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1. Introduction

For any n ∈ N, define the space of (real symmetric) positive definite matrices of size
n× n as follows:

S n
++ :=

{
M ∈ Rn×n : M is symmetric and positive definite

}
.

For d, m ∈ N, ν > 0, M ∈ Rd×m, Σ ∈ S d
++ and Ω ∈ S m

++, the density function of the
centered (and normalized) matrix-variate T distribution, hereafter denoted by Td,m(ν, Σ, Ω),
is defined, for all X ∈ Rd×m, by

Kν,Σ,Ω(X) :=
Γd(

1
2 (ν + m + d− 1))

Γd(
1
2 (ν + d− 1))

|Id + ν−1Σ−1XΩ−1X>|−(ν+m+d−1)/2

(νπ)md/2|Σ|m/2|Ω|d/2 , (1)

(see, e.g., (Definition 4.2.1 in [1])) where ν is the number of degrees of freedom, and

Γd(z) =
∫
S∈S d

++

|S|z−(d+1)/2 exp(−tr(S))dS

= πd(d−1)/4
d

∏
j=1

Γ
(

z− j− 1
2

)
, <(z) > d− 1

2
,

denotes the multivariate gamma function—see, e.g., (Section 35.3 in [2]) and [3]—and

Γ(z) =
∫ ∞

0
tz−1e−tdt, <(z) > 0,
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is the classical gamma function. The mean and covariance matrix for the vectorization of
T ∼ Td,m(ν, Σ, Ω), namely

vec(T) := (T11, T21, . . . , Td1, T12, T22, . . . , Td2, . . . , T1m, T2m, . . . , Tdm)
>,

(vec(·) is the operator that stacks the columns of a matrix on top of each other) are known
to be (see, e.g., Theorem 4.3.1 in [1], but be careful of the normalization):

E[vec(T)] = 0dm (i.e., E[T] = 0d×m),

and
Var(vec(T>)) =

ν

(ν− 2)
Σ⊗Ω, ν > 2.

The first goal of our paper (Theorem 1) is to establish an asymptotic expansion for the
ratio of the centered matrix-variate T density (1) to the centered matrix-variate normal (MN)
density with the same covariances. According to (Gupta and Nagar [1], Theorem 2.2.1), the
density of the MNd,m(0d×m, Σ⊗Ω) distribution is

gΣ,Ω(X) =
exp

(
− 1

2 tr
(
Σ−1XΩ−1X>

))
(2π)md/2|Σ|m/2|Ω|d/2 , X ∈ Rd×m. (2)

The second goal of our paper (Theorem 2) is to apply the log-ratio expansion from
Theorem 1 to derive upper bounds on multiple probability metrics between the measures
induced by the centered matrix-variate T distribution and the corresponding centered
matrix-variate normal distribution. In the special case m = 1, this gives us probability
metric upper bounds between the measure induced by Hotelling’s T statistic and the
associated matrix-normal measure.

To give some practical motivations for the MN distribution (2), note that noise in the
estimate of individual voxels of diffusion tensor magnetic resonance imaging (DT-MRI)
data has been shown to be well modeled by a symmetric form of the MN3×3 distribution
in [4–6]. The symmetric MN voxel distributions were combined into a tensor-variate normal
distribution in [7,8], which could help to predict how the whole image (not just individual
voxels) changes when shearing and dilation operations are applied in image wearing and
registration problems; see Alexander et al. [9]. In [10], maximum likelihood estimators
and likelihood ratio tests are developed for the eigenvalues and eigenvectors of a form of
the symmetric MN distribution with an orthogonally invariant covariance structure, both
in one-sample problems (for example, in image interpolation) and two-sample problems
(when comparing images) and under a broad variety of assumptions. This work extended
significantly the previous results of Mallows [11]. In [10], it is also mentioned that the
polarization pattern of cosmic microwave background (CMB) radiation measurements can
be represented by 2× 2 positive definite matrices; see the primer by Hu and White [12]. In a
very recent and interesting paper, Vafaei Sadr and Movahed [13] presented evidence for
the Gaussianity of the local extrema of CMB maps. We can also mention [14], where finite
mixtures of skewed MN distributions were applied to an image recognition problem.

In general, we know that the Gaussian distribution is an attractor for sums of i.i.d.
random variables with finite variance, which makes many estimators in statistics asymptoti-
cally normal. Similarly, we expect the MN distribution (2) to be an attractor for sums of i.i.d.
random matrices with finite variances (Hotelling’s T-squared statistic is the most natural
example), thus including many estimators, such as sample covariance matrices and score
statistics for matrix parameters. In particular, if a given statistic or estimator is a function
of the components of a sample covariance matrix for i.i.d. observations coming from a
multivariate Gaussian population, then we could study its large sample properties (such
as its moments) using Theorem 1 (for example, by turning a Student-moments estimation
problem into a Gaussian-moments estimation problem).
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The following is a brief outline of the paper. Our main results are stated in Section 2
and proven in Section 3. Technical moment calculations are gathered in Appendix A.

Notation 1. Throughout the paper, a = O(b) means that lim sup |a/b| < C as ν → ∞, where
C > 0 is a universal constant. Whenever C might depend on some parameter, we add a subscript
(for example, a = Od(b)). Similarly, a = o(b) means that lim |a/b| = 0, and subscripts indicate
which parameters the convergence rate can depend on. If a = (1 + o(1))b, then we write a ∼ b.
The notation tr(·) will denote the trace operator for matrices and | · | their determinant. For a matrix
M ∈ Rd×d that is diagonalizable, λ1(M) ≥ · · · ≥ λd(M) will denote its eigenvalues, and we let
λ(M) := (λ1(M), . . . , λd(M))>.

2. Main Results

In Theorem 1 below, we prove an asymptotic expansion for the ratio of the centered
matrix-variate T density to the centered matrix-variate normal (MN) density with the same
covariances. The case d = m = 1 was proven recently in [15] (see also [16] for an earlier
rougher version). The result extends significantly the convergence in distribution result
from Theorem 4.3.4 in [1].

Theorem 1. Let d, m ∈ N, Σ ∈ S d
++ and Ω ∈ S m

++ be given. Pick any η ∈ (0, 1) and let

Bν,Σ,Ω(η) :=

{
X ∈ Rd×m : max

1≤j≤d

δλj√
ν− 2

≤ η ν−1/4

}

denote the bulk of the centered matrix-variate T distribution, where

∆X := Σ−1/2XΩ−1/2 and δλj
:=

√
ν− 2

ν
λj(∆X∆>X ), 1 ≤ j ≤ d.

Then, as ν→ ∞ and uniformly for X ∈ Bν,Σ,Ω(η), we have

log

(
[ν/(ν− 2)]md/2 Kν,Σ,Ω(X)

gΣ,Ω(X/
√

ν/(ν− 2))

)

= ν−1

{
1
4 tr
(
(∆X∆>X )

2)− (m+d+1)
2 tr

(
∆X∆>X

)
+md(m+d+1)

4

}

+ ν−2

{
− 1

6 tr
(
(∆X∆>X )

3)+ (m+d−1)
4 tr

(
(∆X∆>X )

2)
+md

24 (13− 2d2 − 3d(−3 + m) + 9m− 2m2)

}

+ ν−3


1
8 tr
(
(∆X∆>X )

4)− (m+d−1)
6 tr

(
(∆X∆>X )

3)
+md

24

(
26 + d3 + 2d2(−3 + m) + 11m
−6m2 + m3 + d(11− 9m + 2m2)

)
+Od,m,η

(
1 + tr

(
(∆X∆>X )

5)
ν4

)
.

(3)

Local approximations such as the one in Theorem 1 can be found for the Poisson,
binomial and negative binomial distributions in [17] (based on Fourier analysis results
from [18]), and [19] for the binomial distribution. Another approach, using Stein’s method,
is used to study the variance-gamma distribution in [20]. Moreover, Kolmogorov and
Wasserstein distance bounds are derived in [21,22] for the Laplace and variance-gamma
distributions.
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Below, we provide numerical evidence (displayed graphically) for the validity of the
expansion in Theorem 1 when d = m = 2. We compare three levels of approximation for
various choices of S. For any given S ∈ S d

++, define

E0 := sup
X∈Bν,Σ,Ω(ν−1/4)

∣∣∣∣∣log

(
[ν/(ν− 2)]md/2 Kν,Σ,Ω(X)

gΣ,Ω(X/
√

ν/(ν− 2))

)∣∣∣∣∣, (4)

E1 := sup
X∈Bν,Σ,Ω(ν−1/4)

∣∣∣∣∣log

(
[ν/(ν− 2)]md/2 Kν,Σ,Ω(X)

gΣ,Ω(X/
√

ν/(ν− 2))

)

−ν−1
{

1
4

tr
(
(∆X∆>X )

2
)
− (m + d + 1)

2
tr
(

∆X∆>X
)
+

md(m + d + 1)
4

}∣∣∣∣,
E2 := sup

X∈Bν,Σ,Ω(ν−1/4)

∣∣∣∣∣log

(
[ν/(ν− 2)]md/2 Kν,Σ,Ω(X)

gΣ,Ω(X/
√

ν/(ν− 2))

)

−ν−1
{

1
4

tr
(
(∆X∆>X )

2
)
− (m + d + 1)

2
tr
(

∆X∆>X
)
+

md(m + d + 1)
4

}

−ν−2

{
− 1

6 tr
(
(∆X∆>X )

3
)
+ (m+d−1)

4 tr
(
(∆X∆>X )

2
)

+md
24 (13− 2d2 − 3d(−3 + m) + 9m− 2m2)

}∣∣∣∣∣.
In the R software [23], we use Equation (7) to evaluate the log-ratios inside E0, E1 and

E2.
Note that X ∈ Bν,Σ,Ω(ν−1/4) implies |tr((∆X∆>X )

k)| ≤ d for all k ∈ N, so we expect
from Theorem 1 that the maximum errors above (E0, E1 and E2) will have the asymptotic
behavior

Ei = Od(ν
−(1+i)), for all i ∈ {0, 1, 2},

or, equivalently,

lim inf
ν→∞

log Ei

log(ν−1)
≥ 1 + i, for all i ∈ {0, 1, 2}. (5)

The property (5) is verified in Figure 1 below, for Ω = I2 and various choices of Σ2×2.
Similarly, the corresponding log-log plots of the errors as a function of ν are displayed in
Figure 2. The simulations are limited to the range 5 ≤ ν ≤ 1005. The R code that generated
Figures 1 and 2 can be found at Supplementary Material.

As a consequence of the previous theorem, we can derive asymptotic upper bounds
on several probability metrics between the probability measures induced by the centered
matrix-variate T distribution (1) and the corresponding centered matrix-variate normal
distribution (2). The distance between Hotelling’s T statistic [24] and the corresponding
matrix-variate normal distribution is obtained in the special case m = 1.

Theorem 2 (Probability metric upper bounds). Let d, m ∈ N, Σ ∈ S d
++ and Ω ∈ S m

++ be
given. Assume that X ∼ Td,m(ν, Σ, Ω), Y ∼ MNd,m(0d×m, Σ⊗Ω), and let Pν,Σ,Ω and QΣ,Ω be
the laws of X and Y

√
ν/(ν− 2), respectively. Then, as ν→ ∞,

dist(Pν,Σ,Ω,QΣ,Ω) ≤ C(md)3/2

ν
and H(Pν,Σ,Ω,QΣ,Ω) ≤

√
2C(md)3/2

ν
,

where C > 0 is a universal constant,H(·, ·) denotes the Hellinger distance, and dist(·, ·) can be
replaced by any of the following probability metrics: total variation, Kolmogorov (or uniform) metric,
Lévy metric, discrepancy metric, Prokhorov metric.
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Figure 1. Plots of log Ei/ log(ν−1) as a function of ν, for various choices of Σ. The plots confirm (5)
for our choices of Σ and bring strong evidence for the validity of Theorem 1.
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Figure 2. Plots of 1/Ei as a function of ν, for various choices of Σ. Both the horizontal and vertical
axes are on a logarithmic scale. The plots clearly illustrate how the addition of correction terms from
Theorem 1 to the base approximation (4) improves it.
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3. Proofs

Proof of Theorem 1. First, we take the expression in (1) over the one in (2):

[ν/(ν− 2)]md/2 Kν,Σ,Ω(X)

gΣ,Ω(X/
√

ν/(ν− 2))

=

[
2

ν− 2

]md/2 d

∏
j=1

Γ( 1
2 (ν + m + d− j))
Γ( 1

2 (ν + d− j))

· exp
(
(ν− 2)

2ν
tr
(

∆X∆>X
))∣∣∣Id + ν−1∆X∆>X

∣∣∣−(ν+m+d−1)/2
.

(6)

The last determinant was obtained using the fact that the eigenvalues of a product of
rectangular matrices are invariant under cyclic permutations (as long as the products
remain well defined). Indeed, for all j ∈ {1, 2, . . . , d}, we have

λj(Id + ν−1Σ−1XΩ−1X>) = 1 + ν−1λj(Σ−1XΩ−1X>)

= 1 + ν−1λj(∆X∆>X ) = λj(Id + ν−1∆X∆>X ).

By taking the logarithm on both sides of (6), we get

log

(
[ν/(ν− 2)]md/2 Kν,Σ,Ω(X)

gΣ,Ω(X/
√

ν/(ν− 2))

)

= −md
2

log
(

ν− 2
2

)
+

d

∑
j=1

[
log Γ( 1

2 (ν + m + d− j))− log Γ( 1
2 (ν + d− j))

]

+
1
2

d

∑
j=1

δ2
λj
− (ν + m + d− 1)

2

d

∑
j=1

log

1 +

(
δλj√
ν− 2

)2
.

(7)

By applying the Taylor expansions,

log Γ( 1
2 (ν + m + d− j))− log Γ( 1

2 (ν + d− j))

=
1
2
(ν + m + d− j− 1) log

(
1
2
(ν + m + d− j)

)
− 1

2
(ν + d− j− 1) log

(
1
2
(ν + d− j)

)
− m

2
+

2
12(ν + m + d− j)

− 2
12(ν + d− j)

− 23

360(ν + m + d− j)3 +
23

360(ν + d− j)3 +Om,d(ν
−4)

=
m
2

log
(ν

2

)
+

m(−2 + 2d− 2j + m)

4ν
− m

12ν2

{
2 + 3d2 + 3j2 − 3j(−2 + m)
−3m + m2 + d(−6− 6j + 3m)

}
+

m
24ν3

{
4d3 − 4j3 − 6d2(2 + 2j−m) + 6j2(−2 + m) + (−2 + m)2m
−4j(2− 3m + m2) + 4d(2 + 3j2 − 3j(−2 + m)− 3m + m2)

}
+Om,d(ν

−4).

(see, e.g., (Ref. [25], p. 257)) and

−md
2

log
(

ν− 2
2

)
+

md
2

log
(ν

2

)
=

4md
4ν

+
12md
12ν2 +

32md
24ν3 +Om,d(ν

−4),

and
log(1 + y) = y− 1

2
y2 +

1
3

y3 − 1
4

y4 +Oη(y5), |y| < η < 1,
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in the above equation, we obtain

log

(
[ν/(ν− 2)]md/2 Kν,Σ,Ω(X)

gΣ,Ω(X/
√

ν/(ν− 2))

)

=
d

∑
j=1

m(2 + 2d− 2j + m)

4ν
−

d

∑
j=1

m
12ν2

{
−10 + 3d2 + 3j2 − 3j(−2 + m)
−3m + m2 + d(−6− 6j + 3m)

}

+
d

∑
j=1

m
24ν3

{
32 + 4d3 − 4j3 − 6d2(2 + 2j−m) + 6j2(−2 + m) + (−2 + m)2m
−4j(2− 3m + m2) + 4d(2 + 3j2 − 3j(−2 + m)− 3m + m2)

}

+
1
2

d

∑
j=1

δ2
λj
− (ν + m + d− 1)

2

d

∑
j=1

(
δλj√
ν− 2

)2

+
(ν + m + d− 1)

4

d

∑
j=1

(
δλj√
ν− 2

)4

− (ν + m + d− 1)
6

d

∑
j=1

(
δλj√
ν− 2

)6

+
(ν + m + d− 1)

8

d

∑
j=1

(
δλj√
ν− 2

)8

+Od,m,η

(
1 + max1≤j≤d |δλj |

10

ν4

)
. (8)

Now,

1
2
− ν + m + d− 1

2(ν− 2)
= − (m + d + 1)

2ν
− (m + d + 1)

ν2 − 2(m + d + 1)
ν3 +Om,d(ν

−4),

ν + m + d− 1
4(ν− 2)2 =

1
4ν

+
(m + d + 3)

4ν2 +
(m + d + 2)

ν3 +Om,d(ν
−4),

−ν + m + d− 1
6(ν− 2)3 = − 1

6ν2 −
(m + d + 5)

6ν3 +Om,d(ν
−4),

ν + m + d− 1
8(ν− 2)4 =

1
8ν3 +Om,d(ν

−4),

so we can rewrite (8) as

log

(
[ν/(ν− 2)]md/2 Kν,Σ,Ω(X)

gΣ,Ω(X/
√

ν/(ν− 2))

)

= ν−1
d

∑
j=1

{
1
4

δ4
λj
− (m + d + 1)

2
δ2

λj
+

m(2 + 2d− 2j + m)

4

}

+ ν−2
d

∑
j=1


− 1

6 δ6
λj
+ (m+d+3)

4 δ4
λj
− (m + d + 1)δ2

λj

− m
12

{
−10 + 3d2 + 3j2 − 3j(−2 + m)
−3m + m2 + d(−6− 6j + 3m)

}
+ ν−3

d

∑
j=1


1
8 δ8

λj
− (m+d+5)

6 δ6
λj
+ (m + d + 2)δ4

λj
− 2(m + d + 1)δ2

λj

+ m
24

{
32 + 4d3 − 4j3 − 6d2(2 + 2j−m) + 6j2(−2 + m) + (−2 + m)2m
−4j(2− 3m + m2) + 4d(2 + 3j2 − 3j(−2 + m)− 3m + m2)

}
+Od,m,η

(
1 + max1≤j≤d |δλj |

10

ν4

)
,

which proves (3) after some simplifications with Mathematica.



AppliedMath 2022, 2 453

Proof of Theorem 2. By the comparison of the total variation norm ‖ · ‖ with the Hellinger
distance on page 726 of Carter [26], we already know that

‖Pν,Σ,Ω −QΣ,Ω‖

≤

√√√√2P
(

X ∈ B c
ν,Σ,Ω(1/2)

)
+E

[
log

(
dPν,Σ,Ω

dQΣ,Ω
(X)

)
1{X∈Bν,Σ,Ω(1/2)}

]
.

(9)

Given that ∆X = Σ−1/2XΩ−1/2 ∼ Td,m(ν, Id, Im) by Theorem 4.3.5 in [1], we know, by
Theorem 4.2.1 in [1], that

∆X
law
= (ν−1S)−1/2Z,

for S ∼Wishartd×d(ν + d− 1, Id) and Z ∼ MNd×m(0d×m, Id ⊗ Im) that are independent, so
that, by Theorems 3.3.1 and 3.3.3 in [1], we have

∆X∆>X | S ∼Wishartd×d(m, ν S−1). (10)

Therefore, by conditioning on S, and then by applying the sub-multiplicativity of the largest
eigenvalue for nonnegative definite matrices, and a large deviation bound on the maximum
eigenvalue of a Wishart matrix (which is sub-exponential), we get, for ν large enough,

P
(

X ∈ B c
ν,Σ,Ω(1/2)

)
≤ E

[
P
(

λ1(∆X∆>X ) >
ν1/2

4

∣∣∣∣∣ S
)]

≤ E
[
P
(

λ1((ν
−1S)−1/2)λ1(ZZ>)λ1((ν

−1S)−1/2) >
ν1/2

4

∣∣∣∣∣ S
)]

= E
[
P
(

λ1(ZZ>) >
λd(S)
4 ν1/2

∣∣∣∣ S)]
≤ Cm,d exp

(
− ν1/2

104md

)
, (11)

for some positive constant Cm,d that depends only on m and d. By Theorem 1, we also have

E
[

log

(
dPν,Σ,Ω

dQΣ,Ω
(X)

)
1{X∈Bν,Σ,Ω(1/2)}

]

= ν−1

{
1
4 ·E

[
tr
(
(∆X∆>X )

2)]
− (m+d+1)

2 ·E
[
tr(∆X∆>X )

]
+ md(m+d+1)

4

}

+ ν−1

O
(
E
[
tr
(
(∆X∆>X )

2)1{X∈Bν,Σ,Ω(1/2)}

])
+(m + d)O

(
E
[
tr(∆X∆>X )1{X∈Bν,Σ,Ω(1/2)}

])
+O(m(m + d))


+ ν−2

{
O
(
E
[
tr
(
(∆X∆>X )

3)])+ (m + d)O
(
E
[
tr
(
(∆X∆>X )

2)])
+(m + d)O

(
E
[
tr(∆X∆>X )

])
+O(md(m + d)2)

}
.

(12)

On the right-hand side, the first line is estimated using Lemma A1, and the second line is
bounded using Lemma A2. We find

E
[

log

(
dPν,Σ,Ω

dQΣ,Ω
(X)

)
1{X∈Bν,Σ,Ω(1/2)}

]
= O(m3d3ν−2).

Putting (11) and (12) together in (9) gives the conclusion.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/appliedmath2030025/s1.

https://www.mdpi.com/article/10.3390/appliedmath2030025/s1
https://www.mdpi.com/article/10.3390/appliedmath2030025/s1


AppliedMath 2022, 2 454

Funding: F.O. is supported by postdoctoral fellowships from the NSERC (PDF) and the FRQNT (B3X
supplement and B3XR).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The R code for the simulations in Section 2 is in Supplementary Mate-
rial.

Acknowledgments: We thank the three referees for their comments.

Conflicts of Interest: The author declares no conflicts of interest.

Appendix A. Technical Computations

Below, we compute the expectations for some traces of powers of the matrix-variate
Student distribution. The lemma is used to estimate some trace moments and the � ν−2

errors in (12) of the proof of Theorem 2, and also as a preliminary result for the proof of
Lemma A2.

Lemma A1. Let d, m ∈ N, Σ ∈ S d
++ and Ω ∈ S m

++ be given. If X ∼ Td,m(ν, Σ, Ω) according
to (1), then

E
[
tr
(

∆X∆>X
)]

=
md ν

ν− 2
, (A1)

E
[
tr
(
(∆X∆>X )

2
)]

=
md ν2 {(m + d)(ν− 2) + ν + md}

(ν− 1)(ν− 2)(ν− 4)
, (A2)

where we recall ∆X := Σ−1/2XΩ−1/2. In particular, as ν→ ∞, we have

E
[
tr
(

∆X∆>X
)]
∼ md and E

[
tr
(
(∆X∆>X )

2
)]
∼ md(m + d + 1).

Proof of Lemma A1. For W ∼Wishartd×d(n,V) with n > 0 and V ∈ Sd
++, we know from

(Ref. [1], p. 99) (alternatively, see (Ref. [27], p. 66) or (Ref. [28], p. 308)) that

E[W] = nV and E[W2] = n {(n + 1)V+ tr(V) Id}V,

and from (Ref. [1], pp. 99–100) (alternatively, see [29] and ([28], p. 308), or ([30], pp. 101–103))
that

E[W−1] =
V

n− d− 1
, for n− d− 1 > 0,

E[W−2] =
tr(V−1)V−1 + (n− d− 1)V−2

(n− d)(n− d− 1)(n− d− 3)
, for n− d− 3 > 0,

and from (Corollary 3.1 in [30]) that

E[tr(W−1)W−1] =
(n− d− 2) tr(V−1)V−1 + 2V−2

(n− d)(n− d− 1)(n− d− 3)
, for n− d− 3 > 0.

Therefore, by combining the above moment estimates with (10), we have

E
[
∆X∆>X

]
= E

[
E[∆X∆>X | S]

]
= E[m (ν S−1)] = m νE[S−1] =

m ν

ν− 2
Id,

E
[
(∆X∆>X )

2
]
= E

[
E[(∆X∆>X )

2 | S]
]
= E

[
m
{
(m + 1) (ν S−1) + tr(ν S−1) Id

}
(ν S−1)

]
= m ν2

{
(m + 1)E[S−2] +E[tr(S−1) S−1]

}
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=
m ν2 {(m + 1) (ν + d− 2) + (ν− 3) d + 2}

(ν− 1)(ν− 2)(ν− 4)
Id,

By linearity, the trace of an expectation is the expectation of the trace, so (A1) and (A2)
follow from the above equations.

We can also estimate the moments of Lemma A1 on various events. The lemma below
is used to estimate the � ν−1 errors in (12) of the proof of Theorem 2.

Lemma A2. Let d, m ∈ N, Σ ∈ S d
++ and Ω ∈ S m

++ be given, and let A ∈ B(Rd×m) be a Borel
set. If X ∼ Td,m(ν, Σ, Ω) according to (1), then, for ν large enough,∣∣∣E[tr(∆X∆>X )1{X∈A}

]∣∣∣ ≤ 2 md3/2 (P(X ∈ Ac))1/2, (A3)∣∣∣∣E[tr((∆X∆>X )
2
)
1{X∈A}

]
− md ν2{(m + d)(ν− 2) + ν + md}

(ν− 1)(ν− 2)(ν− 4)

∣∣∣∣
≤ 100 m2d5/2 (P(X ∈ Ac))1/2, (A4)

where we recall ∆X := Σ−1/2XΩ−1/2.

Proof of Lemma A2. By Lemma A1, the Cauchy–Schwarz inequality and Jensen’s inequality,

(tr(∆X∆>X ))
2 ≤ d · tr((∆X∆>X )

2),

we have ∣∣∣E[tr(∆X∆>X )1{X∈A}

]∣∣∣ = ∣∣∣E[tr(∆X∆>X )1{X∈Ac}

]∣∣∣
≤
(
E
[
(tr(∆X∆>X ))

2
])1/2

(P(X ∈ Ac))1/2

≤
(

d ·E
[
tr((∆X∆>X )

2)
])1/2

(P(X ∈ Ac))1/2

≤ 2 md3/2 (P(X ∈ Ac))1/2,

which proves (A3). Similarly, by Lemma A1, Holder’s inequality and Jensen’s inequality,

(tr((∆X∆>X )
2))2 ≤ d tr((∆X∆>X )

4),

we have, for ν large enough,∣∣∣∣E[tr((∆X∆>X )
2)1{X∈A}

]
− md ν2 {(m + d)(ν− 2) + ν + md}

(ν− 1)(ν− 2)(ν− 4)

∣∣∣∣
=
∣∣∣E[tr((∆X∆>X )

2)1{X∈Ac}

]∣∣∣ ≤ (E[(tr((∆X∆>X )
2))2

])1/2
(P(X ∈ Ac))1/2

≤
(

dE
[
tr((∆X∆>X )

4)
])1/2

(P(X ∈ Ac))1/2

≤
(

d 104(md)4
)1/2

(P(X ∈ Ac))1/2 ≤ 100 m2d5/2 (P(X ∈ Ac))1/2,

which proves (A4). This ends the proof.
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