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Abstract: Copula analysis was created to explain the dependence of two or more quantitative
variables. Due to the need for in-depth data analysis involving complex variable relationships,
there is always a need for new copula models with original features. As a modern example, for
the analysis of circular or periodic data types, trigonometric copulas are particularly attractive and
recommended. This is, however, an underexploited topic. In this article, we propose a new collection
of eight trigonometric and hyperbolic copulas, four based on the sine function and the others on
the tangent function, all derived from the construction of the famous Farlie–Gumbel–Morgenstern
copula. In addition to their original trigonometric and hyperbolic functionalities, the proposed
copulas have the feature of depending on three parameters with complementary roles: one is a
dependence parameter; one is a shape parameter; and the last can be viewed as an angle parameter.
In our main findings, for each of the eight copulas, we determine a wide range of admissible values
for these parameters. Subsequently, the capabilities, features, and functions of the new copulas are
thoroughly examined. The shapes of the main functions of some copulas are illustrated graphically.
Theoretically, symmetry in general, stochastic dominance, quadrant dependence, tail dependence,
Archimedean nature, correlation measures, and inference on the parameters are investigated. Some
copula shapes are illustrated with the help of figures. On the other hand, some two-dimensional
inequalities are established and may be of separate interest.

Keywords: copulas; dependence models; trigonometric functions; hyperbolic functions; inequalities;
correlation
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1. Introduction

In many real-world scenarios, modeling the relationship (or dependence) between two
or more quantitative variables is crucial. In order to achieve this, the copulas provide effective
solutions in the quantitative case. They recently received a lot of attention due to the varying
intricacy of dependence that emerges in current data analysis challenges. An overview of
the copula theory can be found in [1–5]. Two-dimensional copulas must be used when there
are only two quantitative variables of concern. The following mathematical basis provides a
definition of such two-dimensional copulas in the absolutely continuous case.

Definition 1 (Absolutely continuous two-dimensional copulas [5]). Let S = [0, 1]2. A two-
dimensional function C(x, y), (x, y) ∈ S , is said to be an absolutely continuous two-dimensional
copula if and only if the following conditions are met for any (x, y) ∈ S :

(I) C(x, 0) = 0 and C(0, y) = 0,
(II) C(x, 1) = x and C(1, y) = y,
(III) ∂x,yC(x, y) ≥ 0, where ∂x,y = ∂2/(∂x∂y) represents the standard mixed second order partial

derivatives according to x and y.
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In the following, the mention “absolutely continuous two-dimensional” is omitted
to lighten the comments. Clearly, from a technical viewpoint, the less immediate item in
Definition 1 is item (III). It can demand fastidious developments.

Established families of copulas include the elliptical copulas (Gaussian, Student, etc.),
Archimedean copulas (Ali–Mikhail–Haq, Clayton, Frank, etc.), extreme value copulas, and
Farlie–Gumbel–Morgenstern (FGM)-type copulas. Despite the extensive literature, copula
modeling is still a hot topic, and numerous research studies have been conducted to develop
the approach from both the theoretical and practical aspects. Significant contemporary
references include [6–18].

In order to motivate the findings of this article, a review of the FGM copula is required.
To start, it is mathematically described as

C(x, y; θ) = xy + θxy(1− x)(1− y), (x, y) ∈ S ,

where θ ∈ [−1, 1]. In this expression, the polynomial function θxy(1− x)(1− y) is consid-
ered a perturbed function of xy, and xy corresponds to the independence copula; when
θ = 0, C(x, y; θ) is reduced to the independence copula. The key details about the FGM
copula are contained in [1–5,19]. The polynomial form of the perturbation function and
the moderate correlation range are two drawbacks of the FGM copula. These factors are
crucial, among other situations, when fitting two-dimensional data. The FGM copula
has, however, garnered a lot of attention from researchers due to its straightforward al-
gebraic characteristics. It has also motivated new varieties of FGM-type copulas. See,
for instance, [12,20–22].

On the other hand, recent references have suggested including trigonometric functions
in the construction of copulas, making them more suitable in some circumstances. In
particular, in order to model the correlations into phenomena that have a periodic, circular,
or seasonal nature, it is intended to give the copula some oscillating properties. They are
particularly well adapted to the correlation analysis of movement, circular, and environ-
mental data. The references for conventional trigonometric copulas include [7,23–29]. For
their practical aspect, we refer to [16,30–33]. Additionally, the trigonometric copulas now
have a new applied dimension thanks to the R package Cylcop, recently created in [34].

In this article, we create a collection of new three-parameter copulas that have the
general form of the FGM copula, but the perturbed function is completely redefined; it
involves either trigonometric or hyperbolic functions. More precisely, we focus on special
copulas of the following form:

C(x, y; υ) = xy + αφ[βxγyγ(1− x)(1− y)], (x, y) ∈ S ,

where υ = (α, β, γ) is the considered three-parameter vector and φ(u) is a specific trigono-
metric or hyperbolic sine or tangent function. More precisely, the following functions for
φ(u) are considered:

φ(u) ∈ {sin(u), arcsin(u), sinh(u), arcsinh(u), tan(u), tanh(u), arctan(u), arctanh(u)}.

The main novelties of the resulting copulas are in (i) the inclusion of a shape parameter
γ that modulates the effect of xγyγ on the perturbation function, following the spirit of
the method in [12] for the extended FGM copula, (ii) the consideration of completely new
trigonometric or hyperbolic functions for φ(u) as the main transformation, and (iii) the
consideration of the parameter β, which is major to exploit at the maximum support of φ(u);
it can be considered an angle parameter if φ(u) is a trigonometric function (see [7,26]). It is
also worth noting that the perturbation function φ[βxγyγ(1− x)(1− y)] is not separable in
x and y, i.e., we cannot write it as ψ(x)ϕ(y), where ψ(x) and ϕ(y) denote two functions.
For the common separable case, we may refer to [14], and the references therein.

In this innovative setting, for each of the eight copulas, we establish wide admissible
ranges of values for α, β and γ, which may be connected in a sophisticated manner. The
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proofs are based on complex two-dimensional differentiations, factorizations, and various
kinds of mathematical inequalities. The features of the suggested copulas are then investi-
gated. The effect of the parameters on the shapes of some of them is illustrated graphically.
In addition, the related functions (survival copula and copula density), symmetry (diagonal
symmetry and radial symmetry), quadrant dependence, first-order stochastic dominance,
tail dependence, medial and Spearman correlations are examined. The inference on the
parameters is also briefly discussed. This study serves as the foundation for the develop-
ment of new multi-dimensional trigonometric and hyperbolic copulas, which continue
to be of particular relevance in various applications. On the other hand, a number of
two-dimensional inequalities are discovered and might be of independent interest.

Three other sections compose the article. The main copulas are studied and presented
in Section 2. Section 3 proposes some graphical analyses and a unified study of their
properties. A short conclusion is given in Section 4.

2. A Collection of Eight New Copulas

This section describes the created copulas in detail, as well as the main functions
associated with them.

2.1. Sine-FGM Copula

The result below presents a new sine-FGM-type copula.

Proposition 1. Let us consider the following two-dimensional function:

C(x, y; υ) = xy + α sin[βxγyγ(1− x)(1− y)], (x, y) ∈ S , (1)

where υ = (α, β, γ), and α, β and γ are such that β ≥ 0, γ ≥ 1, and

β ≤ π

2m2
γ

, |α| ≤ 1
βγ2(1 + β2m4

γ)
, (2)

where mγ = [γ/(γ + 1)]γ/(γ + 1). Then, C(x, y; υ) is a copula.

Proof. The proof consists in demonstrating that the proposed function satisfies the items
(I) , (II) and (III) of Definition 1.

(I) For any x ∈ [0, 1], since γ ≥ 1, we have

C(x, 0; υ) = x× 0 + α sin[βxγ × 0γ × (1− x)(1− 0)] = 0 + α sin(0) = 0.

Using a similar development, for any y ∈ [0, 1], we obtain C(0, y; υ) = 0.
(II) For any x ∈ [0, 1], we have

C(x, 1; υ) = x× 1 + α sin[βxγyγ(1− x)(1− 1)] = x + α sin(0) = x.

Similarly, for any y ∈ [0, 1], it is clear that C(1, y; υ) = y.
(III) After differentiation, simplifications and factorizations, for any (x, y) ∈ S , we find

∂x,yC(x, y; υ) = 1 + αβxγ−1yγ−1[γ(x− 1) + x][γ(y− 1) + y] cos[β(1− x)(1− y)xγyγ]

− αβ2(1− x)(1− y)x2γ−1y2γ−1[γ(x− 1) + x][γ(y− 1) + y] sin[β(1− x)(1− y)xγyγ].

Hence, by manipulating the absolute values, the following inequality is obtained:

∂x,yC(x, y; υ) ≥ 1− |α||β|xγ−1yγ−1|γ(x− 1) + x||γ(y− 1) + y||cos[β(1− x)(1− y)xγyγ]|
− |α|β2(1− x)(1− y)x2γ−1y2γ−1|γ(x− 1) + x||γ(y− 1) + y||sin[β(1− x)(1− y)xγyγ]|.
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Since γ ≥ 1 and (x, y) ∈ S , we have γ(x− 1) + x ∈ [−γ, 1] and γ(y− 1) + y ∈ [−γ, 1],
so max[|γ(x− 1) + x|, |γ(y− 1) + y|] ≤ max(γ, 1) = γ.
Furthermore, since β ≥ 0, we have

0 ≤ β(1− x)(1− y)xγyγ ≤ βm2
γ,

where

mγ = sup
x∈[0,1]

xγ(1− x) =
1

γ + 1

(
γ

γ + 1

)γ

.

In addition, since β ≤ π/(2m2
γ), we have β(1− x)(1− y)xγyγ ∈ [0, π/2]. On the

other hand, for any u ∈ [0, π/2], we obviously have cos(u) ≥ 0 and sin(u) ≥ 0. These
results imply that

∂x,yC(x, y; υ) ≥ 1− |α|βγ2xγ−1yγ−1 cos[β(1− x)(1− y)xγyγ]

− |α|β2γ2(1− x)(1− y)x2γ−1y2γ−1 sin[β(1− x)(1− y)xγyγ].

Owing to the following trigonometric inequalities, sin(u) ≤ u and cos(u) ≤ 1 for any
u ∈ [0, π/2], we have

∂x,yC(x, y; υ) ≥ 1− |α|βγ2xγ−1yγ−1
[
1 + β2(1− x)2(1− y)2x2γy2γ

]
.

Since γ ≥ 1 and (x, y) ∈ S , it is clear that xγ−1yγ−1 ≤ 1, and we have

1 + β2(1− x)2(1− y)2x2γy2γ ≤ 1 + β2m4
γ.

By combining the above inequalities, we obtain

∂x,yC(x, y; υ) ≥ 1− |α|βγ2(1 + β2m4
γ).

Finally, the assumption |α| ≤ 1/[βγ2(1 + β2m4
γ)] gives

∂x,yC(x, y; υ) ≥ 0.

Item (III) is proved.

The proof of Proposition 1 ends.

The copula shown in Equation (1) is named the sine-FGM (S) copula.

Remark 1. Due to the numerous formulas involving the sine function, various equivalent expressions
for the S copulas are possible. For instance, by using the formula sin(u) = 2 sin(u/2) cos(u/2) for
u ∈ R, an alternative expression is

C(x, y; υ) = xy + 2α sin
[

β

2
xγyγ(1− x)(1− y)

]
cos
[

β

2
xγyγ(1− x)(1− y)

]
, (x, y) ∈ S .

The sine and cosine functions are thus involved.

Based on Equation (1), the S copula density is calculated as

c(x, y; υ) = ∂x,yC(x, y; υ) = 1 + αβxγ−1yγ−1[γ(x− 1) + x][γ(y− 1) + y] cos[β(1− x)(1− y)xγyγ]

− αβ2(1− x)(1− y)x2γ−1y2γ−1[γ(x− 1) + x][γ(y− 1) + y] sin[β(1− x)(1− y)xγyγ], (x, y) ∈ S . (3)

Clearly, the parameter γ has a strong effect on the function at the extreme points (0, 0),
(1, 0), and (0, 1), which modifies the global morphology. We can examine the modeling
potential of the S copula as well as the effects of the parameters α, β and γ on its shapes by
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looking at the forms of this function. A graphical analysis of the S copula and the S copula
density is performed in Section 3.

As a complementary copula function, the S survival copula is given by

Ĉ(x, y; υ) = x + y− 1 + C(1− x, 1− y; υ)

= xy + α sin[β(1− x)γ(1− y)γxy], (x, y) ∈ S .

The main difference between the S copula and the S survival copula is the effect of γ,
which is not the same. The S survival copula is also a novel three-parameter copula to be
included in the body of the existing literature.

In a similar vein, we can present two new copulas based on the flipping method,
thanks to the work of [35]; the x-flipping copula is specified as

C̄(x, y; υ) = y− C(1− x, y; υ)

= xy− α sin[β(1− x)γyγx(1− y)], (x, y) ∈ S ,

and the y-flipping copula is specified as

C̃(x, y; υ) = x− C(x, 1− y; υ)

= xy− α sin[βxγ(1− y)γ(1− x)y], (x, y) ∈ S .

For the sake of clarity, only the corresponding survival copulas are described for the
remaining trigonometric and hyperbolic copulas.

Remark 2. The coming proofs associated with the new copulas follow the main structure of the proof
of Proposition 1, but the mathematical developments necessitate different approaches in terms of
differentiation, factorization, and inequality tools, yielding a wide range of values for the parameters
α, β, and γ.

2.2. Arcsine-FGM Copula

A novel copula of the arcsine-FGM type is shown in the result below. We recall that
the arcsine of x, denoted as f (x) = arcsin(x), is defined as the inverse sine function of x
when x ∈ [−1, 1]. Moreover, we have f ′(x) = 1/

√
1− x2.

Proposition 2. Let us consider the following two-dimensional function:

C(x, y; υ) = xy + α arcsin[βxγyγ(1− x)(1− y)], (x, y) ∈ S , (4)

where υ = (α, β, γ), and α and γ are such that β ≥ 0, γ ≥ 1 and

β ≤ 1
m2

γ
, |α| ≤

(1− β2m4
γ)

3/2

βγ2 , (5)

where mγ = [γ/(γ + 1)]γ/(γ + 1). Then C(x, y; υ) is a copula.

Proof. The proof is based on Definition 1; the goal is to demonstrate that the proposed
function satisfies the related items (I), (II) and (III).

(I) For any x ∈ [0, 1], since γ ≥ 1, we have

C(x, 0; υ) = x× 0 + α arcsin[βxγ × 0γ × (1− x)(1− 0)] = 0 + α arcsin(0) = 0.

Using a similar development, for any y ∈ [0, 1], we obtain C(0, y; υ) = 0.
(II) For any x ∈ [0, 1], we have

C(x, 1; υ) = x× 1 + α arcsin[βxγyγ(1− x)(1− 1)] = x + α arcsin(0) = x.
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Clearly, for any y ∈ [0, 1], we have C(1, y; υ) = y.
(III) After differentiation, simplifications and factorizations, for any (x, y) ∈ S , we

establish that

∂x,yC(x, y; υ) = 1 +
αβxγ−1yγ−1[γ(x− 1) + x][γ(y− 1) + y]√

1− β2(1− x)2(1− y)2x2γy2γ

+
αβ3x3γ−1y3γ−1(1− x)2(1− y)2[γ(x− 1) + x][γ(y− 1) + y]

[1− β2(1− x)2(1− y)2x2γy2γ]
3/2

= 1 +
αβxγ−1yγ−1[γ(x− 1) + x][γ(y− 1) + y]

[1− β2(1− x)2(1− y)2x2γy2γ]
3/2 .

Hence, with the use of absolute values, we obtain the following inequality:

∂x,yC(x, y; υ) ≥ 1− |α||β|x
γ−1yγ−1|γ(x− 1) + x||γ(y− 1) + y|

[1− β2(1− x)2(1− y)2x2γy2γ]
3/2 .

Since γ ≥ 1 and (x, y) ∈ S , we have γ(x− 1) + x ∈ [−γ, 1] and γ(y− 1) + y ∈ [−γ, 1],
so max[|γ(x − 1) + x|, |γ(y − 1) + y|] ≤ max(γ, 1) = γ. Furthermore, we have
xγ−1yγ−1 ≤ 1, β ≥ 0, and since β ≤ 1/m2

γ, we establish that

1− β2(1− x)2(1− y)2x2γy2γ ≥ 1− β2m4
γ > 0,

where

mγ = sup
x∈[0,1]

xγ(1− x) =
1

γ + 1

(
γ

γ + 1

)γ

.

By combining the above inequalities, we obtain

∂x,yC(x, y; υ) ≥ 1− |α|βγ2

(1− β2m4
γ)

3/2 .

Hence, under the assumption |α| ≤ (1− β2m4
γ)

3/2/(βγ2), we find

∂x,yC(x, y; υ) ≥ 0.

Item (III) is proved.

The proof of the proposition ends.

The copula indicated in Equation (4) is called the arcsine-FGM (AS) copula.
Based on Equation (4), the AS copula density is specified by

c(x, y; υ) = ∂x,yC(x, y; υ) = 1 +
αβxγ−1yγ−1[γ(x− 1) + x][γ(y− 1) + y]

[1− β2(1− x)2(1− y)2x2γy2γ]
3/2 , (x, y) ∈ S .

It is important to note that, in contrast to other new copulas, this copula density has a
relatively manageable expression.

The AS survival copula is given by

Ĉ(x, y; υ) = x + y− 1 + C(1− x, 1− y; υ)

= xy + α arcsin[β(1− x)γ(1− y)γxy], (x, y) ∈ S .

It is another new three-parameter copula to be added to the body of literature.
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2.3. Hyperbolic Sine-FGM Copula

An innovative hyperbolic sine-FGM type copula is shown in the result below. We recall
that the hyperbolic sine of x, denoted as f (x) = sinh(x), is defined as f (x) = (ex − e−x)/2
with x ∈ R. Furthermore, we have f ′(x) = (ex + e−x)/2, which corresponds exactly to the
hyperbolic cosine function, denoted by cosh(x).

Proposition 3. Let us consider the following two-dimensional function:

C(x, y; υ) = xy + α sinh[βxγyγ(1− x)(1− y)], (x, y) ∈ S , (6)

where υ = (α, β, γ), and α, β and γ are such that β ≥ 0, γ ≥ 1 and

|α| ≤ 1
βγ2(1 + β2m4

γ) cosh(βm2
γ)

, (7)

where mγ = [γ/(γ + 1)]γ/(γ + 1). Then C(x, y; υ) is a copula.

Proof. The proof refers to items (I), (II) and (III) of Definition 1.

(I) For any x ∈ [0, 1], since γ ≥ 1, we have

C(x, 0; υ) = x× 0 + α sinh[βxγ × 0γ × (1− x)(1− 0)] = 0 + α sinh(0) = 0.

Similarly, for any y ∈ [0, 1], we obtain C(0, y; υ) = 0.
(II) For any x ∈ [0, 1], we have

C(x, 1; υ) = x× 1 + α sinh[βxγyγ(1− x)(1− 1)] = x + α sinh(0) = x.

Additionally, for any y ∈ [0, 1], we have C(1, y; υ) = y.
(III) After differentiation, simplifications and factorizations, for any (x, y) ∈ S , we obtain

∂x,yC(x, y; υ) = 1 + αβxγ−1yγ−1[γ(x− 1) + x][γ(y− 1) + y] cosh[β(1− x)(1− y)xγyγ]

+ αβ2(1− x)(1− y)x2γ−1y2γ−1[γ(x− 1) + x][γ(y− 1) + y] sinh[β(1− x)(1− y)xγyγ].

Hence, with the use of absolute values, we establish the following inequality:

∂x,yC(x, y; υ) ≥ 1− |α||β|xγ−1yγ−1|γ(x− 1) + x||γ(y− 1) + y||cosh[β(1− x)(1− y)xγyγ]|
− |α|β2(1− x)(1− y)x2γ−1y2γ−1|γ(x− 1) + x||γ(y− 1) + y||sinh[β(1− x)(1− y)xγyγ]|.

Since γ ≥ 1 and (x, y) ∈ S , we have γ(x− 1) + x ∈ [−γ, 1] and γ(y− 1) + y ∈ [−γ, 1],
so max[|γ(x− 1) + x|, |γ(y− 1) + y|] ≤ max(γ, 1) = γ. Furthermore, it is clear that,
since β ≥ 0, we have β(1− x)(1− y)xγyγ ≥ 0, and for u ≥ 0, we have cosh(u) ≥ 1 > 0
and sinh(u) ≥ 0. These results imply that

∂x,yC(x, y; υ) ≥ 1− |α|βγ2xγ−1yγ−1 cosh[β(1− x)(1− y)xγyγ]

− |α|β2γ2(1− x)(1− y)x2γ−1y2γ−1 sinh[β(1− x)(1− y)xγyγ].

Owing to the hyperbolic inequality u cosh(u) ≥ sinh(u) for any u ∈ R, we find

∂x,yC(x, y; υ)

≥1− |α|γ2βxγ−1yγ−1
[
1 + β2(1− x)2(1− y)2x2γy2γ

]
cosh[β(1− x)(1− y)xγyγ].

Since γ ≥ 1 and (x, y) ∈ S , it is clear that xγ−1yγ−1 ≤ 1, and, because cosh(u) is
increasing for u ≥ 0, we obtain

1 + β2(1− x)2(1− y)2x2γy2γ cosh[β(1− x)(1− y)xγyγ] ≤ (1 + β2m4
γ) cosh(βm2

γ),
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where

mγ = sup
x∈[0,1]

xγ(1− x) =
1

γ + 1

(
γ

γ + 1

)γ

.

By putting the above inequalities together, we obtain

∂x,yC(x, y; υ) ≥ 1− |α|βγ2(1 + β2m4
γ) cosh(βm2

γ).

Finally, the assumption |α| ≤ 1/[βγ2(1 + β2m4
γ) cosh(βm2

γ)] gives

∂x,yC(x, y; υ) ≥ 0.

Item (III) is proved.

The proof of the proposition ends.

The copula indicated in Equation (6) is called the hyperbolic sine-FGM (HS) copula.

Remark 3. An alternative expression of the HS copula involving the exponential function is

C(x, y; υ) = xy +
α

2

(
eβxγyγ(1−x)(1−y) − e−βxγyγ(1−x)(1−y)

)
, (x, y) ∈ S .

To begin, based on Equation (6), the HS copula density is calculated as

c(x, y; υ) = ∂x,yC(x, y; υ) = 1 + αβxγ−1yγ−1[γ(x− 1) + x][γ(y− 1) + y] cosh[β(1− x)(1− y)xγyγ]

+ αβ2(1− x)(1− y)x2γ−1y2γ−1[γ(x− 1) + x][γ(y− 1) + y] sinh[β(1− x)(1− y)xγyγ], (x, y) ∈ S .

The HS survival copula is given by

Ĉ(x, y; υ) = x + y− 1 + C(1− x, 1− y; υ)

= xy + α sinh[β(1− x)γ(1− y)γxy], (x, y) ∈ S .

The HS survival copula is also a novel three-parameter copula to be included in the
body of existing literature.

2.4. Hyperbolic Arcsine-FGM Copula

Below is the result, which displays a brand-new copula of the hyperbolic arcsine-FGM
type. We recall that the hyperbolic arcsine of x, denoted as f (x) = arcsinh(x), is defined as
f (x) = log

(
x +
√

1 + x2
)

with x ∈ R. Moreover, we have f ′(x) = 1/
√

1 + x2.

Proposition 4. Let us consider the following two-dimensional function:

C(x, y; υ) = xy + α arcsinh[βxγyγ(1− x)(1− y)], (x, y) ∈ S , (8)

where υ = (α, β, γ), and α, β and γ are such that β ≥ 0, γ ≥ 1 and

|α| ≤ 1
βγ2 . (9)

Then, C(x, y; υ) is a copula.

Proof. The proof is based on Definition 1; the objective is to show that the proposed
function fulfills the associated items (I), (II) and (III).

(I) For any x ∈ [0, 1], since γ ≥ 1, we have

C(x, 0; υ) = x× 0 + α arcsinh[βxγ × 0γ × (1− x)(1− 0)] = 0 + α arcsinh(0) = 0.
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Using a similar development, for any y ∈ [0, 1], we obtain C(0, y; υ) = 0.
(II) For any x ∈ [0, 1], we obtain

C(x, 1; υ) = x× 1 + α arcsinh[βxγyγ(1− x)(1− 1)] = x + α arcsinh(0) = x.

Clearly, for any y ∈ [0, 1], we have C(1, y; υ) = y.
(III) After differentiation, simplifications and factorizations, for any (x, y) ∈ S , the follow-

ing expression is determined:

∂x,yC(x, y; υ) = 1 +
αβxγ−1yγ−1[γ(x− 1) + x][γ(y− 1) + y]√

1 + β2(1− x)2(1− y)2x2γy2γ

− αβ3x3γ−1y3γ−1(1− x)2(1− y)2[γ(x− 1) + x][γ(y− 1) + y]

[1 + β2(1− x)2(1− y)2x2γy2γ]
3/2

= 1 +
αβxγ−1yγ−1[γ(x− 1) + x][γ(y− 1) + y]

[1 + β2(1− x)2(1− y)2x2γy2γ]
3/2 .

Hence, with the use of absolute values, we obtain the following inequality:

∂x,yC(x, y; υ) ≥ 1− |α||β|x
γ−1yγ−1|γ(x− 1) + x||γ(y− 1) + y|

[1 + β2(1− x)2(1− y)2x2γy2γ]
3/2 .

Since γ ≥ 1 and (x, y) ∈ S , we have γ(x− 1) + x ∈ [−γ, 1] and γ(y− 1) + y ∈ [−γ, 1],
so max[|γ(x − 1) + x|, |γ(y − 1) + y|] ≤ max(γ, 1) = γ. Furthermore, we have
xγ−1yγ−1 ≤ 1, β ≥ 0, and, obviously, 1+ β2(1− x)2(1− y)2x2γy2γ ≥ 1. By combining
the above inequalities, along with the assumption |α| ≤ 1/(βγ2), we obtain

∂x,yC(x, y; υ) ≥ 1− |α|βγ2 ≥ 0.

Item (III) is proved.

This completes the proof of Proposition 4.

The copula shown in Equation (8) is named the hyperbolic arcsine-FGM (HAS) copula.

Remark 4. An alternative expression of the HAS copula involving the logarithmic function is

C(x, y; υ) = xy + α log
[

βxγyγ(1− x)(1− y) +
√

1 + β2x2γy2γ(1− x)2(1− y)2
]

, (x, y) ∈ S .

Based on Equation (8), the HAS copula density is calculated as

c(x, y; υ) = ∂x,yC(x, y; υ) = 1 +
αβxγ−1yγ−1[γ(x− 1) + x][γ(y− 1) + y]

[1 + β2(1− x)2(1− y)2x2γy2γ]
3/2 , (x, y) ∈ S . (10)

The HAS copula and copula density have the advantages of having weak constraints
on the parameters (as indicated in Equation (9)), and manageable analytical expressions.
For these reasons, a graphic analysis is devoted to them in Section 3.

The HAS survival copula is given by

Ĉ(x, y; υ) = x + y− 1 + C(1− x, 1− y; υ)

= xy + α arcsinh[β(1− x)γ(1− y)γxy], (x, y) ∈ S .

Another brand-new three-parameter copula to be added to the corpus of current
research is the HAS survival copula.
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2.5. Tangent-FGM Copula

The result below exhibits a novel tangent-FGM type copula. We recall that the tangent
function of x, denoted as f (x) = tan(x), is defined as f (x) = sin(x)/ cos(x) with x such that
cos(x) 6= 0. Moreover, we have f ′(x) = 1 + tan2(x) = sec2(x), where sec(x) = 1/ cos(x).

Proposition 5. Let us consider the following two-dimensional function:

C(x, y; υ) = xy + α tan[βxγyγ(1− x)(1− y)], (x, y) ∈ S , (11)

where υ = (α, β, γ), and α, β and γ are such that β ≥ 0, γ ≥ 1 and

β <
π

2m2
γ

, |α| ≤ 1

βγ2
[
1 + 2βm2

γ tan(βm2
γ)
]

sec2(βm2
γ)

, (12)

where mγ = [γ/(γ + 1)]γ/(γ + 1). Then C(x, y; υ) is a copula.

Proof. For this proof, it is enough to show that the items (I), (II) and (III) of Definition 1
are fulfilled.

(I) For any x ∈ [0, 1], since γ ≥ 1, we have

C(x, 0; υ) = x× 0 + α tan[βxγ × 0γ × (1− x)(1− 0)] = 0 + α tan(0) = 0.

Using a similar argument, for any y ∈ [0, 1], we have C(0, y; υ) = 0.
(II) For any x ∈ [0, 1], it is clear that

C(x, 1; υ) = x× 1 + α tan[βxγyγ(1− x)(1− 1)] = x + α tan(0) = x.

In addition, for any y ∈ [0, 1], we have C(1, y; υ) = y.
(III) After differentiation, simplifications and factorizations, for any (x, y) ∈ S , we find

∂x,yC(x, y; υ) =

1 + αβxγ−1yγ−1[γ(x− 1) + x][γ(y− 1) + y] sec2[β(1− x)(1− y)xγyγ]

+ 2αβ2(1− x)(1− y)x2γ−1y2γ−1[γ(x− 1) + x][γ(y− 1) + y]×
tan[β(1− x)(1− y)xγyγ] sec2[β(1− x)(1− y)xγyγ]

= 1 + αβxγ−1yγ−1[γ(x− 1) + x][γ(y− 1) + y]×
[1 + 2β(1− x)(1− y)xγyγ tan[β(1− x)(1− y)xγyγ]] sec2[β(1− x)(1− y)xγyγ].

Hence, by using the absolute value properties, we obtain

∂x,yC(x, y; υ) ≥ 1− |α||β|xγ−1yγ−1|γ(x− 1) + x||γ(y− 1) + y|×
[1 + 2|β|(1− x)(1− y)xγyγ|tan[β(1− x)(1− y)xγyγ]|] sec2[β(1− x)(1− y)xγyγ].

Since γ ≥ 1 and (x, y) ∈ S , we have γ(x− 1) + x ∈ [−γ, 1] and γ(y− 1) + y ∈ [−γ, 1],
so max[|γ(x− 1) + x|, |γ(y− 1) + y|] ≤ max(γ, 1) = γ. Furthermore, it is clear that
xγ−1yγ−1 ≤ 1. On the other hand, we have β ≥ 0 and

0 ≤ β(1− x)(1− y)xγyγ ≤ βm2
γ,

where

mγ = sup
x∈[0,1]

xγ(1− x) =
1

γ + 1

(
γ

γ + 1

)γ

.
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Since β < π/(2m2
γ) (strict inequality), we have β(1− x)(1− y)xγyγ ∈ [0, π/2). Since

β ≥ 0, tan(u) ≥ 0, and tan(u) and sec(u) are increasing for u ∈ [0, π/2), we obtain

1 + 2β(1− x)(1− y)xγyγ|tan[β(1− x)(1− y)xγyγ]| ≤ 1 + 2βm2
γ tan(βm2

γ)

and
sec2[β(1− x)(1− y)xγyγ] ≤ sec2(βm2

γ).

The above inequalities give

∂x,yC(x, y; υ) ≥ 1− |α|βγ2
[
1 + 2βm2

γ tan(βm2
γ)
]

sec2(βm2
γ)

Finally, the assumption |α| ≤ 1/{βγ2
[
1 + 2βm2

γ tan(βm2
γ)
]

sec2(βm2
γ)} implies that

∂x,yC(x, y; υ) ≥ 0.

The item (III) is proved.

The proof of the proposition ends.

The copula shown in Equation (11) is named the tangent-FGM (T) copula.
Based on Equation (11), the T copula density is calculated as

c(x, y; υ) = ∂x,yC(x, y; υ)

= 1 + αβxγ−1yγ−1[γ(x− 1) + x][γ(y− 1) + y]×
[1 + 2β(1− x)(1− y)xγyγ tan[β(1− x)(1− y)xγyγ]] sec2[β(1− x)(1− y)xγyγ], (x, y) ∈ S .

The T survival copula is given by

Ĉ(x, y; υ) = x + y− 1 + C(1− x, 1− y; υ)

= xy + α tan[β(1− x)γ(1− y)γxy], (x, y) ∈ S .

The T survival copula is also a novel three-parameter copula to be included in the
body of existing literature.

2.6. Arctangent-FGM Copula

The result shown below exhibits a distinctive copula of the arctangent-FGM type. We
recall that the arctangent function of x, denoted as f (x) = arctan(x), is defined as the
inverse tangent function of x when x ∈ R. Moreover, we have f ′(x) = 1/(1 + x2).

Proposition 6. Let us consider the following two-dimensional function:

C(x, y; υ) = xy + α arctan[βxγyγ(1− x)(1− y)], (x, y) ∈ S , (13)

where υ = (α, β, γ), and α, β and γ are such that β ≥ 0, γ ≥ 1 and

β ≤
√

2
m2

γ
, |α| ≤ 1

βγ2 . (14)

Then C(x, y; υ) is a copula.

Proof. The proof is based on Definition 1; we aim to demonstrate that the proposed function
satisfies the related items (I), (II) and (III).

(I) For any x ∈ [0, 1], since γ ≥ 1, we have

C(x, 0; υ) = x× 0 + α arctan[βxγ × 0γ × (1− x)(1− 0)] = 0 + α arctan(0) = 0.
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Similarly, for any y ∈ [0, 1], we obtain C(0, y; υ) = 0.
(II) For any x ∈ [0, 1], we obviously have

C(x, 1; υ) = x× 1 + α arctan[βxγyγ(1− x)(1− 1)] = x + α arctan(0) = x.

In addition, for any y ∈ [0, 1], we obtain C(1, y; υ) = y.
(III) After differentiation, simplifications and factorizations, for any (x, y) ∈ S , we find

∂x,yC(x, y; υ) = 1 +
αβxγ−1yγ−1[γ(x− 1) + x][γ(y− 1) + y]

1 + β2(1− x)2(1− y)2x2γy2γ

− 2αβ3(1− x)2(1− y)2x3γ−1y3γ−1[γ(x− 1) + x][γ(y− 1) + y]

[1 + β2(1− x)2(1− y)2x2γy2γ]
2

= 1 +
αβxγ−1yγ−1[γ(x− 1) + x][γ(y− 1) + y]

[
1− β2(1− x)2(1− y)2x2γy2γ

]
[1 + β2(1− x)2(1− y)2x2γy2γ]

2 .

Hence, with the use of absolute values, we have

∂x,yC(x, y; υ)

≥ 1−
|α||β|xγ−1yγ−1|γ(x− 1) + x||γ(y− 1) + y|

∣∣1− β2(1− x)2(1− y)2x2γy2γ
∣∣

[1 + β2(1− x)2(1− y)2x2γy2γ]
2 .

Since γ ≥ 1 and (x, y) ∈ S , we have γ(x− 1) + x ∈ [−γ, 1] and γ(y− 1) + y ∈ [−γ, 1],
so max[|γ(x − 1) + x|, |γ(y− 1) + y|] ≤ max(γ, 1) = γ. In addition, it is clear that
xγ−1yγ−1 ≤ 1 and 1 + β2(1− x)2(1− y)2x2γy2γ ≥ 1. Furthermore, we have

1− β2m4
γ ≤ 1− β2(1− x)2(1− y)2x2γy2γ ≤ 1,

where

mγ = sup
x∈[0,1]

xγ(1− x) =
1

γ + 1

(
γ

γ + 1

)γ

.

Hence, the assumptions β ≥ 0 and β ≤
√

2/m2
γ imply that 1 − β2(1 − x)2(1 −

y)2x2γy2γ ≥ −1 and ∣∣∣1− β2(1− x)2(1− y)2x2γy2γ
∣∣∣ ≤ 1.

The above inequalities and the assumption |α| ≤ 1/(βγ2) yield

∂x,yC(x, y; υ) ≥ 1− |α|βγ2 ≥ 0.

Item (III) is proved.

The proof of the proposition ends.

The copula shown in Equation (13) is named the arctangent-FGM (AT) copula.
Based on Equation (13), the AT copula density is calculated as

c(x, y; υ) = ∂x,yC(x, y; υ)

= 1 +
αβxγ−1yγ−1[γ(x− 1) + x][γ(y− 1) + y]

[
1− β2(1− x)2(1− y)2x2γy2γ

]
[1 + β2(1− x)2(1− y)2x2γy2γ]

2 , (x, y) ∈ S .

The AT survival copula is given by

Ĉ(x, y; υ) = x + y− 1 + C(1− x, 1− y; υ)

= xy + α arctan[β(1− x)γ(1− y)γxy], (x, y) ∈ S .
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The AT survival copula is also a novel three-parameter copula to be included in the
body of existing literature.

2.7. Hyperbolic Tangent-FGM Copula

A unique hyperbolic tangent-FGM type copula can be seen in the result below. We
recall that the hyperbolic tangent function of x, denoted as f (x) = tanh(x), is defined
as f (x) = sinh(x)/ cosh(x) = (ex − e−x)/(ex + e−x) when x ∈ R. In addition, we have
f ′(x) = 4/(ex + e−x)2 = 1/ cosh2(x), which corresponds to the square of the hyperbolic
secant function, denoted by sech(x), i.e., sech(x) = 1/ cosh(x).

Proposition 7. Let us consider the following two-dimensional function:

C(x, y; υ) = xy + α tanh[βxγyγ(1− x)(1− y)], (x, y) ∈ S , (15)

where υ = (α, β, γ), and α, β and γ are such that β ≥ 0, γ ≥ 1 and

β ≤ x?
m2

γ
, |α| ≤ 1

βγ2 , (16)

with x? such that x? tanh(x?) = 1, i.e., x? ≈ 1.19968. Then C(x, y; υ) is a copula.

Proof. The objective is to demonstrate that the proposed function satisfies the items (I), (II)
and (III) of Definition 1.

(I) For any x ∈ [0, 1], since γ ≥ 1, we obtain

C(x, 0; υ) = x× 0 + α tanh[βxγ × 0γ × (1− x)(1− 0)] = 0 + α tanh(0) = 0.

Using a similar development, for any y ∈ [0, 1], we have C(0, y; υ) = 0.
(II) For any x ∈ [0, 1], we have

C(x, 1; υ) = x× 1 + α tanh[βxγyγ(1− x)(1− 1)] = x + α tanh(0) = x.

Additionally, for any y ∈ [0, 1], it is clear that C(1, y; υ) = y.
(III) After differentiation, simplifications and factorizations, for any (x, y) ∈ S , we obtain

∂x,yC(x, y; υ) =

1 + αβxγ−1yγ−1[γ(x− 1) + x][γ(y− 1) + y] sech2[β(1− x)(1− y)xγyγ]

− 2αβ2(1− x)(1− y)x2γ−1y2γ−1[γ(x− 1) + x][γ(y− 1) + y]×
tanh[β(1− x)(1− y)xγyγ] sech2[β(1− x)(1− y)xγyγ]

= 1 + αβxγ−1yγ−1[γ(x− 1) + x][γ(y− 1) + y]×
[1− 2β(1− x)(1− y)xγyγ tanh[β(1− x)(1− y)xγyγ]] sech2[β(1− x)(1− y)xγyγ].

Hence, the following inequalities are established with the use of absolute values:

∂x,yC(x, y; υ) ≥ 1− |α||β|xγ−1yγ−1|γ(x− 1) + x||γ(y− 1) + y|×
|1− 2β(1− x)(1− y)xγyγ tanh[β(1− x)(1− y)xγyγ]| sech2[β(1− x)(1− y)xγyγ].

Since γ ≥ 1 and (x, y) ∈ S , we have γ(x− 1) + x ∈ [−γ, 1] and γ(y− 1) + y ∈ [−γ, 1],
so max[|γ(x− 1) + x|, |γ(y− 1) + y|] ≤ max(γ, 1) = γ. Furthermore, it is clear that
xγ−1yγ−1 ≤ 1. On the other hand, since β ≥ 0, we have

0 ≤ β(1− x)(1− y)xγyγ ≤ βm2
γ,
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where

mγ = sup
x∈[0,1]

xγ(1− x) =
1

γ + 1

(
γ

γ + 1

)γ

.

Owing to the assumption β ≤ x?/m2
γ, we obtain β(1− x)(1− y)xγyγ ∈ [0, x?]. Let

us now set f (u) = 1− 2u tanh(u). Since f ′(u) = −2[tanh(u) + u sech2(u)] ≤ 0 for
u ∈ [0, x?], f (u) is decreasing and we have −1 = f (x?) ≤ f (u) ≤ f (0) = 1, so
| f (u)| ≤ 1. This implies that

|1− 2β(1− x)(1− y)xγyγ tanh[β(1− x)(1− y)xγyγ]| ≤ 1.

Since sech(u) is decreasing for u ≥ 0, with sech(u) ≥ 0, we have
sech2[β(1− x)(1− y)xγyγ] ≤ sech2(0) = 1.
The above inequalities and the assumption |α| ≤ 1/(βγ2) give

∂x,yC(x, y; υ) ≥ 1− |α|βγ2 ≥ 0.

Item (III) is proved.

Proposition 7 is proved.

The copula shown in Equation (15) is named the hyperbolic tangent-FGM (HT) copula.

Remark 5. An alternative expression of the HT copula involving the exponential function is

C(x, y; υ) = xy + α
eβxγyγ(1−x)(1−y) − e−βxγyγ(1−x)(1−y)

eβxγyγ(1−x)(1−y) + e−βxγyγ(1−x)(1−y)
, (x, y) ∈ S .

Based on Equation (15), the HT copula density is calculated as

c(x, y; υ) = ∂x,yC(x, y; υ)

= 1 + αβxγ−1yγ−1[γ(x− 1) + x][γ(y− 1) + y]×
[1− 2β(1− x)(1− y)xγyγ tanh[β(1− x)(1− y)xγyγ]] sech2[β(1− x)(1− y)xγyγ],

(x, y) ∈ S .

The HT survival copula is given by

Ĉ(x, y; υ) = x + y− 1 + C(1− x, 1− y; υ)

= xy + α tanh[β(1− x)γ(1− y)γxy], (x, y) ∈ S .

Another new three-parameter copula to be added to the body of current research is
the HT survival copula.

2.8. Hyperbolic Arctangent-FGM Copula

A remarkable copula of the hyperbolic arctangent-FGM type is proposed in the result
given below. We recall that the hyperbolic arctangent function of x, denoted as f (x) =
arctanh(x), is defined as f (x) = (1/2) log[(1 + x)/(1− x)] when x ∈ (−1, 1). Moreover,
we have f ′(x) = 1/(1− x2).

Proposition 8. Let us consider the following two-dimensional function:

C(x, y; υ) = xy + α arctanh[βxγyγ(1− x)(1− y)], (x, y) ∈ S , (17)
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where υ = (α, β, γ), and α, β and γ are such that β ≥ 0, γ ≥ 1 and

β <
1

m2
γ

, |α| ≤
(1− β2m4

γ)
2

βγ2(1 + β2m4
γ)

, (18)

where mγ = [γ/(γ + 1)]γ/(γ + 1). Then C(x, y; υ) is a copula.

Proof. The proof is based on Definition 1; we need to show that the proposed function
satisfies the related items (I), (II) and (III).

(I) For any x ∈ [0, 1], since γ ≥ 1, we have

C(x, 0; υ) = x× 0 + α arctanh[βxγ × 0γ × (1− x)(1− 0)] = 0 + α arctanh(0) = 0.

Similarly, for any y ∈ [0, 1], we obtain C(0, y; υ) = 0.
(II) For any x ∈ [0, 1], we have

C(x, 1; υ) = x× 1 + α arctanh[βxγyγ(1− x)(1− 1)] = x + α arctanh(0) = x.

Moreover, for any y ∈ [0, 1], we have C(1, y; υ) = y.
(III) After differentiation, simplifications and factorizations, for any (x, y) ∈ S , the follow-

ing expression is obtained:

∂x,yC(x, y; υ) = 1 +
αβxγ−1yγ−1[γ(x− 1) + x][γ(y− 1) + y]

1− β2(1− x)2(1− y)2x2γy2γ

+
2αβ3(1− x)2(1− y)2x3γ−1y3γ−1[γ(x− 1) + x][γ(y− 1) + y]

[1− β2(1− x)2(1− y)2x2γy2γ]
2

= 1 +
αβxγ−1yγ−1[γ(x− 1) + x][γ(y− 1) + y]

[
1 + β2(1− x)2(1− y)2x2γy2γ

]
[1− β2(1− x)2(1− y)2x2γy2γ]

2 .

Hence, with the use of absolute values, we establish the following inequality:

∂x,yC(x, y; υ) ≥

1−
|α||β|xγ−1yγ−1|γ(x− 1) + x||γ(y− 1) + y|

[
1 + β2(1− x)2(1− y)2x2γy2γ

]
[1− β2(1− x)2(1− y)2x2γy2γ]

2 .

Since γ ≥ 1 and (x, y) ∈ S , we have γ(x− 1) + x ∈ [−γ, 1] and γ(y− 1) + y ∈ [−γ, 1],
so max[|γ(x − 1) + x|, |γ(y − 1) + y|] ≤ max(γ, 1) = γ. Furthermore, we have
xγ−1yγ−1 ≤ 1,

1 + β2(1− x)2(1− y)2x2γy2γ ≤ 1 + β2m4
γ

and
1− β2m4

γ ≤ 1− β2(1− x)2(1− y)2x2γy2γ,

where

mγ = sup
x∈[0,1]

xγ(1− x) =
1

γ + 1

(
γ

γ + 1

)γ

.

Hence, under the assumption β < 1/m2
γ (strict inequality), we obviously have 1−

β2m4
γ > 0. The above inequalities give

∂x,yC(x, y; υ) ≥ 1− |α|βγ2 1 + β2m4
γ

(1− β2m4
γ)

2 .
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The assumption |α| ≤ (1− β2m4
γ)

2/[βγ2(1 + β2m4
γ)] implies that

∂x,yC(x, y; υ) ≥ 0.

Item (III) is proved.

The proof of the proposition ends.

The copula shown in Equation (17) is named the hyperbolic arctangent-FGM
(HAT) copula.

Remark 6. An alternative expression of the HAT copula involving the logarithmic function is

C(x, y; υ) = xy +
α

2
log
[

1 + βxγyγ(1− x)(1− y)
1− βxγyγ(1− x)(1− y)

]
, (x, y) ∈ S .

Based on Equation (17), the HAT copula density is calculated as

c(x, y; υ) = ∂x,yC(x, y; υ)

= 1 +
αβxγ−1yγ−1[γ(x− 1) + x][γ(y− 1) + y]

[
1 + β2(1− x)2(1− y)2x2γy2γ

]
[1− β2(1− x)2(1− y)2x2γy2γ]

2 , (x, y) ∈ S .

The HAT survival copula is given by

Ĉ(x, y; υ) = x + y− 1 + C(1− x, 1− y; υ)

= xy + α arctanh[β(1− x)γ(1− y)γxy], (x, y) ∈ S .

The HAT survival copula is a brand-new three-parameter copula to be added to the
corpus of current research.

Some graphical and analytical characteristics of the proposed copulas are the focus of
the remaining sections of the article.

3. Graphics and Properties

This section contains a short graphical copula analysis and a unified study of the
proposed copulas.

3.1. Graphical Analysis of The S Copula

We examine the shapes of two particular copulas, the S and HAS copulas, in order to
emphasize the importance of our findings. After some preliminary tests, certain parameter
values will be chosen from the list of acceptable values and according to their impact on
the shapes.

We begin with the S copula as defined by (1). First, a simplified configuration is
considered: γ = 1, which gives mγ = [γ/(γ + 1)]γ/(γ + 1) = 1/4. The conditions in
Proposition 1, i.e., in Equation (2), yield β ∈ [0, 8π] and

|α| ≤ 1
β(1 + β2/256)

.

Let us now explore the effect of α on the shapes of the S copula and the S copula
density, in turn.

For the first analysis, we arbitrarily chose β = π/2. In this case, the condition on α
becomes |α| ≤ 0.6305424.

In Figure 1, we plot the S copula as defined in Equation (1) with γ = 1, β = π/2 and
α ∈ {−0.63,−0.15, 0.15, 0.63}, satisfying the required conditions.
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Figure 1. Display of the S copula for β = π/2, γ = 1, and (a) α = −0.63, (b) α = −0.15, (c) α = 0.15
and (d) α = 0.63.

We observe that the shapes of the copula are affected by the change in values of α,
which reveals a certain versatility. Moreover, it is clear that the conditions satisfied by a
copula are fulfilled.

Figure 2 completes Figure 1: we plot the S copula density as defined in Equation (3)
under the same configuration, i.e., γ = 1, β = π/2 and α ∈ {−0.63,−0.15, 0.15, 0.63}.

Again, we see that the changing values of α have an impact on the morphologies of the
shapes. Furthermore, it is evident that the mathematical requirements of a copula density
are satisfied, particularly the positivity.

Let us now investigate the effect of β on the shapes of the S copula and the S
copula density.
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Figure 2. Display of the S copula density for β = π/2, γ = 1, and (a) α = −0.63, (b) α = −0.15,
(c) α = 0.15 and (d) α = 0.63.



AppliedMath 2023, 3 164

We chose β ∈ [0, 4π] for numerical convenience. Then, the condition on α becomes
|α| ≤ 0.0492. Hence, we propose to fix α = 0.49 and vary the values of β.

In Figure 3, we plot the S copula with γ = 1, α = 0.049 and β ∈ {π/2, 2π, 3π, 4π},
satisfying the required conditions.
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Figure 3. Display of the S copula for α = 0.049, γ = 1, and (a) β = π/2, (b) β = 2π, (c) β = 3π and
(d) β = 4π.

The contour plot reveals a difference in lines and a difference in intensity in the red
color zone, both of which show that the forms of the S copula are altered; this is evidence
that β has a shape effect.

In Figure 4, we plot the S copula density under the same configuration, i.e., γ = 1,
α = 0.049 and β ∈ {π/2, 2π, 3π, 4π}.
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Figure 4. Display of the S copula density for α = 0.049, γ = 1, and (a) β = π/2, (b) β = 2π,
(c) β = 3π and (d) β = 4π.
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In this figure, the contour plot makes it easier to see the subtle changes in the copula
density shapes. However, it is evident that the requirements for a legitimate copula density
are met.

We end this graphical analysis with an example of γ = 2. In this case, we have
mγ = 4/27, and we can take β as |β| ≤ 71.5694. With the arranging choice β = π, we can
take α as |α| ≤ 0.07920093.

In Figure 5, we plot the S copula with γ = 2, β = π and α ∈ {−0.079, 0.05}, satisfying
the required conditions.

x

0.0

0.2

0.4
0.6

0.8
1.0

y

0.0
0.2

0.4

0.6

0.8

1.0

z

0.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

(a)

x

0.0

0.2

0.4
0.6

0.8
1.0

y

0.0
0.2

0.4

0.6

0.8

1.0

z

0.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

(b)

Figure 5. Display of the S copula for β = π, γ = 2, and (a) α = −0.079 and (b) α = 0.05.

The contour plot and the intensity of the red color zone are the key differences.
Figure 6 completes Figure 5: we plot the S copula density with γ = 2, β = π and

α ∈ {−0.079, 0.05}.
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Figure 6. Display of the S copula density for β = π, γ = 2, and (a) α = −0.079 and (b) α = 0.05.

The shapes completely change in this figure because of the alternated sign. When
γ > 1, the restriction c(0, 0; υ) = 1 is applied and may present a challenge for flexible
dependence modeling.

3.2. Graphical Analysis of the HAS Copula

One of our most important discoveries is the manageability of the HAS copula as defined
in Equation (8), which only requires the following parameter conditions: β ≥ 0, γ ≥ 1 and
|α| ≤ 1/(γ2β). For this reason, we propose to study it from a graphical viewpoint.

To begin, let us replace β by β = 1/
√

γ with γ ≥ 1, such that |α| ≤ 1, to activate all
the parameters in a straightforward manner. With this configuration, we define the HAS
copula with only two varying parameters, γ and α, but the values of γ have an effect on
those of β.

In Figure 7, we plot the HAS copula with γ = 1, β = 1/
√

γ = 1 and α ∈
{−0.8,−0.2, 0.2, 0.8}, satisfying the required conditions.
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Figure 7. Display of the HAS copula for β = 1, γ = 1, and (a) α = −0.8, (b) α = −0.2, (c) α = 0.2 and
(d) α = 0.8.

In this figure, especially if we compare Figure 7a,d, we observe a wide change in the
shapes of the HAS copula, indicating a significant effect of α. This shows the versatility of
the HAS copula in terms of shapes.

In Figure 8, we plot the HAS copula density as defined in Equation (10) under the
same configuration, i.e., γ = 1, β = 1/

√
γ = 1 and α ∈ {−0.8,−0.2, 0.2, 0.8}.
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Figure 8. Display of the HAS copula density for β = 1, γ = 1, and (a) α = −0.8, (b) α = −0.2,
(c) α = 0.2 and (d) α = 0.8.

In this figure, positional differences are observed with various intensity values. Once
again, the copula density meets the requirement in terms of assumptions, including positivity.
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Let us now investigate the effect of γ on the shapes of the HAS copula and the HAS
copula density, under the configuration β = 1/

√
γ. Let us fix α = 1 and vary the values of

γ.
In Figure 9, we plot the HAS copula with α = 1, β = 1/

√
γ and γ ∈ {1, 1.5, 2, 5},

satisfying the required conditions.
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Figure 9. Display of the HAS copula for α = 1, β = 1/
√

γ, and (a) γ = 1, (b) γ = 1.5, (c) γ = 2 and
(d) γ = 5.

In this figure, we also observe changes of morphologies, indicating that the copula
shapes are dependent on the combined action of β and γ.

In Figure 10, we plot the HAS copula density under the same configuration, i.e., α = 1,
β = 1/

√
γ and γ ∈ {1, 1.5, 2, 5}.
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Figure 10. Display of the HAS copula density for α = 1, β = 1/
√

γ, and (a) γ = 1, (b) γ = 1.5,
(c) γ = 2 and (d) γ = 5.
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In some sense, Figure 10 supports Figure 9; the HAS copula produces a copula density
very versatile in shapes.

To wrap up this section, we display figures to show that a few of the proposed copulas
have the adaptability to be used in practical settings and produce applicable dependence
models. Similar characteristics are seen for the other copulas as well, but for space reasons,
we do not include their graphical analysis.

3.3. List of Properties

This section establishes some basic characteristics of the introduced copulas. We work
with their general form, which involves the function φ(u), i.e.,

C(x, y; υ) = xy + αφ[βxγyγ(1− x)(1− y)], (x, y) ∈ S ,

with

φ(u) ∈ {sin(u), arcsin(u), sinh(u), arcsinh(u), tan(u), tanh(u), arctan(u), arctanh(u)},

and β ≥ 0 and γ ≥ 1 (which are common conditions in all of the preceding propositions).
The theoretical details of the coming notions are all contained in [5].

To begin, the independence copula is always obtained by setting α = 0. The proposed
copulas are diagonally symmetric because C(x, y; υ) = C(y, x; υ) for any (x, y) ∈ S . They
are not Archimedean because one can find many examples of triplet values (a, b, c) such that

C[a, C(b, c; υ); υ] 6= C[C(a, b; υ), c; υ].

The non-Archimedean property is implied by the non-associativity of C(x, y; υ). Be-
cause of the change of the parameter γ, the considered copulas are not radially symmetric
for α 6= 0 and γ > 1; there exists (x, y) such that Ĉ(x, y; υ) 6= C(x, y; υ). They are radially
symmetric for α 6= 0 or γ = 1.

Of course, as a well-established copula fact, we have the Fréchet–Hoeffding bounds:
for any (x, y) ∈ S , we have max(x + y− 1, 0) ≤ C(x, y; υ) ≤ min(x, y). As immediate con-
sequences, the following two-dimensional inequalities involving αφ[βxγyγ(1− x)(1− y)]
hold: for any (x, y) ∈ S , we have

max(x + y− 1, 0)− xy ≤ αφ[βxγyγ(1− x)(1− y)] ≤ min(x, y)− xy.

These inequalities can be of separate interest and serve as mathematical tools for
various two-dimensional analyses.

Let us now look at the various quadrant dependence properties in relation to
the parameters.

• For α ≥ 0, it is clear that αφ[βxγyγ(1− x)(1− y)] ≥ 0, implying that C(x, y; υ) ≥ xy
for any (x, y) ∈ S ; the considered copulas are positively quadrant dependent.

• For α ≤ 0, it is clear that αφ[βxγyγ(1− x)(1− y)] ≤ 0, implying that the reversed
inequality holds: C(x, y; υ) ≤ xy for any (x, y) ∈ S ; the considered copulas are
negatively quadrant dependent.

In addition, some first-order copula orders with other copulas can be demonstrated.
In particular, if φ(u) satisfies φ(u) ≤ u for u in the support of φ, which is the case for
φ(u) ∈ {sin(u), arcsinh(u), arctan(u), tanh(u)}, the results below are established.

• For α ≥ 0, we have C(x, y; υ) ≤ C†(x, y; υ) for any (x, y) ∈ S , where

C†(x, y; υ) = xy + αβxγyγ(1− x)(1− y), (x, y) ∈ S . (19)

It is a copula that is an extended version of the FGM copula with the dependence
parameters θ = αβ (see [12]).
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• For α ≤ 0, the reversed inequality holds: we have C(x, y; υ) ≥ C†(x, y; υ) for any
(x, y) ∈ S .

If φ(u) satisfies φ(u) ≥ u for u in the support of φ, which is the case for φ(u) ∈
{arcsin(u), sinh(u), tan(u), arctanh(u)}, the reversed first-order copula orders hold.

The proposed copulas have tractable series expansions based on series expansions
of φ(u) with u ∈ [0, 1). Such expansions can express or approximate various crucial
correlation measures, which makes them useful in particular situations.

Various kinds of tail dependence for the proposed copulas are examined below. Since
all the considered functions φ(u) satisfied φ(u) ∼ u when u→ 0 and γ ≥ 1, we have

λlow = lim
x→0

C(x, x; υ)

x
= lim

x→0

{
x +

αφ
[
βx2γ(1− x)2]

x

}
= lim

x→0

(
x + αβx2γ−1

)
= 0.

Thus, the considered copulas have no lower tail dependence. Concerning the upper
tail dependence, using similar arguments, we have

λup = lim
x→1

1− 2x + C(x, x; υ)

1− x
= lim

x→1

1− 2x + x2 + αφ
[
βx2γ(1− x)2]

1− x

= lim
x→1

(
1− x +

αφ
[
βx2γ(1− x)2]

1− x

)
= lim

x→1
[1− x + αβ(1− x)] = 0.

No upper tail dependence is determined. As a result, the suggested copulas are totally
tail independent.

There exist many measures of correlation (see [5]). Among them are the medial
correlation (or coefficient of Blomqvist) and the Spearman correlation. In our setting, there
are investigated below.

The medial correlations of the considered copulas are given by the following
general formula:

M = 4C
(

1
2

,
1
2

; υ

)
− 1 = 4αφ

(
β2−2(γ+1)

)
.

They are expressed for each of the eight copulas in Table 1.
Some medial correlation orders can be established. In particular, if φ(u) satisfies

φ(u) ≤ u for u in the support of φ, which is the case for φ(u) ∈ {sin(u), arcsinh(u), arctan(u),
tanh(u)}, then the results below hold.

• For α ≥ 0, we have M ≤ M†, where M† denotes the medial correlation of the copula
given in Equation (19).

• For α ≤ 0, the reversed inequality holds; we have M ≥ M†.

If φ(u) satisfies φ(u) ≥ u for u in the support of φ, which is the case for φ(u) ∈
{arcsin(u), sinh(u), tan(u), arctanh(u)}, the reversed medial correlation orders hold.

The Spearman correlations of the considered copulas are specified by the following
general formula:

ρ = 12
∫ ∫

S
[C(x, y; υ)− xy]dxdy = 12α

∫ ∫
S

φ[βxγyγ(1− x)(1− y)]dxdy.

However, the series expansions for C(x, y; υ) mentioned above can be used to obtain
series expansions for ρ. These expansions are given in Table 1. The standard beta function
is defined in this table as B(u, v) =

∫ 1
0 tu−1(1− t)v−1dt with u > 0 and v > 0 (implemented

in most of the mathematical software), the double factorial as n!! = n(n− 2)(n− 4) . . .
(until 1 or 2, depending on the parity nature of n), and the Bernoulli numbers as B2n.
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Table 1. Expressions of the medial correlations and series expansions of the Spearman correlations of
the new copulas.

Copulas Medial Correlations Spearman Correlations (Series Expansions)

S 4α sin
(

β2−2(γ+1)
)

12α
∞

∑
i=0

(−1)i

(2i + 1)!
βiB2[γ(2i + 1) + 1, 2(i + 1)]

AS 4α arcsin
(

β2−2(γ+1)
)

12α
∞

∑
i=0

(2i)!
4i(i!)2(2i + 1)

βiB2[γ(2i + 1) + 1, 2(i + 1)]

HS 4α sinh
(

β2−2(γ+1)
)

12α
∞

∑
i=0

1
(2i + 1)!

βiB2[γ(2i + 1) + 1, 2(i + 1)]

HAS 4α arcsinh
(

β2−2(γ+1)
)

12α
∞

∑
i=0

(−1)i(2i− 1)!!
(2i + 1)(2i)!!

βiB2[γ(2i + 1) + 1, 2(i + 1)]

T 4α tan
(

β2−2(γ+1)
)

12α
∞

∑
i=1
|B2i|

4i(4i − 1)
(2i)!

βiB2[γ(2i− 1) + 1, 2i]

AT 4α arctan
(

β2−2(γ+1)
)

12α
∞

∑
i=0

(−1)i

2i + 1
βiB2[γ(2i + 1) + 1, 2(i + 1)]

HT 4α tanh
(

β2−2(γ+1)
)

12α
∞

∑
i=1
B2i

4i(4i − 1)
(2i)!

βiB2[γ(2i− 1) + 1, 2i]

HAT 4α arctanh
(

β2−2(γ+1)
)

12α
∞

∑
i=0

1
2i + 1

βiB2[γ(2i + 1) + 1, 2(i + 1)]

Other well-known copula correlation measures can be expressed in a similar way
(Gini gamma, Spearman footrule coefficient, etc.).

Some Spearman correlation orders can be established. In particular, if φ(u) satisfies
φ(u) ≤ u for u in the support of φ, which is the case for φ(u) ∈ {sin(u), arcsinh(u),
arctan(u), tanh(u)}, then the results below follow.

• For α ≥ 0, we have ρ ≤ ρ†, where ρ† denotes the Spearman correlation of the copula
given in Equation (19).

• For α ≤ 0, the reversed inequality holds: we have ρ ≥ ρ†.

If φ(u) satisfies φ(u) ≥ u for u in the support of φ, which is the case for φ(u) ∈
{arcsin(u), sinh(u), tan(u), arctanh(u)}, the reversed Spearman correlation orders hold.
Thus, the values of the Spearman correlations of the proposed copulas can be really versatile
and go beyond those of the FGM copula (in the positive or negative sense). This reason,
combined with the functionalities of φ(u), justifies the use of these copulas for applications
where the FGM copula produces moderate or good results, for possible better modeling.

As a well-known copula fact, the proposed copulas can define new parametric two-
dimensional distributions. In fact, by merging two uni-dimensional cumulative distribution
functions, say F(x) and G(x), we build a new two-dimensional cumulative distribution
function as follows:

H(x, y; ζ) = C(F(x), G(y); υ) = F(x)G(y) + αφ{βFγ(x)Gγ(y)[1− F(x)][1− G(y)]},
(x, y) ∈ R2,

where ζ represents the vector of all the involved parameters, i.e., υ = (α, β, γ) and those in
F(x) and G(x). In [36], among other topics, the choices for motivated lifetime cumulative
distribution functions are covered.

Finally, in a statistical scenario, we often need to estimate the unknown parameter
vector υ = (α, β, γ) from data. To this end, as for all copulas, we may think to use the
“omnibus estimation method”, which can be described as follows. For a known integer
n, let (xi, yi), i = 1, . . . , n be data drawn from a continuous random vector, say (X, Y).
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Then, with the use of the proposed copulas and their respective copula densities, denoted
generically here by c(x, y; υ), the omnibus estimate of υ is defined as

υ̂ = argmaxυ

n

∑
i=1

log
{

c
[
F̂(xi), Ĝ(yi); υ

]}
,

where

F̂(x) =
1
n

n

∑
i=1

1{xi≤x}, Ĝ(y) =
1
n

n

∑
i=1

1{yi≤y},

and 1A refers to the indicator function over an event denoted as A. Therefore, after substitut-
ing the transformed data (F̂(xi), Ĝ(yi)), i = 1, . . . , n, the omnibus estimate can be described
as a fundamental maximum likelihood estimate of υ. This semi-parametric estimation
technique aims to prevent potential marginal distribution misspecification, which could
lead to an overestimation of the level of dependence in the data. The references [37,38]
contain the theoretical guarantees of υ̂. Additional remarks on the perspectives of the
applied aspects of the suggested copulas are provided in the section that follows.

4. Conclusions
4.1. Summary

In this article, we produced eight two-dimensional copulas by combining trigonomet-
ric and hyperbolic perturbation functions with a FGM copula structure, riding the wave
of the emergence of new dependence models. They depend on three parameters, each of
which plays an important role in various shape and correlation aspects.

To the best of our knowledge, all of the main copulas described in this article are brand
new to the literature. For a summary view, they are listed in Table 2.

Table 2. Copulas proposed in this article.

Names Main Copulas Survival Copulas Conditions

S xy + α sin[βxγyγ(1− x)(1− y)] xy + α sin[βxy(1− x)γ(1− y)γ] Equation (2)
AS xy + α arcsin[βxγyγ(1− x)(1− y)] xy + α arcsin[βxy(1− x)γ(1− y)γ] Equation (5)
HS xy + α sinh[βxγyγ(1− x)(1− y)] xy + α sinh[βxy(1− x)γ(1− y)γ] Equation (7)

HAS xy + α arcsinh[βxγyγ(1− x)(1− y)] xy + α arcsinh[βxy(1− x)γ(1− y)γ] Equation (9)
T xy + α tan[βxγyγ(1− x)(1− y)] xy + α tan[βxy(1− x)γ(1− y)γ] Equation (12)

AT xy + α arctan[βxγyγ(1− x)(1− y)] xy + α arctan[βxy(1− x)γ(1− y)γ] Equation (14)
HT xy + α tanh[βxγyγ(1− x)(1− y)] xy + α tanh[βxy(1− x)γ(1− y)γ] Equation (16)

HAT xy + α arctanh[βxγyγ(1− x)(1− y)] xy + α arctanh[βxy(1− x)γ(1− y)γ] Equation (18)

The trigonometric nature of some new copulas offers interesting perspectives for
modeling circular-type dependence (see [31,33,34]). For each of the eight copulas, we
identified wide ranges of acceptable parameter values. The proofs were given in full detail.
Their capabilities were carefully examined. Figures were used to illustrate the shapes of
the S and HAS copulas. Theoretically, the symmetry in general, stochastic dominance,
quadrant dependence, tail dependence, Archimedean nature, and correlation measures
were investigated. The inference on the parameters was discussed. As a result, the provided
collections of copulas enhance the specialized literature and serve as the foundation for
fresh dependence models for diverse theoretical or practical uses.

4.2. Limitations

• To obtain a wide range of acceptable values for the three parameters of the suggested
copulas, every mathematical effort was made. However, we do not claim that these
ranges are optimal in the strict sense. There is probably some (minor) room for
improvement, but a solid mathematical basis is given in the article.

• It is worth noting that the article is mainly theory oriented, even though concrete
models are provided with all the details necessary to be practically implemented.
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However, applications to real-world data are missing. This aspect requires experience
and skills that go beyond what the author of this study currently have.

4.3. Perspectives

• The applied aspect is the logical sequel of this article. In particular, by their construc-
tion, our trigonometric copulas are interesting and logically recommended for the
analysis of circular or periodic data types. This is the most recent interpretation of
our findings. The creation of R packages for the proposed copula models similar to
Cylcop (see [34]) is also a challenging project.

• Based on our two-dimensional copulas, we can consider building copulas of higher
dimensions, particularly three-dimensional copulas, given their potential applications
in diverse environmental models, etc. (see [39–41]). A natural three-dimensional
extended form is

C(x, y, z; υ) = xyz + αφ[βxγyγzγ(1− x)(1− y)(1− z)], (x, y, z) ∈ S × [0, 1],

with

φ(u) ∈ {sin(u), arcsin(u), sinh(u), arcsinh(u), tan(u), tanh(u), arctan(u), arctanh(u)},

and β ≥ 0 and γ ≥ 1.

These points need further investigation, which we will leave for future work.

4.4. Extra Remark

Finally, Table 3 shows some inequalities resulting from our copulas and survival
copulas, and the associated Fréchet–Hoeffding bounds. To the best of our knowledge, these
inequalities are new and might be of independent interest. We recall that, as minimum
conditions, β ≥ 0, and γ ≥ 1, and that mγ = [γ/(γ + 1)]γ/(γ + 1).

Table 3. Inequalities derived from the proposed copulas (and survival copulas).

Copulas Inequalities ((x, y) ∈ [0, 1]2) Conditions

S max(x + y− 1, 0)− xy ≤ α sin[βxγyγ(1− x)(1− y)] ≤ min(x, y)− xy Equation (2)
surv. S max(x + y− 1, 0)− xy ≤ α sin[βxy(1− x)γ(1− y)γ] ≤ min(x, y)− xy Equation (2)

AS max(x + y− 1, 0)− xy ≤ α arcsin[βxγyγ(1− x)(1− y)] ≤ min(x, y)− xy Equation (5)
surv. AS max(x + y− 1, 0)− xy ≤ α arcsin[βxy(1− x)γ(1− y)γ] ≤ min(x, y)− xy Equation (5)

HS max(x + y− 1, 0)− xy ≤ α sinh[βxγyγ(1− x)(1− y)] ≤ min(x, y)− xy Equation (7)
surv. HS max(x + y− 1, 0)− xy ≤ α sinh[βxy(1− x)γ(1− y)γ] ≤ min(x, y)− xy Equation (7)

HAS max(x + y− 1, 0)− xy ≤ α arcsinh[βxγyγ(1− x)(1− y)] ≤ min(x, y)− xy Equation (9)
surv. HAS max(x + y− 1, 0)− xy ≤ α arcsinh[βxy(1− x)γ(1− y)γ] ≤ min(x, y)− xy Equation (9)

T max(x + y− 1, 0)− xy ≤ α tan[βxγyγ(1− x)(1− y)] ≤ min(x, y)− xy Equation (12)
surv. T max(x + y− 1, 0)− xy ≤ α tan[βxy(1− x)γ(1− y)γ] ≤ min(x, y)− xy Equation (12)

AT max(x + y− 1, 0)− xy ≤ α arctan[βxγyγ(1− x)(1− y)] ≤ min(x, y)− xy Equation (14)
surv. AT max(x + y− 1, 0)− xy ≤ α arctan[βxy(1− x)γ(1− y)γ] ≤ min(x, y)− xy Equation (14)

HT max(x + y− 1, 0)− xy ≤ α tanh[βxγyγ(1− x)(1− y)] ≤ min(x, y)− xy Equation (16)
surv. HT max(x + y− 1, 0)− xy ≤ α tanh[βxy(1− x)γ(1− y)γ] ≤ min(x, y)− xy Equation (16)

HAT max(x + y− 1, 0)− xy ≤ α arctanh[βxγyγ(1− x)(1− y)] ≤ min(x, y)− xy Equation (18)
surv. HAT max(x + y− 1, 0)− xy ≤ α arctanh[βxy(1− x)γ(1− y)γ] ≤ min(x, y)− xy Equation (18)
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