where approximations, of order O, 2, 4, ..., are lower bounds
and the approximations, of orders 1, 3, 5, ..., are upper bounds. For example, with

7T 7T .
fily) = sa(y) and fu(y) = s5(y), sa(y) = 5 —caly), ss(y) = 5 —es(y) with ¢y and ¢
defined by Equation (A22) and Equation (A23), the zero order spline approximation, as
specified by Equation (117), is

_ s4(y) sin[s5(y)] — s5(y) sinfsa ()] + y[s5(y) — sa(y)]
foastv) = Sinfss ()] sinsa ()] 12
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The relative error bound for this approximation, over the interval [0,1], is 8.22 x 10714,
Other results are detailed in Table 6 and clearly show the high accuracy of the approxima-
tions.

Table 6. Relative error bounds, over the interval [0, 1], for spline approximations based on upper and
lower bounded approximations to arcsine and as specified in Theorem 7.

Upper/Lower Bounded Functions: Spline Notation for Relative Error
s; Defined in Corollary 1 Order Approx. Bound
fuy) =s0(), fuly) =s1(y) 0 foo1 243 x107*

1 fi01 145 x 1077
2 f201 1.31 x 10710
3 f301 1.44 x 10713
4 fa, 01 1.77 x 10716
fLy) =s2(v), fuly) =s3(y) 0 foas 141 x10°°
1 fios 4.48 x 10718
2 fa23 2.05 x 10726
3 f323 1.14 x 1073
4 fa2,3 6.98 x 10743
fLy) =sa(y), fuly) =ss(y) 0 foas 8.22x 101
1 f1,4,5 1.48 x 1026
2 foa5 3.78 x 107%
3 f345 1.16 x 10751
4 faas 3.95 x 10764
fuy) =s6(v), fuly) =s7(y) 0 foe7 7.56 x 10718
1 fre,7 1.27 x 10734
2 fap7 2.97 x 10751
3 fa67 8.30 x 10~
4 fae7 2.57 x 10784

7.4. Approximations for Arcsine Squared and Higher Powers
There is interest in approximations for acos(y)k, asin(y)k, asin(y)k /yk, ke {2,3,...},
e.g., [23-26]. The standard series for asin(y)z, e.g. [7] (1.645.2), is

2041 52k[172,,2k+2
. 2 _ 27Ky
The nth order approximation, sf, specified in Corollary 1, leads to the approximations sén

for asin(y)? defined according to

2
7U
W) = VTP (=) +ena[1 = tena 1 - ) +

n+1/2

(124)

+cnonta[1—y?]

for n > 2. The relative errors in Sy, and 54 are shown in Figure 14. The approximations

defined by s4', have better overall relative error performance; in particular, they are sharp
at the point one.
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0.0 0.2

Figure 14. Graph of the relative errors in approximations to the square of arcsine as given by
Equation (123) (orders 2 to 6) and Equation (124) (orders 2 to 4).

7.4.1. Approximations for Even Powers of Arcsine

Based on the approximation for the square of arcsine, as specified by Equation (124),
the following result can be stated:

Theorem 8. Approximation for Even Powers of Arcsine.
Based on the nth order approximation, s}, specified in Corollary 1, the even powers of arcsine
can be approximated according to

om  m(2n+1) k/2
asin(y)" = [sin)| " = L m(1-v?)  me{12,.. (125)
k=0
where
pr= )3 Coy iy -« - Cni (126)
i1 +ir+...+im=k

il/i2r-~~/im € {0,1,2,...,2n+1}

Here, ¢, i, Cp iy - - - Cni,, are defined by Equation (29).

Proof. This result follows from expansion of s7 to the 2mth power, i.e.,

om 21+l 2n+1 (itip+...+im)/2
st =T L enicnin e eni (1- ) (127)
i=1 im=1

and collecting terms associated with (1 — yz)k/z.D

7.4.2. Example

For example, the nth order approximation for asin (y)4 is

1/2
+ {ch,ocn,z + cﬁ,l} (1-v»)+

st ] = S+ 2cn00n1 (1-92)
z[cn,OCn,3 + Cn,lcn,2] (1 - ]/2)3/2+

[ZCn,OCn,4 +2¢y,16n3 + C%,z} (1- y2)2 +...+
2n+1/2

(128)

(1 . y2)2ﬂ+1

2 2
2Cn,2ncn,2n+1 (1 -y ) + Chon+1

7.4.3. Roots of Arccosine: Approximations for Even Powers of Arccosine and Arcsine

The following theorem details a better approach for evaluating approximations for
asin(y)Zk and acos(y)2k, ke{1,2,...}.
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Theorem 9. Root Based Approximation for Even Powers of Arccosine and Arcsine.
Approximations of order n, for acos(y)** and asin(y)*, k € {1,2,...}, respectively, are

S [ [ R sy [

1 ] ) 3 n *

Soku(y) = %k " r

"21{(1* 1y2)k{1my[l 1_y2]k~

(130)

e e R

) r§ n r;kl

where r} is the conjugate of r; and r1,15, ..., 1y, 17 are the roots of the nth order approximation
C%(y) to acos(y)2 defined in Corollary 1.

Proof. Consider the nth order approximation c2 () to acos(y)? defined in Corollary 1. This

approximation is denoted c; ,, and is of the form

con(Y) = cno+cnay +cnay? + oot Cuonrry? (131)

This approximation can be written in the form

) =T a-pfi- L i-Gh-La-Ln-Eh- L o

r i ) r3 T *

It then follows that

acos(y)* ~ ey (y) = %(1 )" {1 B y]k {1 - y*]k

S o )

The approximation, sy , (), for asin(y)Zk arises from the relationship asin(y) = acos [\ /1— yz} .
O

(133)

7.4.4. Approximations for Arccosine Squared

The second order approximation for acos(y)2 is

O L o O

21 5 22 3
—1953 4507 12,833 8339
2500 ' 2000 22775000 | 5000

(134)

21 =

where j = \/—1. The relative error bound for this approximation, over the interval [0, 1], is
3.66 x 1074, The fourth and sixth order approximations are detailed in Appendix K and
have the respective relative error bounds of 2.48 x 107% and 2.25 x 10~8. By using higher
resolution in the approximations to the roots, slightly lower relative error bounds can be
achieved. The stated root approximations represent a good compromise between accuracy
and complexity.

7.4.5. Results

The relative error bounds associated with the nth order approximations for acos(y)Zk

and asin(y)zk are detailed in Table 7.
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Table 7. Relative error bounds, over the interval [0, 1], for the approximations detailed in Theorem 9

for acos(y)Zk and asin(y)2k.

Order, n, of Precision: Relative Error Relative Error Relative Error
Approx. Digits in Roots Bound: k=1 Bound: k=2 Bound: k=3

2 5 3.66 x 1074 732 x 1074 1.10 x 1073

4 8 248 x 10 496 x 107° 7.43 x 1076

6 9 225 x 1078 449 x 108 6.74 x 1078

8 11 2.28 x 10710 455 % 10710 6.83 x 10710

10 13 293 x 10712 5.85 x 10712 8.78 x 10712

7.4.6. Comparison with Published Results

Borwein [23] details approximations for even powers of arcsine and approximations
for powers of two, four, six, eight and ten are detailed in Appendix L. The approximation

for arcsine to the sixth power is
] 6 _ 45 M k-1 1 m—1 1 22k[k!]2 2k
asin(y)” = Sen(v) = 3 X\ X ox L2 | pmy (135

As an example, the relative error in approximations for asin (y)é, as defined by sg , (1)
(Equation (130)) and the Borwein approximation S¢ , (i), are shown in Figure 15. The clear
advantage of the root based approach over the series defined by Sg ,(y) is evident. In
particular, the root based approximations are sharp at the point one.

|re(y)|
1

0100}
0.010
0.001 |

10

105

108

0.0 0.2 0.4 0.6 0.8 1.0V

Figure 15. Graph of the relative error in approximations to asin(y)G, as defined by Sg,(y) for
n € {3,4,5,6,7,8,9,10}, along with root based approximations s¢ 5, () of orders 2,3,4,5.

7.5. Approximations for the Inverse Tangent Integral Function
The inverse tangent integral function is defined according to

T(y) = /0 ! ‘”LA()‘)M (136)

and an explicit series form (e.g., Mathematica) is
1 ... L .

Ty) = 55 [Lialiy) = Li2(=y)l, = V=1,

(137)

k
[e9)
Liy(z) = kzl I%" |z|]< 1, analytical continuation for |z| >1.
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The Taylor series for arctangent, as given by Equation (7), leads to the nth order approxima-
tion, Ty ,,, for T:

N e
Taat) = [uty) —uty - £ L
S
k=0 (2k+1)2y2k+1

(138)
u(y—1)| - Iny) +

where u is the unit step function. The relative error in approximations, of orders one to ten,
are shown in Figure 16.

re(y)|
0.010 .
....................... iT

0.001 | 171

104 E LT \ . G ------------------------- 3
2/ A\ T,

105 : S T W T —
I3

L[ Ay i1/ N |\ \ R N W E
...... T4
10°7 S )
0.01 0.10 1 10 100 ¥

Figure 16. Graph of the relative errors in the Taylor series (orders one to ten) based approximations
for the inverse tangent integral, as given by Equation (138), and the proposed approximations (orders
one to four) as specified in Equation (139).

7.5.1. Inverse Tangent Integral Approximation

Based on the nth order approximation for arctangent, f,;, stated in Theorem 2, a nth
order approximation to the inverse tangent integral is

Y

Zdnk /

1

_ d i ( >0, 139
a2 E nkle(y), v = (139)

where d,,  is defined in Theorem 2 and the integrals, Iy, I, - - - , I5 are defined according to

Ip(y) = asinh(y) = In [y +4/1+ yz} , L (y) = atan(y), (140)

_ Y _ Y atan(y)
L(y) = ity L(y) = 20+ 7) T (141)
Cy(1+ 2y2/3) ~ By(1+ 3y2/5)  3atan(y) 10
4(]/ - (1+y2)3/2 ’ 5 y)_ 8(1+y2)2 8 ( )

The first order approximation, for the inverse arctangent integral, is

_ Mt g2] 4 [—2—2m s 32 w3y
Tl(y)f2 ln{y+ 1+y}+[ 22+ 1 }atan(y)—&-{?&—&- 5 1 } Ny (143)
Second and third order approximations are detailed in Appendix M.

7.5.2. Notes and Relative Error

The approximations, Ty, n € {1,2,...}, are valid over the positive real line and the
relative error in the approximations, of orders one to four, are shown in Figure 16. As
is evident in this Figure, the approximations have a lower relative error bound than the
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disjointly defined Taylor series approximations defined by Equation (138). The relative
error bounds associated with the approximations are detailed in Table 8.

Table 8. Relative error bounds, over the interval [0, o), for Taylor series based approximation, and
the approximations specified in Equation (139), for the inverse tangent integral function.

Relative Error Bound:

Taylor Series Ta » Relative Error Bound: T,

Order of Approx. n

1 2.96 x 1072 478 x 1073
2 1.41 x 1072 2.88 x 1074
3 8.17 x 1073 223 x 107>
4 5.31 % 1073 1.95 x 107
5 3.72x 1073 1.83 x 1077
6 2.74 x 1073 1.80 x 10~8

7.5.3. Approximation of Catalan’s Constant

As Catalan’s constant can be defined according to

_ Tatan(A)
G= /0 2 (144)

it follows that approximations for this constant, of orders two and four, can be defined
according to

n 35 862 20 61 1 55 1573
Gy = =—-In[1 +V2] + = - —= = o4 = - (14
2= n[+\ﬂ+6 5 +7r[3 4\/5} {8+8ﬁ} - (49
n 298,369 2,609,456 /2 10,342 218,147
G — 71 1 2 4 _ 7 7 7 _ 4
s = 5o+ V2 + = 3675 [ 21 224\/5] (146)
2] =557 |, 14529] 346573
16 322 64

The respective relative errors in these approximation are 2.25 x 10~# and 1.03 x 107°.

7.6. Approximations for Unknown Integrals

The different forms for the approximations for arcsine, arccosine and arctangent,
potentially, can lead to approximations for unknown integrals involving these functions.
Four examples are detailed below.

7.6.1. Example 1

The function 4acos[e ] 2/n2is an approximation to the unit step function for y > 0
after a transient rise time. Using the approximation form, c;, detailed in Corollary 1 for
arccosine, the approximation to the integral of this function (scaled by 72/4 ) can be

defined: -
y 2 n+
[ootefumn =08 o]0 o
0 k=1
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The third order approximation is

I(y) = (139 2717 31972 N Yy ey e N re™%
sW'= {300~ 630 1680 4 2 18

[—979  31m 3572 _,,  [944  4d6m  21n?
_ 4y y |44 d6m 2l sy 148
180 6 ' 16 }e +{75+ 5 5 ]e + (148)

[—48 557 35712}66]/ {112 6171_571?2}€7y

5 9 ' 12 45 " 2 7

+

and the relative error bound associated with this approximation, over the interval [0, o),
is 2.32 x 107°.

7.6.2. Example 2

Using the approximation form, t,, detailed in Corollary 1 for arctangent, the following
approximation can be defined

ky
Y 2 2 2n+1 9 _J
/o atan{\/et—l} dt = I,(y) = % + ) % [1 —e 2 ], y > 0. (149)
k=1

Mathematica, for example, specifies this integral in terms of the poly-logarithmic function.
The third order approximation is

(139 2717 3197%] 72y re=3Y/2
I — -~ _ ZJ 4 oqe /2 _ oy
W)= 350~ 315~ 8@ ]+ g T it
[—979  31mx  357%] _,, . [1888 = 92w 4272
2 ey | 222 20 22T ehy/2 150
790 3 ]e [75 +t75 5 }e + (150)
[—96 1107 | 3572] _,  [224 61w 107
—_ =3y SET T T | Ty/2
75 9 "6 ]e [45 T Ty ]e

and the relative error bound associated with this approximation, over the interval [0, o),
i52.32 x 107°.

7.6.3. Example 3

The following integral does not have an explicit analytical form but the approxima-
tions, t,;, detailed in Corollary 1, leads to

y o2t 2 241 y . 2041
/ atan || ——— —1| dt = I(y) = ) cn,k/ 1+t ™ it =Y pely)e™, (151)
J0 (1+¢) =0 0 k=0

y > 0, where the polynomials po, ..., p2n+1 can readily be established. For the case of
n = 2, the relative error bound, associated the interval [0, o), is 3.00 X 104,

7.6.4. Example 4

Consider the definite integral defined by Sofo and Nimbran [27] (example 2.8, factor
of 1/4 missing):

1
4

1 2 2
(1) = / tIn (f)%atan(t)2dt & Ls,, =
0

(_1)i+1 i 1
i(i+1)3'k; 2k1] (152)

n
i=1
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The polynomial approximation, ¢;, for arctangent detailed in Theorem 5 and for the interval
0<y<1,yields

2n+12n+1

I(y) = [Jtn(H)?atan(t)>dt = L(y) = L ¥ niur )yt In(t)?dt
i=1 k=1
2412041 oy k2 1= [i+k+2]In (y)+ (153)
= Y L nwidnk o 4 R L )
o1 T i+ k+2) 2+42i+ 2k + ik + In(y)
for 0 < y < 1. For the case of y = 1 the approximation is
2n+12n+1 2
(154)
Z Z n,i nk ( +k+2)

The relative errors in the approximations I, and I,(1) are detailed in Table 9. The relative
errors in the approximations I,(1), n € {1,2,...,6} are shown in Figure 17. From the
results shown in Table 9, it is clear that the approximations specified by Equation (154)
converge significantly faster than the approximations detailed by Sofo and Nimbran [27]
(Equation (152)). In addition, the approximation, t,, for arctangent, underpins the more
general approximation, as specified by Equation (153), for the integral I(y), 0 <y < 1.

Table 9. Table of the relative errors associated with the approximations Is , and I, (y) as defined by
Equations (152) and (154).

Order of Relative Error in Relative Error in Relative Error Bound
Approx: n Approx: I, Approx. I,(1) for I,(y), 0<y<1
1 2.15 x 1072 3.16 x 1072 4.04 x 1072
2 544 x 1073 224 x 1073 296 x 1073
3 1.97 x 1073 318 x 107° 334 x107°
4 8.85 x 1074 416 x 107> 5.01 x 107°
6 259 x 10~% 6.82 x 1077 8.84 x 1077
8 1.02 x 1074 1.84 x 1078 2.30 x 108
10 482 x107° 3.48 x 10710 458 x 10710
order = 1
0.010 = 5|
I order = 2
0.001 ¢
104
10° 4 order = 5
106 order = 6
107

Figure 17. Graph of the relative errors in the approximations, of orders one to six, as defined by I,;(y)

(Equation (153)).

8. Summary and Conclusions

8.1. Summary of Results

The approximations detailed in the paper for arcsine and arctangent are tabulated,

respectively, in Tables 10 and 11.

¥
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Table 10. Approximations for arcsine. The coefficients ¢, x, d,, x and 6, x are defined in the associated

reference.
Reference Approximation for Arcsine of Order n Relative Error Bound for [0,1], n =4
249 x 107
T 2n+1 2n+1
Corollary 1 a Z Coxtks \/ Y o1 y2)k/2 1.24 x 10~
1.78 x 107°
T o\ k/2
Theorem 2 E —V1-92 ); wxv Y Z dnk(l —?) 4.72 x 1076
Th 3 ] 2)ie 1 10°°
eorem 17\/177+2de .00 x 10
2 + k
2n+1
1y Sn2y* Onpn41Y
Theorem 5 Onay + e, 0<y < —
— 2 — 2 o\n+1/27 -5
(Equation (86)) Vi-y* 11—y (1-12) f 334 x 10
T V1= ep(1-y?)  bupnra[l— "
2 y Y2 e y2n+1
1/V2<y<1
Table 11. Approximations for arctangent. The coefficients c, x, d,, x and 9, ; are defined in the
associated reference.
Reference Approximation for Arctangent of Order n Relative Error Bound for [0,00), n=4

Corollary 1

Theorem 2

Theorem 3

Theorem 5

Theorem 6

2n+1 Chk T 2n+1 Cy kyk 1.24 x 1076
75 Z_ s 249 x 1076
k=0 (1+y?) 2 k=0 (1+y?)
2 » o d, 472 x 10*:
Yy —““—5, 57— L ———r 1.78 x 10~
k=0 (1 +y2)(k+1)/2 2 > (1 +y2)(k+1)/2
A2 m g 1.00 x 107
1+y 1- 1 n nk 1— 1
y V1+y? k=02+k .
(1+y2) 2
Su1y + On2y? + -+ Sppnay® L 0<y <1
T Oua G2 Onon+1 334 x107°
5Ty 2 T el l<y<eo
y y y
r 3 2n+3
5n,;y i niy Tt 5n,2§+1y3 ,0<y<1
5 5 (”j ) 6.34 x 106
n,1 n,2n+1 Ty —
AT . ) —1)—
ca {3 2n+3} 4 naly =1
1+9y2 |2
5. o1 .y 1_1 _ _5n,2n+1 1— 1
n,2 n(y) n,3 ]; te m—1 y2n71
L 1<y <oo

For arcsine, the approximation form, s/ detailed in Theorem 2, can be written in the

simple form
su(y) =y [m(y) +p2(y)y/1- yz}

where p; and p; are polynomial functions. The approximation s, detailed in Theorem 3,
has the lowest relative error bound for a set order (e.g., order four).

(155)

8.2. Conclusions

Based on the geometry of a radial function, and the use of a two point spline approxi-
mation, approximations of arbitrary accuracy, for arcsine, arccosine and arctangent, can be
specified. Explicit expressions for the coefficients used in the approximations were detailed
and convergence was proved. The approximations for arcsine and arccosine are sharp at
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the point zero and one and have a defined relative error bound for the interval [0, 1]. Alter-
native approximations were established based on a known integration result and a known
differentiation result. The approximations have the forms detailed in Tables 10 and 11.

By utilizing the anti-symmetric relationship for arctangent around the point one, a
two point spline approximation was used to establish approximations for this function as
well as for arcsine and arccosine. Alternative approximations were established by using a
known integral result.

Iteration utilizing the Newton-Raphson method, and based on any of the proposed
approximations, yields results with significantly higher accuracy. The approximations
exhibit quadratic convergence with iteration.

Applications of the approximations include: first, upper and lower bounded functions,
of arbitrary accuracy, for arcsine, arccosine and arctangent. Second, it was shown how to
use upper and lower bounded approximations to define approximations with significantly
higher accuracy. Third, it was shown that the approximation s7, detailed in Corollary 1,
leads to a simple approximation form for the square of arcsine which has better conver-
gence than established series for this function. By utilizing the roots of the square of the
approximations to arccosine detailed in Corollary 1, it was shown how approximations
to arccosine and arcsine, to even power orders, can be established. It was shown that
the relative error bounds associated with such approximations are significantly lower
that published approximations. Fourth, approximations for the inverse tangent integral
function were proposed which have significantly lower relative error bounds over the inter-
val [0, 00), than established Taylor series based approximations. Fifth, the approximation
forms for arccosine and arctangent were utilized to establish approximations to several
unknown integrals.

Funding: This research received no external funding.
Institutional Review Board Statement: Not relevant.
Informed Consent Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Approximations Based on Angle Subdivision

Given the coordinate (x,y) of a point on the first quadrant of the unit circle, and the
corresponding angle 0, as defined by 6 = acos(x) and 6 = asin(y), the following definitions

can be made: o o
Si = sin<2i>, c; = cos(2i>, ie{0,1,...}. (A1)

Algorithms for determining s; and c; arise from half-angle formulas and are:

1 1 )
Si:\ﬁ'm' Ci:\ﬁ'm' ie{1,2,..}
so=y=vVI—22=sin(8), co=x=+/T—y2=cos(6)

The following result can be proved, following the approach detailed in [15] (Section 6.4 and
Appendix I).

(A2)

Theorem A1l. Approximation for Arcsine and Arccosine.
Approximations for asin(y) and acos(x), of order n, are:

. n
asin(y) =~ s; ,(y) = 2' Z dn,ksé“rl <\ /11— y2> plk, 0] +
k=0
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" “1)*plk, (J1—c2
acos(x) ~ ¢; p(x) = oi Z dy [1 _ C,z(x)} (k+1)/2 plk, 0] + (-1) p£2k+1(x) C; (X)] (A4)
k=0 i
where p
pk,t) = (1 - tz)ap(k— 1, 8)+ (2k—tp(k,t), p(0,t) =1 (A5)

n! 2n+1—k)!

dy = (n—k)(k+1)! 2-2n+1)!

Proof. The angle 6/2' can be defined according to the standard path length formula along
the unit circle from the point (0, 1) to the point (s;, ¢;) (the point consistent with the angle
/2 —6/2):

d\,  ie{1,2, ...} (A7)

1
V1— A2

o _ [ 1 Ve
Zi_O/\/l—A2 _./0

The integral can be approximated by using the general integral approximation [15] (eqn. 14):

[ FOaA = Y it - [ (@) + (-1 )] (A8)
& k=0
where for the case being considered
1 p(k,t)
f(t) = N FR(@1) = 1 7 ke{0,1,...}. (A9)

Here, p(k, t) is specified by Equation (A5). For the caseof « = 0and t =s;ort = /1 — c?,

1

Equation (A8), respectively, leads to the required results:

0 = asin(y) =~ s;,(v)
[si(VI=17)] (A10)

. n
=2 kgo d,,,ksf."*'l( 1— yz) plk, 0] +

6 = acos(x) = cju(x)

=2 ¥ dye[1— 0] ik, 0] +
k=0

O

Explicit Approximations for Arccosine

Some examples of the approximations for arccosine, as specified by Equation (A4), are
detailed below: First, based on 6/2, the second order spline approximation yields

1211 —x [1 x} V1—x [13 19x+37x2
(

e T | N e A12
c1.2() 120V2 121) 7 (1452 [157 10 T 30 (A12)
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which has a relative error bound, for the interval [0,1] of 5.56 x 10~3. Second, based on
/4, the second order spline approximation yields

1214/2 — V214 «x . ViFx
c22(x) = 120 1Tz |
(A13)
221+« [1ﬁ+747x+38\ﬁ\/1+x
[2+ﬁ\/m]5/2 15 15 5

which has a relative error bound, for the interval [0,1], of 1.71 x 10-°. Third, based on
/16, the first order spline approximation yields

7
10 1+E\/2+\/2+\@\/1+x
car(x) =4 27\/2+\/2+\@\/1+x 1+ 55| (Al4)

3[2+\/2+\/2+x/§\/1+7xJ

which has a relative error bound, for the interval [0, 1], of 1.19 x 10~°.

Appendix B. Explicit Approximations for Radial Function

Approximations for 72, as specified by Theorem 1 and of orders one to six, are detailed
below with the coefficients C,, , k € {0,1,...,2n + 1}, being specified in Table A1:

2

7T
Aly) =7 =y +Ciay® + Ciy’ (A15)
U 2 3 4 5
fy) = 7 =y + 2y + Coay” + Coay” + Cosy (A16)
U 2 7Iy3 4 5 6 7
f3(y) = T2 = ==+ Caay + Casy + Caey” + Cagy (A17)

2

- -
faly) = LA 2y* — Ty + y? + Cu5Y° + Ca6y® + Cazy” + Casy® + Caoy’ (A18)

7.[2 T 3 4 377 5
fs(y) = 7t 2y* — Ty + % S Cs,6y° + Cs7y” + Cs 895+

40 (A19)
Cs,9y° + Cs,109'% + Cs 11y}
7.[2 7'(]/3 y4 37.[]/5 8y6
= — 027 4 J S Coor7 4 Cr et 4 Ce 012
Joly) =~y =ty T g T s P ey Cesy F Coo

Co10¥™ + Co11y™ + Co124"* + Co 13y ™
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Table A1l. Table of coefficients. The lower order coefficients that are not listed are defined according
toChr=Cy1x k€ {0,1,...,n—1}.

Order of Approx. Coefficients
2 2
T T
0 Coo = Cop=1-"1
1 2 2
Ciq=-m, C1,2:3+27r—3%, C1,3:—2—n+”7
16 572
2 = = - =
GCop =2, Co3 3 + 6711 5
C ——_35—8n+—15n2 C —EJrSK—ﬁ
24 — 3 4 7 25 — 3 2
his 979 62 3572 —944
3 =—= ==t —= -0 = —46m+2172
C3,3 % C3/4 5 + 3 i C3,5 15 67 + 217
c 7@+110n_35nz _ o784 _6lm o,
3~ 75 3 2 ST 6
c 1 C . 8704 1457w 6372
4 44 = 37 45~ 905 2 2
~19,624 2 4 7
Ca6 = 72’36 e, 10572, Cy7 = 505 , 5751 ; T 13572
Ciu_ 27,508 ., 315m 1894 2157 357
48~ 7105 4 7 YT 315 6 2
37 166,792 15,7077 23172 —66,304 86897
== = 4 — =77 495772
5 Gs=20 6= 55 T w0 7 G 45 g 7
_ 854,948 37157 346572 oo —87,552 38,9477
58~ 7315 2 4 T 24
.. _ 364,288 14,4097 693772 .. —338176 5187
510~ 7315 20 2 T 40
8 63,125,504 96117 )
; Cos = 157 Co7= 51975 + 10 47
116,868,932 24,6427t 9009772 6,002,688 43,0437 )
- ’ / ’ 7T 2 y 7 2
= — — _ 4
Ce,10 10,305 g 600677 Cny 2ias T 85897 — 40957
.., _ 86,876,288 468147 300372 ... 40,687,616 19,06lw . ,
612 = 717325 15 2 7 8137 751975 40

Appendix C. Explicit Approximations for Arccosine

Explicit approximations for arccosine, of orders three to six and arising from Corollary 1,
are:

7'[2 7T 3
ca(y) = \/4 — 7y +y? — Ty + c3ay* + c35Y° + c3,6Y° + c37y” (A21)

us oy 5 6 7 8 9 A22
ca(y) = T Ty + Y- — o + 3 + Cca5Y° + Capy® + a7y’ + cagy® + caoy ( )

2 3 4 5
T _ 2 Y Y 3Ty 6 7 g
)= | & Y TV T e e T gy T ey T esgyt At essy

9 10 11
+c59Yy” +c510y + 511y

(A23)
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§ oyt 3my’ 8y
)= |7 T T e TS T s

1 11 1
+c60y° + Ce,10Y ¢ Ce 11y ~ + Ce,lz}/ 24 C6,13Y 3

+ ¢ 7]/ =+ e Sy (A24)

Appendix D. Approximations for Arcsine of Orders Three to Four

Approximations for arcsine, of orders three and four and arising from Theorem 2, are:

U
s3(y) = 5 — VI-y |5 —y+ y +ds3y° + dsayt +dasy® + dzey°
(1 —y? 3/2 2 (A25)
A \/ + % + d3,3 (1 — ]/2) + d3[4 (1 — ]/2) +
s5(y) =y
ds5(1—92)*" +dz(1 - y?)°
—1 124 2 472 1057t
das — 958 7'(_}_357'(, sy = 272 11570 057'(’
’ 45 3 2 ’ 3 2 (A26)
g 864 L 1057‘(2 g 2744 27 357
¥ 75 2 7 BT s T 2
i y? 23
Uy Z_y4+ L2
sa(y) = 3~V | 2 YT Ty Tl sy gt
dyzy” + dygy®
m(1—-2) 2(1—y?)*? (A27)
T ipeTioy) 20V Fdya(1-12)°+
sty =y| 2 4 3
5/2 3 7/2 4
dis(1- )%+ das(1—v?)° +daz (1- )% + dis (1 - ?)
—4352 7257 31572 19,624
= - == 27 — 31572
dy s 1 T T dys 5y 6927 — 31577,
—22,528 40257 94572 110,032 5
= d — = 4 — A28
dyg 1 1 5 day o5 T 6567 3157, (A28)
oo Z9472 645w 31572
¥ s 4 4
Appendix E. Proof of Theorem 4
Consider the differential equation stated in Equation (68):
(1-2) [0+l @)~ 2] ~4[fur) +entr) —v?] =0 (a29)

and the nth order approximation, f;;, detailed in Theorem 1: f,,(y) = Cpo+ Cpay + ... +
Cn,2n+1y2”+1. As g,(0) = 0, the following form for the error function is assumed:
en(y) = [kn1 — Cualy+lkna — Cuo + 1y? + [kns — Cugly® + ... +

(A30)
[k”'2”+1 - C”,2n+1]y2n+1 + kn,2n+2y2n+2 +...

with unknown coefficients k;; 1,k 2, - - - . Use of this form in Equation (A29) leads to

0o Kt + 2knoy + -+ 20+ Dkyons1y? +]
f— y f—
(21 4+ 2)kponoy® 1+ .. (A31)

4[Cho + knay +kn2v® + ...+ knoni1y® T + kpongoy® 2 +.0] =0
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ie.,

(1= 92) X X ik /72 = 4C0 — &) ki = 0 (A32)
i=1j=1 i=1
As Cpo = m?/4,n € {0,1,2,---}, it follows that the coefficients kni,ie{1,2,---}, are
independent of n, leading to

Yo N djkiky 2= Y Y djkiky' T —4Cu0 —4 Y kiy' =0 (A33)

i=1j=1 i=1j=1 i=1
By sequentially considering the coefficients of yo, Y, yz -+, the constants k;, i € {1,2,- - -},
can be determined. First, the coefficient of y° yields k2 = 4 Cy, ¢, leading to ky = £2,/Cy, 9 =
+71. The negative solution is required as ¢,,(y) = [ky — Cy1]y +...and C, 1 = —7. Second,
the coefficient of y yields 4kik, — 4k; = 0, leading to k, = 1. Third, the coefficient of y?
yields 6kik3 + 4k§ — k% — 4ky = 0, leading to k3 = k1 /6 = —7/6. For the general case, the
coefficient of yq_l, q > 3, yields

) ijkik; — ) ijkik; — 4kg_1 =0 (A34)
ije{12,}, i+j=q+1 ije{12:+}, i+j=q—1
Thus:
(1-q)kikg +2(q — Vkokg—1 + ... + (9 — 1) (2)kg—1kz + (q-1)kgk1 — A35)
[1(9 — 2)k1kg—2 + 2(q — 3)kakg—3 + ...+ (q — 2)(1)kg—2k1] — 4kg—1 =0
ie.,
g—1 q—2
2qkykg + u;u(q —u+Dkukg_ys1 — M; u(q —u—1)kykg_y—1 —4ky_1 =0 (A36)
leading to
(= gy — YIS u(g+ 1 — wkakgn o+ 202 u(q — u— Vkukyya A3

2qk1
forq e {3,4,...}.

Coefficient Values
Use of Equation (A37), for g4 > 3, leads to the following list of coefficient values:

—7T 1
ki=—mky=1,kz = —, ks = =,
1 7T, K2 3 6 4 3
-3 8 -5 4
— - = - = A38
ks 10 ke 45,k7 112/k8 35 (A38)
—357 128 —637T 128
ko = 15y k10 = 1575k = Sg1g k12 = 55750

and the values are consistent with the result k; = C;;, fori € {1,3,4,...} (see Table Al
for C11, C33, ..., Ce). Itis the case that ky = Cpo — 1. These results are consistent, see

Equation (A30), with the requirement that fy(li) (0) = £9(0),i € {0,1,...,n} which implies
e(0)=0,i€{0,1,...,n}.
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From Equation (A30), the result C,; = C;;, i € {1,2,...,n} then follows and, for
n € {3,4,...},itis the case that

2n+1 . 0 . 2n+1 . 0 .
()= Y, ki—-Culy'+ Y ky'= Y [Ci—Cuily'+ Y. Ciiv/ (A39)
i=n+1 i=2n+2 i=n+1 i=2n+2

which is the required result.

Appendix F. Proof of Theorem 1

Consider the form for the nth order two point spline approximation, denoted f;, to
a function f as detailed in [15] (eqn. 40), and the alternative form given in [16] (eqn. 70).
Based on the points zero and one, the nth order approximation is

n

n
fuly) = (1~ ]/)n+1 2 anyy’ + y”H 2 b (1 — ]/)rr (A40)
r=0 r=0

r—u)! u'n!

- i f((”)()o‘) (nt+u)t by = i (=) () (n+u)! (A41)
u=0 u=0

' (r—u)! Culn!

re{0,1,...,n}, where f(y) = r2(y), r*(y) = acos(y)* + 2.
The sequence of numbers defined by f*)(0) and f*)(1), for k € {0,1,2,...}, respec-
tively, are:

2
%, —71,4, — 7,8, —97,128, —2257, 4608, —11,0257,294,912, . .. (A42)
8 —8 24 —128 640 —7680 3584 —229,376 18,579,456
1,0 ’ A (A43)

’3715’35" 105 '231° 1001 ~ 143’ 2431 ' 46,189 '~
For the first sequence, the ratios of the fifth to the third term, the seventh to the fifth
term, ... are:

9 o 225 , 1,025 -
1—3, 5 =57, 5 =49 =77, (A44)
The ratios of the sixth to the fourth term, eight to the sixth term, ... are:
128 5o 4608 5.0 294,912 5 o
— =16=2°2°, —— =36 =2°- =64 = 2%.4 Ad
8 6 ’ 128 36 3 4608 6 ’ (A45)
It then follows that the general iteration formula for f (k) (0) is:
2
T
0)="-, f)=fB®0)=—-m, f20)=4, fH0)=S8,
£0) =T f00) = FO0) = -, f0) =4, fO©) s6)

F0(0) = (k—2)2F*=2(0), k € {5,6,7,...}.

The general iteration form for f(¥)(1) arises by considering the ratios () (1)/ (<=1 (1), for
ke {5,6,7,...}, leading to:

fy=1, fN) =0, f2(1)=8/3 fO(1)=-8/15

(- (k-1

(A47)
f01) = == fE ()|, ke {456,
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Appendix F.1. Formula for Coefficients in Standard Polynomial Form
The goal is to write the approximation f,, as defined by Equation (A40), in the form

2n+1 %
fay) =Y Cuxy (A48)
k=0
To this end, the binomial formula
(1-y)' = Z e (A49)
Vo= ik Y
implies
ntl (=1 (n +1)!
fuy) = lano - n1y -+ Gy kgo <(n+)1(—k)!131'3/k+
ro(=1)kn
buo+bu1(1—y)+...+by, 1 u-yk—i—...—i— (A50)
o (r —k)!k!
yn+l k=0
no (=D
b X T
Thus:
_ e U L = N G V(R
)= w0l G T Y Tl G Y Pt
il (~) (4 1) gl (~DFn+ 1)t 4,
o e s A N C e w1 A 5D
ro(=1)kn
bn,O]/nJrl 4 bn,l (yn+1 _ yn+2) NI b”/’kgo (5 — I){)!k!_ n+k+1 + +

n

(*1)}(”! ntk+1
bun X =y Y

. nt1 (1)K 1)
For 0 <i < n,y'is associated with the value of k in the summationa,,, ) ()(7n+) kT
“izo (m+1—=Kk)K!

whichissuchthatk+r=1i,k>0,ie,k=i—rand 0 <r <i. Thus:

L(=D) T (n41)! .
Cni r;) i itr—ii—py o 0SisH (A52)

Forn+1 <i < 2n+1, the lowest value of r, such that there is a term associated with yi in
ay,r, satisfies the constraintn +1+r =1i,i.e,r =i —n — 1. The term yi is also associated
with theindexn +k+1=1i,k > 0,inb,,, i.e, k =i —n — 1, and with the lowest value of r
being consistent with n +r + 1 = i. Thus:

n (=1)" " (n+1)!
Cpi= NV, A+
’ g1 (14—l —r)
r=i—n—1 ( ' ) ( ) (A53)
n (=) 1

By, 1<i<2n+1.
R PR a1 e s S
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t3(y)

ta(y)

t3(y) =

Appendix F.2. Nature of Coefficients

Consider a;,,, and C,; as defined by Equations (A41) and (A52), whereupon it fol-
lows that

ano = f(0), an1 = (n+1)£(0) + f1(0), (A54)

Cl’l,O = al’l,O = f(O),
It can readily be shown that

Cpp = —(n+1)ang + a1 = F1(0). (A55)

1
0
Coi = i'( ) ie{o1,... n} (A56)

This result is consistent with the requirement, f,gi)(O) = f0(0) for i € {0,1,...,n},
associated with a two point spline approximation of order .

Appendix G. Third and Fourth Order Approximations for Arctangent

Approximations for arctangent, of orders three and four and arising from Theorem 5,

are:
3
Y35 38T (265 5_ (33131l 6 108 5 ],
¥y=3 [2 4y+4 21|y G 2y+457ry,
0<y<i1
T 1 1 55 357] 1 [265 1 [331 357] 1 (A57)
— 4 — | == | — -2l =+ | — = — | ==
2y 38 2 4 | 4 4 5 6 2 ]y
63 1
3
Yy |35 _63m) s 1979 6_ 1697 _ 7
¥y=3 {4 5 v+ G 1057 |y 1 1357 |y +
495 31577 4 3577
el B S | Pt <y<
-2l aeye
o1, 1 (%5 @]l 11, (A%
2y 38 4 2 | yp 6 yo
1697 1 [495 3157] 1 3571 1
ey [ e S e

Appendix H. Alternative Third and Fourth Order Approximations for Arctangent

Third and fourth order approximations for arctangent, and arising from Theorem 6,

are:
2y 2y [55 357 265
N Rt 1 e
Ty 2w [7 10y Pev=t
24 8 29
[ 6121 1317 [63_ 7{]1_[331_35”]1 (A59)
1 840 72 10 Yo 12 4 | A
R E-RTR I R 1 . et
6 3 2 4 | y*> 3y 2
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2 2y (395 o [1979 1057 5
3 15 |14 24 4
2 0<y<1
7| (1697 o 9 687 10 [19_ 357 1
t Il i) (A60)
W= e [0 11 165 1057]1
44 7 v’ 2 4 |y
5 ) y>1
Lry? | 1697 ., 11 [1979 105w)1 [395 1 2 o
10 vz 2 |4 e Ty VT2

Appendix I. Additional Approximations for Arcsine via Iteration

The third order iteration, arising from Equation (96), leads to the following approxi-
mation for arcsine:

_ sinfsn(y)] —y} —y

. )
h3(y) = su(y) sinfsn(y)] —y o {Sn(y) coslsn(y)] B
3 " cos[sn(y) cos [S (v) — RV y]
n COS[Sn (_1/)]
ainls B Si?’l[sn(y)] —Y| _
sin | sy (y) sinfsn(y)] —y [ () cos[sn(y)] } ’ y (A6
n cos[sy (y) cos {S (v) - Penl) - y}
n cos[sn(y)
inle Sln[sn(y)] —Yi_
cos | sy (y) sinsn(y)] —y [ ") cos[sn (v)] ] ’
n cos([sy (y) cos [Sn(y) - Si”[sn[(yz] )_ y}
cos|su\Y

The second order iteration, based on Equation (99), leads to the following approxima-
tion for arcsine:

hz(y) = g — /11— yz {g —y+ dz,zyz + d2,3y3 + d2,4y4} —
cos [M [g —y+doy* +dozy’ + d2,4y4H -y
sin [\/ 1—y? {g —y +dapy? +dyzy® + d2,4]/4H

v 1— ]/2 [g —y+ dzlzyz + d2,3]/3 + d2,4]/ } +
|-

cos| cos [M {g —y+ dz,z]/2 + d2,3y3 +daay 4} 4 (862)
sin [ﬂ[z —y+dopy? +dogy® + doy 4”
M{E_%Ldzzy +do3y° +d24y4]+
sin COS[M[——]/—M&Z]/ +do3y° +d24y4H -y

sin {M[E —y+dopy? +dozyP +doay H

Appendix J. Proof of Theorem 7

A zero order spline approximation is simply an affine approximation between the
two specified points. Consistent with the illustration of Figure 13, the zero order spline
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approximation, denoted fj, to asin(y), is an affine approximation between the points
(sin(ug), up) and (sin(vp), vp) leading to

Vo — Up

sin(oy) —sin(uyy’ ¥ € [sn(uo)sin(wo)]. (A63)

foly) = uo + [y —sin(uo)]-

With the approximation x, = asin(y,) =~ f,l, it follows, after simplification, that

Uo SIN(Vy) — Vo SIN(Up) + Yo Vo — Uo]

sin(v,) — sin(u,) (A64)

fo(yo) =

Substitution of ug = f1.(y0) and vg = f1(yo) yields the required result after the change in
variable from yg to y.

General Result

Consider the general nth order spline approximation f, to a function f over the
interval [, B], as given by [16] (eqn. 70):

fulx) = (B — 2! 20< W - Y b (Box) (AG)

r=0
where
_ 1 . i f(rfu)(tx).(n—f—u)!' 1
r = (,B—zx)"H u—o (r—u)t uln!  (B—a)"’
(A66)
_ 1 r (_1)r—uf(r7u)(15>.<n+u)! 1

GowE oW wm (e

The general result stated in Theorem 7 arises with the definitions f(y) = asin(y), and
the interval [«, B] where a = sin(ug), B = sin(vy) and ug = f1(yo), vo = fu(yo). The
approximation is

~ [sin(vo) —y]" .
fu(y) = [sin(v,) —Sin(uo)}nﬂ
5ty sin(u))” | 3o £ in(m0)] (4 )t 1
EO ’ " Lgo (r—u)! uln! [sin(v,) — sin(uo)" " (A67)
[y — sin(u,)]" ! .
[sin(v,) — sin(uy)]" !
- [si [ g GO sin(oo)] (14 ) 1
EO e .[MZO (r=w ~utnl sin(o,) —sin(uo)]u}

for y € [sin(vg),sin(vg)] and where f) is the kth derivative of arcsine. An analytical
expression for () arises from noting that f(!) (y) = 1/,/1 — y2 and that f*) has the form

k+i+1
k] H(_zl)]yi
f(k)(y)_ig VﬁLiJrlJl , ke {1,2,..} (A68)
-yt 2 12

where the coefficients d[k, i] are to be determined. By considering the forms for f*<+1) ()
and £ (y), the algorithm for the coefficients, as specified in Theorem 7, can be deter-
mined. Qi and Zheng [28] detail an alternative form for f*). As f(O[sin(u,)] = u, and
FO)[sin(v,)] = vo, it then follows that
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_ fsinw) =y
fuly [sin(v,) — sin(u,)]"
(n+7)tu,
n _ .| rint[sin(vo) — sin(u,)]"
Bl =sin@w)l™ £ lsin(u)] (1 +u)t 1 i
= sin(u 1 u—o  (r—u)! uln! " [sin(vy) — sin(uy)] (A69)
[sin(v,) — sin(u,)]" !
(n+r)!v,
no rin![sin(v,) — sin(u,)]"
rg [sin(vy) — ]/] ril (_1)r7uf(r7u) [sin(vo)] (n 4 u)! 1
W=0 (r—u)! " uln! [sin(v,) — sin(u)]"

fory € [sin(u,),sin(v,)]. The required result follows: the approximation for asin(y,) arises
for the case of y = y,.

Appendix K. Fourth and Sixth Order Approximations for Arccosine Squared

The fourth and sixth order approximations for arccosine squared, consistent with
Theorem 9, are:

_ v y
east) = 0y 2|1 2] (a70)
p _ 16732749 j6 808161 1,299,161 j25525 407
12,500,000 ' 6,250,000 12,500,000 " 12,500,000 A7)
o L168741 23,807,720 16131473 9,610,843
781,250 ' 12,500,000 6,250,000 ' 12,500,000
c ():ﬁ(lf )ﬁ[ly} {13’] (A72)
2o 4 / i=1 Tei i
o 3,602,739 675,965,943 788,537,601 _j183,895, 863
250,000, 000 109 109 125,000,000
oo 117,196,479 j117,89 643 1,129,571,433 365,814,027
109 62,500,000 109 200,000, 000
v 496,879,191 82,357,137 1,238,163,489 ja78,997,641
250,000,000 ' 62,500,000 500, 000, 000 109

Appendix L. Approximations for Even Powers of Arcsine

Borwein [23] (eqn. 2.2 to 2.4) details approximations for even powers of arcsine and
the approximations for powers of two, four, six, eight and ten are:

Sy (A74)

) 3 M k—1 1 22k k! 2 2k
asin(y)” ~ Sy (y) = ) kZl [ Zl mz] ’ kz(z}kifu (A75)
= m=
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45 & [hd 1 et 1] 22Ky
asin(y)® = Seu(y) = & [ —y 2. (A76)
i By p O e
315 ¢ [l 1 el Pl ] o2k
asin(y)® ~ Sg, == = 2 1 (A77)
Y Tl(y) 2 k:Zl [m—l m2 pgl pZ = qz kz(Zk)'
100 &[R4 met g rh g gl g ] o2k
asin(y)'* = Siou(y) = = [ =Y =5 Y 5 Y 5|2 (A78)
' £ kzzl m; m =Pt S S| k(2K

Appendix M. Second and Third Order Approximations for Inverse Tangent Integral

Second and third order approximations for the inverse tangent integral are:

32 1572
T (y) = %-ln[y—&- V1 —i—yz} + {? +8m — Tn}-atan(y)—i—
1572 % 35 15727y
|:—8—97'(+ 4:|1+y2+ |:? +87T—T:|W+ (A79)
0 1w 157t Ty [80 o sy
3 2 4 1 +y2)3/2 9 2 | +y2)3/2

. 5], [-788 7437 4557 T
T3(y) = > ln{y—h/l—ky}—i—[ 9 o 1g atan(y)+4

v
N
Y

-ﬂ_&l 357-[2:|.y_l’_[4724_1]577_—_1057T2:|. —+

| 45 3 4 1+ y? 3 2 (1+y2)>?

2, 2 35712} ¥y [—108 e 525”2] Y (ASO)

| 9 3 (1+ y2)3/2 4 16 (1412)?

[—324 1657 N 315712] oy [2744 L4 35712] . y N

L 5 4 16 (1+y2)2 45 12 2 (1+y2)5/2

110,976 L A7m 70712} . v’ N [21,952 | 854 28712} . Y

135 9 3 (1+ y2)5/2 675 45 3 (1+ y2)5/2
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