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Abstract: The eigenvalue bounds of interval matrices are often required in some mechanical and
engineering fields. In this paper, we improve the theoretical results presented in a previous paper “A
property of eigenvalue bounds for a class of symmetric tridiagonal interval matrices” and provide a
fast algorithm to find the upper and lower bounds of the interval eigenvalues of a class of symmetric
tridiagonal interval matrices.
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1. Introduction

In a lot of practical engineering problems, many quantities are uncertain but bounded
due to inaccurate measurements, errors in manufacturing, changes to the natural envi-
ronment, etc., so they have to be expressed as intervals. Therefore, interval analysis has
received much interest not only from engineers but also from mathematicians [1–5]. Rohn
in [6] surveyed some of the most important results on interval matrices and other interval
linear problems up to that time.

In particular, since it is often necessary to compute the eigenvalue bounds for interval
eigenvalue problems in structural analysis, control fields and some related issues in engi-
neering and mechanics, many studies have been conducted on these problems in the past
few decades (e.g., [7–15]).

The eigenvalue problems with interval matrices dealt with in this paper can be formu-
lated as follows:

Ku = λu (1)

subject to
K ≤ K ≤ K or kij ≤ kij ≤ kij , for i, j = 1 , 2 , . . . , n (2)

where K = (kij), K = (kij) and K = (kij) are all n× n real symmetric matrices. K and K
are known matrices which are composed of the lower and upper bounds of the intervals,
respectively. K is an uncertain-but-bounded matrix and ranges over the inequalities in
Equation (2). λ is the eigenvalue of the eigenvalue problem in Equation (1) with an
unknown matrix K, and u is the eigenvector corresponding to λ. All interval quantities are
assumed to vary independently within the bounds.

In order to facilitate the expression of the interval matrices, interval matrix notations [2]
are used in this paper. The inequalities in Equation (2) can be written as K ∈ K I , in which
K I = [K, K] is a symmetric interval matrix. Therefore, the problem can be referred to as
follows: for a given interval matrix K I , find an eigenvalue interval λI , which is to say

λI = [λ , λ] = (λI
i ), λI

i = [λi , λi] (3)

such that it encloses all possible eigenvalues λ satisfying Ku = λu when K ∈ K I = [K, K] =
(kI

ij), KT = K, kI
ij = [kij, kij].

AppliedMath 2023, 3, 90–97. https://doi.org/10.3390/appliedmath3010007 https://www.mdpi.com/journal/appliedmath

https://doi.org/10.3390/appliedmath3010007
https://doi.org/10.3390/appliedmath3010007
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/appliedmath
https://www.mdpi.com
https://orcid.org/0000-0001-7024-5984
https://doi.org/10.3390/appliedmath3010007
https://www.mdpi.com/journal/appliedmath
https://www.mdpi.com/article/10.3390/appliedmath3010007?type=check_update&version=1


AppliedMath 2023, 3 91

Furthermore, let the midpoint matrix of the interval matrix K I = [K, K] be defined as

Kc =
(K + K)

2
= (kc

ij), kc
ij =

(kij + kij)

2
, i, j = 1, 2, . . . , n (4)

and the uncertain radius of the interval matrix K I = [K, K] be

4K =
(K− K)

2
= (4kij), 4kij =

(kij − kij)

2
, i, j = 1, 2, . . . , n (5)

For some special cases of these problems, such as when K is a real symmetric matrix
in Equation (1), some methods based on perturbation theory were proposed in [7,9,16–18].

From many numerical experiments, we observed that the eigenvalue bounds are often
reached at certain vertex matrices (in other words, at the boundary values of the interval
entries). Therefore, the conditions under which the eigenvalue bounds will be reached at
certain vertex matrices has been raised as an interesting question. Under the condition that
the signs of the components of the eigenvectors remain invariable, Deif [7] developed an
effective method which can yield the exact eigenvalue bounds for the interval eigenvalue
problem in Equation (1). As a corollary of Deif’s method, Dimarogonas [17] proposed that
the eigenvalue bounds should be reached at some vertex matrix as under Deif’s condition.
However, there exists no criterion for judging Deif’s condition in advance. Methods
depending on three theorems dealing with the standard interval eigenvalue problem were
introduced in [18], which claimed that the eigenvalue bounds should be achieved when
the matrix entries take their boundary values for Equation (1) according to the vertex
solution theorem and the parameter decomposition solution theorem. Unfortunately, this
is not true. There exists a certain matrix (see the example in the Appendix of [16]) in
which the upper or lower point of an eigenvalue interval is achieved when some matrix
entries take certain interior values of the element intervals but not the end points. This
contradicts the conclusion in [18]. For symmetric tridiagonal interval matrices, we also
have counterexamples, such as [

[3, 3.1] [−1, 1]
[−1, 1] [3, 3.1]

]
The eigenvalues intervals are λ1 = [2, 3.1] and λ2 = [3, 4.1]. The maximum value of λ1 is
obtained at [

3.1 0
0 3.1

]
.

This is not a vertex matrix.Therefore, the conditions under which the end values of an
eigenvalue interval can be achieved when the matrix entries take their boundary values
need to be established.

In [19], Yuan et al. considered a special case of the problem in Equation (1). They
proved that for a symmetric tridiagonal interval matrix, under some assumptions, the upper
and lower bounds of the interval eigenvalues of the problem will be achieved at a certain
vertex matrix of the interval matrix. Additionally, the assumptions proposed in their paper
can be judged by a sufficient condition. This result is important. However, there is a
drawback in that to determine the upper and lower bounds of an eigenvalue, 2n−1 vertex
matrices should be checked.

In this paper, we will present an improved theoretical result based on the work in [19].
From this result, we can derive a fast algorithm to find the upper or lower bound of an
eigenvalue. Instead of checking 22n−1 vertex matrices, we just need to check 2n− 1 matrices.

The rest of the paper is arranged as follows. Section 2 introduces the theorical results
given in [19]. Section 3 provides the improved theorical result and the fast algorithm to
find the upper or lower bound of an eigenvlaue of an symmetric tridiagonal interval matrix.
Section 4 illustrates the main findings of this paper by means of a simulation example.
Section 5 provides further remarks.
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2. A Property for Symmetric Tridiagonal Interval Matrices

For the convenience of reading and deriving the results of the next section, we present
the results from [19] here.

Let an irreducible symmetric tridiagonal matrix A, which is a normal matrix, be
denoted as

A =


a1 b1
b1 a2 b2

. . . . . . . . .
bn−2 an−1 bn−1

bn−1 an

. (6)

Obviously, all eigenvalues of A are real.
Several lemmas and corollaries are given below:

Definition 1 (leading or trailing principal submatrix). Let D be a matrix of the order n with
diagonal elements d11, . . . , dnn. The submatrices of D whose diagonal entries are composed of
d11, . . . , dkk for k = 1, . . . , n are called leading principal submatrices of the order k, and those
whose diagonal entries are composed of dn−k+1,n−k+1, . . . , dnn k = 1, . . . , n are called trailing
principal submatrices of the order k.

Let the leading and trailing principal submatrices of an order k be denoted as Dk
and D′k for k = 1, . . . , n, respectively. The leading and trailing principal minors can be
defined similarly.

Next, three theorems from the literature are introduced as lemmas below:

Lemma 1 ([20], p. 36). A, denoted as in Equation (6), has the following properties:

• All eigenvalues of A are distinct;
• The n− 1 eigenvalues of the leading (trailing) principal submatrix of the order n− 1 separate

the n eigenvalues of A strictly.

The following corollary can be easily deduced from Lemma 1:

Corollary 1. If a characteristic polynomial of A satisfies f (λ) = 0, then f ′(λ) 6= 0. Furthermore,
the characteristic polynomial can be rewritten in the form of a determinant |A − λI|. The leading
(trailing) principal minor of the order n− 1 of |A − λI| does not equal zero if f (λ) = 0.

Lemma 2 ([21], Th.3.1). Let Â =

(
A0

A1

)
, in which

A0 =


a1 b1

b1
. . . . . .
. . . . . . bk−1

bk−1 ak

, A1 =


ak+1 bk+1

bk+1
. . . . . .
. . . . . . bn−1

bn−1 an

.

Let the eigenvalues ofA be denoted by λ1 < λ2 < . . . < λn and those of Â be λ̂1 ≤ λ̂2 ≤ . . . ≤ λ̂n.
Then, it holds that

λ1 < λ̂1 < λ2, λn−1 < λ̂n < λn.

The following can easily be obtained from Lemma 2:

Corollary 2. If λ is the minimum or maximum eigenvalue of A such that |A − λI| = 0, then the
leading and trailing principal minors of |A − λI| of the order k for k < n do not equal zero.
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Lemma 3 ([22]). If n− 1 eigenvalues of certain principal submatrix of A of the order n− 1 are
distinct, then they separate n eigenvalues of A strictly.

The proof in [22] is written in Chinese. Its English translation can be found in the
Appendix of [19].

From this lemma, it is easy to deduce the following corollary:

Corollary 3. If n− 1 eigenvalues of each principal submatrix of A of the order n− 1 are distinct,
and |A − λI| = 0, then the leading and trailing principal minors of |A − λI| of the order k with
k < n do not equal zero.

The proof of this corollary is in [19].
Next, the main theorem of this paper can be introduced. We give the whole proof here

since we need to use the results and notations in the next section:

Theorem 1. Let an interval matrix AI = [A, A] be a symmetric tridiagonal interval matrix, and
it is denoted as

AI =


[a1 , a1] [b1 , b1]

[b1 , b1] [a2 , a2] [b2 , b2]
. . . . . . . . .

[bn−2 , bn−2] [an−1 , an−1] [bn−1 , bn−1]

[bn−1 , bn−1] [an , an]

. (7)

Let its vertex matrices be expressed as As for s = 1, . . . , 22n−1, with its diagonal elements being
either ai or ai for i = 1, . . . , n and its subdiagonal elements being either bj or bj for j = 1, . . . , n− 1.

Let the eigenvalues of AI be λI
i = [λi , λi] and the eigenvalues of As be λs

i . Here, suppose that
λi , λi and λs

i are all arranged in an increasing order for i = 1, . . . , n.
If AI satisfies

(a) its sub-diagonal intervals not including zero, then

λi = min
s

λs
i and λi = max

s
λs

i for i = 1, n, s = 1, 2, . . . , 22n−1;

Furthermore, if AI also satisfies

(b) each of its principal sub-matrices of the order n− 1 possessing n− 1 non-overlapping eigen-
value intervals, then

λi = min
s

λs
i and λi = max

s
λs

i for i = 1, . . . , n, s = 1, 2, . . . , 22n−1.

Proof. Let the central points and the radii of the entries of AI be denoted, respectively, as

ai = (ai + ai)/2, bj = (bj + bj)/2, rai = (ai − ai)/2, rbj
= (bj − bj)/2,

for i = 1, . . . , n; j = 1, . . . , n− 1. Denote 2n− 1 real variables as

X = (xa1 , . . . , xan , xb1 , . . . , xbn−1)
T ∈ R2n−1. (8)

Therefore, the ith diagonal entry of AI can be expressed as ai + rai sin xai for i = 1, . . . , n
and the jth subdiagonal entry of AI can be expressed as bj + rbj

sin xbj
for j = 1, . . . , n− 1.

Let
∣∣ AI − λI I

∣∣ be the characteristic determinant of AI . The definition of its leading or
trailing principal minors is the same as in Definition 1. Obviously, λi is a function of X.
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Let F(X, λi(X)) =
∣∣AI − λ i(X)I

∣∣. F is differentiable due to the differentiability of all
entries in

∣∣AI − λ i(X)I
∣∣. Then, F(X, λi(X)) can be expressed as∣∣∣∣∣∣∣∣∣∣∣

a1 + ra1 sin xa1 − λ b1 + rb1
sin xb1

b1 + rb1
sin xb1

a2 + ra2 sin xa2 − λ
. . .

. . .
. . . bn−1 + rbn−1

sin xbn−1

bn−1 + rbn−1
sin xbn−1

an + ran sin xan − λ

∣∣∣∣∣∣∣∣∣∣∣
. (9)

Consider the partial derivative of λ with respect to xa1 when F(X, λi(X)) = 0. Based
on the derivative rule for a determinant, we obtain

(ra1 cos xa1 −
∂λ

∂xa1

)|D′n−1| −
∂λ

∂xa1

|D1||D′n−2| −
∂λ

∂xa1

|D2||D′n−3| − . . .− ∂λ

∂xa1

|Dn−1| = 0. (10)

Thus, we obtain that

∂λ

∂xa1

=
ra1 cos xa1 |D′n−1|

|D′n−1|+ |D1||D′n−2|+ |D2||D′n−3|+ . . . + |Dn−1|
.

In a similar way, the partial derivative of λ with respect to xb1 when F(X, λi(X)) = 0 is

∂λ

∂xb1

=
−2rb1 cos xb1(b1 + rb1 sin xb1)|D

′
n−2|

|D′n−1|+ |D1||D′n−2|+ |D2||D′n−3|+ . . . + |Dn−1|
.

Moreover, it can be deduced that

∂λi
∂xak

=
rak cos xak |Dk−1||D′n−k|

D
(k = 1 , 2 , . . . , n),

∂λi
∂xbl

=
−2rbl

cos xbl
(bl + rbl

sin xbl
)|Dl−1||D′n−l−1|

D
(l = 1 , 2 , . . . , n− 1),

(11)

where D = |D′n−1|+ |D1||D′n−2|+ . . . + |Dn−2||D′1|+ |Dn−1| and |D0| = |D′0| = 1.
From Corollary 1, we know that D 6= 0 when F(X, λ i) = 0 since D is the derivative

of F with respect to λ i. Additionally, from Corollary 2, when condition (a) is satisfied and
F(X, λ 1) = 0 (or F(X, λ n) = 0), it is obtained that all |Di| and |D′i | for i = 1, 2, . . . , n− 1
do not equal zero. From Lemma 3, the same conclusion can be drawn when conditions (a)
and (b) are both satisfied and F(X, λ i) = 0.

Therefore, if all partial derivatives in Equation (11) vanish, then it must have cos xak = 0
and cos xbl

= 0. Then, the corresponding values of sine must be ±1. From the extremal
property of a function, the eigenvalue bounds should be reached when the matrix entries
take their boundary values:

Remark 1. We would like to mention here that condition (b) in Theorem 1 is restrictive. However,
the following are true:

(i) In many engineering problems, the matrix which satisfies condition (b) can be verified by some
sufficient conditions. Yuan, He and Leng provided a theorem in [19] to verify condition (b).
Hladík in [15] provided an alternative test which can also verify condition (b).

(ii) In many engineering problems, we just need to find the interval of the largest eigenvalue, and
in this scenario, we do not need to verify condition (b).

(iii) In [15], the author presented another approach to obtaining eigenvalue intervals for symmetric
tridiagonal interval matrices. Compared with the algorithm in [15], our algorithm (which
will be presented in the next section) does not need to use eigenvectors. Therefore, it is
still competitive.
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3. An Improved Theoretical Result and a Fast Algorithm

As we mentioned before, Theorem 1 provides an important property of symmetric
tridiagonal interval matrices. However, it helps us little in finding the upper and lower
bounds of eigenvalues, since 2n−1 vertex matrices need to be checked to determine the
upper and lower bounds of an eigenvalue. Below, we will prove a better property:

Definition 2 (uniformly monotone). Ina function G(x1, . . . , xn) : E→ R, if forall (x1, x2, . . . , xn)
∈ E, G is monotone increasing or monotone decreasing with respect to xi, then G is uniformly
monotone with respect to xi.

Lemma 4 (multivariate intermediate value theorem). For any continuous function over a
closed region f (x), if f (x) = 0 has no zero in the internal part, then either f (x) > 0 or f (x) < 0
for all x in the internal part.

Proof. Suppose we have x and y such that f (x) < 0 and f (y) > 0. Then, take a connected
open set U containing both x and y. As f is continuous, we know f (U) is connected and
contains both a positive and negative number and thus also contains zero.

Theorem 2. If the conditions in Theorem 1 are satisfied, then in Equation (9), if we restrict each
component between [−π/2, π/2], then λi(X) is uniformly monotone.

Proof. In the proof of Theorem 1, we showed that all |Di| and |D′i | for i = 1, 2, . . . , n− 1
do not equal zero. According to Lemma 4, we have in Equation (11) that all ∂λi

∂xak
and ∂λi

∂xbl
will keep the same sign in (−π/2, π/2) for all xak and xbl

, k = 1, 2, . . . , n, l = 1, 2, . . . , n− 1.
This means that λi(X) is uniformly monotone.

Theorem 2 tells us the following:

• Assume that the conditions in Theorem 1 are satisfied;
• Assume a component (for example, xa1) causes λi(X) to monotonically reach its

extreme value when other components are fixed (from Theorem 1, xa1 will reach one
of its ending points).

Then, for another component (for example, xa2), when xa2 reaches one of its ending
points, changing xa1 cannot improve the value of λi(X). Based on the above analysis, we
proposed an algorithm to find the upper or lower bound of an eigenvalue. Suppose we
need to find the lower bound of the smallest eigenvalue λ1; We have Algorithm 1 as follows
(for the upper bounds and other eigenvalues, the algorithms are similar):

Algorithm 1 (Fast Algorithm for lower bound of λ1)

1: Set ak = ak, bl = bl , k = 1, 2, . . . , n, l = 1, 2, . . . , n− 1. Here, ak and bl have the same
meaning as in Equation (7). We will obtain a matrixA as in Equation (6) and obtain λ1.

2: For k from 1 to n:
Let ak = ak. Here, ak has the same meaning as in Equation (7). Therefore, we have a
matrix A′ and λ′1.
If λ′1 < λ1: λ1 ← λ′1
Else: ak ← ak

3: For l from 1 to n− 1:
Let bl = bl . Here, bl has the same meaning as in Equation (7). Therefore, we have a
matrix A′ and λ′1.
If λ′1 < λ1: λ1 ← λ′1
Else: bl ← bl
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To obtain the upper or lower bound of λi, we just need to check 2n− 1 vertex matrices
instead of 22n−1 vertex matrices.

4. Numerical Experiment

A numerical example is presented here to illustrate the algorithm. The example comes
from a spring mass system. The practical background here is unimportant, and therefore it
was omitted.

Example 1. Calculate the eigenvalues bounds for the symmetric tridiagonal interval matrix

AI =


[2975, 3025] [−2015,−1985]

[−2015,−1985] [4965, 5035] [−3020,−2980]
[−3020,−2980] [6955, 7045] [−4025,−3975]

[−4025,−3975] [8945, 9055]


It is easy to verify that all conditions in Theorem 1 hold (see [19]). Using Algorithm 1

in Section 3, we can find the results in Table 1.

Table 1. The upper and lower bounds of the eigenvalues.

Eigenvalue Corresponding Matrix Entries
Bounds (k11, k22, k33, k44, k12, k23, k34)

λ1 842.9251 (2975, 4965, 6955, 8945,−2015,−3020,−4025)
λ1 967.1082 (3025, 5035, 7045, 9055,−1985,−2980,−3975)
λ2 3337.0785 (2975, 4965, 6955, 8945,−1985,−3020,−4025)
λ2 3443.3127 (3025, 5035, 7045, 9055,−2015,−2980,−3975)
λ3 7002.2828 (2975, 4965, 6955, 8945,−1985,−2980,−4025)
λ3 7126.8283 (3025, 5035, 7045, 9055,−2015,−3020,−3975)
λ4 12,560.8377 (2975, 4965, 6955, 8945,−1985,−2980,−3975)
λ4 12,720.2273 (3025, 5035, 7045, 9055,−2015,−3020,−4025)

The results were the same as those in [11].

5. Conclusions

This paper improved the theoretical results presented in [19] and presented a fast
algorithm to find the upper and lower bounds of the interval eigenvalues of a class of
symmetric tridiagonal interval matrices. Since this kind of matrix is popular in engineering
problems, we believe that this algorithm offers strong application value. It is still an
open question under what kinds of assumptions the conclusions in Theorems 1 and 2 can
be generalized to symmetric but non-tridiagonal interval matrices or even more general
interval matrices.
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