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Abstract: Shor’s algorithm for prime factorization is a hybrid algorithm consisting of a quantum
part and a classical part. The main focus of the classical part is a continued fraction analysis. The
presentation of this is often short, pointing to text books on number theory. In this contribution, we
present the relevant results and proofs from the theory of continued fractions in detail (even in more
detail than in text books), filling the gap to allow a complete comprehension of Shor’s algorithm.
Similarly, we provide a detailed computation of the estimation of the probability that convergents
will provide the period required for determining a prime factor.
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1. Introduction

Shor’s algorithm [1] for prime factorization is generally considered as a major mile-
stone and a breakthrough in quantum computing: it solves a practically very relevant
problem (which is, e.g., an underpinning of cryptography) with an exponential speedup
compared to classical methods.

The algorithm is based on the fact that determining a divisor and finally a prime
factor of a natural number n ∈ N can be reduced to finding the period p of the modular
exponentiation function f (x) = axmodn for an a with 0 < a < n (see Section 3.2.1).

The overall algorithm is hybrid, consisting of classical computations and a quantum
computation. The classical computations are computing greatest common divisors with
the Euclidian algorithm, and perform a continuous fraction analysis. A detailed discussion
of the latter is one of the two foci of this contribution (see Section 2).

The quantum part mainly consists of: (i) creating an entangled state based on an
oracle computing the modular exponentiation function f above, (ii) performing a quantum
Fourier transform (QFT) on this state, and (iii) measuring it. The oracle produces the
following state:

|a〉|b〉 = 1√
N

N−1

∑
x=0
|x〉| f (x)〉 (1)

After applying the quantum Fourier transform and a measurement, the first part
(i.e., the |a〉-part) of the quantum register is in state

1√
NA

A−1

∑
j=0

ω
jpy
N |y〉 (2)

In this state, the searched period p already appears in its amplitude. The measured
value y can then be used with high probability (see Section 3.4, Theorem 16) to compute
the period p of the modular exponentiation function f by analyzing the convergents of a
continued fraction (see Section 3.4.1) and finally, based on the period, a prime factor (see
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Section 3.2.1). A detailed discussion on how this is achieved is the second focus of this
contribution (see Section 3).

Structure of the Article

The article is structured as follows: in Section 2 we cover all details about continued
fractions that are required to comprehend the corresponding aspect of Shor’s algorithm.

Section 2.1 defines the notion of a continued fraction, gives examples of how to
compute the continued fraction representation of a rational number, and demonstrates how
to compute the number that a continued fraction (and thus convergents) represents.

Convergents as the fundamental tool in the theory of continued fractions are detailed in
Section 2.2: after defining the term, basic theorems about convergents such as the recursion
theorem, two sign theorems, monotony properties, convergent comparison, nesting of a
number by its convergents, and several distance estimations are proven.

Next, the brief Section 2.3 presents infinite regular continued fractions to repre-
sent non-rational numbers. A corresponding algorithm is provided to compute such
continued fractions.

Section 2.4 gives several upper bounds and lower bounds for the difference between
a number and its convergents. Exploiting one of these bounds, the convergence of the
convergents of an infinite regular continued fraction of a number to this number is proven.
Semiconvergents are defined and corresponding monotony properties are given.

Best approximations of a real number are introduced in Section 2.5. It is proven that
best approximations of the second kind are convergents and vice versa (Lagrange’s theo-
rem). Best approximations of the first kind are proven to be convergents or semiconvergents
(another theorem by Lagrange). Finally, Legendre’s theorem is presented, which is the main
result about continued fractions required by Shor’s algorithm: it allows the implication
that a given fraction is a convergent of another number.

Section 3 is devoted to estimating the probability that convergents can be used to
compute periods, i.e., that Legendre’s theorem can be applied.

At the beginning of Section 3, Section 3.1 proves a lower bound and an upper bound
for the secant lengths of the unit circle. This estimation is central for estimating the
aforementioned probability.

Section 3.2 contains many different estimations of parameters that appear in the
measurement result of Shor’s algorithm. In Section 3.2.1, we recall the very basics of
modular arithmetic, relate this to group theory, and use Lagrange’s theorem from group
theory to prove that the period of the modular exponentiation function in Shor’s algorithm
is less than the number to be factorized (Lemma 8). Intervals of consecutive multiples
of the period are studied in Section 3.2.2: it is shown that multiples of N are sparsely
scattered across these intervals (Note 12). This implies that measurement results are
somehow centered around multiples of N/p (Corollary 9). The cardinality of arguments in
the superposition that build the pre-image of a certain f (x) is estimated in Section 3.2.3.
Section 3.2.4 proves bounds of phases of amplitudes relevant for computing the probability
of measurement results as a geometric sum.

Finally, Section 3.3 computes this probability: it is proven that a measurement result is
close to a multiple of N/p with probability of approximately 4/π2 (Lemma 10).

Section 3.4 shows that this measurement result fulfills the assumption of Legendre’s
theorem (Theorem 15). Thus, by computing convergents, the period can be determined
(Theorem 16 and Section 3.4.1).

Section 3.5 sketches how the main results contribute to the proof of Shor’s algorithm.
Its purpose is to avoid getting lost in the huge amount of low-level details.

A brief conclusion and discussion of related work ends this contribution with Section 4.
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2. Continued Fractions
2.1. Definition of Continued Fractions and Their Computation

We define the notion of continued fractions and give an example of how to compute them.

Definition 1. An expression of the form

a0 +
b1

a1 +
b2

a2+
b3
...

(3)

with ai, bi ∈ C is called an infinite continued fraction.
If, in this expression, it is bi = 1 for all i, a0 ∈ Z, and ai ∈ N for i≥1, the expression is

called a regular continued fraction.
A finite regular continued fraction (simply called a continued fraction) satisfies, in

addition, the condition ∃N ∈ N∀k ∈ N : aN+k = 0 (convention: “1/0 = 0”).
A continued fraction is, thus, the following expression:

[a0; a1, · · · , aN ]
de f
= a0 +

1
a1 +

1
. . .+ 1

aN−1+
1

aN

(4)

A continued fraction of a rational number a/b is computed as follows: the integer part
ba/bc becomes a0 ∈ Z, leaving the non-negative rational remainder x1/y1 ∈ Q. The latter
is now written as 1/(y1/x1), resulting in

a0 +
1(
y1
x1

)
Next, the integer part by1/x1c becomes a1, leaving a rational remainder that is treated

as before. This processing stops until the rational remainder is zero. Figure 1 gives an
example of the processing.
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Beside this straightforward proceeding to compute continued fractions, the well-
known Euclidian algorithm can be used for this purpose too. Figure 2 gives a corresponding
example; it should be self-descriptive.
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Formally, a continued fraction can always be reduced such that its last element is
greater than or equal to 2.

Note 1. Let [a0; a1, . . . , aN ] be a continued fraction. Then:

[a0; a1, . . . , aN ] =

[
a0; a1, . . . , aN−1 +

1
aN

]
(5)

Especially, it can always be achieved that a continued fraction [a0; a1, . . . , aN ] satisfies
aN ≥ 2.

Proof. The following simple computation proves the first claim:

[a0; a1, . . . , aN ] = a0 +
1

a1+
1

...+ 1
aN−1+

1
aN

= a0 +
1

a1+
1

...+ 1
(aN−1+

1
aN )

=
[

a0; a1, . . . , aN−1 +
1

aN

]
Furthermore, if aN = 1 in [a0; a1, . . . , aN ] then aN−1 + 1/aN ≥ 2. This is because, by

definition, ak ≥ 1 for 1 ≤ k ≤ N. �

Equation (5) implies a straightforward way to compute the value represented by a
continued fraction [a0; a1, . . . , aN ]: see Figure 3.
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2.2. Convergents

Next, we define the “workhorses” of the theory of continued fractions.

Definition 2. [a0; a1, . . . , am] is called m-th convergent of the continued fraction [a0; a1, . . . , aN ]
for 0 ≤m ≤ N, or m-th convergent of the infinite regular continued fraction [a0; a1, . . .].
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Convergents can be computed recursively based on the following theorem:

Theorem 1. (Recursion Theorem)
Define:

• p0 = a0;
• p1 = a1a0 + 1;
• pn = an pn−1 + pn−2 for n ≥ 2;

and define:

• q0 = 1;
• q1 = a1;
• qn = anqn−1 + qn−2 for n ≥ 2.

Then, for every convergent [a0; a1, . . . , an], it is:

[a0; a1, . . . , an] =
pn

qn
(6)

Proof (by induction). Let n = 0, 1: Then, [a0] = a0 =
p0
q0

and [a0; a1] = a0 +
1
a1

= a0a1+1
a1

=
p1
q1

.

Induction hypothesis: [a0; a1, . . . , an] =
pn
qn

= an pn−1+pn−2
anqn−1+qn−2

.
Induction step n→ n + 1: According to Note 1, it is

[a0; a1, . . . , an, an+1] =

[
a0; a1, . . . , an +

1
an+1

]
and the last continued fraction has n elements, i.e., the induction hypothesis applies:

a0; a1, . . . , an +
1

an+1
] =

(
an+

1
an+1

)
pn−1+pn−2(

an+
1

an+1

)
qn−1+qn−2

=

anan+1+1
an+1

pn−1+pn−2
anan+1+1

an+1
qn−1+qn−2

= (anan+1+1)pn−1+an+1 pn−2
(anan+1+1)qn−1+an+1qn−2

= an+1(an pn−1+pn−2)+pn−1
an+1(anqn−1+qn−2)+qn−1

(A)
= an+1 pn+pn−1

an+1qn+qn−1
(B)
= pn+1

qn+1

Here, (A) is valid because of the induction hypothesis, and (B) is the definition of pn+1
and qn+1. �

The recursion theorem implies the often used.

Corollary 1. Numerators and denominators of convergents of a continued fraction
[a0; a1, . . . , aN ] with a0 ≥ 0 are strictly monotonically increasing:

pn > pn−1 and qn > qn−1 for all n ∈ N.

Proof (by induction). Let n = 1: By definition, p0 = a0, p1 = a1a0 + 1. Because ai ≥ 1 for
i ≥ 1, and a0 ≥ 0, it is p1 > p0 ≥ 0. Similarly, q1 > q0 > 0

Now, pn = an pn−1 + pn−2 and qn = anqn−1 + qn−2 for n≥ 2. With an ≥ 1 by definition,
and pn−1 > pn−2 (≥1) as well as qn−1 > qn−2 (≥1) by induction hypothesis, the claim
follows. �

The next theorem is about the sign of a combination of the numerators and denomina-
tors of consecutive convergents of a continued fraction.
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Theorem 2. (Sign Theorem)
For [a0; a1, . . . , an] =

pn
qn

, the following holds:

pnqn−1 − pn−1qn = (−1)n−1 (7)

Proof (by induction). For n = 1, it is

p1q0 − p0q1 = (a1a0 + 1) · 1− a0 · a1 = 1 = (−1)0

Induction step n→ n + 1:

pn+1qn − pnqn+1 = (an+1 pn + pn−1)qn − pn(an+1qn + qn−1)
= an+1 pnqn + pn−1qn − pnan+1qn − pnqn−1
= pn−1qn − pnqn−1 = −(pnqn−1 − pn−1qn)

(A)
= −(−1)n−1 = (−1)n

(A) uses the induction hypothesis. �

In case the numerators and denominators stem from the n-th convergent and the
(n − 2)-nd convergent, the last n-th element of the convergent becomes part of the equation.

Theorem 3. (Second Sign Theorem)
For [a0; a1, . . . , an] =

pn
qn

, the following holds:

pnqn−2 − pn−2qn = (−1)nan (8)

Proof. It is pn = anpn−1 + pn−2 and qn = anqn−1 + qn−2.
Multiplying the first equation by qn−2 and the second equation by pn−2 results in

qn−2 pn = qn−2an pn−1 + qn−2 pn−2 and pn−2qn = pn−2anqn−1 + pn−2qn−2. Next, both
equations are subtracted:

pnqn−2 − pn−2qn = qn−2an pn−1 + qn−2 pn−2 − pn−2anqn−1 − pn−2qn−2
= qn−2an pn−1 − pn−2anqn−1
= an(pn−1qn−2 − pn−2qn−1)

(A)
= (−1)nan

where (A) is implied by the sign theorem (Theorem 2) and considering (−1)n−2 = (−1)n.
�

The sign theorem immediately yields the important.

Corollary 2. Numerator and denominator of a convergent are co-prime.

Proof. Let t be a divisor of pn and qn, i.e., t|pn and t|qn . Then, t|(pnqn−1 − pn−1qn) , but
(pnqn−1 − pn−1qn) = (−1)n−1 according to the sign theorem. Thus, t = ±1. �

Convergents can be represented as a sum of fractions with alternating sign and
whose denominators consist of products of two consecutive denominators from the
recursion theorem.
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Theorem 4. (Representation as a Sum)
Each convergent can be represented as a sum:

[a0; a1, . . . , an] = a0 +
1

q1q0
− 1

q2q1
+ · · ·+ (−1)n−1 1

qnqn−1
(9)

Proof. Let [a0; a1, . . . , an] =
pn
qn

. Since − pi
qi
+ pi

qi
= 0, we can write

[a0; a1, . . . , an] =
pn

qn
− pn−1

qn−1
+

pn−1

qn−1
− pn−2

qn−2
+

pn−2

qn−2
− · · ·+ p1

q1
− p0

q0
+

p0

q0

Computing the differences results in

[a0; a1, . . . , an] = pnqn−1−qn pn−1
qnqn−1

+ pn−1qn−2−qn−1 pn−2
qn−1qn−2

+ · · ·+ p1q0−q1 p0
q1q0

+ p0
q0

(A)
= (−1)n−1

qnqn−1
+ (−1)n−2

qn−1qn−2
+ · · ·+ (−1)0

q1q0
+ a0

where the sign theorem is applied in (A) and the last term a0 = p0/q0 is the recursion
theorem. �

The next theorem is key for many estimations in the domain of continued fractions.

Theorem 5. (Monotony Theorem)

Let xn
de f
= pn

qn
= [a0; a1, . . . , an] denote the n-th convergent. Then:

x2n < x2n+2

and
x2n+1 > x2n+3

I.e., even convergents are strictly monotonically increasing, and odd convergents are strictly
monotonically decreasing.

Proof. We compute the following difference, where (A) again uses − pi
qi
+ pi

qi
= 0:

xn − xn−2 = pn
qn
− pn−2

qn−2

(A)
= pn

qn
− pn−1

qn−1
+ pn−1

qn−1
− pn−2

qn−2

= pnqn−1−qn pn−1
qnqn−1

+ pn−1qn−2−qn−1 pn−2
qn−1qn−1

(B)
= (−1)n−1

qnqn−1
+ (−1)n−2

qn−1qn−2
= (−1)n−1qn−2+(−1)n−2qn

qnqn−1qn−2

= (−1)n−2qn−(−1)n−2qn−2
qnqn−1qn−2

= (−1)n−2(qn−qn−2)
qnqn−1qn−2

= (−1)n(qn−qn−2)
qnqn−1qn−2

(C)
= (−1)nanqn−1

qnqn−1qn−2
= (−1)nan

qnqn−2

(B) is because of the sign theorem, and (C) follows from qn = anqn−1 + qn−2, i.e., the
recursion theorem.

Now, because of an, qn, qn−2 > 0, it is an
qnqn−2

> 0. Thus, (−1)nan
qnqn−2

> 0 for n even and
(−1)nan
qnqn−2

< 0 for n odd. This implies xn = (−1)nan
qnqn−2

+ xn−2 > xn−2 for n even as well as

xn = (−1)nan
qnqn−2

+ xn−2 < xn−2 for n odd. �

While even convergents are increasing and odd convergence are decreasing, all even
convergents are smaller than all odd convergents. This is the content of the next very
important theorem.
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Theorem 6. (Convergents Comparison Theorem)
For 0 ≤ 2n, 2m + 1 ≤ N, it is x2n < x2m+1

Proof. As before, using the sign theorem in (A), we obtain

xn − xn−1 =
pn

qn
− pn−1

qn−1
=

pnqn−1 − qn pn−1

qnqn−1

(A)
=

(−1)n−1

qnqn−1
=

(−1)n−1

βn

with βn := qnqn−1. Because qn, qn−1 > 0, it is βn > 0, i.e., the sign of (−1)n−1

βn
is in fact

(−1)n−1.

Thus, x2n+1 − x2n = (−1)2n

β2n+1
> 0, and we get x2n+1 = (−1)2n

β2n+1
+ x2n > x2n. This

shows that an even convergent x2n is strictly smaller than its immediate succeeding odd
convergent x2n+1.

But what about an arbitrary odd convergent x2m+1? For n < m, the monotony theorem
(Theorem 6) yields x2n < x2m and we showed before that x2m < x2m+1; thus, x2n < x2m+1.

For n > m, the monotony theorem yields x2m+1 > x2n+1 and with x2n+1 > x2n we see
x2n < x2m+1. �

The following often-used corollary computes the difference of two immediately suc-
ceeding convergents by mean of the denominators of the convergents, while the difference
of the n-th convergent and the (n − 2)-nd convergent adds the n-th element of the n-th
convergent as a factor.

Corollary 3.
pn

qn
− pn−1

qn−1
=

(−1)n−1

qnqn−1
(10)

and
pn

qn
− pn−2

qn−2
=

(−1)nan

qnqn−2
(11)

Proof. Equation (10) is the first equation from the proof of Theorem 6. The second equation
follows because of

pn

qn
− pn−2

qn−2
=

pnqn−2 − pn−2qn

qnqn−2

(A)
=

(−1)nan

qnqn−2

where (A) is because of the second sign theorem (Theorem 3). �

We already saw that the even convergents are strictly monotonically increasing, that
the odd convergents are strictly monotonically decreasing, and that each even convergent
is less than all odd convergents. According to the next theorem, the value of a continued
fraction lies between the even convergents and the odd convergents, i.e., this value is larger
than all even convergents and smaller than all odd convergents. The situation is depicted
in Figure 4.
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Note that the notion of the value of a continued fraction is defined for finite continued
fractions. In Section 4, this notion will also be defined for regular infinite continued fractions.

Theorem 7. (Nesting Theorem)
Let x be the value of the continued fraction [a0; a1, . . . , aN ] and let xk be its convergents. Then:

∀m, n < N : x2m < x < x2n+1 (12)

Proof. The value of x is the convergent with the highest index N, i.e., x = xN =
[a0; a1, . . . , aN ].

Let N = 2k be even. Since even convergents are strictly monotonically increasing, we
know that ∀2m < N : x2m < x2k = xN = x, and according to the convergent comparison
theorem (Theorem 6), we know ∀2n + 1 : x = xN = x2k < x2n+1.

Let N = 2k + 1 be odd. Since odd convergents are strictly monotonically decreasing,
we know that ∀2n + 1 < N : x2n+1 > x2k+1 = xN = x, and according to the convergent
comparison theorem (Theorem 6), we know ∀2m : x = xN = x2k+1 > x2m. �

Because the value of a continued fraction is nested within its even convergents and
odd convergents, the distance of this value from any of its convergents can be estimated by
the distance of two consecutive convergents:

Theorem 8. (Distance Theorem)
Let x = [a0; a1, . . . , aN ] and let xk be its convergents. Then:

∀n : |x− xn| < |xn−1 − xn| (13)

and
∀n : |x− xn| < |xn+1 − xn| (14)

Proof. Let n be even. Then, xn < x < xn−1, i.e., x − xn < xn−1 − xn. Additionally, it is
x− xn > 0 and xn−1 − xn > 0. Thus, |x− xn| < |xn−1 − xn| for n even.

Now, let n be odd. It is xn−1 < x < xn, which implies x − xn > xn−1 − xn ⇔
−(xn − x) > −(xn − xn−1) ⇔ xn − x < xn − xn−1 . Because of xn− x > 0 and xn− xn−1 >
0, it is |xn − x| < |xn − xn−1| ⇔ |x− xn| < |xn−1 − xn| for n odd.

Together, this proves Equation (13). Equation (14) is proven similarly. �

Figure 5 shows the corresponding geometric situation for an even n.
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Figure 5. The distance between two succeeding convergents is greater than the distance of a conver-
gent and the value of its continued fraction.

Similarly, the difference between any two arbitrary convergents can be estimated by
the difference of the convergent with the smaller index and its immediate predecessor:

Theorem 9. (Difference Theorem)
Let x = [a0; a1, . . . , aN ] and let xk be its convergents. Then:

∀m > n : |xm − xn| < |xn−1 − xn| (15)
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Proof. Let n be even, e.g., n = 2k.
Let m = 2t be even. By Theorem 6, even convergents are smaller than all odd con-

vergents, i.e., x2t < x2k−1 for any t ∈ N. Thus, xm − xn = x2t − x2k << x2k−1 − x2k =
xn−1 − xn.

Let m = 2t − 1 be odd. By the monotony theorem (Theorem 5), odd convergents
are strictly monotonically decreasing, i.e., x2t−1 < x2k−1 for each t > k. Thus, xm − xn =
x2t−1 − x2k < x2k−1 − x2k = xn−1 − xn.

For n odd, the proof is analogous. �

The geometry of the last theorem is depicted in Figure 6.
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In several calculations, the size of the denominator of a convergent must be estimated:
Lemma 1. (Size of Denominators)

For the denominator qn of a convergent pn
qn

= [a0; a1, . . . , an], the following holds:

∀n : qn ≥ n (16)

and
∀n > 3 : qn > n (17)

Proof. By definition, q0 = 1 > 0, and q1 = a1 ≥ 1 because ai ∈ N, and finally,

q2
(A)
= a2q1 + q0

(B)
= a2q1 + 1

(C)
≥ q1 + 1

(D)
≥ 2

(A) holds because of the recursion theorem (Theorem 1), (B) is by definition of q0, (C) is
because a2 ∈ N, and (D) has been seen just before (i.e., q1 ≥ 1). This proves the lemma for
n ≤ 2.

The proof for n ≥ 3 is by induction. It is

qn
(A)
= anqn−1 + qn−2

(B)
≥ qn−1 + qn−2

(C)
≥ qn−1 + (n− 2)

(D)
≥ qn−1 + 1

(E)
≥ n

where (A) is the recursion theorem, (B) is because of an ∈ N, (C) is by induction hypothesis
applied to qn−2, (D) is because n ≥ 3, and (E) is by induction hypothesis applied to qn−1.
This proves Equation (16).

Equation (17) is proven by induction again. Let n > 3. The argumentation is exactly as
before, with the exception of (D):

qn
(A)
= anqn−1 + qn−2

(B)
≥ qn−1 + qn−2

(C)
≥ qn−1 + (n− 2)

(D)
> qn−1 + 1

(E)
≥ n

(D) holds because n > 3, i.e., n− 2 > 1. �
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In fact, denominators of a convergent grow much faster than the inequation qn > n
may indicate:

Lemma 2. (Geometric Growth of Denominators)
Let qn (n ≥ 2) be the denominator of the convergent pn

qn
= [a0; a1, . . . , an]. Then:

qn ≥ 2
n−1

2 (18)

Proof. It is qk = akqk−1 + qk−2 > qk−1 + qk−2

(A)
> 2qk−2, with (A) because, according to

corollary 1, denominators are strictly monotonically increasing, i.e., qk−1 > qk−2.

By induction, it is q2k ≥ 2kq0, and then 2kq0
(A)
= 2k

(B)
≥ 2

(2k)−1
2 with (A) because q0 = 1,

and (B) follows from

2k = 2
2k
2 ≥ 1√

2
2

2k
2 = 2

2k
2 −

1
2 = 2

2k−1
2

Similarly, by induction, it is q2k+1 ≥ 2kq1 and then 2kq1
(A)
≥ 2k = 2

(2k+1)−1
2 with (A)

because of q1 ∈ N.
With n = 2k and n = 2k + 1, respectively, Equation (18) is implied. �

2.3. Convergence of Infinite Regular Continuous Fractions

In Section 2.1, we presented an algorithm to compute the continued fraction represen-
tation of a rational number. Next, we show how to compute such a representation for a
non-rational number (Algorithm 1).

Algorithm 1 Continued Fraction Representation of Non-Rational Number

1. Let α ∈ R \Q. Define:

• α0 := α and b0 := bα0c;
• αi := 1

αi−1−bi−1
and bi := bαic for i ≥ 1.

2. Then, [b0; b1, b2, . . .] is the continued fraction representation of α. Each αi is called the i-th
complete quotient of α.

The above algorithm does not terminate, i.e., the continued fraction representation of
a non-rational number is infinite. This is the content of the following note:

Note 2.
In Algorithm 1, it is αi /∈ Z.

Proof (by induction).
n = 0: Then, by definition, α0 = α /∈ Z.
Induction hypothesis: αn /∈ Z.
n→ n + 1: Assume αn − bn ∈ Z⇒ (αn − bn) = k ∈ Z⇒ αn = k + bn ∈ Z, which is a

contradiction to the hypothesis! Thus, αn − bn /∈ Z⇒ αn+1 := 1
αn−bn

/∈ Z. �

Figure 7 gives the computation of the continued fraction representation of
√

2:
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2.4. Bounds Expressed by Denominators of Convergents

In the following, we give upper bounds and lower bounds of the approximations
of a number by the convergents of its continued fraction representation by means of the
denominators of the convergents.

First, we start with estimations of upper bounds:

Lemma 3. (Upper Bounds)
Let pn/qn be a convergent of the continued fraction representation of x. Then:∣∣∣∣x− pn

qn

∣∣∣∣ < 1
qnqn+1

<
1
q2

n
≤ 1

n2 (19)

Proof. With xn = pn/qn, it is |x− xn| < |xn+1 − xn| (see Theorem 8, Equation (14)).
According to Corollary 3 (Equation (10)), it is

xn+1 − xn =
pn+1

qn+1
− pn

qn
=

(−1)n

qnqn+1

Thus,

|x− xn| < |xn+1 − xn| =
∣∣∣∣ (−1)n

qnqn+1

∣∣∣∣ = 1
qnqn+1

(A)
<

1
q2

n

(B)
≤ 1

n2

where (A) holds because of qn+1 > qn (Corollary 1), and (B) is true because of qn ≥ n
(Lemma 1). �

An immediate consequence of this theorem is the convergence of the sequence of the
convergents of a continued fraction to the value of the continued fraction. This, by the way,
is the origin of the name “convergents”.

Corollary 4. The series (pn/qn) of the convergents of the continued fraction representation
of x ∈ R \Q converges to x:

lim
pn

qn
= x

Proof. The claim follows immediately from
∣∣∣x− pn

qn

∣∣∣ < 1
n2 . �

Often, two fractions are compared by means of their mediant (“mediant” means
“somewhere in between”).
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Definition 3. For a/b, c/d ∈ Q and b, d > 0, the term a+c
b+d is called the mediant of the

two fractions.
The following simple inequation is often used.

Note 3. (Mediant Property)
Let a/b, c/d ∈ Q and b, d > 0 and a

b < c
d .

Then:
a
b
<

a + c
b + d

<
c
d

(20)

Proof. It is a
b < c

d ⇒ ad < bc⇒ bc− ad > 0 and b, d > 0⇒ b(b + d) > 0 . This implies
a+c
b+d −

a
b = b(a+c)−a(b+d)

b(b+d) = bc−ad
b(b+d) > 0 and thus a

b < a+c
b+d . The inequation a+c

b+d < c
d follows

similarly. �

Mediants of convergents that are weighted in a certain way are another important
concept for computing bounds:

Definition 4. The term xn,t = tpn+1+pn
tqn+1+qn

with 1 ≤ t ≤ an+2 is called the (n,t)-th
semiconvergent.

Semiconvergents of an even n are strictly monotonically increasing, and semicon-
vergents of an odd n are strictly monotonically decreasing. This is the content of the
following lemma.

Lemma 4. (Monotony of Semiconvergents)
Let n be even. Then, xn,t < xn,t+1.
Let n be odd. Then, xn,t > xn,t+1.

Proof. A simple calculation and the use of the sign theorem (Theorem 2) results in

xn,t+1 − xn,t =
(t + 1)pn+1 + pn

(t + 1)qn+1 + qn
− tpn+1 + pn

tqn+1 + qn

=
(−1)n

((t + 1)qn+1 + qn)(tqn+1 + qn)

The denominator of the last fraction is always positive. Thus, the last term is positive
iff n is even (i.e., xn,t+1 − xn,t > 0), and it is negative iff n is odd (i.e., xn,t+1 − xn,t < 0). �

In order to simplify proofs in what follows, the following conventions are used:

p−1
de f
= 1 and q−1

de f
= 0 (21)

With this, x−1,1 = p0+p−1
q0+q−1

= a0+1
1+0 = a0 + 1 becomes a semiconvergent. Now, x1 =

p1
q1

(A)
= a1a0+1

a1
= a0 +

1
a1

(B)
≤ a0 + 1 = x−1,1 where (A) is the recursion theorem and (B)

follows because a1 ≥ 1; thus, x1 ≤ x−1,1.
Furthermore, it is x−1,t =

tp0+p−1
tq0+q−1

= ta0+1
t·1+0 = ta0+1

t = a0 +
1
t for 1 ≤ t ≤ a1.

Putting things together, it is

x−1,1 = a0 + 1 > a0 +
1
2
> · · · > a0 +

1
a1

= x1 (22)

Based on this, we can refine Figure 4, which depicts the nesting and ordering of
convergents by including semiconvergents: Between two succeeding convergents (e.g., xn
and xn+2 in Figure 8, the corresponding semiconvergents ordered according to Lemma 4
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are nested (in increasing order as shown for an even n in Figure 8). Furthermore, beyond
x1 = a0 +

1
a1

, the semiconvergents x−1,t are added.
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Now, we are prepared to prove a lower bound of the approximation of a number by
the convergents of its continued fraction representation by means of the denominators of
the convergents.

Lemma 5. (Lower Bounds)
Let pn/qn be a convergent of the continued fraction representation of x. Then:∣∣∣∣x− pn

qn

∣∣∣∣ > 1
(qn + qn+1)qn

(23)

Proof. The proof is based on the following claims:

Claim 1. n even⇒ pn
qn

< pn+1+pn
qn+1+qn

< x < pn+1
qn+1

.

Proof. pn+1+pn
qn+1+qn

is the mediant of pn+1
qn+1

and pn
qn

. Thus, the mediant property (Note 3) shows

that pn
qn

< pn+1+pn
qn+1+qn

< pn+1
qn+1

. Then:

pn

qn
<

pn+1 + pn

qn+1 + qn

(A)
<

2pn+1 + pn

2qn+1 + qn
< · · · < an+2 pn+1 + pn

an+2qn+1 + qn

(B)
=

pn+2

qn+2

where (A) follows by the monotony of even semiconvergents (Lemma 4), and (B) is the
recursion theorem. Because of Theorem 7 (note that n + 2 is even and n + 1 is odd), it is
pn+2
qn+2

< x < pn+1
qn+1

. This proves Claim 1. �(claim1)

Claim 2. n odd⇒ pn−1
qn−1

< x < pn+1+pn
qn+1+qn

< pn
qn

.

Proof. As before, pn+1+pn
qn+1+qn

is the mediant of pn+1
qn+1

and pn
qn

. Because n is odd, it is pn+1
qn+1

< pn
qn

(Theorem 7). Thus, pn+1
qn+1

< pn+1+pn
qn+1+qn

< pn
qn

because of the mediant property (Note 3). Then:

pn

qn
>

pn+1 + pn

qn+1 + qn

(A)
>

2pn+1 + pn

2qn+1 + qn
> · · · > an+2 pn+1 + pn

an+2qn+1 + qn

(B)
=

pn+2

qn+2

where (A) follows by the monotony of odd semiconvergents (Lemma 4), and (B) is the
recursion theorem. Because of Theorem 7 (note that n − 1 is even and n + 2 is odd), it is
pn−1
qn−1

< x < pn+2
qn+2

, and because n is odd, it is pn+2
qn+2

< pn
qn

. This proves Claim 2. �(claim2)

With Claim 1, for even n, it is pn
qn

< pn+1+pn
qn+1+qn

< x⇒ x− pn
qn

> pn+pn+1
qn+qn+1

− pn
qn

.

With Claim 2, for n odd, it is x < pn+1+pn
qn+1+qn

< pn
qn
⇒ pn

qn
− x > pn

qn
− pn+pn+1

qn+qn+1
⇔

−
(

x− pn
qn

)
> −

(
pn+pn+1
qn+qn+1

− pn
qn

)
.
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Thus, for any k ∈ N:
∣∣∣x− pk

qk

∣∣∣ > ∣∣∣ pk+1+pk
qk+1+qk

− pk
qk

∣∣∣. Next, we compute

pk+pk+1
qk+qk+1

− pk
qk

=
(pk+pk+1)qk−(qk+qk+1)pk

(qk+qk+1)qk
=

pk+1qk−pkqk+1
(qk+qk+1)qk

(A)
= (−1)k

(qk+qk+1)qk

where (A) is the sign theorem (Theorem 2).

This implies
∣∣∣x− pk

qk

∣∣∣ > ∣∣∣∣ (−1)k

(qk+qk+1)qk

∣∣∣∣ = 1
(qk+qk+1)qk

. �

Because of qk+1 > qk (Corollary 1), it is

qk + qk+1 < 2qk+1 ⇔
1

2qk+1
<

1
qk + qk+1

⇔ 1
2qkqk+1

<
1

(qk + qk+1)qk

Using the last inequality in Lemma 5 (Lower Bounds) and using Lemma 3 (Upper
Bounds), we obtain the concluding theorem of this section:

In summary, we have proved the following:

Theorem 10. (Bounds of Approximations by Convergents)
Let pk/qk be a convergent of the continued fraction representation of x. Then:

1
2qkqk+1

<
1

(qk + qk+1)qk
<

∣∣∣∣x− pk
qk

∣∣∣∣ < 1
qkqk+1

<
1
q2

k
(24)

�

2.5. Best Approximations

Our goal is to approximate a real number by a rational number as good as possible
while keeping the denominator of the rational number “small”. Keeping the denominator
small is important because in practice, every real number can only be given up to a
certain degree of precision, and this is achieved by means of a huge denominator and
corresponding numerator. i.e., approximating a real number by a rational number with a
huge denominator is canonical, but finding a small denominator is a problem.

This is captured by the following:

Definition 5. A fraction p/q ∈ Q is called a best approximation (of the first kind) of α ∈ R:⇔
∀c/d ∈ Q : d ≤ q⇒

∣∣α− c
d

∣∣ > ∣∣∣α− p
q

∣∣∣ (assuming c/d 6= p/q).
Often, the addition “of the first kind” is omitted. By definition, a best approximation

of a real number can only be improved if the denominator of the given approximation
is increased.

If p/q is a best approximation of α, then
∣∣∣α− p

q

∣∣∣ = 1
q |qα− p| is small and, thus,

|qα− p| is small. Measuring the goodness of an approximation this way results in
the following:

Definition 6. A fraction p/q ∈ Q is called a best approximation of the second kind of α ∈ R:⇔
∀c/d ∈ Q : d ≤ q⇒ |dα− c| > |qα− p| (assuming c/d 6= p/q).

The question is whether every best approximation is also a best approximation of the
second kind. Now, 1/3 is a best approximation of 1/5 because the only possible fractions
for c/d, with d ≤ 3 = q, are 0, 1/2, 2/3, and 1, and these numbers satisfy

∣∣∣ 1
5 −

c
d

∣∣∣ > ∣∣∣ 1
5 −

1
3

∣∣∣.
Next, we observe that

∣∣∣1 · 1
5 − 0

∣∣∣ < ∣∣∣3 · 1
5 − 1

∣∣∣ with 1 < 3. Thus, with d = 1 and q = 3
(i.e., d < q) and α = 1/5, we found a fraction c/d = 0/1 with |dα− c| < |qα− p|! As a
consequence, although 1/3 is a best approximation of the first kind of 1/5, it is not a best
approximation of the second kind.
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Thus, not all best approximations of the first kind are best approximations of the
second kind. But the reverse holds true:

Lemma 6. (Every 2nd Kind Best Approximation is a 1st Kind Best Approximation)
If p/q ∈ Q is a best approximation of the second kind of α ∈ R, then p/q is also a best

approximation of the first kind of α.

Proof (by contradiction). Assume p/q is not a best approximation of the first kind. Then,∣∣α− c
d

∣∣ ≤ ∣∣∣α− p
q

∣∣∣ for a fraction c/d with d < q. Multiplying both inequations results in

d
∣∣α− c

d

∣∣ ≤ q
∣∣∣α− p

q

∣∣∣⇔ |dα− c| ≤ |qα− p|, which is a contradiction because p/q is a best
approximation of the second kind. �

The next simple estimation about the distance of two fractions by means of the product
of their denominators is often used.

Note 4. (Distance of Fractions)
Let a

b , p
q ∈ Q with a

b 6=
p
q . Then: ∣∣∣∣ p

q
− a

b

∣∣∣∣ ≥ 1
qb

(25)

Proof. With a, p ∈ Z and b, q ∈ N, it is pb− aq ∈ Z. Also, pb− aq 6= 0 because otherwise
pb = aq⇔ p

q = a
b which contradicts the premise. Thus, |pb− aq| ∈ N, i.e., |pb− aq| ≥ 1.

This implies ∣∣∣∣ p
q
− a

b

∣∣∣∣ = ∣∣∣∣ pb− aq
qb

∣∣∣∣ = |pb− aq|
|qb| ≥ 1

qb

where |qb| = qb because b, q ∈ N. �

Next, we prove that every best approximation of the second kind is a convergent.

Theorem 11. (2nd Kind Best Approximations are Convergents)
Let a/b be a best approximation of the second kind of x ∈ R, and let x = [a0; a1, · · ·] be the

continued fraction representation of x.
Then a/b is a convergent of x.

Proof. Being a best approximation of the second kind of x, a/b satisfies, by definition,
|dx− c| > |bx− a| for d ≤ b.

Claim 1. a
b ≥ a0 = x0.

Proof (by contradiction). Assume a
b < a0 ⇒ −a0 < − a

b ⇒ x− a0 < x− a
b ; thus, |x− a0| <∣∣x− a

b

∣∣ (A)
≤ b

∣∣x− a
b

∣∣ = |bx− a|, where (A) holds because b ∈ N, i.e., 1 ≤ b. This implies
|1 · x− a0| ≤ |bx− a|, which contradicts |dx− c| > |bx− a| for d ≤ b (with d = 1 ≤ b and

c = a0). This means that a
b ≥ a0 = a0

1
(B)
= q0

q0
= x0, (B) is because of the recursion theorem.

�(claim1)

Thus, the geometric situation is as depicted in Figure 9, i.e., a/b is in the grey shaded
area being greater than or equal to the convergent x0. This will be refined in what follows.
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Figure 9. Any best approximation of the second kind is in the grey shaded area, i.e., greater than or
equal to the convergent x0.

Next, we proceed with a proof by contradiction assuming that a/b is not a convergent
of x.

Assumption. a
b 6=

qk
qk

= xk for k ∈ N.
According to Claim 1, a

b ≥ a0 = x0. Thus, one of the following must hold:

(i)
a
b
∈ ]

pk−1
qk−1

,
pk+1
qk+1

[ for k ≥ 1

or
(ii)

a
b
>

p1

q1
= x1

This situation is shown in Figure 10.
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Case (1). If (i) is true, then∣∣∣∣ ab − pk−1
qk−1

∣∣∣∣ < ∣∣∣∣x− pk−1
qk−1

∣∣∣∣ (Th8)
<

∣∣∣∣ pk
qk
− pk−1

qk−1

∣∣∣∣ (C)= 1
qkqk−1

where (Th8) is Theorem 8, Equation (14), and (C) is from Corollary 3, Equation (10). Fur-

thermore,
∣∣∣ a

b −
pk−1
qk−1

∣∣∣ (D)
≥ 1

bqk−1
, with (D) because of Note 4 (Distance of Fractions).

Together, 1
bqk−1

≤
∣∣∣ a

b −
pk−1
qk−1

∣∣∣ < 1
qkqk−1

⇒ 1
b < 1

qk
⇒ b > qk (iii).

Also, if (i) is true, then
∣∣x− a

b

∣∣ ≥ ∣∣∣ pk+1
qk+1
− a

b

∣∣∣ (E)
≥ 1

bqk+1
, where (E) is again using Note 4.

This implies b
∣∣x− a

b

∣∣ ≥ 1
qk+1
⇒ |bx− a| ≥ 1

qk+1
(iv).

Lemma 3 (Upper Bounds) tells us that
∣∣∣x− pk

qk

∣∣∣ < 1
qkqk+1

which is equivalent to

qk

∣∣∣x− pk
qk

∣∣∣ < 1
qk+1
⇔ |qkx− pk| < 1

qk+1
⇒ |qkx− pk| < |bx− a| (see (iv) just before). Since

qk < b (see (iii) above), this is a contradiction to a/b being a best approximation of the
second kind of x. Thus, Case (1) does not occur.
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Case (2). This case is shown in Figure 11. Then,
∣∣x− a

b

∣∣ > ∣∣∣ p1
q1
− a

b

∣∣∣ (F)
= 1

bq1
, where (F) again

uses Note 4. This implies |bx− a| > 1
q1

(G)
= 1

a1
(v) with (G) using the recursion theorem.

AppliedMath 2022, 2, FOR PEER REVIEW 18 
 

 

Case (2). This case is shown in Figure 11. Then, 𝑥 − > − =( )
, where (F) again 

uses Note 4. This implies |𝑏𝑥 − 𝑎| > =( )
 (v) with (G) using the recursion theorem.  

 
Figure 11. Pictorial representation of Case (2). 

Now, 𝑥 − 𝑎 = ⋱ ≤ , where the last inequality holds because of ⋱ > 0; thus, |𝑥 − 𝑎 | ≤ <( ) |𝑏𝑥 − 𝑎| , (H) based on (v) before. This means that |1 ⋅ 𝑥 − 𝑎 | <|𝑏𝑥 − 𝑎| with 1 ≤ 𝑏, i.e., 𝑎 𝑏⁄  is not a best approximation of the second kind of x, which 
is a contradiction. Thus, case (2) does not occur either. 

Consequently, the assumption is wrong and there is a 𝑘 ∈ ℕ with = = 𝑥  , i.e., 𝑎 𝑏⁄  is a convergent.   □ 

So, every best approximation of the second kind is a convergent. The next theorem 
proves the reverse, i.e., that every convergent is a best approximation of the second kind.  

Theorem 12. (Lagrange, 1798—Convergents are 2nd Kind Best Approximations) 
Let 𝑝 𝑞⁄  be a convergent of 𝑥 = [𝑎 ; 𝑎 , ⋯ , 𝑎 ], 𝑥 ≠ 𝑎 + , and 𝑛 ≠ 0. Then, for 𝑑 ≤𝑞  and ≠  it is |𝑑𝑥 − 𝑐| > |𝑞 𝑥 − 𝑝 |, i.e., the convergent is a best approximation of the 

second kind of x.  

The cases 𝑥 = 𝑎 +  and 𝑛 = 0 are excluded because the convergent =  is not 

a best approximation of the second kind of 𝑥 = 𝑎 + : it is |1 ⋅ 𝑥 − (𝑎 + 1)| =𝑎 + − 𝑎 − 1 =  and |1 ⋅ 𝑥 − 𝑎 | = 𝑎 + − 𝑎 = , which implies |1 ⋅ 𝑥 − (𝑎 +1)| = |1 ⋅ 𝑥 − 𝑎 |. Setting 𝑑: = 1 ≤ 𝑞 , 𝑐: = 𝑎 + 1 results in |𝑑 ⋅ 𝑥 − 𝑐| = |1 ⋅ 𝑥 − (𝑎 +1)| = |1 ⋅ 𝑥 − 𝑎 | = |𝑞 ⋅ 𝑥 − 𝑝 |. If  would be a best approximation of the second kind 
of x, then |1 ⋅ 𝑥 − (𝑎 + 1)| > |1 ⋅ 𝑥 − 𝑎 | would hold.  

The proof of Lagrange’s theorem is very technical. First, the expression |𝑦 𝑥 − 𝑧 | is 
analyzed to find the smallest integral numbers 𝑦  and 𝑧  such that the expression is min-
imized under the constraint 𝑦 ∈ 𝑞 , … , 𝑞 , i.e., 𝑦  is a denominator of a convergent. It 
is shown both that 𝑧 𝑦⁄  is a best approximation of the second kind of x, and that 𝑧 =𝑝  and 𝑦 = 𝑞 . 

Proof. Let 𝑘 ∈ ℤ and let 𝑝 𝑞⁄  be a convergent. First, we are looking for the smallest 
numbers 𝑦 , 𝑧 ∈ ℤ with 𝑦 ∈ 𝑞 , … , 𝑞  such that |𝑦 𝑥 − 𝑧 | is minimal.  

Step 1. Pick an arbitrary 𝑧 ∈ ℤ, and based on this we determine 𝑦 ∈ 𝑞 , … , 𝑞 . 
It is 𝑚𝑖𝑛|𝑦𝑥 − 𝑧| = 0 ⇔ 𝑦 = , but in general 𝑦 ∉ ℤ . Looking for a solution𝑦 ∈𝑞 , … , 𝑞 ⊆ ℤ that minimizes |𝑦 𝑥 − 𝑧| results in the following potential positions of 𝑧 𝑥⁄  with respect to the denominators 𝑞 , … , 𝑞  (see Figure 12):  

• Case 1: 𝑧/𝑥 > 𝑞  . Then, 𝑦 = 𝑞  is the solution; 
• Case 2: 𝑧/𝑥 < 𝑞  . Then, 𝑦 = 𝑞  is the solution; 

Let 𝑞 ≤ 𝑧/𝑥 ≤ 𝑞  for 1 ≤ i ≤ k.  

Figure 11. Pictorial representation of Case (2).

Now, x− a0 = 1
a1+

1

a2+
...

≤ 1
a1

, where the last inequality holds because of 1

a2+
. . .

> 0;

thus, |x− a0| ≤ 1
a1

(H)
< |bx− a|, (H) based on (v) before. This means that |1 · x− a0| <

|bx− a| with 1 ≤ b, i.e., a/b is not a best approximation of the second kind of x, which is a
contradiction. Thus, Case (2) does not occur either.

Consequently, the assumption is wrong and there is a k ∈ N with a
b = qk

qk
= xk, i.e.,

a/b is a convergent. �

So, every best approximation of the second kind is a convergent. The next theorem
proves the reverse, i.e., that every convergent is a best approximation of the second kind.

Theorem 12. (Lagrange, 1798—Convergents are 2nd Kind Best Approximations)
Let pn/qn be a convergent of x = [a0; a1, · · · , aN ], x 6= a0 +

1
2 , and n 6= 0. Then, for d ≤ qn

and c
d 6=

pn
qn

it is |dx− c| > |qnx− pn|, i.e., the convergent is a best approximation of the second
kind of x.

The cases x = a0 +
1
2 and n = 0 are excluded because the convergent p0

q0
= a0

1

is not a best approximation of the second kind of x = a0 +
1
2 : it is |1 · x− (a0 + 1)| =∣∣∣a0 +

1
2 − a0 − 1

∣∣∣ = 1
2 and |1 · x− a0| =

∣∣∣a0 +
1
2 − a0

∣∣∣ = 1
2 , which implies |1 · x− (a0 + 1)| =

|1 · x− a0|. Setting d := 1 ≤ q0, c := a0 + 1 results in |d · x− c| = |1 · x− (a0 + 1)| =
|1 · x− a0| = |q0 · x− p0|. If p0

q0
would be a best approximation of the second kind of x, then

|1 · x− (a0 + 1)| > |1 · x− a0| would hold.
The proof of Lagrange’s theorem is very technical. First, the expression |y0x− z0|

is analyzed to find the smallest integral numbers y0 and z0 such that the expression is
minimized under the constraint y0 ∈ {q0, . . . , qk}, i.e., y0 is a denominator of a convergent.
It is shown both that z0/y0 is a best approximation of the second kind of x, and that z0 = pk
and y0 = qk.

Proof. Let k ∈ Z and let pk/qk be a convergent. First, we are looking for the smallest
numbers y0, z0 ∈ Z with y0 ∈ {q0, . . . , qk} such that |y0x− z0| is minimal.

Step 1. Pick an arbitrary z ∈ Z, and based on this we determine y0 ∈ {q0, . . . , qk}.
It is min

y
|yx− z| = 0⇔ y = z

x , but in general y /∈ Z. Looking for a solution y0 ∈

{q0, . . . , qk} ⊆ Z that minimizes |y0x− z| results in the following potential positions of z/x
with respect to the denominators q0, . . . , qk (see Figure 12):

• Case 1: z/x > qk. Then, y0 = qk is the solution;
• Case 2: z/x < q0. Then, y0 = q0 is the solution;

Let qi ≤ z/x ≤ qi+1 for 1 ≤ i ≤ k.
• Case 3: For |qi+1x− z| < |qix− z| (i.e., z/x is closer to qi+1 than to qi), y0 = qi+1 is the

solution, and for |qi+1x− z| > |qix− z| (i.e., z/x is closer to qi than to qi+1), y0 = qi is
the solution;
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• Case 4: For |qi+1x− z| = |qix− z| (i.e., z/x is exactly in the middle between qi and
qi+1), y0 = qi is the solution because qi < qi+1, and we are looking for the smallest y0,
especially y0 ≥ q0 = 1. �(step1)
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Step 2. Based on the y0 found, we determine z0 next. It is min
z
|y0x− z| = 0 ⇔ z = y0x , but

in general, z /∈ Z. In solving the minimization problem withinZ (i.e., z0 := argmin
z∈Z

|y0x− z|),

the following cases can be distinguished (see Figure 13):

• Case 0: It may happen that y0x ∈ Z. Then, choose z0 = y0x;
• Case 1: y0x is between two integral numbers s and t, i.e., s < y0x < t. For |y0x− s| >

|y0x− t| (i.e., y0x is closer to t than to s), z0 = t is the solution; and for |y0x− s| <
|y0x− t| (i.e., y0x is closer to s than to t), z0 = s is the solution;

• Case 2: For |y0x− s| = |y0x− t| (i.e., y0x is exactly in the middle between t and s),
z0 = s is the solution because s < t, and we are looking for the smallest z0. �(step2)
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Figure 13. The potential positions of y0x.
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Claim 1. z0 is uniquely determined.

Proof (by contradiction). Assume there exists a z̃0 ∈ Z with z̃0 6= z0 and
∣∣∣x− z0

y0

∣∣∣ =∣∣∣x− z̃0
y0

∣∣∣. This can only happen iff one term is positive and the other is negative, i.e., for

example, if x− z0
y0

> 0 and x− z̃0
y0

< 0, and then x− z0
y0

= z̃0
y0
− x, i.e., x = z0+z̃0

2y0
.

As an intermediate step we prove:

Claim 2. z0 + z̃0 and 2y0 are co-prime, i.e., gcd(z0 + z̃0, 2y0) = 1

Proof (by contradiction). Let z̃0 + z0 = Lp and 2y0 = Lq with L > 1. Then,
x = z0+z̃0

2y0
= Lp

Lq ⇒ x = p
q and thus

(i) |qx− p| =
∣∣∣∣q p

q
− p

∣∣∣∣ = 0

Assume L > 2. Then, with 2y0 = Lq and L/2 > 1, it follows:

(ii) y0 =
L
2

q > q

Now, y0 has been determined in Step 1 to satisfy y0 = argmin
y
|yx− z| for a given z,

especially for z = p, i.e., y0 = argmin
y
|yx− p|. Because 0 = min

y
|yx− p| and |qx− p| = 0,

it must be q = y0. This is a contradiction because q < y0 according to (ii) before. Thus,
1 < L ≤ 2, i.e., L = 2.

With L = 2 and 2y0 = Lq, we get y0 = q, which implies. By definition of z0, |qx− p| =
|y0x− p| > |y0x− z0|. However, |qx− p| = 0 (see (i) above); thus, 0 > |y0x− z0|, which is
a contraction. �(claim2)

We continue the proof of Claim 1: It is z0+z̃0
2y0

= x and also x = pN
qN

, i.e., z0+z̃0
2y0

= pN
qN

.
Because gcd(z0 + z̃0, 2y0) = 1 according to Claim 2, it follows that pN = z0 + z̃0 and
qN = 2y0.

Now, let N ≥ 2. Then, it is 2y0 = qN
(A)
= aNqN−1 + qN−2 ((A) uses the recur-

sion theorem (Theorem 1)), and with Note 1, it is aN ≥ 2. Thus, 2y0 ≥ 2qN−1 + qN−2

⇒ y0 ≥ qN−1 +
qN−2

2 ⇒ qN−1 ≤ y0 − qN−2
2

(B)
< y0 ((B) is because qN−2 > 0). Now:

|qN−1x− pN−1| =
∣∣∣∣qN−1

pN
qN
− pN−1

∣∣∣∣ = 1
qN
|qN−1 pN − pN−1qN |

(C)
=

1
qN

=
1

2y0

(D)
≤ 1

2

where (C) holds because of the sign theorem and (D) because y0 ≥ 1 (see the end of the
proof of Step 1).

Furthermore,

|y0x− z0| =
∣∣∣y0

z0+z̃0
2y0
− z0

∣∣∣ =
∣∣∣ z0+z̃0

2 − z0

∣∣∣ = 1
2 |z0 + z̃0 − 2z0|

= 1
2 |z̃0 − z0|

(E)
≥ 1

2 (iii)

where (E) is true because z̃0 6= z0 and, thus, |z̃0 − z0| ≥ 1 for integral numbers z̃0 and z0.
Together, we obtained |y0x− z0| ≥ 1

2 ≥ |qN−1x− pN−1|, which is a contradiction to the
choice of y0 and z0! This proves Claim 1 for N ≥ 2.



AppliedMath 2022, 2 413

Now, let N = 1 and choose a1 = 2 (based on Note 1, the highest element of a continued
fraction is always greater than or equal 2, thus a1 ≥ 2). Then

x = [a0; a1] =
p1

q1

(F)
=

a1a0 + 1
a1

=
2a0 + 1

2
= a0 +

1
2

((F) is the recursion theorem) which has been excluded from the theorem.
Thus, let N = 1 and a1 > 2. Then

|1 · x− a0|
(G)
= |q0x− p0| =

∣∣∣∣q0
p1

q1
− p0

∣∣∣∣ = 1
q1
|q0 p1 − q1 p0|

(H)
=

1
q1

(G)
=

1
a1

<
1
2

where (G) applies the recursion theorem and (H) the sign theorem. Because of (iii), it is
|y0x− z0| ≥ 1

2 , i.e., together, |q0x− p0| < |y0x− z0| which contradicts the definition of y0
and z0! This proves Claim 1 for N = 1. �(claim1)

Next, we observe

Claim 3. z0
y0

is a best approximation of the second kind of x.
Otherwise: |bx− a| ≤ |y0x− z0| for an a

b 6=
z0
y0

with b ≤ y0, which contradicts the
definition of y0 and z0! �(claim3)

According to Theorem 11, z0
y0

is a convergent of x, i.e., z0
y0

= ps
qs

for an s ≤ k. If s = k,
the proof is done. Thus, we assume s < k.

Claim 4. For s < k, it is 1
qs+qs+1

≥ 1
qk+qk−1

.

Proof. s < k ⇒ s ≤ k − 1 ⇒ qs ≤ qk−1 (Corollary 1: denominators are monotonically
increasing). Similarly, s < k⇒ s + 1 ≤ k⇒ qs+1 ≤ qk. Together, this implies qk + qk−1 ≥
qs + qs+1. �(claim4)

Next, we get

|qsx− ps| = qs

∣∣∣∣x− ps

qs

∣∣∣∣ (I)
> qs

1
(qs + qs+1)qs

=
1

qs + qs+1

(J)
≥ 1

qk + qk−1

where (I) is Lemma 5 (Lower Bounds) and (J) is Claim 4.

Furthermore, |qkx− pk| = qk

∣∣∣x− pk
qk

∣∣∣ (K)< qk
1

qkqk+1
= 1

qk+1
, where (K) holds because of

Lemma 3 (Upper Bounds).
With z0

y0
= ps

qs
and the definition of y0(= qs) and z0(= ps) (i.e., the minimizing

property), it is |qsx− ps| = |y0x− z0| ≤ |qkx− pk| ⇒ 1
qk+qk−1

≤ 1
qk+1

, which implies
qk+1 < qk + qk−1. This is a contradiction; because of the recursion theorem, it is qk+1 =

ak+1qk + qk−1

(L)
≥ qk + qk−1, where (L) holds with ak ≥ 1. Thus, s = k which proves the

overall theorem. �
Putting the last two theorems together yields:

Corollary 5. a/b is a best approximation of the second kind of x⇔ x is a convergent of x. �

According to Theorem 12, every convergent is a best approximation of the second
kind, and each best approximation of the second kind is also a best approximation of the
first kind (Lemma 6). We keep this observation as:

Note 5. Every convergent is a best approximation of the first kind. �

But are best approximations of the first kind also always convergents? Not quite:
the next theorem proves that a best approximation of the first kind is a convergent or a
semiconvergent.
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Theorem 13. (Lagrange, 1798—1st Kind Best Approximations are Convergents or Semiconvergents)
Let a/b be a best approximation of the first kind of x = [a0; a1, · · · , aN ]. Then a/b is a

convergent or a semiconvergent of x.

Proof. By definition, it is
∣∣x− c

d

∣∣ > ∣∣x− a
b

∣∣ for c
c 6=

a
b and d ≤ b.

Claim 1. a/b > a0.
Otherwise: a

b ≤ a0 = a0
1 ; thus, x − a0 ≤ x − a

b . Now, x − a0 = 1

a1+
. . .

> 0; thus,

0 < x− a0 ≤ x− a
b ⇒

∣∣x− a0
1

∣∣ ≤ ∣∣x− a
b

∣∣. Because 1 ≤ b, we obtained a contradiction since
a/b is a best approximation of the first kind. �(claim1)

Claim 2. a/b < a0 + 1.
Otherwise: a

b ≥ a0 + 1 and based on the geometric situation depicted in Figure 8, it

follows that
∣∣∣x− a0+1

1

∣∣∣ ≤ ∣∣x− a
b

∣∣ with 1 ≤ b, which contradicts a/b being a best approxi-
mation of the first kind. �(claim2)

Consequently, a/b lies between x0 = a0 and x−1,1 = a0 + 1 (see Equation (22)), i.e.,

x0 = a0 <
a
b
< a0 + 1 = x−1,1 (26)

and is, thus, covered by the set of intervals defined by the convergents and semiconvergents
of x (see Figure 8).

Assumption. a/b is neither a convergent nor a semiconvergent.
This results in the following cases:

• Case 1: a/b lies between two semiconvergents xk−1,r and xk−1,r+1;
• Case 2: a/b lies between two convergents xk and xk+2;
• Case 3: a/b lies between a convergent and a semiconvergent.

We will show that all three cases lead to a contradiction, i.e., the assumption must be
false; thus, the theorem is proven.

Case 1. a/b lies between xk−1,r =
rpk+pk−1
rqk+qk−1

and xk−1,r+1 =
(r+1)pk+pk−1
(r+1)qk+qk−1

.
Then,∣∣∣∣ ab − rpk + pk−1

rqk + qk−1

∣∣∣∣ < | (r + 1)pk + pk−1
(r + 1)qk + qk−1

− rpk + pk−1
rqk + qk−1

|(A)
=

1
((r + 1)qk + qk−1)(rqk + qk−1)

where (A) results from the same computation performed in the proof of Lemma 4.
Furthermore, it is

(i)
∣∣∣∣ ab − rpk + pk−1

rqk + qk−1

∣∣∣∣ = |a(rqk + qk−1)− b(rpk + pk−1)|
b(rqk + qk−1)

(B)
≥ 1

b(rqk + qk−1)

where (B) is seen to be valid as follows: a(rqk + qk−1) − b(rpk + pk−1) ∈ Z and, thus,
|a(rqk + qk−1)− b(rpk + pk−1)| ∈ N0; if it would be zero, the first modulus in (i) would be
zero, i.e., a/b = xk−1,r which contradicts the assumption of the claim, which in turn implies
|a(rqk + qk−1)− b(rpk + pk−1)| ≥ 1.

Together,

1
b(rqk + qk−1)

<
1

((r + 1)qk + qk−1)(rqk + qk−1)
⇒ 1

b
<

1
(r + 1)qk + qk−1

,

thus,
(ii) b > (r + 1)qk + qk−1
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Because of the monotony of the sequence of semiconvergents (xs,t)t (Lemma 4), it is
for an odd k (i.e., k− 1 even) xk−1,r < xk−1,r+1 (see the geometric situation in Figure 14);
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thus, ∣∣∣x− a
b

∣∣∣ > ∣∣∣∣x− (r + 1)pk + pk−1
(r + 1)qk + qk−1

∣∣∣∣
But with (ii), it is (r + 1)qk + qk−1 < b; thus, a/b is not a best approximation of the

first kind to x, which is a contradiction. k even leads to a contradiction too, i.e., Case (1) is
not possible �(case1)

Case 2. a/b lies between xk and xk+2.

Then,
∣∣∣ a

b −
pk
qk

∣∣∣ <
∣∣∣ pk

qk
− pk+2

qk+2

∣∣∣ (C)
=

ak+2
qkqk+2

< 1
qkqk+2

where (C) is Equation (11) from

Corollary 3, and with Note 4, it is
∣∣∣ a

b −
pk
qk

∣∣∣ ≥ 1
bqk

.

Together, 1
bqk

< 1
qkqk+2

⇒ 1
b < 1

qk+2
⇒ b > qk+2. Because of the geometric situation

shown in Figure 15, it is
∣∣x− a

b

∣∣ > ∣∣∣x− pk+2
qk+2

∣∣∣, which is a contradiction to a/b being a best
approximation of the first kind to x and b > qk+2. �(case2)
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Case 3. a/b lies between a convergent and a semiconvergent.
This implies that a/b lies between xk and xk,1 (see Figure 8), otherwise a/b would lie

between two semiconvergents, which has already been covered in Case 1.
Thus,

∣∣∣ a
b −

pk
qk

∣∣∣ < ∣∣xk − xk,1
∣∣, but

∣∣xk − xk,1
∣∣ =

∣∣∣ pk
qk
− pk+1+pk

qk+1+qk

∣∣∣ = ∣∣∣ pk(qk+1+qk)−qk(pk+1+pk)
qk(qk+1+qk)

∣∣∣
=
∣∣∣ pkqk+1−qk pk+1

qk(qk+1+qk)

∣∣∣ (D)
= 1

qk(qk+1+qk)

where (D) is the sign theorem. I.e., it is
∣∣∣ a

b −
pk
qk

∣∣∣ < 1
qk(qk+1+qk)

. As before, with Note 4, it is∣∣∣ a
b −

pk
qk

∣∣∣ ≥ 1
bqk
⇒ 1

bqk
< 1

qk(qk+1+qk)
⇒ b > qk+1 + qk.
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The geometric situation from Figure 16 reveals
∣∣x− a

b

∣∣ > ∣∣∣x− pk+pk−1
qk+qk−1

∣∣∣, which is a
contradiction to a/b being a best approximation of the first kind to x and b > qk+1 +
qk. �(case3) �
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Finally, we give a simple criterion that allows us to prove that a given fraction is a
convergent of another real number. This theorem is a cornerstone of computing a prime
factor with Shor’s algorithm.

Theorem 14. (Legendre, 1798—Convergent Criterion)
Let
∣∣x− a

b

∣∣ < 1
2b2 ⇒ a/b is a convergent of x.

Proof. We show that a/b is a best approximation of the second kind of x. Theorem 11 then
proves the claim.

Let |dx− c| ≤ |bx− a| for a
b 6=

c
d and d > 0. We need to prove d > b.

Now, |bx− a| = b
∣∣x− a

b

∣∣ < b 1
2b2 = 1

2b . This implies |dx− c| < 1
2b ⇔ d

∣∣x− c
d

∣∣ < 1
2b ⇔∣∣x− c

d

∣∣ < 1
2db . Thus,∣∣ c

d −
a
b

∣∣ = ∣∣ c
d − x + x− a

b

∣∣ ≤ ∣∣ c
d − x

∣∣+ ∣∣x− a
b

∣∣ < 1
2db +

1
2b2 = b+d

2db2

With Note 4 (Distance of Fractions), it is also
∣∣ c

d −
a
b

∣∣ ≥ 1
db . Together, it is

1
db

<
b + d
2db2 ⇔ 1 <

b + d
2b

⇔ 2b < b + d ⇔ d > b. �

3. Probability of the Occurrence of Convergents
3.1. Estimating Secant Lengths

In this part, we use the main arguments of [2].
In order to estimate the probability of the occurrence of a certain state after having

performed the quantum Fourier transform, we need the following estimation of a lower
bound and an upper bound of the length of a secant of the unit circle:

Lemma 7. (Secant Length Estimation)
If ϕ ∈ [−π, π] then 2|ϕ|

π ≤
∣∣1− eiϕ

∣∣ ≤ |ϕ|.
Proof. The upper bound follows from elementary geometry, namely that the length of a
secant is less than or equal to the length of the corresponding arc of a circle (see Figure 17).

The length of the arc determined by the angle ϕ on a circle of radius r is rϕ, i.e., if the
circle is a unit circle, the length of the arc (green in the Figure) is ϕ.
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Figure 17. The length of a secant is smaller than the arc of the corresponding unit circle.

A secant of the unit circle (red in the Figure 17) can be defined by the two complex
numbers on the unit circle (black in the Figure 17) that are the endpoints of the secant. Thus,
the length of this secant is the difference of these complex numbers. One of these points
can always be 1 because a corresponding rotation is length-preserving; the other point is
then eiϕ, where ϕ is the angle of the arc cut by the secant. The length of this secant is then∣∣1− eiϕ

∣∣.
This proves the inequality

∣∣1− eiϕ
∣∣ ≤ |ϕ|. �(upperbound)

Next, we compute

∣∣1− eiϕ
∣∣ (A)

= |1− cosϕ− isinϕ| (B)
=
√
(1− cosϕ)2 + sin2 ϕ

=
√

1− 2cosϕ + cos2 ϕ + sin2 ϕ =
√

2− 2cosϕ

=
√

2
√

1− cosϕ
(C)
=
√

2
√

2sin2 ϕ
2

(D)
= 2sin ϕ

2

where (A) uses Euler’s formula, (B) is the definition of the modulus of a complex number
with Re = 1− cos ϕ and Im = −sin ϕ, (C) is the double-angle formula, and (D) assumes
that sin ϕ

2 ≥ 0.
To estimate a lower bound for sin ϕ

2 , we analyze the function f (x) = sin x− 2x
π . From

elementary calculus, it is known that a function ψ is concave on D ⊆ R if and only if its
second derivative is not positive on D, i.e., ψ′′ ≤ 0 on D.

(Reminder: ψ is concave on D:⇔ ∀x, y ∈ D∀t ∈ [0, 1] : ψ(tx + (1− t)y) ≥ tψ(x) +
(1− t)ψ(y),

i.e., for any two points on the graph of ψ, the secant between these points is below the
graph, Figure 18).
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With d2sin x/dx2 = −sin x ≤ 0 especially for x ∈ [0, π/2], i.e., sin x is concave on
x ∈ [0, π/2]. Thus, the secant between sin 0 = 0 and sin π

2 = 1 is below the graph of sin x
(orange in Figure 18). However, this secant is given by g(x) = 2

π x (green in Figure 18).
Thus, it is 2

π x ≤ sinx for x ∈ [0, π/2], i.e., with ϕ := 2x we get ϕ
π ≤ sin ϕ

2 for ϕ ∈ [0, π], and
this implies 2 ϕ

π ≤ 2sin ϕ
2 for ϕ ∈ [0, π].

Now,
∣∣1− eiϕ

∣∣ = 2sin ϕ
2 (see the computation before) implies

∣∣1− eiϕ
∣∣ ≥ 2 ϕ

π for
ϕ ∈ [0, π].

Furthermore, sin x is convex on x ∈ [−π/2, 0]; thus, an argument analogous to the
above shows that

∣∣1− eiϕ
∣∣ ≥ 2 |ϕ|π for ϕ ∈ [−π, π]. �(lowerbound) �

3.2. Estimating Amplitude Parameters

As stated in the introduction, the quantum part of Shor’s algorithm produces in its
final step the following quantum state via a measurement:

1√
NA

A−1

∑
j=0

ω
jpy
N |y〉 (27)

Thus, according to the Born rule, the probability P(y) of this particular state |y〉 is the
square of the modulus of the amplitude of |y〉, i.e.,

P(y) =

∣∣∣∣∣ 1√
NA

A−1

∑
j=0

ω
jpy
N

∣∣∣∣∣
2

=
1

NA

∣∣∣∣∣∣
A−1

∑
j=0

ω
jpy
N

∣∣∣∣∣∣
2

(28)

The argument of the modulus is a geometric sum ∑ qj with q = ω
py
N = e

2πi
N py; thus, in

case q 6= 1,

P(y) =
1

NA

∣∣∣∣∣A−1

∑
j=0

qj

∣∣∣∣∣
2

=
1

NA

∣∣∣∣1− qA

1− q

∣∣∣∣2 (29)

With qA = e
2πi
N Apy. In this section, in order to compute a lower bound for P(y), we

investigate some relations between the following parameters appearing in Equation (28):

• n: the number to be factorized;
• N: a power of 2 (e.g., N = 2m) with n2 < N < 2n2;

• the choice of N effectively determines the domain of numbers that can be repre-
sented in the |a〉 -part of the quantum register (see Equation (1)).

• p: the period of the modular exponentiation function f (x) = ax mod n;
• A: the number of arguments mapped to a given value of f .

We also estimate bounds of the argument 2π
Apy

N of qA = e
2πi
N Apy.
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3.2.1. Basics from Number Theory

For convenience, we state the definition of the modulo function.

Definition 7. The modulo function is the following map:

mod : N0 ×N → N

(z, n) 7→ z− b z
n cn

de f
= z mod n

(30)

z mod n is, thus, the residue left when dividing z by n. I.e., if r = z mod n, then there is
a number k ∈ N0 such that z = kn + r with 0 ≤ r < n.

If z mod n = z̃ mod n = r, we find numbers k1 and k2 such that z = k1n + r and
z̃ = k2n + r with 0 ≤ r < n. This implies that z− z̃ = (k1 − k2)n =: kn, i.e., n is a divisor of
z− z̃ (in symbols: n|(z− z̃) ). We also obtain that z mod n = z̃ mod n implies that z̃ = z+ kn.

The equation z mod n = z̃ mod n is abbreviated as z ≡ z̃ (mod n); in words, z is
congruent z̃ modulo n. As shown just before, z ≡ z̃ (modn ) is equivalent to n|(z− z̃) and
to z̃ = z + kn. We keep this as

Note 6.
z ≡ z̃ (mod n)⇔ n|(z− z̃) ⇔ z̃ = z + kn. �

Furthermore, we state the definition of modular exponentiation which turns out to
play a key role in finding factors.

Definition 8.
For 0 < a < n, the modular exponentiation function is the following map:

f : N0 → N0
x 7→ ax mod n

(31)

The smallest number p that satisfies f (x) = f (x + p) for all x is called the period of f. Es-
pecially, with x = 0, we get f (0) = f (p) which means that ap mod n = a0 modn = 1 mod n,
i.e., ap ≡ 1 (mod n) which in turn is equivalent to n|(ap − 1) . Thus, we
have proven:

Note 7.
f (x) = axmodn has period p⇔ ap ≡ 1(modn)⇔ n|(ap − 1) . �

Finding a factor of n can be achieved by finding the period p of the function f (x) =
axmodn. This is seen as follows: Let p be the period of f , then n|(ap − 1) , i.e., (ap − 1) = kn.
Assume p is even (if p is odd, Shor’s algorithm is repeated with a different a, until an
even p is found). With such an even p, it is (ap − 1) =

(
ap/2 − 1

)(
ap/2 + 1

)
= kn which

implies that
(

ap/2 − 1
)

and
(

ap/2 + 1
)

have a common divisor, which in turn means that

gcd
(

ap/2 − 1, n
)

or gcd
(

ap/2 + 1, n
)

is a divisor of n. Thus, if an even period has been
determined, classically efficient calculations can be used to compute a factor of n. If this
factor is a prime number, we can finish. Otherwise, we continue determining a factor of the
former factor, and so on, until we end up with a prime factor of n.

Next, we determine an upper bound of the period p of the modular exponentiation
by using group theory. A simple calculation shows that “≡” is an equivalence relation on
Z. The equivalence class of z ∈ Z is denoted as [z] and is referred to as the residue class of
z modulo n. It is [z] = {z̃ ∈ Z | z̃ ≡ z (mod n)} = {z + kn | k ∈ Z} (see Note 6), where the
latter set is sometimes written as z + nZ. The set of all residue classes modulo n is denoted
as Zn, i.e., Zn = {[0], [1], . . . , [n− 1]}.

We can multiply two residue classes modulo n as follows: [x] · [y] = [x · y]. With
this multiplication, Z∗n = {[z] ∈ Zn | gcd(z, n) = 1} becomes a group. Because Z∗n ⊆ Zn,
it is ϕ(n) := card Z∗n ≤ card Zn = n. Since every integer is a divisor of itself, it is
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gcd(n, n) = n 6= 1 (for n ≥ 2), i.e., the cardinality of numbers co-prime to n is less than n:
n ≥ 2⇒ ϕ(n) < n .

The well-known Lagrange’s theorem from group theory states that for a group G with
card G = m < ∞ and for each x ∈ G, it is xm = e (e is the unit element of G)—see Lemma
3.2.5 in [3], for example. Thus, for x ∈ Z∗n, it is xϕ(n) = 1, i.e., xϕ(n) ≡ 1 (mod n). Since
the period p is the smallest number with xp ≡ 1 (mod n), it follows that p ≤ ϕ(n) and,
thus, p < n.

Now, the assumption of Shor’s algorithm is that 0 < a < n and that gcd(a, n) = 1,
which ensures that [a] ∈ Z∗n; thus, [a]p ≡ 1 (mod n) and p < n.

Lemma 8.
Let p be the period of f (x) = ax mod n. Then, p < n. �

3.2.2. Intervals of Consecutive Multiples of the Period

The relation between N and p is depicted in Figure 19; multiples of N are always
contained in closed intervals defined by consecutive multiples of p, i.e., it may happen that
a multiple of N coincides with a multiple of p.
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Note 8.
∀k ∈ N∃t ∈ N : (t− 1)p ≤ kN ≤ tp.

Proof. Pick an arbitrary k ∈ N, i.e., kN ∈ N is also given. Then, we find a t̃ ∈ N such that

t̃p ≥ kN (trivial because p > 0). Let t be the smallest of such t̃, i.e., t
de f
= min

{
t̃
∣∣t̃p ≥ kN

}
.

Thus, (t− 1)p ≤ kN because otherwise (t− 1)p > kN, which is a contradiction because t
was chosen minimal.

Together, (t− 1)p ≤ kN ≤ tp. The claim follows because k an arbitrary number. �

The situation we just discussed is shown in Figure 20.
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Figure 20. Determining the interval of succeeding multiples of p enclosing a multiple of N.

Furthermore, two different multiples of N are in different intervals defined by succeed-
ing multiples of p. Otherwise, the situation of Figure 21 would imply that N ≤ p, which is
a contradiction as shown by the proof of Note 9 below.
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We denote a t with (t− 1)p ≤ kN ≤ tp by tk. This is justified by the next Note 9 which
proves that such a t is uniquely determined by k. Especially, a multiple kN is contained in
“its” interval:

∀k ∈ N∃tk ∈ N : kN ∈ [(tk − 1)p, tk p] (32)

Note 9.
Let k ∈ N and tk ∈ N with (tk − 1)p ≤ kN ≤ tk p.
Then, r 6= s ∈ {0, . . . , p− 1} implies tr 6= ts.

Proof (by contradiction). Assume r 6= s but tr = ts
de f
= t with (t− 1)p ≤ rN ≤ tp and

(t− 1)p ≤ sN ≤ tp (see Figure 20). W.l.o.g. r < s⇒ r + 1 ≤ s⇒ sN − rN ≥ (r + 1)N −
rN = N. Further, sN − rN ≤ tp − (t− 1)p = p. Together, it is N ≤ sN − rN ≤ p,
i.e., N < p.

According to Lemma 8, we know p < n⇒ N < p < n < n2. However, by selection of
N (see the bullet list at the beginning of Section 8), it is n2 < N, which is a contradiction.
�

The proof of Note 9 has shown especially:

Corollary 6.
r 6= s ∈ {0, . . . , p− 1} ⇒ rN /∈ [(ts − 1)p, ts p]�

By Note 9, for r 6= s ∈ {0, . . . , p− 1}, the numbers tr, ts are different, i.e., for each k ∈
{0, . . . , p− 1}, such a unique tk exists, i.e., the p numbers t0, t1, . . . , tp−1 are different. Thus:

Corollary 7.
There exist p different numbers tk, 0 ≤ k ≤ p− 1, such that (tk − 1)p ≤ kN ≤ tk p. �

These different numbers are strictly monotonically increasing.

Note 10.
Let k ∈ N and tk ∈ N with (tk − 1)p ≤ kN ≤ tk p. Then, tk < tk+1.
Thus, t0 < t1 < . . . < tp−1.

Proof (by contradiction). Assume tk+1 ≤ tk; thus, tk+1 − 1 ≤ tk − 1, which implies
tk+1 p ≤ tk p and (tk+1 − 1)p ≤ (tk − 1)p.

Now, kN < (k + 1)N, (tk − 1)p ≤ kN ≤ tk p, and (tk+1 − 1)p ≤ (k + 1)N ≤ tk+1 p.
This implies (k + 1)N ≤ tk+1 p ≤ tk p and (tk − 1)p ≤ kN < (k + 1)N, which finally results
in (tk − 1)p < (k + 1)N ≤ tk p—which is a contradiction to corollary 6 because this would
imply that (k + 1)N ∈ [(tk − 1)p, tk p]. �

Each multiple kN of N is “close” to a multiple tp in the sense that kN is at most p/2
apart from (tk − 1)p or tk p (see Figure 22).
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More precisely:

Note 11.
∀k ∈ N∃t ∈ N : |(t− 1)p− kN| ≤ p

2
∨ |tp− kN| ≤ p

2
.
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Proof. It is (t− 1)p ≤ kN ≤ tp, i.e., by definition kN ∈ [(t− 1)p, tp]. This implies
kN − (t− 1)p ≤ p

2 ∨ tp− kN ≤ p
2 (see Figure 22), otherwise:

kN − (t− 1)p >
p
2
∧ tp− kN >

p
2
⇔ −(t− 1)p >

p
2
− kN ∧ tp >

p
2
+ kN

⇒ tp− (t− 1)p > p
2 − kN + p

2 + kN = p, but tp− (t− 1)p = p, i.e., p > p, which is a
contradiction! This proves the claim |(t− 1)p− kN| ≤ p

2 ∨ |tp− kN| ≤ p
2 . �

As before, from Note 9, it follows that for k ∈ {0, . . . , p− 1}, these numbers t are all
different. Precisely:

Corollary 8.
Let 0 ≤ k ≤ p− 1 and tk ∈ N such that |(tk − 1)p− kN| ≤ p

2 ∨ |tk p− kN| ≤ p
2 . If

r 6= s, then tr 6= ts. �

The multiples of N are sparsely scattered across the intervals of consecutive multiples
of p. More precisely, intervals of consecutive multiples of p, which contain a multiple of N,
are not consecutive. This is the content of

Note 12.
Let n > 2, k ∈ {0, . . . , p− 1}, and tk ∈ N with (tk − 1)p ≤ kN ≤ tk p.
Then tk+1 > tk + 1 as well as tk−1 < tk − 1.

Proof. Because of Note 10, it is tk+1 > tk; thus, tk+1 ≥ tk + 1.

Assumption. tk+1 = tk + 1.
By definition, (k + 1)N ∈ [(tk+1 − 1)p, tk+1 p], and by assumption, tk+1 = tk + 1; thus,

it is (k + 1)N ∈ [tk p, (tk + 1)p]. Furthermore, by definition, kN ∈ [(tk − 1)p, tk p] (see
Figure 23).
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Figure 23. Situation in case kN and (k + 1)N lying within two consecutive intervals of consecutive
multiples of p.

Now, [(tk − 1)p, tk p], [tk p, (tk + 1)p] ⊆ [(tk − 1)p, (tk + 1)p]
which implies kN, (k + 1)N ∈ [(tk − 1)p, (tk + 1)p].

Thus, N = (k + 1)N − kN ≤ (tk + 1)p− (tk − 1)p = 2p, i.e., N ≤ 2p (see Figure 23).
By Lemma 8, it is p < n⇒ 2p < 2n. With n > 2⇒ n2 > 2n and by definition of N, it

is n2 < N; thus, N > n2 > 2n > 2p: a contradiction!
Thus, the assumption is false, which implies tk+1 > tk + 1. The claim tk−1 < tk − 1 is

proven similarly. �

The resulting geometric situation is depicted in Figure 24.
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Figure 24. If kN is in an interval defined by two consecutive multiples of p, the preceding and
succeeding intervals do not contain a multiple of N.

If kN ∈ [(tk − 1)p, tk p], it is tk p− kN ≤ p/2 or kN− (tk − 1)p ≤ p/2 (see Figure 22 or
Figure 24). In case kN − (tk − 1)p ≤ p/2, we define t̂ := tk − 1 and kN − t̂p ≤ p/2 results,
and in case of tk p− kN ≤ p/2, we define t̂ := tk implying t̂p− kN ≤ p/2. According to
Note 9, this t̂ is uniquely defined. This proves



AppliedMath 2022, 2 423

Note 13.
∀k ∈ N ∃!t̂ ∈ N :

∣∣t̂p− kN
∣∣ ≤ p

2 , i.e., t̂ is uniquely determined by k. �

This is next rewritten into a format more useful for what follows.

Note 14.
Let k ∈ {0, . . . , p− 1} and tk ∈ N with tk ∈

[
k N

p −
1
2 , k N

p + 1
2

]
.

If r 6= s ∈ {0, . . . , p− 1}, then tr 6= ts.

Proof. It is tk ∈
[
k N

p −
1
2 , k N

p + 1
2

]
⇔ k N

p −
1
2 ≤ tk ≤ k N

p + 1
2⇔ kN − p

2 ≤ ptk ≤ kN + p
2

⇔− p
2 ≤ ptk − kN ≤ p

2 ⇔ |ptk − kN| ≤ p
2 . Note 13 shows that tk is uniquely determined

by k. �

Finally, we can prove the following:

Corollary 9.
There exist p different numbers tk, 0 ≤ k ≤ p− 1, such that

tk ∈
[

k
N
p
− 1

2
, k

N
p
+

1
2

]

Proof. There exist p different numbers tk, 0 ≤ k ≤ p − 1, such that (tk − 1)p ≤ kN ≤
tk p (Corollary 7). The proof of Note 11 shows that this implies |(tk − 1)p− kN| ≤ p

2 ∨
|tk p− kN| ≤ p

2 . The proof of Note 14 shows that this implies tk ∈
[
k N

p −
1
2 , k N

p + 1
2

]
. �

3.2.3. Cardinality of Pre-Images

First, we show that the parameter A is greater than 1, i.e., at least two numbers
available in the |a〉 -part of the quantum register are mapped by f to the same value.

Note 15.
A > 1.

Proof. As reminded in the introduction, the quantum Fourier transform of Shor’s algorithm
produces the following state:

|a〉|b〉 = 1√
N

N−1

∑
x=0
|x〉| f (x)〉

After measurement of the |b〉 -part of the register, the |a〉 -part is in the state

|a〉 = 1√
A
(|x〉+|x + p〉+ |x + 2p〉+ · · ·+|x + (A− 1)p〉) (33)

i.e., f−1(
∣∣x〉) = {|x〉,|x + p〉, |x + 2p〉, · · · ,|x + (A− 1)p〉} .

Choose x < p—such an x exists because otherwise it would be p = 0, but a period
p satisfies p > 0. With p < n (Lemma 8) and n < n2 < N (by choice of N), it is x + p <
2p < N (see the proof of Note 12). Thus, x + p is in the domain of f (in the sense that it is a
value in the |a〉 -part of the quantum register available as an argument for f ), i.e., f (x + p)
is available in the |b〉 -part of the register.

A = 1 would imply that f−1(
∣∣x〉) = {|x〉 } and, thus,

∣∣x + p〉 /∈ f−1(
∣∣x〉) , i.e.,

f (|x〉) 6= f (|x + p〉) for p 6= 0. Since p > 0, the function f would not be periodic. �

Next, we prove tighter bounds for the parameter A.
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Note 16.
(A− 1)p < N < (A + 1)p.

Proof. As in the proof of Note 15, we choose x < p. With

|a =
1√
A
(|x + |x + p + |x + 2p + · · ·+ |x + (A− 1)p ),

i.e., {|x〉,|x + p〉, |x + 2p〉, · · · ,|x + (A− 1)p〉} are all values in the |a〉 -part of the register
being mapped to f (x), i.e., A is the largest number satisfying x + (A− 1)p < N. With
x ≥ 0, this implies (A− 1)p < N—which is the first part of the claim.

Thus, (A + 1)p > N. Otherwise, (A + 1)p ≤ N and with x < p, it would be x + Ap <
p + Ap = (A + 1)p ≤ N, i.e., |x + Ap〉 would also be in the |a〉 -part of the register being
mapped to f (x), which is a contradiction to the definition of A. This proves the second part
of the claim. �

The next estimation gives an approximation of N in terms of the product of A and p.
Note 17.

N ≈ Ap.

Proof. Because of (A− 1)p < N < (A + 1)p, the geometric situation is as depicted in
Figure 25, i.e., N ∈ [(A− 1)p, Ap] or N ∈ [Ap, (A + 1)p]. Thus, |N − Ap| ≤ p.
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3.2.4. Estimating Arguments of Amplitudes of Potential Measurement Results 
The next Lemma is the main result of this section for what follows.  

Lemma 9. 

Figure 25. N is embraced by (A− 1)p and (A + 1)p.

Now, p < n (Lemma 8) and n < n2 < N by choice of N. In practice, n is a large
number, i.e., n2 is huge compared to n: n� n2 < N. Together:

p� N (34)

In this sense, p is a small number, i.e., |N − Ap| is small too: N ≈ Ap. �

3.2.4. Estimating Arguments of Amplitudes of Potential Measurement Results

The next Lemma is the main result of this section for what follows.

Lemma 9.
Let y ∈

[
k N

p −
1
2 , k N

p + 1
2

]
and k ∈ {0, . . . , p− 1}. Then:

2π
y(A− 1)p

N
, 2π

py
N
∈ [−π,+π]

Proof. It is y ∈
[
k N

p −
1
2 , k N

p + 1
2

]
⇔ k N

p −
1
2 ≤ y ≤ k N

p + 1
2 ⇔ (multiply with p) kN − p

2 ≤
py ≤ kN + p

2 ⇔−
p
2 ≤ py− kN ≤ p

2 ⇔

(i) yp− kN ≤ p
2
∧ kN − yp ≤ p

2

By Note 16, it is

(ii) (A− 1)p < N ⇒ (A− 1)p
N

< 1
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Furthermore:

(iii)
(A− 1)p

N
=

Ap
N
− p

N
(A)
≈ N

N
− p

N
= 1− p

N
(B)
≈ 1

where (A) is because of Note 17 (N ≈ Ap), and (B) is because of Equation (34) (p� N).
Next, we compute the lower bound for the first fraction of the claim:

2π
y(A−1)p

N = 2π
(A−1)

N yp
(C)
≥ 2π

(A−1)
N
(
kN − p

2
)

= 2π(A− 1)k− π
(A−1)p

N
(D)
≥ −π

(A−1)p
N

(E)
≈ −π

where (C) follows from the second inequation of (i) above, (D) is because of 2π(A− 1)k ≥ 0,
and (E) is implied by (iii) above.

The upper bound for the first fraction of the claim is computed next:

2π
y(A−1)p

N = 2π
(A−1)

N yp
(F)
≤ 2π

(A−1)
N
(
kN + p

2
)

= 2π(A− 1)k + π
(A−1)p

N

(G)
< 2π(A− 1)k + π

(H)
< 2π(A− 1)p + π

(I)
< 2πN + π

(J)
≡ π

where (F) is implied by the first inequation of (i) above, (G) is (ii) above, (H) follows from
the prerequisite k ∈ I{0, . . . , p− 1}, i.e., k < p, and (I) is the first inequation of (ii) above.
Finally, we will estimate eiϕ, and because of ei2πN = 1, (J) is justified.

Together, −π ≤ 2π
y(A−1)p

N ≤ π, which proves the first claim. �( f irst f raction)

Next,

2π
py
N = 2π

N py
(K)
≤ 2π

N
(
kN + p

2
)

= 2πk + π
p
N

(L)
< 2πk + π

(M)
≡ π

with (K) from the first inequation of (i) before, (L) because p < N, and (M) because we will
estimate eiϕ. I.e., the upper bound of the second fraction is as claimed.

The correctness of the lower bound is seen as follows:

2π
py
N = 2π

N py
(N)
≥ 2π

N
(
kN − p

2
)

= 2πk− π
p
N

(O)
> −π

p
N

(Q)
> −π

with the second inequation of (i) before giving (N), (O) is because of 2πk > 0, and (Q) is
true because 0 < p < N; thus, 0 < p/N < 1. �(second f raction) �

3.3. Estimating Probabilities

We are now ready to compute the probability P(y) that the state |y〉, which is prepared
by the quantum part of Shor’s algorithm, is “close” (i.e., within a distance of 1/2) to a
multiple of p/N.

Lemma 10.
Assume q = ei2π

yp
N 6= 1 and let P be the probability that y ∈

[
k N

p −
1
2 , k N

p + 1
2

]
for a

k ∈ {0, . . . , p− 1}. Then, P ≈ 4
π2 .
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Proof. According to Equation (29), the probability P(y) to measure a particular y ∈[
k N

p −
1
2 , k N

p + 1
2

]
is

P(y) =
1

NA

∣∣∣∣1− qA

1− q

∣∣∣∣2 (35)

In case q 6= 1 (which is the assumption) where q = ei2π
yp
N (the case q = 1 will be treated

separately in Note 18). Thus, with qA = ei2π
yAp

N , it is

∣∣∣∣1− qA

1− q

∣∣∣∣ =
∣∣1− qA

∣∣
|1− q| =

∣∣∣1− ei2π
yAp

N

∣∣∣∣∣∣1− ei2π
yp
N

∣∣∣ (36)

The structure of the numerator and denominator recommends the estimation of both
by means of the Lemma 7 (Secant Length Estimation). However, applying Lemma 7
requires that 2π

yAp
N , 2π

yp
N ∈ [−π,+π]. By Lemma 9, we know that under the prerequisite

y ∈
[
k N

p −
1
2 , k N

p + 1
2

]
, it is 2π

py
N ∈ [−π,+π] as well as 2π

y(A−1)p
N ∈ [−π,+π], but Lemma

9 does not imply 2π
yAp

N ∈ [−π,+π].
Now, consider the following calculation:∣∣∣∣1− qA

1− q

∣∣∣∣ = ∣∣∣∣1− qA−1

1− q
+ qA−1

∣∣∣∣ (A)
≥
∣∣∣∣1− qA−1

1− q

∣∣∣∣− ∣∣∣qA−1
∣∣∣ (B)
=

∣∣∣∣1− qA−1

1− q

∣∣∣∣− 1 (37)

where (A) holds because of |a + b| ≥ |a| − |b|, and
∣∣eiϕ
∣∣ = 1 implies (B):

∣∣qt
∣∣ = ∣∣∣∣(ei2π

yp
N

)t
∣∣∣∣ =∣∣∣ei(2π

ypt
N )
∣∣∣ = 1.

Equation (37) allows us to apply the secant length estimation (Lemma 7) because in

∣∣∣∣1− qA−1

1− q

∣∣∣∣ =
∣∣1− qA−1

∣∣
|1− q| =

∣∣∣∣1− ei2π
y(A−1)p

N

∣∣∣∣∣∣∣1− ei2π
yp
N

∣∣∣ (38)

it is now 2π
y(A−1)p

N , 2π
yp
N ∈ [−π,+π] according to Lemma 9.

First, we use the second inequation of 2|ϕ|
π ≤

∣∣1− eiϕ
∣∣ ≤ |ϕ| from Lemma 7 with

ϕ = 2π
yp
N ∈ [−π,+π] and obtain ∣∣∣1− ei2π

yp
N

∣∣∣ ≤ 2π
yp
N

(39)

Then, we use the first inequation of 2|ϕ|
π ≤

∣∣1− eiϕ
∣∣ ≤ |ϕ| from Lemma 7 with

ϕ = 2π
y(A−1)p

N ∈ [−π,+π] and obtain∣∣∣∣1− ei2π
y(A−1)p

N

∣∣∣∣ ≥ 2
π
· 2π

y(A− 1)p
N

(40)

Using Equations (39) and (40) in Equation (38) results in

∣∣∣∣1− qA−1

1− q

∣∣∣∣ =
∣∣∣∣1− ei2π

y(A−1)p
N

∣∣∣∣∣∣∣1− ei2π
yp
N

∣∣∣ ≥ 2
π
· 2πy

(A− 1)p
N

· N
2πyp

=
2(A− 1)

π
(41)
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This result is now used in Equation (37) (step (C) below) and we obtain

∣∣∣ 1−qA

1−q

∣∣∣ = ∣∣∣ 1−qA−1

1−q

∣∣∣− 1
(C)
≥ 2(A−1)

π − 1

= 2A
π −

2
π − 1 = 2A

π −
( 2

π + 1
) (42)

Using Equation (42) in Equation (35) (step (D) below) results in

P(y) =
1

NA

∣∣∣∣1− qA

1− q

∣∣∣∣2 (D)
≥ 1

NA

(
2A
π
−
(

2
π

+ 1
))2

=
1

NA

(
4A2

π2 −
4A
π

(
2
π

+ 1
)
+

(
2
π

+ 1
)2
)

=
1

NA

(
4A2

π2 −
8A
π2 −

4A
π

+
4

π2 +
4
π

+ 1
)

=
4A

π2N
− 8

π2N
− 4

πN
+

4
π2NA

+
4

πNA
+

1
NA

≥ 4A
π2N

− 8
π2N

− 4
πN

=
4A

π2N
− 4

πN

(
1 +

2
π

)
Thus,

P(y) ≥ 4A
π2N

− 4
πN

(
1 +

2
π

)
(43)

According to Note 17, we know N ≈ Ap⇒ A
N ≈

1
p , i.e.,

4A
π2N

≈ 4
π2 p

(44)

Furthermore, since N is a “huge” number, we know that the following is “small”:

4
πN

(
1 +

2
π

)
de f
= ε (45)

Using Equations (44) and (45) in Equation (43) results in

P(y) ≥ 4
π2

1
p
− ε (46)

for each y ∈
[
k N

p −
1
2 , k N

p + 1
2

]
. According to Corollary 9, there exist p different numbers

yk with yk ∈
[
k N

p −
1
2 , k N

p + 1
2

]
and for each of them P(yk) ≥ 4

π2
1
p − ε. Since we are not

interested in a particular yk, but in any of them, we need to sum up all probabilities P(yk)
to obtain the overall probability P:

P =
p−1

∑
i=0

P(yi) ≥
4

π2 − pε ≈ 4
π2

This proves the claim. �

We still need to estimate the probability for the case q = 1.

Note 18.
Let q = 1. Then P(y) = A

N .
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Proof. In case q = 1, the probability is

P(y) =
1

NA

∣∣∣∣∣A−1

∑
j=0

qA

∣∣∣∣∣
2

=
1

NA

∣∣∣∣∣A−1

∑
j=0

1

∣∣∣∣∣
2

=
1

NA
A2 =

A
N

�

3.4. Computing the Period

Let y be the result of the measurement produced by Shor’s algorithm. Under the
assumption that q 6= 1, the following holds:

Theorem 15.
With probability P ≈ 4

π2 , there exists a k ∈ {0, . . . , p− 1}, such that∣∣∣∣ y
N
− k

p

∣∣∣∣ < 1
2p2

Proof. According to Lemma 10, the probability that y ∈
[
k N

p −
1
2 , k N

p + 1
2

]
for a k ∈

{0, . . . , p− 1} is ≈ 4/π2.
However, y ∈

[
k N

p −
1
2 , k N

p + 1
2

]
⇔ − 1

2 ≤ y− kN
p ≤ + 1

2 . Dividing the latter inequa-

tions by N yields: y ∈
[
k N

p −
1
2 , k N

p + 1
2

]
⇔− 1

2N ≤
y
N −

k
p ≤ + 1

2N .

Thus,
∣∣∣ y

N −
k
p

∣∣∣ ≤ 1
2N . By choice of N, it is n2 < N. Furthermore, p < n⇒ p2 < n2 ⇒

p2 < N⇒ 1
N < 1

p2 . This results in
∣∣∣ y

N −
k
p

∣∣∣ ≤ 1
2N < 1

2p2 . �

Legendre’s Theorem (Theorem 14) proves immediately:

Theorem 16.
With probability ≈ 4/π2, k/p is a convergent of y/N. �

3.4.1. Determining the Period by Convergents: q 6= 1

The Algorithm 2 determines with probability of approximately 4/π2 the period p we
are looking for; is is applicable in the case q 6= 1:

Algorithm 2 Determining with probability of approximately 4/π2 the period p we are looking for

1. Compute y
N ∈ Q>0;

a. The result of the measurement is y ∈ N and N ∈ N has been chosen
⇒ y

N ∈ Q>0 can be computed.

2. Compute the continued fraction representation [a0; a1, . . . , am] of y
N ∈ Q;

3. Compute the convergents [a0; a1, . . . , au] =
gu
hu

, 1 ≤ u ≤ m;
4. Determine hω with hω ≥ hu for 1 ≤ u ≤ m and hω < n

⇒ gω

hω
is a very good approximation of k

p because 1
2h2

ω
≤ 1

2h2
u

;

5. Thus, hω ≈ p is a candidate for the period p;
6. Check whether p is in fact the period.

3.4.2. Determining the Period by Convergents: q = 1

In case q = 1, the above algorithm is not applicable. However, q = 1⇔ e
2πi
N py = 1⇔

py
N ∈ Z⇔ p = k N

y with k ∈ Z. Thus, the Algorithm 3 can be used:
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Algorithm 3 q = 1⇔ e
2πi
N py = 1⇔ py

N ∈ Z⇔ p = k N
y with k ∈ Z

1. Compute N
y ∈ Q>0. The result of the measurement is y ∈ N and N ∈ N has been chosen⇒

N
y ∈ Q>0 can be computed;

2. Select k ∈ N;
3. Compute k N

y ;

4. If k N
y /∈ N, go back to step (2);

5. If k N
y ≥ n, go back to step (2);

6. p = k N
y is a candidate for the period p;

7. Check whether p is in fact the period;
8. If p is not the period:

a. If some predefined termination criterion is met: stop;
b. Go back to step (2).

This may yield the period p but does not guarantee it.

3.5. How the Presented Results Relate

The contribution contains several low-level details. In order to avoid getting lost in
these details, this section sketches how the main details contribute to the proof of Shor’s
algorithm. The Figure 26 at the end of this section is a cartoon of these relations.

3.5.1. Applying the Results about Continued Factions

Determining a divisor and finally a prime factor of a natural number n ∈ N can be
reduced to finding the period p of the modular exponentiation function f (x) = axmodn for
an a with 0 < a < n—see Section 3.2.1 and Note 7.

The quantum part of Shor’s algorithm produces the state 1√
NA

A−1
∑

j=0
ω

jpy
N |y〉 from

Equation (2). Measuring this state results in a natural number y ∈ N.
The natural number N in Equation (2) must be chosen in advance based on the number

n to be factorized: it is chosen as N = 2m with n2 < N < 2n2—see the introduction of
Section 8. This ensures that the relevant arguments to compute the f (x) by the quantum
part of Shor’s algorithm can be captured as quantum states.

Theorem 15 guarantees with probability P ≈ 4/π2 the existence of a k ∈ {0, . . . , p− 1}
such that

∣∣∣ y
N −

k
p

∣∣∣ < 1
2p2 .

Thus, according to the convergent criterion of Legendre’s Theorem (Theorem 14), k/p
is a convergent of y/N.

The proof of Legendre’s convergent criterion (Theorem 14), in turn, is based on the
fact that convergents are exactly the best approximations of the second kind (Theorem 11
and Lagrange’s theorem (Theorem 12)).

The proof of Lagrange’s theorem (Theorem 12—each convergent is a best approxima-
tion of the second kind) makes use of the recursion theorem (Theorem 1), the sign theorem
(Theorem 2), the monotony property of denominators of convergents (Corollary 1), as well
as the estimations of the upper bounds of convergents (Lemma 3) and their lower bounds
(Lemma 5).

The proof of Theorem 11 (each best approximation of the second kind is a convergent)
makes use of the recursion theorem (Theorem 1), the distance theorem (Theorem 8), the
computation of the difference of convergents (Corollary 3), the distance of fractions (Note 4),
and the estimation of the upper bounds of convergents (Lemma 3).

The estimations of the lower and upper bounds of convergents depend on the distance
theorem (Theorem 8), the computation of the difference of convergents (Corollary 3), the
monotony property of denominators of convergents (Corollary 1), and on estimations of
the size of denominators of convergents (Lemma 1). The estimation of the lower bounds
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(Lemma 5) makes use of semiconvergents (Definition 4) and their monotony property
(Lemma 4) as well as the nesting theorem (Theorem 7).

Remark: Theorem 13, which proves that best approximations of the first kind are
convergents or semiconvergents, is not immediately relevant to Shor’s algorithm and may
be ignored when focusing on Shor’s algorithm.
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3.5.2. Applying Probability Estimations

According to Equation (29) (which is implied by the Born rule), the probability P(y) to

measure a particular y is P(y) = 1
NA

∣∣∣ 1−qA

1−q

∣∣∣2 for q = ei2π
py
N 6= 1.
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Equations (37) and (38) show that this probability can be estimated as
∣∣∣ 1−qA

1−q

∣∣∣ ≥
∣∣∣ 1−qA−1

1−q

∣∣∣− 1 =

∣∣∣∣∣1−ei2π
y(A−1)p

N

∣∣∣∣∣∣∣∣∣1−ei2π
yp
N

∣∣∣∣ − 1. The latter fraction, in turn, can be estimated by means of

Lemma 7 (Secant Length Estimation) in case 2π
y(A−1)p

N , 2π
py
N ∈ [−π,+π].

Lemma 9 shows that the latter inclusion is satisfied in case of y ∈
[
k N

p −
1
2 , k N

p + 1
2

]
and k ∈ {0, . . . , p− 1}.

Lemma 10 proves that with probability P(y) ≈ 4/π2 it is, in fact, y ∈
[
k N

p −
1
2 , k N

p + 1
2

]
for k ∈ {0, . . . , p− 1}. The proof of this lemma is based on a proper estimation of N
(Note 17) which in turn relies on Note 16. Further, it makes use of Corollary 9, which is the
summary of the various results of Section 3.2.2.

A simple calculation in the proof of Theorem 15 finally shows that y ∈
[
k N

p −
1
2 , k N

p + 1
2

]
implies

∣∣∣ y
N −

k
p

∣∣∣ ≤ 1
2N < 1

2p2 . Thus, with probability P(y) ≈ 4/π2, the convergent criterion
of Legendre’s Theorem (Theorem 14) is satisfied.

4. Conclusions and Related Work

The literature analyzing, discussing, and refining Shor’s algorithm [1] is vast. Of
course, most text books on quantaum computing explain the algorithm too (e.g., [4,5]). In
doing so, all this literature puts a sharp focus on the quantum part of the algorithm and
sketches its classical parts at various depths. However, the mathematical treatment of the
classical aspects is sketchy, omitting most of the details and leaving them as an exercise
for the reader with references to corresponding text books from mathematics such as [6]
or [7]. The lecture notes by Preskill [2] go a bit deeper, especially on the estimation of
probabilities, but still omit the low-level details; however, the authors of the contribution
at hand benefited a lot by the treatment in [2]. It is noted that the genesis for the authors’
treatment of probability estimations was inspired by unpublished, non-public work to
which the authors had access to several years ago.

In doing so, the contribution at hand is very detailed on the probability estimation of
being able to use Legendre’s Theorem in Shor’s algorithm. The authors are not aware of
any other publication providing these low-level details.

Furthermore, the contribution at hand is a self-contained treatment on continued
fractions up to Legendre’s Theorem. All background that is needed to understand this
theorem is presented, including all proofs with low-level details step by step.

The authors hope to foster the comprehension of the classical aspects of Shor’s algo-
rithm even at the level of beginners in quantum computing.

Author Contributions: Writing—original draft, F.L.; Writing—review & editing, J.B. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was partially funded by the BMWK project PlanQK (01MK20005N).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shor, P.W. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM J. Sci.

Stat. Comput. 1997, 26, 1484–1509. [CrossRef]
2. Preskill, J. Lecture on Quantum Information—Chapter 6. Quantum Algorithms; California Institute of Technology: Pasadena, CA,

USA, 2020. Available online: http://theory.caltech.edu/~{}preskill/ph219/chap6_20_6A.pdf (accessed on 11 July 2022).
3. Shult, E.; Surowski, D. Algebra; Springer: Berlin/Heidelberg, Germany, 2015.

http://doi.org/10.1137/S0097539795293172
http://theory.caltech.edu/~{}preskill/ph219/chap6_20_6A.pdf


AppliedMath 2022, 2 432

4. Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2016.
5. Rieffel, E.; Polak, W. Quantum Computing: A Gentle Introduction; The MIT Press: Cambridge, MA, USA, 2011.
6. Hardy, G.H.; Wright, E.M. An Introduction to the Theory of Numbers, 4th ed.; Oxford University Press: New York, NY, USA, 1975.
7. Khinchin, A.Y. Continued Fractions, 3rd ed.; The University of Chicago Press: Chicago, IL, USA, 1964.


	Introduction 
	Continued Fractions 
	Definition of Continued Fractions and Their Computation 
	Convergents 
	Convergence of Infinite Regular Continuous Fractions 
	Bounds Expressed by Denominators of Convergents 
	Best Approximations 

	Probability of the Occurrence of Convergents 
	Estimating Secant Lengths 
	Estimating Amplitude Parameters 
	Basics from Number Theory 
	Intervals of Consecutive Multiples of the Period 
	Cardinality of Pre-Images 
	Estimating Arguments of Amplitudes of Potential Measurement Results 

	Estimating Probabilities 
	Computing the Period 
	Determining the Period by Convergents: q =1  
	Determining the Period by Convergents: q = 1  

	How the Presented Results Relate 
	Applying the Results about Continued Factions 
	Applying Probability Estimations 


	Conclusions and Related Work 
	References

