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Abstract: The main idea of this paper is to study the chaotic behavior of Zakharov–Kuznetsov
equation with perturbation. By taking the traveling wave transformation, we transform the perturbed
Zakharov–Kuznetsov equation with dual-power law and triple-power law nonlinearity into planar
dynamic systems, and then analyze how the external perturbed terms affect the chaotic behavior. We
emphasize here that there is no chaotic phenomenon for the non-perturbed ZK equation, thus it is
only caused by the external perturbed terms.
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1. Introduction

The Zakharov–Kuznetsov (ZK) equation plays an important role in modeling weakly
nonlinear ion-acoustic waves in a plasma [1–3], and has been yet studied by many re-
searchers and a lot of valuable results have been obtained. For example, Wazwaz studied
this equation and obtained the soliton and periodic solutions [4]. Other progress about this
equation could be seen in [5,6].

Recently, the ZK equation in its modified form has attracted a lot attention due to
its wide applications in weakly nonlinear ion-acoustic modes with strongly magnetized
plasma, and its general form could be written as

ut + G(u)ux + σ(uxx + uyy)x = 0, (1)

where G(u) is a differentiable function and σ is a real constant. When G(u) = u1/2, the
corresponding equation of (1) is derived by Schamel [7] to study ion-acoustic waves due
to resonant electrons. In order to promote this equation into a wider field of application,
other forms of this equation, such as the ZK equation with power-law nonlinearity and
dual-power law nonlinearity, are also derived [8,9].

In this paper, we consider the following ZK equation with dual-power law nonlinearity

ut + (aun + bu2n)ux + σ(uxx + uyy)x = r1(x, t), (2)

and triple-power law nonlinearity

ut + (aun + bu2n + cu3n)ux + σ(uxx + uyy)x = r2(x, t), (3)

where a, b and c are all real constants and ri(x, y, t) (i = 1, 2) are the corresponding
external perturbed terms. Equation (2) could be treated similarly as (3) by setting c = 0.
We analyze the chaotic behavior of (2) and (3) with the variation of the parameters a, b
and c when the perturbed terms are in the special form of r(x, t) = r(x + y − lt). The
unperturbed form of (2) is solved by Biswas and Zerrad [9] and a one-soliton solution is
obtained. Other recent progress about ZK equation could be seen [10,11].
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Chaotic motion is usually observed in the high order dynamic systems. However,
recently, Yin and her colleagues studied the chaotic phenomena of the Schrödinger equation
with the power-law nonlinearity when the power exponent is fractional via the qualitative
theory of planar dynamic system [12]. Their findings are surprising, and the link of chaotic
motion with perturbed terms is established. In this paper, we show that when the power
exponent is an integer and the perturbed terms are in other forms, the chaotic phenomena
are also present in (2) and (3).

This paper is organized as follows. In Section 2, the traveling wave transformation is
applied to (2) and (3) with no perturbed term and the corresponding traveling wave systems
are obtained, then the Hamiltonians are constructed via it. Moreover, the qualitative
analysis to the corresponding dynamic system is conducted. In Section 3, we show the
chaotic motion with two kinds of external perturbed terms. The Lyapunov exponents and
the corresponding global phase portraits are given to show the chaotic behaviors. In the
final, a short conclusion is given.

2. Qualitative Analysis for ZK Equation

In this section, we obtain the dynamic system and Hamiltonian of ZK equation by
taking the traveling wave transformation. The qualitative analysis are conducted to obtain
the existence of solitons and periodic solutions. Moreover, we also show corresponding
phase diagrams, which allows us to see the form of the solutions more clearly.

2.1. ZK Equation with Dual-Power Law Nonlinearity

By taking the following transformation

ξ = x + y− lt, (4)

where l is the velocity of the wave, then Equation (2) becomes

− lu′ + (aun + bu2n)u′ + 2σu′′′ = r1(ξ). (5)

Integrating it once yields

− lu +
a

n + 1
un+1 +

b
2n + 1

u2n+1 + 2σu′′ = R1(ξ), (6)

where R1(ξ) =
∫

r1(ξ)dξ.
(6) is equivalent to the following dynamic system

u′ = v,

v′ =
1

2σ
[a1un+1 + a2u2n+1 + a3u + R1(ξ)],

(7)

where a1 = − a
n+1 , a2 = − b

2n+1 and a3 = l. In the following, we first consider the non-
perturbed condition, namely R1(ξ) = 0. Then (6) becomes

− lu +
a

n + 1
un+1 +

b
2n + 1

u2n+1 + 2σu′′ = 0. (8)

Integrating it once, we have

− l
2

u2 +
a

(n + 1)(n + 2)
un+2 +

b
(2n + 1)(2n + 2)

u2n+2 + σu′2 = c, (9)

where c is a constant of integration. Via (9), we can obtain a conserved quantity

H =
v2

2
− l

2σ
u2 +

a
(n + 1)(n + 2)σ

un+2 +
b

(2n + 1)(2n + 2)σ
u2n+2, (10)
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where v is the generalized momentum. It is easy to verify the following formula
∂H
∂ξ

= 0,

∂H
∂v

= u′,
∂H
∂u

= −v′,
(11)

thus H is a Hamiltonian and it represents a constant motion for ∂H
∂ξ = 0. Moreover, in this

non-perturbed case, (7) becomes{
u′ = v,

v′ = u(Au2n + Bun + C) = u f (u),
(12)

where A = a2
2σ , B = a2

2σ , C = a3
2σ and f (u) = Au2n + Bun + C. By introducing the

following discriminant
∆ = B2 − 4AC, (13)

we can see that three cases need to be discussed here. We have to emphasize here that we
only focus on the condition that n is odd, and other conditions could be treated similarly.

Case 1. When ∆ > 0, we have

f (u) = A(un − s1)(un − s2), (s1 > s2) (14)

then the system (12) has three equilibrium points P1 = (0, 0), P2 = (s1/n
1 , 0) and

P3 = (s1/n
2 , 0). When A > 0, P1 is a center and P2 and P3 are two saddle points, whereas

when A < 0, P1 is a saddle point and P2 and P3 are two centers. For example, when
n = 3, s1 = 1, s2 = −1 and A = ±8, the corresponding global phase portraits are given in
Figure 1.

(a) (b)

Figure 1. Global phase portraits of system (12) in Case 1: (a) A = 8; (b) A = −8.

We can conclude from Figure 1 that when A > 0, the original equation has kink soliton
and periodic solution. When A < 0, it has bell-shaped soliton and periodic solution [13].

Case 2. When ∆ = 0, we have

f (u) = A(un − s)2, (15)

then the system (12) has two equilibrium points P1 = (0, 0), P2 = (s1/n, 0), where P2 is
a cuspidal point. When A > 0, P1 is a saddle point and when A < 0, P1 is a center. For
example, when s = 1, n = 3 and A = ±8, the corresponding global phase portraits are
given in Figure 2.
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(a) (b)

Figure 2. Global phase portraits of system (12) in Case 2: (a) A = 8; (b) A = −8.

We can conclude from Figure 2 that when A > 0, the original equation has a kink soli-
ton and periodic solution. When A < 0, it has a bell-shaped soliton and periodic solution.

Case 3. When ∆ < 0, we have

f (u) = A(un − s1)
2 + s2

2, (16)

this case is similar to Case 1, so concrete discussion is omitted. From the basic theory
of bifurcation method, we can see that Equation (5) has periodic and bell-shaped soliton
solution [13,14], and it is also easy to see that there is no chaotic behavior discovered here.
In the next section, we continue to solve ZK equation with dual-power law nonlinearity.

2.2. ZK Equation with Triple-Power Law Nonlinearity

By the traveling wave transformation ξ = x + y− lt and integrating (3), we have

− lu +
a

n + 1
un+1 +

b
2n + 1

u2n+1 +
c

3n + 1
u3n+1 + 2σu′′ = R2(ξ), (17)

where R2(ξ) =
∫

r2(ξ)dξ. (17) is equivalent to the following dynamic system
u′ = v,

v′ =
1

2σ
[b1un+1 + b2u2n+1 + b3u3n+1 + b4u2 + R2(ξ)],

(18)

where b1 = − a
n+1 , b2 = − b

2n+1 , b3 = − c
3n+1 u3n+1 and b4 = l. Via (18), a conserved

quantity could be constructed as follows

H =
v2

2
− l

2σ
u2 +

a
(n + 1)(n + 2)σ

un+2

+
b

(2n + 1)(2n + 2)σ
u2n+2 +

c
(3n + 1)(3n + 2)σ

u3n+2.
(19)

It is easy to verify that (19) is also a Hamiltonian. Via the same procedure, we can obtain
the dynamic properties of Equation (18) such as equilibrium points, global phase portraits
and existences of soliton and periodic solutions. We do not intend to show these results
here, and you can refer to Refs. [13,14] for concrete discussions.

This section deals with (2) and (3) in unperturbed form, and some dynamic properties
are presented. In the next section, we will analyze the chaotic motion of their perturbed
form. With the variation of the parameters and the perturbed terms, we can see that
intensity of the chaotic behavior also changes.

3. The Chaotic Motions

We conduct the qualitative analysis to the ZK equation in the non-perturbed case and
find that there is no chaotic phenomenon under the traveling wave structure. Considering
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the dynamic system (7) and (18), we can actually obtain different chaotic motions with the
variation of the perturbed terms.

3.1. The Chaotic Motions of System (7)

We determine the nonlinear order n equal to 1 and choose three types of perturbed
terms here, namely Ri(ξ) = sin(10ξ), cos(10ξ) and e0.01ξ (i = 1, 2). Moreover, the
largest Lyapunov exponents (LLE) for each situation are all shown. Concrete examples of
corresponding graphs are presented in Figures 3–5.

(a) (b)

(c) (d)

Figure 3. System (7): (a) Largest Lyapunov Exponents for a3; (b) Largest Lyapunov Exponents for
a1; (c) Largest Lyapunov Exponents for a2; (d) Phase portrait, when a1 = −0.9184, a2 = −0.2232,
a3 = −1.7149, R(ξ)= sin(10ξ).

(a) (b)

Figure 4. Cont.
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(c) (d)

Figure 4. System (7): (a) Largest Lyapunov Exponents for a3; (b) Largest Lyapunov Exponents for
a1; (c) Largest Lyapunov Exponents for a2; (d) Phase portrait, when a1 = −0.80357, a2 = −0.4,
a3 = −1.7149, R1(ξ)= cos(10ξ).

(a) (b)

(c) (d)

Figure 5. System (7): (a) Largest Lyapunov Exponents for a3; (b) Largest Lyapunov Exponents for
a1; (c) Largest Lyapunov Exponents for a2; (d) Phase portrait, when a1 = −0.80357, a2 = −0.4,
a3 = −1.7149, R1(ξ)= e0.01ξ .

From Figures 3–5, we can see that if the perturbed term is a trigonometric function,
then the global phase portrait is similar to a torus. Moreover, from the three graphs, we can
see that the Lyapunov exponent of a2 is the largest. We could also draw the conclusion that
the parameter a2 is more influential than a3 and a1. This is also in line with our intuition
since a2 corresponds to the higher-order term.

3.2. The Chaotic Motions of System (18)

We determine the nonlinear order n as 2 in system (18) and the other conditions
of (18) are similar to those of system (7). The corresponding figures are given in Figures 6–8.
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(a) (b)

(c) (d)

Figure 6. System (18): (a) largest Lyapunov Exponents for b1; (b) largest Lyapunov Exponents for b2;
(c) largest Lyapunov Exponents for b3; (d) Phase portrait, when b1 = −0.22, b2 = −0.233, b3 = −0.759,
b4 = −0.178, R2(ξ)= sin(10ξ).

(a) (b)

(c) (d)

Figure 7. System (18): (a) largest Lyapunov Exponents for b1; (b) largest Lyapunov Exponents for b2;
(c) largest Lyapunov Exponents for b3; (d) Phase portrait, when b1 = −0.983, b2 = −0.33, b3 = −0.987,
b4 = −0.9, R2(ξ)= cos(10ξ).
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(a) (b)

(c) (d)

Figure 8. System (18): (a) largest Lyapunov Exponents for b1; (b) largest Lyapunov Exponents for b2;
(c) largest Lyapunov Exponents for b3; (d) Phase portrait when b1 = −0.983, b2 = −0.33, b3 = −0.987,
b4 = −0.9, R2(ξ)= e0.01ξ .

From Figures 6–8, we can see that system (18) has chaotic behaviors that are similar to
system (7), so the discussion is omitted here. We also find that the parameter b3 corresponds
to highest-order term, but the largest Lyapunov exponent is smaller than other parameters,
b1 and b2. This phenomenon is contrary to our common sense, thus we will leave this as an
open question for future investigation.

4. Conclusions

In this paper, by taking the traveling wave transformation to ZK equation with
dual-power law and triple-power law nonlinearity, we convert these equations into planner
dynamic systems. Then the qualitative analysis are conducted to verify the existence of
solitons and periodic solutions. From the qualitative results, we find that there are no
chaotic behaviors for the non-perturbed ZK equation, so we consider adding perturbed
terms to study the chaotic behaviors. According to the largest Lyapunov exponents and
the corresponding phase graphs, we find that by adding the specific perturbed terms, the
chaotic behaviors of the equation can be obtained. To the best of our knowledge, this is
the first time that the chaotic phenomenon of the ZK equation with dual-power law and
triple-power law nonlinearity is studied.
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