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Structure of Triangular Numbers Modulo m
Darin J. Ulness

Department of Chemistry, Concordia College, Moorhead, MN 56562, USA; ulnessd@cord.edu

Abstract: This work focuses on the structure and properties of the triangular numbers modulo
m. The most important aspect of the structure of these numbers is their periodic nature. It is
proven that the triangular numbers modulo m forms a 2m-cycle for any m. Additional structural
features and properties of this system are presented and discussed. This discussion is aided by
various representations of these sequences, such as network graphs, and through discrete Fourier
transformation. The concept of saturation is developed and explored, as are monoid sets and the
roles of perfect squares and nonsquares. The triangular numbers modulo m has self-similarity and
scaling features which are discussed as well.
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1. Introduction

The current work is part of a special issue on the application of number theory in
sciences and mathematics and is centered on triangular numbers. More specifically, it is
focused on the triangular numbers modulo m, where m is any non-negative integer. Such
numbers form a periodic sequence which has an interesting structure. That structure is
explored here via elementary number theory, graph theory, and numerical analysis.

The triangular numbers (sometimes called the triangle numbers) are arguably the
most well-known of the sequences of polygonal numbers (see [1], chapter 1), which include
the square numbers, pentagonal numbers, hexagonal numbers, etc. As the name implies,
the polygonal numbers are the sequences formed by counting lattice points cumulatively in
subsequent n-gonal patterns. Triangular numbers arise from a triangular lattice. However,
triangular numbers are perhaps best known because they represent the cumulative sums of
the integers. Each member of the (infinite) sequence of triangular numbers is obtained via
a simple closed-form formula per the following definition.

Definition 1. Triangular numbers. The set of triangular numbers is, for n ∈ N,

T ≡
{

T(n) =
n(n + 1)

2

}
.

Note, throughout this work, we are taking N to include zero (so, the non-negative integers).
The triangular numbers themselves have a long and interesting history [2,3], including

the fact that major insight was provided by Gauss himself (see [4], page 91). In spite of
all this attention, there is a dearth of literature focused on the triangular numbers mod
m ∈ N+ [5]. To be sure, many ideas associated with this set can be found spread through
online mathematics communities in forums and blog posts. A number of these ideas,
including theorems, are collected in the current work to assist the reader by providing
a self-contained presentation. In related work, Wall considered the Fibbonacci numbers
modulo m [6] in the early 1960s. Subsequent work on Fibbonicci numbers over cyclic
groups was performed by Dikici and coworkers [7–9].

The purpose of the current work is to investigate the fascinating structural characteris-
tics of the triangular numbers modulo m. In addition to presenting some new theorems
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regarding the triangular numbers modulo m, use is made of modern computing power to
illustrate some unproven conjectures, which might be useful in applied settings, such as
statistical mechanics or computer science. The structure of triangular numbers modulo m
reveals a variety of self-similarity and scaling characteristics.

In this work, the designation of a conjecture will be reserved for results in which the
author does not have a complete proof. The designation of a proposition will be used
for conjecture-like ideas that do have a proof. Lemma, theorem, and corollary designa-
tions will be used in their typical ways. Numerical work was done using in-house-made
MATHEMATICA and Python code. Network analysis on graphs was done using GEPHI.

2. Information and Data Compression

Before launching into the details of the structure of the triangular numbers modulo m,
this section provides an overarching view of the types of sets one is interested in. Here too,
the definitions of the sets are given.

2.1. Sets and Sequences

The triangular numbers themselves, T = {0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, . . .} (se-
ries A000217 in the Online Encyclopedia of Integer Sequences [10]) constitute one member
of the set of infinite sequences defined here as S∞. Other members of this set include
the infinite sequence of the triangular numbers modulo m, T mod m. For example, T
mod 6 = {0, 1, 3, 0, 4, 3, 3, 4, 0, 3, 1, 0, 0, 1, 3, . . .}. As mentioned above, the most striking
feature of the triangular numbers modulo m is that they are 2m periodic for all m. This
will be proved (Theorem 1) and discussed more below. This suggests that there is value in
naming a family of finite sequences. Each set is labeled S2m, representing the specific set of
sequences of length 2m. For a given m, the infinite sequence T mod m maps to a single
point in S2m.

Definition 2. The 2m sequence of triangular numbers modulo m.

Tm ≡ {the first 2m members of T mod m}.

Remark 1. The reader is cautioned to note that the subscript on the element, Tm is m, whereas on
the set it is 2m, S2m. This notational inconsistency will pay off in the end because m itself will play
such an important role in the current analysis.

There is a natural equivalence class, labeled, [Tm] in S2m, given by the cyclic rota-
tion of the Tm. Thus, for example, both elements T6 = {0, 1, 3, 0, 4, 3, 3, 4, 0, 3, 1, 0} and
{3, 1, 0, 0, 1, 3, 0, 4, 3, 3, 4, 0} in S2m are members of [T6]. With a slight abuse of notation, the
symbol Tm will represent the equivalence class from here on out. Thus, one is at full liberty
to cyclically rotate the sequence as needed.

Two other sets of sets will be important in the current analysis. The first has as
elements the set of residue classes present in a given sequence. This is referred to as the set
of occupancy set and labeled Om. The point in this set corresponding to Tm is labeled T̂m.
For example, T̂6 = {0, 1, 3, 4}. This leads to the following definition

Definition 3. The occupancy set. T̂m ≡ {distinct residues in Tm}.

The second set is the set of multiplicity set, labeled, Λm, in which each element, Λm, is
the listing of multiplicities of each member of T̂m in the first m (not 2m) members of Tm. As
an example, λ̂6 = {2, 1, 2, 1}.

Definition 4. The multiplicity set λ̂m ≡ {number of times each distinct residue appears in the
first m elements of Tm }. Note that the order of the elements in λ̂m corresponds to the order of the
elements in T̂m.
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2.2. Information Content of Sets

For the purpose of this work, by “information” we mean how much information is
needed to give an explicit listing of a particular sequence. At present, the information unit
is generic, but one could, for example, consider the unit as a computer-based calculation
unit. Thus, for the triangular numbers themselves, the information needed is infinite (in
spite of the closed-form formula). For Tm, the amount of information needed is 2m units.

Figure 1 shows a schematic representation of the various sets arising in the present
analysis. The top row shows the progression from the set of infinite sequences, S∞, to
the set of finite sequences of length 2m. Theorem 1 (proven below) compresses the 2m-
periodic sequence of the triangular numbers modulo m without loss of information. Then,
via Theorems 2 and 3, another two-fold compression is achieved by mapping the length
2m sequences to the corresponding length m sequences. This is also a lossless mapping
due to the nature of the sequences of residue classes as contained in Theorems 2 and 3
(proven below).

The second row of Figure 1 shows the, again, roughly two-fold compression mapping
of the sequences of length m to the corresponding sequences of length m+1

2 . In terms of
information loss, we see a divergence between the m in an even case and the m in an odd
case. Due to Theorem 4, the odd m case remains lossless. This is not the true for the case
when m is an even integer.

Figure 1. Schematic of the various sets discussed in this work and their relationships. Top row:
Lossless compression of information about the sequence of triangular numbers modulo m based on
Theorems 1–3. Second row: Application of Theorem 4. Note for odd values of m, this information
compression is lossless. It is lossy, however, when m is even. Bottom row: Mapping of the ordered
sequences in Sm to the unordered sets. As the order is lost, these maps are lossy. Data compression is
dependent on the specific value of m. This data compression finally results in the representation of
the sequence of triangular numbers modulo m as saturation, 0 ≤ s ≤ 1 via Definition 5.

The bottom row (along with Sm) of Figure 1 shows further compression of information
about the sequence of triangular numbers modulo m. All of these mapping are sequentially
lossier and lossier, but nonetheless, still lead to sets carrying important information about
the sequences. The first map brings the ordered sequence from Sm to the Cartesian product
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of the occupancy set, Om, and the multiplicity set, Λ. The data compression here is variable
depending on the nature of m. This is discussed in more detail below. Projecting away, the

multiplicity set gives two-fold compression. Finally, the definition of saturation, s = |T̂m |
|Zm | ,

gives a representation of the sequence as a single real number 0 ≤ s ≤ 1 (formally defined
in Definition 5).

3. Main Structure Theorems

The most immediate and critical structural feature of the triangular numbers modulo
m is their periodic nature. This is important for a number of reasons but most importantly
in reducing an infinite non-repeating sequence to an infinite but repeating sequence of
period 2m. This reduction allows for the properties of this sequence to be studied via a
2m-member sequence of residue classes. Remarkably, this is the case for any m. Further,
theorems dealing with symmetry present in Tm are also given.

The general structure of the triangular numbers modulo m is captured in the following
theorems.

3.1. Main Cycle Structure Theorem

Theorem 1. The sequence of triangular numbers mod m is a 2m-cycle. Additionally, the sequence
is symmetric about the “midpoint” of the 2m-cycle. That is, the last m elements are the reverse
sequence to that of the first m elements.

Proof. The 2m-cycle part. Define ∆ ≡ T(2m + j)− T(j). Then,

∆ =
(2m + j)(2m + j + 1)

2
− (j)(j + 1)

2
.

Expansion and simplification leads to

∆ = 2m2 + 2mj + m.

Under modulo m, ∆ mod m = 0.
The symmetry part. Again define a difference, but now ∆ ≡ T(m + j− 1)− T(m− j).

This is written out as

∆ =
(m + j− 1)(m + j)

2
− (m− j)(m− j + 1)

2
.

Expansion and simplification leads to

∆ = −m + mj.

Under modulo m, ∆ mod m = 0.

As some concrete examples, T10 = {0, 1, 3, 6, 0, 5, 1, 8, 6, 5, 5, 6, 8, 1, 5, 0, 6, 3, 1, 0} and
T15 = {0, 1, 3, 6, 10, 0, 6, 13, 6, 0, 10, 6, 3, 1, 0, 0, 1, 3, 6, 10, 0, 6, 13, 6, 0, 10, 6, 3, 1, 0}. One sees
that the first m elements are all that are required to reconstruct the full sequence without
loss of information. That is, the infinite sequences are obtained by repeating these 2m
sequences indefinitely. For the case of m = 10, the sequence for the second m elements is
the reverse order of the first m because m is even. For m = 15, where it is odd, the sequence
simply repeats as is. The odd/even symmetry behavior will be formally presented in
Section 3.2.

Some context is required for the last two sentences of Theorem 1 and the last sentence
of the proof. Of course given a Tm, one could choose a different member of the equivalence
class by starting the cycle at any point, thereby breaking the symmetry, and then the
sequence would no longer begin and end with zero. The context here is that the statements
about symmetry hold true when the cycle is initiated, with the first member being T(0) = 0.
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There are some situations when it is also natural to initiate the cycle with the first member
being T(1) = 1. In those situations, the cycle ends with two consecutive zeros.

3.2. Symmetry Theorems

Two related theorems are the following. These deal with the respective symmetries
for the odd and even cases.

Theorem 2. For odd values of m, the triangular numbers’ moduli m form an m-cycle.

Proof. As in the previous theorem, define a difference: ∆ ≡ T(m + j)− T(j). Now one
can take advantage of the fact that two has an inverse when m is odd. As such, one can
consider

2∆ = (m + j)(m + j + 1)− j(j + 1).

Expansion and simplification leads to

2∆ = m2 + 2mj + m.

Under modulo m, 2∆ mod m = 0. This implies ∆ mod m = 0 (because 2 has an
inverse) and thus proves the assertion of the theorem.

The case of T15 mentioned above is a concrete manifestation of this theorem. The cases
of T7 = {0, 1, 3, 6, 3, 1, 0, 0, 1, 3, 6, 3, 1, 0} and T9 = {0, 1, 3, 6, 1, 6, 3, 1, 0, 0, 1, 3, 6, 1, 6, 3, 1, 0}
serve as further examples, including a prime and a composite.

Theorem 3. For even values of m, those triangular numbers’ moduli m that are m elements apart
in the 2m-cycle differ by m

2 .

Proof. Again, one defines a difference: ∆ ≡ T(m + j)− T(j). This is written out as

∆ =
(m + j)(m + j + 1)

2
− j(j + 1)

2
.

Expansion and simplification leads to

∆ =
m2

2
+ mj +

m
2

.

Writing m2

2 as m m
2 and applying modulo m yields ∆ mod m = m

2 .

Corollary 1. The mth member of Tm is m
2 when m is even.

Proof. The first element of Tm is always zero, so the mth element is m
2 − 0 = m

2 via
Theorem 3.

The case of T10 mentioned above is an example that falls under Theorem 3 and its
corollary. Other examples include the cases of T8 = {0, 1, 3, 6, 2, 7, 5, 4, 4, 5, 7, 2, 6, 3, 1, 0} and
T12 = {0, 1, 3, 6, 10, 3, 9, 4, 0, 9, 7, 6, 6, 7, 9, 0, 4, 9, 3, 10, 6, 3, 1, 0}.

Theorem 4. If m is odd, then Tm is further symmetric about m′ = m−1
2 . That is, T(m′ − j) =

T(m′ + j) where 0 < j < m′ ∈ N+.

Proof. Define ∆ ≡ T(m′ + j)− T(m′ − j). Then, by explicitly writing the triangular sum-
mation out and subtracting like terms,

∆ = (m′ + j) + (m′ + (j− 1)) + . . . + (m′ + 1) + m′ + (m′ − 1) + . . . + (m′ − (j− 1)).
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Match the terms on the right hand side as

m′ + j + (m′ + (j− 1)) + . . . + (m′ + 1)

+ (m′ − (j− 1)) + . . . + (m′ − 1) + m′.

This gives

∆ = m′ + j + 2(j− 1)m′ + m′

= 2jm′ + j.

Substituting in for m′ gives

∆ = j(m− 1) + j = jm.

Modulo m gives ∆ = 0.

The working example of T15, along with T7 and T9, given the above shows this feature.

Lemma 1. The triangle numbers’ moduli m are the values of a ∈ Zm that give solutions to either
of the following two congruence relations: (i) n(2n + 1) = a and (ii) n(2n− 1) = a.

Proof. The kth triangle number is given by k(k+1)
2 . Note that k(k + 1) is always even and

breaks into two cases. First, when k is even, define n = k
2 , and thus T(2n) = n(2n + 1).

Second, when k is odd, define n = k+1
2 and thus T(2n− 1) = n(2n− 1).

T(k) mod m then becomes n(2n + 1) mod m or n(2n − 1) mod m. Thus,
n(2n + 1) = a mod m and n(2n − 1) = a mod m define the congruence relations in
Zm which gives the allowed values of a ∈ Zm.

Theorem 5. The set of unique triangle numbers moduli m ∈ N+, T̂m, are all a ∈ Zm such that
1 + 8a mod m = n2 mod m for some n ∈ Zm. That is, all a for which 1 + 8a mod m is a
perfect square under the modulo.

Proof. One notes that from Lemma 1, the members of Tm will be all a such that either
n(2n + 1) = a or n(2n − 1) = a yield solutions. It turns out one can more succinctly
consider n(2n± 1) = a and deal with both congruence relations at once.

Considering the solutions to the quadratic congruence 2n2 ± n− a = 0, one can write

4n = ∓1±
√
(1 + 8a).

The important part of this relation is
√
(1 + 8a). The set of solutions to the above

congruence is given precisely by those values of a in which 1 + 8a is a perfect square under
modulo m. This completes the proof.

At first glance, it seems as though the problem of finding the allowed a might well
degenerate into a number of “solvable” cases involving primes, powers of primes, etc.,
as is often the case when considering quadratic congruences. This is not the case here,
however, because one is not looking for a solution to the quadratic congruence per se, but
only looking to determine if a particular a yields a solution. These values will be precisely
the set listed in Theorem 5.

As an illustrative example of the use of Theorem 5, consider the case of modulo 10.
Here the set of perfect squares are {0, 1, 4, 5, 6, 9}, and the set of ordered pairs is (a, 1 + 8a
mod 10) = {(0, 1), (1, 9), (2, 7), (3, 5), (4, 3), (5, 1), (6, 9), (7, 7), (8, 5), (9, 3)}. The intersec-
tion of the perfect square set and the set of 1+ 8a values is {1, 5, 9}. These values correspond
to the set of a values {0, 1, 3, 5, 6, 8}. Thus, T̂10 = {0, 1, 3, 5, 6, 8}. These are indeed the values
that appear for the triangular numbers modulo 10.
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It is also noteworthy that Theorem 5 does not have a great deal of power in the applied
setting because it does not give a specific mechanism for finding which a make up T̂m, nor
does it give the multiplicity of a. That is, T̂m loses information about the ordered set Tm.
Finally, Section 7.2 takes a closer look at perfect squares and their relation to the members
of T̂m.

Theorem 6. If m is even, there are equal numbers of even and odd numbers in the first m members
of the 2m-cycle of Theorem 1.

Proof. Let m = 2n and consider the size 2n set

A =

({
(2n− j− 1)(2n− j)

2

}
mod 2

)
for j = 0 to j = 2n− 1. The role of modulo 2 is to make A simply a set of even (0) and odd
(1) numbers. Expanding the above expression gives

A =

({
2n2 + 2nj− n +

j(j + 1)
2

}
mod 2

)
.

The first two terms vanish under the mod. Considering j(j+1)
2 mod 2 and Theorem 1

yields the 4-cycle {0, 1, 1, 0, repeat}. Regardless of whether n is 1 or 0, there are the same
numbers of even and odd entries in set A.

Consider the case of T8, T10, and T12 given earlier. Indeed there are 4, 5, and 6 evens,
respectively, and the same for odds.

4. Specific Structure Theorems

Some specific characteristics of the structure of the triangular numbers mod m are
discussed here. First, the case of m = 2j, where j ∈ N+. Then, the cases in which m is prime
or prime power are presented.

4.1. Theorems Related to m = 2n

Theorem 7. If m 6= 2n and n ∈ N+, then the first time 0 reappears is at a position less than or
equal to the m− 1 position. The converse is also true.

Proof. Write m = 2jc and observe that 2j and c are relatively prime. Consequently,
the Chinese remainder theorem implies that there exists a nonzero a ∈ N+ such that
a mod 2j+1 = 0 and a mod c = −1 and that a is uniquely determined modulo 2j+1c.
Since 2j+1c = 2m, 0 < a ≤ 2m− 1. Now, a mod 2j+1 = 0 and a + 1 mod c = 0. Thus,
a(a + 1) mod 2j+1c = a(a + 1) mod 2m. This implies a(a+1)

2 mod m = 0. This leads to
two cases: (i) 0 < a ≤ m− 1, so T(a) mod m = 0 directly. (ii) m < a ≤ 2m− 1. Here one
can define b = 2m− 1− a so that 0 < b ≤ m− 1. Then,

T(b) mod m =
b(b + 1)

2
mod m

=
(2m− 1− a)(2m− a)

2
mod m

=
4m2 − 2m− 4am + a + a2

2
mod m

=

(
2m2 −m− 2am +

a(a + 1)
2

)
mod m = 0.

Finally, c = a or b appropriately such that 0 < a ≤ m− 1 and T(c) mod m = 0.
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The converse follows quickly because if 0 reappears prior to the m− 1 position in the
sequence, then it has appeared at least twice overall (the first time being at position 0 itself).
Then, by Theorem 8, m 6= 2n, as is shown next.

The working examples of T10 and T15 bear this out. For T10 zero reappears at position
5, and for T15 it reappears at position 6.

Theorem 8. All values of Zm appear once and only once in the first m members of the 2m-cycle if
and only if m = 2n, n ∈ N.

Proof. The if part of the proof will be by induction. In general, one is given that m = 2n.
For the base case m = 2 and under these conditions, T(i) mod m = 0 or 1. Hence, the base
case is true. One then assumes it is true that all values appear once and only once in the
first m members of the 2m-cycle if m = 2j and one considers the case when n = j + 1.

Let m = 2j and a, b ∈ Z such that 0 ≤ a ≤ m− 1 and b = 2m− 1− a. This implies
m ≤ 2b + 1. Now define ∆ ≡ T(b)− T(a). Then,

∆ =
b(b + 1)

2
− a(a + 1)

2

=
(2m− 1− a)(2m− a)− a(a + 1)

2

=
4m2 − 2m− 4ma + a + a2 − a2 − a

2
= 2m2 −m− 2ma.

Now ∆ mod m = 0 and thus T(b) = T(a) for all 0 ≤ a ≤ m− 1 modulo m and by
the assumption of the jth inductive step, all values appear once and only once. However,
∆ mod 2m 6= 0 for all 0 ≤ a ≤ m− 1. Since m ≤ 2b + 1, all new values up to 2m− 1 must
appear once and only once. As 2m = mj+1, this completes the if part of the proof.

The only if part follows from Theorem 7, given all values appear once and only once
in the first m members of the 2m-cycle. Let m = 2jm′; then, by Theorem 7, there exists an
a such that 0 < a ≤ m− 1 and T(a) mod m = 0. However, 0 is also the first value. This
poses a contradiction and completes the proof.

As a concrete example, T8 = {0, 1, 3, 6, 2, 7, 5, 4, 4, 5, 7, 2, 6, 3, 1, 0}. One sees that each
residue appears in the first 8 elements and then again in the second 8 elements.

Corollary 2. If m 6= 2n, then at least one value has a multiplicity greater than one (appears more
than once). The converse is also true.

Proof. Follows immediately from the pigeonhole theorem, and the converse follows from
Theorem 8.

4.2. Theorems Involving Cases When m is Prime

Lemma 2. If m is prime, then T(a) mod m 6= 0 for 0 < a < m− 1.

Proof. Assume T(a) = a(a+1)
2 = 0 mod m. As m is prime, Zm is a field. Together, this

implies either a = cm or (a + 1) = cm, where c ∈ Z. However, this contradicts the
stipulation on a in the theorem.

Theorem 9. If m is an odd prime, then T(a) 6= T(b) for a < b ≤ m−1
2 .
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Proof. Begin with ∆ ≡ T(b)− T(a), and since m is odd, we can consider 2∆ = 2T(b)− 2T(a).
Writing out the triangle numbers gives

2∆ = b2 + b− a2 − a

2∆ = b2 − a2 + b− a.

Expanding and factoring out a b− a yields

2∆ = (b + a)(b− a + 1).

The imposed limits on a and b ensure (a + b) 6= m and (b − a + 1) 6= 0. Further,
because m is prime, Zm is a field; thus, ∆ 6= 0. This completes the proof.

Theorem 10. If m is an odd prime, then T(a) 6= T(a + 1) for 0 < a < m− 1.

Proof. Since m is odd, two has an inverse. Thus, one considers 2T(a) = a(a + 1) and
2T(a + 1) = (a + 1)(a + 2). These terms share (a + 1) as a factor. Consequently, 2T(a)
and 2T(a + 1) must lie in either the same row or same column of the multiplication
Caley table ([11], page 43). Since Zm is a field (multiplication in Z+

m forms a group),
T(a) 6= T(a + 1).

As a concrete example, consider T11 = {0, 1, 3, 6, 10, 4, 10, 6, 3, 1, 0, 0, 1, 3, 6, 10, 4, 10, 6,
3, 1, 0}. Here we see no two consecutive residues are the same until the two zeros.

4.3. Theorems Involving Cases When m Is a Prime Squared

Lemma 3. For m = p2, where p is an odd prime, T
(

p−1
2

)
= T

(
ap + p−1

2

)
mod p2 for all

a ∈ N.

Proof. We start with

T
(

ap +
p− 1

2

)
=

(
ap + p−1

2

)(
ap + p−1

2 + 1
)

2
mod p2

=

(
ap + p−1

2

)(
ap + p+1

2

)
2

mod p2

=
a2 p2

2
+

ap
2

(
p− 1

2

)
+

ap
2

(
p + 1

2

)
+

1
2

(
p− 1

2

)(
p + 1

2

)
mod p2

=
a2 p2

2
+

ap2

4
− ap

2
+

ap2

2
+

ap
4

+
1
2

(
p− 1

2

)(
p− 1

2
+ 1
)

mod p2

=
a2 p2

2
+

ap2

2
+ T

(
p− 1

2

)
mod p2.

Now one must consider the cases when a is even and odd. If a = 2b is even,

T
(

ap +
p− 1

2

)
=

4b2 p2

2
+

2bp2

2
+ T

(
p− 1

2

)
mod p2

= 2b2 p2 + bp2 + T
(

p− 1
2

)
mod p2

= T
(

p− 1
2

)
mod p2.
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If a = 2b + 1 is odd,

T
(

ap +
p− 1

2

)
=

4b2 p2

2
+

4bp2

2
+

p2

2
+

2P2

2
+

p2

2
+ T

(
p− 1

2

)
mod p2

= 2b2 p2 + 2bp2 +
4p2

2
+ T

(
p− 1

2

)
mod p2

= T
(

p− 1
2

)
mod p2.

This proves the lemma.

As a concrete example, consider T25 = {0, 1, 3, 6, 10, 15, 21, 3, 11, 20, 5, 16, 3, 16, 5, 20, 11,
3, 21, 15, 10, 6, 3, 1, 0, 0, 1, 3, 6, 10, 15, 21, 3, 11, 20, 5, 16, 3, 16, 5, 20, 11, 3, 21, 15, 10, 6, 3, 1, 0}. One
sees here that the residue three occurs at position 5+1

2 and is repeated every five thereafter.

Theorem 11. For m = p2 where p is an odd prime, residues appear only once in the first m+1
2 ,

except for the residue class equivalent to T
(

p−1
2

)
, which appears exactly p+1

2 times.

Proof. It is convenient to consider residues centered on p−1
2 . Define ∆ = T

(
p−1

2 + r1

)
−

T
(

p−1
2 + r2

)
. Without loss of generality, one can take r1 > r2. Writing out ∆ and simplify-

ing gives

∆ =

(
p−1

2 + r1

)(
p−1

2 + r1 + 1
)

2
−

(
p−1

2 + r2

)(
p−1

2 + r2 + 1
)

2

=
(r1 − r2)(p + r1 + r2)

2
.

One can immediately pick up the last statement of the theorem by setting r2 = 0. Then,

∆ =
r1(p + r1)

2
,

which equals zero modulo p2 if and only if r1 = jp. The if part of the theorem comes
directly with substitution and hence proves the last statement. The only if part of the
theorem comes from the fact that for ∆ = 0 mod p2 r1(p + r1) = ap2, but the only factors
in ap2 are a and p and the factors on the left-hand side are not those.

To get the first part of the statement, one makes two steps. First, make the restriction,
r1 = x + jp and r2 = y + jp, such that 0 < y < x < p. This will scan the range between
p−1

2 + jp and p−1
2 + (j + 1)p. Here,

∆ = T
(

p− 1
2

+ jp + x
)
− T

(
p− 1

2
+ jp + y

)
=

(x− y)(2jp + p + x + y)
2

.

Now define v ≡ x − y and u ≡ x + y. Note that 0 < v < p. Finally, denote the
multiplicative inverse of two, which exists under modulo p2, as 2−. This gives,

∆ = 2−v(2jp + p + u).

Given that 2− 6= p, ∆ cannot be zero modulo p2 for v 6= 0, which is the case for v.
Thus, T

(
p−1

2 + jp + x
)
6= T

(
p−1

2 + y + jp
)

mod m.
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The last step is to show that no two resides that differ by multiples of p are equal in the
first m+1

2 members of the sequence. Again define the difference, ∆ = T
(

p−1
2 + r + jp

)
−

T
(

p−1
2 + r + kp

)
. Then,

∆ =

(
jp + p−1

2 + r
)(

jp + p−1
2 + r + 1

)
2

−

(
kp + p−1

2 + r
)(

kp + p−1
2 + r + 1

)
2

= p2
(

j2

2
+

j
2

)
+ jpr− p2

(
k2

2
− k

2

)
− kpr.

Upon modulo p2, the first and third terms go to zero.

∆ =

(
jp + p−1

2 + r
)(

jp + p−1
2 + r + 1

)
2

−

(
kp + p−1

2 + r
)(

kp + p−1
2 + r + 1

)
2

= (j− k)pr.

Now, for ∆ to be zero modulo p2, (j− k)r = p but p is prime. Thus, if (j− k) = 1, that
would require r = p but r < p. Likewise, if r = 1.

Thus, these combined facts, along with Theorem 4, which states that the first m+1
2

elements fully determine Tm, complete the first statement of the theorem.

5. Property Theorems

Several properties of the triangular numbers modulo m are collected and discussed in
this section.

Theorem 12. If m is even, then (T(k) + T(k + 1)) = (T(k + m) + T(k + m + 1)) mod m.

Proof. As has been done often prior, define

∆ ≡ T(k + m) + T(k + m + 1)− T(k) + T(k + 1).

Writing everything out and simplifying gives

∆ = m2 + 2mk + 2m.

Applying modulo m gives ∆ = 0 and completes the proof.

Theorem 13. If m is odd, 0 ≤ a ≤ m−1
2 , and b = m− 1− a, then T(b) = T(a) mod m.

Proof. That m is odd implies that two has an inverse. With that, the direct route is taken.
Upon substitution,

2T(b) = b(b + 1)

leads to
2T(b) = (m− 1− a)(m− a).

Expanding and simplifying gives

2T(b) = m(m− 1) + ma + a(a + 1),

which becomes 2T(b) = 2T(a) under modulo m. Since two has an inverse, the proof is
completed.

Consider the concrete example of T15 and pick a to be 3; then, b = 15− 1− 3 = 11.
Now, T(3) = 6 mod 15 and T(11) = 6 mod 15. The reader can pick other values of a.
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Theorem 14. If m = q2 where q is odd, then T
(

q−1
2

)
mod m = T

(
q−1

2 + jq
)

mod m, where
j ≥ 0 ∈ Z.

Proof. Noting that m must be odd and using the fact that two has an inverse, the direct
route is taken.

2T
(

q− 1
2

+ jq
)
=

((
q− 1

2

)
+ jq

)((
q− 1

2

)
+ jq + 1

)
=

(
q− 1

2

)2
+

(
q− 1

2

)
+ 2jq

(
q− 1

2

)
+ jq + (jq)2

=

(
q− 1

2

)2
+

(
q− 1

2

)
+ jq(q− 1) + jq + q2 j2.

The first two terms constitute 2T
(

q−1
2

)
, and the last three become q2(j + j2), which

vanish under modulo m = q2. Thus,

2T
(

q− 1
2

+ jq
)
= 2T

(
q− 1

2

)
,

and multiplying by two’s inverse completes the proof.

Theorem 15. If m is even, then T(m− 1) mod m = m/2.

Proof. The direct route is taken.

T(m− 1) =
(m− 1)m

2
mod m

=
m2

2
+
−m

2
mod m

= m
m
2
+
−m

2
mod m

= 0 +
m
2

.

This completes the proof.

Theorem 16. For m = 2q where q is odd. (a) T(q) mod m = 0 if m = 4n− 1 and (b) T(q− 1)
mod m = 0 if q = 4n + 1.

Proof. Both (a) and (b) will be proven simultaneously. Let a = m− j, where −q < j < q.
Then, by Theorem 7, one can certainly set T(q− j) mod m = 0. One then solves for j:

0 = T(q− j) mod m

=
(q− j)(q− j + 1)

2
mod m

=
q2 + q− 2qj + j2 − j

2
mod m

=
q(q + 1)

2
+ qj +

j(j− 1)
2

mod m.

For this relation to hold for any q, either j = 0 or j = 1, because the last term must
always vanish. These give the two cases T(q) mod m = 0 and T(q − 1) mod m = 0,
respectively.
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Consider the first case. This implies

(q)(q + 1)
2

= nm.

Since m = 2q, q(q + 1) = 4nq. Solving for q gives q = 4n− 1, which proves case (a).
Consider the second case. This implies

(q− 1)q
2

= nm.

Since m = 2q, (q− 1)q = 4nq. Solving for q gives q = 4n+ 1, which proves case (b).

Corollary 3. In Theorem 16 for case (a) T(q− 1) = q and T(q + 1) mod m = q + 1, and for
case (b) T(q− 2) = q + 1 and T(q) mod m = q.

Proof. Case (a). 0 = T(q) = (T(q− 1) + q) mod m. Thus, T(q− 1) = q. Additionally,
0 = T(q)m = (T(q + 1)− (q + 1)) mod m. Thus, T(q + 1) mod m = q + 1.

Case (b). 0 = T(q − 1) mod m = (T(q) − q) mod m. Thus, T(q) mod m = q.
Additionally, 0 = T(q − 1) mod m = (T(q − 2) + (q − 1)) mod m. Thus, T(q − 2)
mod m = q + 1.

6. Saturation Theorems

The scheme of information compression captured in Figure 1 ultimately compresses
the triangular numbers modulo m down to a single real number between 0 and 1. This
parameter, s, is called saturation. While much information is lost from the original sequence,
the behavior of saturation with m still possesses very interesting features.

Definition 5. Saturation. The saturation, sm = |T̂m |
|Zm | .

Figure 2 shows the saturation values as a function of m for m ranging up to 700,000.
One immediate feature of the plot is the presence of striations of heavily populated s values
and regions of sparse values. One notices sequences of points converging into asymptotic
values—for example, s = 1

2 , etc. There are also sequences of constant s values that increase
in distance between points—for example, s = 1, 0.6, etc. A blow-up of the small s values
is shown in the bottom graph of Figure 2. One sees a “dripping” of single points falling
below the main cloud of points. The following theorems, propositions, and conjectures
describe these features.

Proposition 1. The saturation sm = 1, when m = 2n.

Proof. This follows immediately from Theorem 8.

This proposition explains the sequence of points with increasing spacing at a value of
s = 1.

Proposition 2. The saturation of Tm, where m = p an odd prime, is sp = p+1
2p .

Proof. From Theorem 9 the residues, 0 ≤ r ≤ p−1
2 , determines the sequence for m = p,

where p is an odd prime. From Theorem 4, the first p+1
2 members are distinct from one

another. Thus,

sp =
p+1

2
p

=
p + 1

2p
,

which proves the proposition.
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For example, T̂11 = {0, 1, 3, 4, 6, 10} so s11 = 6
11 . By Proposition 2, s11 = 11+1

2·11 = 6
11 .

Figure 2. Saturation, s, (ordinate) versus m (abscissa) for the first 700,000 integers m. The top graph
shows all the data, and the bottom graph shows a blow-up of the low saturation values. As will be
seen to be typical throughout this work, there are striation patterns in the graph. The (rare) points
that fall below the main region of values are highly composite numbers.

Proposition 3. The saturation of Tm, where m = p is an odd prime, goes to sp = 1
2 in the limit of

a large p.

Proof. From Proposition 2,

lim
p→∞

sp = lim
p→∞

p + 1
2p

=
1
2

.

This completes the proof.

Propositions 2 and 3 describe the sequence of points that swoop into an asymptotic
value of s = 1

2 . Thus, the set of primes follows this behavior.

Theorem 17 (Reference [12], page 107). If gcd(q,r)=1, then Zqr is isomorphic to Zq ×Zr under
the ring isomorphism, η : Zqr → Zq ×Zr defined by η(a) = (a mod q, a mod r).

Theorem 18. For m = ∏r
j pj, where the pj are distinct primes, sm = ∏r

j sj.
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Proof. One can note that gcd(p1, p2, . . . , pr) = 1, since the prime factors are distinct. By
the obvious extension of Theorem 17,

η :Zm → Zp1 ×Zp2 × · · · ×ZPr

η(a) = (a mod p1, a mod p2, . . . , a mod pr).

One can determine |T̂pj | and |Zpj | for each prime factor in the Cartesian product. Thus,

|T̂m| =
r

∏
j
|T̂pj |, and |Zm| =

r

∏
j
|Zpj |.

Thus,

sm =
r

∏
j

sj,

which completes the proof.

One can consider the special case of two primes, p1 and p2. By Theorem 18,

sp1 p2 = sp1 sp2 =

(
p1 + 1

2p1

)(
p2 + 1

2p2

)
.

An interesting limit is when one of the primes becomes very large compared to
the other.

lim
p2→∞

sp1 p2 = lim
p2→∞

p1 p2 + p1 + p + 2 + 1
4p1 p2

= lim
p2→∞

p2(p1 + 1)
4p1 p2

=
p1 + 1

4p1
.

This leads to a number of the asymptotic striations seen in Figure 2.

Proposition 4. For m = ∏r
j pj, where the pj are distinct primes,

lim
r→∞

sm = 0.

Proof. From Theorem 18,

lim
r→∞

=
r

∏
j

sj = lim
r→∞

r

∏
j

pj + 1
2pj

= lim
r→∞

1
2r

r

∏
j

pj + 1
2pj

= lim
r→∞

1
2r (r + 1) = 0,

where the partial product formula is used in the penultimate step.

Theorem 18 and Proposition 4 describe the points “dripping” off the main group. They
are the points where m is a highly composite number of distinct primes.

Proposition 5. For m = p2 where p is an odd prime, the saturation is sm = p2−p+2
2p2 .

Proof. The proof is enumerative. Theorems 4 and 11 imply the first m members of Tm, p

are repeats and the others appear twice. Thus, there are p2−p
2 + 1 distinct elements. Thus,

sm =
p2−p

2 + 1
p2 =

p2 − p + 2
2p2 ,

which completes the proof.

Conjecture 1. For odd prime, p,
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sm =
1 + ∑n

j=1(−1)(j+1)pj

2pn

when m = pn and n is odd. Additionally,

sm =
2 + ∑n

j=1(−1)j pj

2pn

when m = pn and n is even.

Conjecture 2. If m = 2nq, where q is odd, then s2nq = sq.

Conjecture 3. For m = ∏r
j=1 pj, the multiplicity set is Λ =

{
2i | 0 ≤ i ≤ r

}
.

7. Special Sets

Two special sets are considered in this section: first, sets that are monoids (closed
under multiplication), and second, sets of perfect squares and nonsquares.

7.1. Monoids and Reduced Monoids

When considering the triangular numbers themselves, one finds several special mul-
tiplicative relations between the members of the set such as T(3)2 = T(8). Once the
triangular numbers are taken, moduli m with more multiplicative relations can potentially
appear. To be sure, the multiplication of two triangular numbers does not always produce
other triangular numbers (3× 6 = 18 for example). One might wonder if there are any
values of m such that this relation is true under modulo m. If so, the set T̂m would form a
monoid under multiplication. Investigation of this leads to the following theorem.

Theorem 19. The set T̂m equipped with multiplication forms a monoid if m is of the form m = 2a3b

where a ∈ N and b ∈ 0, 1, 2.

Proof. If part: the statement is trivial for a = b = 0 such that m = 1. Theorem 8 states that
all residues appear in T̂2a , so this too is trivially a monoid. The cases of m = 3 and m = 9
can be done explicitly. The Caley tables are

m = 3 0 1
0 0 0
1 0 1

and

m = 9 0 1 3 6
0 0 0 0 0
1 0 1 3 6
3 0 3 0 0
6 0 6 0 0

.

It remains to be shown that 2a3b, when a > 0 and b is 1 or 2, is a monoid. To
begin, consider 2a31. It is quick to calculate that all triangular numbers are 0 or 1 mod 3.
Meanwhile, via Theorem 8, all residues are present in T̂2a . Now, via the Chinese remainder
theorem see ([11], page 259), the modulo 2a31 of any product of triangular number is
uniquely determined by that product modulo 2a and modulo 3. This implies that all
residues for products are present in T̂2a31 , and hence, it is a monoid.

To achieve a similar result for m = 2a32, one uses the explicit verification of the monoid
structure of T̂9 above. Then, as for m = 2a31, all residues for products are present in T̂2a32 ,
and hence, it is a monoid.

As a concrete example, consider T̂12 = {0, 1, 3, 4, 6, 7, 9, 10}. The Caley table is,
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m = 12 0 1 3 4 6 7 9 10
0 0 0 0 0 0 0 0 0
1 0 1 3 4 6 7 9 10
3 0 3 9 0 6 9 3 6
4 0 4 0 4 0 4 0 4
6 0 6 6 0 0 6 6 0
7 0 7 9 4 6 1 3 10
9 0 9 3 0 6 3 9 6

10 0 10 6 4 0 10 6 4

and it, indeed, has a monoid structure (but not a group structure).

Conjecture 4. (Converse of Theorem 19). If m 6= 2a3b where a ∈ N and b ∈ 0, 1, 2, then Tm is
not closed, and thus not a monoid.

The above analysis shows that most values of m do not result in monoid structure. One
can, however, define a reduced monoid by including only those members of T̂m which form
a closed subset under multiplication. These sets will be denoted as T̂ (mon)

m As a concrete
example of this, consider the case of m = 15 in which T̂15 = {0, 1, 3, 6, 10, 13}. The Caley
table is

m = 15 0 1 3 6 10 13
0 0 0 0 0 0 0
1 0 1 3 6 10 13
3 0 3 9 3 0 9
6 0 6 3 6 0 3

10 0 10 0 0 10 10
13 0 13 9 3 10 4

.

Inspection of the Caley table shows 3× 3 = 9 mod 15 and 13× 13 = 4 mod 15 result
in residues that are not in T̂15. Thus, T̂ (mon)

15 = T̂15 − {3, 13} = {0, 1, 6, 10} and the reduced
Caley table is

m = 15 0 1 6 10
0 0 0 0 0
1 0 1 6 10
6 0 6 6 0

10 0 10 0 10

.

Considering the relative size |T̂
(mon)

m |
|T̂m |

, there is considerable consistency in structure.

Definition 6. Ratio of the size of the reduced monoid subset relative to the size of the occupation

set. Let Mr(m) ≡ |T̂
(mon)

m |
|T̂m |

.

Beginning with m = p being prime, one finds a particularly simple form given by the
following proposition.

Proposition 6. For m = p for prime p, T̂ (mon)
m = {0, 1}.

Proof. For this proof, two well-known ideas from group theory are needed. First, the
multiplicative group modulo p is cyclic. Second, the only subgroups of a cyclic group of
prime order are the trivial group and the full group. Now, in the Caley table for this case,
the non-zero rows and columns must be consistent with a group in that there must be no
repeated entries in any column or row. For the subset of triangular numbers modulo p to
be a monoid, they must form a subgroup. However, from the above, the subgroups are
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either the full group or the group consisting only of the identity. Including zero, the full
monoid set is {0, 1}, which proves the proposition.

Theorem 20. For m = p for odd prime p, Mr(p) = 4
p+1 .

Proof. From Theorems 5 and 9, |T̂p| = p+1
2 . From Proposition 6, |T̂ (mon)

p | = 2. Thus,
Mr(p) = 4

p+1 .

Figure 3 shows a plot of Mr versus m for the first 15,000 integers. As with other
quantities, the scatter plot shows striations. One sees many types of striations, horizontal
lines, and hyperbolic-like curves. Due to Theorem 19, the values of Mr = 1 occur when
m = 2a3b in the case when a is a non-negative integer and b is an integer such that b ≤ 2.
Of note, the points seen at approximately Mr = 0.9 are of the form m = 2a33.

Figure 3. Plot of Mr (ordinate) versus m (abscissa) up to m = 15,000. The points at Mr = 1 are m
values of the form 2a3b for all nonnegative integers, a and b = 1 or 2, as per Theorem 19.

7.2. Perfect Squares and Nonsquares

Related to the previous section, another natural question to investigate is how are the
perfect squares and the nonsquares distributed within Tm. It is convenient to define Q(m)
as the ratio of the number of nonsquares to the number of perfect square for modulo m.
Analogously, QT(m) is defined to be the number of nonsquares for modulo m that are also
in Tm to the number of perfect squares for modulo m that are also in Tm. Using this, one
has the following useful parameter.

Definition 7. Nonsquare excess. R(m) ≡ QT(m)
Q(m)

, where the Qs are as described above.

The nonsquare excess measures the difference in the distributions of nonsquares and
perfect squares. Values of R(m) greater than one show that more members of Tm are
nonsquares than would be expected for modulo m.

Figure 4 shows the value of R(m) for the first 15,000 values of m. Most notable is the
fact that there is a preponderance of R(m) values less than one. This means perfect squares
are favored over nonsquares relative to their particular distribution for modulo m. As is
true for the saturation and monoid data, there are striations of common values which are
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clearly visible. The vast majority of the points are concentrated between 0.5 ≤ R ≤ 1.25,
though there is a spare population seen for values above around 1.75 and below around
0.4. Another interesting aspect suggested by the data is that as m becomes very large, R is
restricted to vales between approximately 0.3 and 2.2. Computation up to m = 700, 000 as
was done for saturation is too computationally intensive to investigate numerically using
the in-house Python programs used in this work. This remains an open question.

Figure 4. Plot of R (ordinate) for m (abscissa) up to 15,000. More often than not, the nonsquare excess
is below one. There also appear to be striations of high concentrations of particular values of R.
Finally, R appears to be bounded between roughly 0.3 and 2.2 as m gets large.

Perhaps the most obvious subset of m values to investigate is when m = p is prime.
It is well-known that when m is prime the ratio of nonsquares to perfect squares tends to
one (see [13], page 128). A plot of R(p) for the primes 5 through 1223 is shown in Figure 5.
Interestingly, R(p) shows a pattern according to where p is of the form 8n + 1, 8n + 3,
8n + 5, and 8n + 7. Primes of the form 8n + 1 and 8n + 5 fall into one pattern. These data
are shown as red and orange in Figure 5. Primes of the form 8n + 3 (shown in green) and
8n + 7 (shown as blue) form distinct patterns. In all cases, the sequences of primes tend
towards R(m) = 1. The sequence given by 8n + 7 does so from above, and the other two
sequences do so from below. These data are fit quite well with curves of the form R = p

p+x .

Specifically, R = p
p+2 fits the 8n + 1 and 8n + 5 sequence, R = p

p+6 fits the 8n + 3 sequence,

and R = p
p−2 fits the 8n + 7 sequence. The inset in Figure 5 shows the relative percent error

of the fit function to the data.
Consider the case of m = 23 for which T̂23 = {0, 1, 3, 5, 6, 9, 10, 13, 15, 20, 21, 22}. The

sets of perfect square and nonsquare sets are, respectively, {0, 1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18}
and {5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22}. Thus, the ratio of the size of the nonsquare set
to perfect square set is Q(23) = 11

12 . The set of perfect squares that are also in T23 is
{0, 1, 3, 6, 9, 13}, and the set of nonsquares in T23 is {5, 10, 15, 20, 21, 22}. Thus, Qr(23) = 6/6
and thus, R(23) = Qr(23)

Q(23) = 12
11 = 1.0909. The prime 23 = 7 mod 8, so the appropriate fit

function is R(23) = 23
23−2 = 23

21 = 1.0952, which gives a relative percent error of −0.40%.
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Figure 5. Plot of R (ordinate) for m = p primes for 5 to 1223 (abscissa). The color represents set of
primes of the form 8n + 1 (red), 8n + 3 (green), 8n + 5 (orange), and 8n + 7 (blue). Inset: a blow-up
of the ordinate. The colored curves are the functions R =

p
p+2 (red), R =

p
p+6 (green), and R =

p
p−2

(blue). Inset: The relative percent error of the model function compared to the data.

It is informative to convert Tm as a “telegraph” sequence (symbol: Tm) by assigning
the perfect squares a value of 1 (and the color red in the graphical representations) and the
nonsquares as −1 (blue in the graphical representation). Figure 6 illustrates the procedure
for creating Tm for the case of m = 15. One takes the first 15 members of T15 which are
{0, 1, 3, 6, 10, 0, 6, 13, 6, 0, 10, 6, 3, 1, 0}. Of these, the elements {0, 1, 6, 10} are perfect squares
modulo 15 and {3, 13} are the nonsquares. This gives

T15 → T15 = {1, 1,−1, 1, 1, 1, 1− 1, 1, 1, 1, 1,−1, 1, 1}.

The color block graph is a representation where the 1s are red and the −1s are blue as
shown in Figure 6. Figure 6 also shows a graphical representation which will be developed
in Section 8.3.

In general, the telegraph sequence (see [14], pages 211 and 392) can then be discrete-
Fourier-transformed to reveal interesting patterns. For primes, the discrete Fourier trans-
form appears nearly random. This is consistent with the notion of perfect squares occurring
pseudo-randomly for primes [13]. The example of the 2000th prime, m = 17, 389, is shown
in Figure 7. The top left panel shows the discrete Fourier transform of T17,389, which is
shown as a color-block graph in the middle left panel. This is the direct plot in the complex
plane of the discrete Fourier transform. The appearance of these data suggests random
structure to how the perfect squares appear in T17,389. Blowing up on the scatter plot (top
right panel) does reveal some non-random structure, as do the real and imaginary plots
(middle and bottom right panels, respectively).
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Figure 6. The example of a graph construction from T15 for the case of m = 15. The top sequence of
numbers is T15. By Theorem 1, this reduces to the sequence of red and blue numbers on the second
line. The red numbers indicate the perfect squares for m = 15 and the blue represent the nonsquares.
The right pointing arrow indicates the further reduction to the set of unique triangular numbers
modulo 15. The sequence can then be represented by the block graph of red and blue segments, or as
a (network) graph (called G15). This is discussed in Section 8.3. The set of unique triangular numbers
modulo 15 is the set of vertices (identified with solid gray arrows), and the pathway through the
sequence is the set of edges (identified with dashed gray arrows). Red vertices (edges) indicate perfect
squares (a connection between a pair of perfect squares). It is the same for blue but for nonsquares.
The purple edges indicate a connection between a perfect square and a nonsquare.

A striking change occurs for the case of prime-squared cases. The example of m = 112 = 121
is shown in Figure 8. Now the scatter plot has very distinct structure which arises from
the very clear pattern seen in the color-block graph (middle left panel). Several distinct
spectral peaks are seen in the absolute spectrum shown in the bottom left panel. These
peaks correspond to the lone points in the scatter plot that are far from z = 0. A blow-up of
the scatter plot shows a circular pattern of points. These points arise from the baseline of
the spectrum which is seen to arc with a modest peak in the middle of the graph.

Further investigation of the interesting circle pattern for the prime-squared case reveals
the circle is centered at z = 2

p and has a radius 2
p . Figure 9 shows the cases for primes 3

through 31. There is an additional structure in the points that lie on the circle. Clusters of
p− 1 points appear in p sets symmetrically distributed around the circle.
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Figure 7. Fourier analysis of the perfect square and nonsquare profiles for the case of m = 17,389
(the 2000th) prime. The top panels show the scatter plot of the discrete Fourier transform of T17,389

(full plot, left panel, zoomed in, right panel). The ordinate is the imaginary value, and the abscissa
is the real value. The middle left panel shows the block-color plot of the perfect squares (red) and
nonsquares (blue) in T17,389. The bottom left panel shows the absolute value of the discrete Fourier
transform. The middle and bottom right panels show the real and imaginary parts of the the discrete
Fourier transform, respectively. Fourier transforms were performed using MATHEMATICA.
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Figure 8. Fourier analysis of the perfect square and nonsquare profiles for the case of m = 112 = 121.
The top panels show the scatter plot of the discrete Fourier transform of T121 (full plot, left panel,
zoomed in, right panel.) The ordinate is the imaginary value and the abscissa is the real value. The
middle left panel shows the block-color plot of the perfect squares (red) and nonsquares (blue) in
T121. The bottom left panel shows the absolute value of the discrete Fourier transform. The middle
right and bottom right panels show the real and imaginary parts of the discrete Fourier transform,
respectively. Fourier transforms were performed using MATHEMATICA.
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Figure 9. Further investigation of the structure of the discrete Fourier transform for the cases of m as
primes squared for the primes from 3 to 31. The circles of radius 2

p are fits centered at z = 2
p . One

notes that p sets of p− 1 points are symmetrically arranged around the circles.

8. Graph Representation

It is very natural to cast Tm in the form of a graph. These graphs can provide a different
perspective on the Tm that leads to additional insight. Some of this insight will be discussed
in this section. While there are several ways one might do this, the current work will adopt
the following construction.

8.1. Construction of the Graph Representation

Construction 1. Triangular modular graphs, Gm(V, E). The vertex set, V, is given by a one-to-one
correspondence with T̂m. The vertex labels are precisely the resides in T̂m. The undirected edge set,
E is given by the path for the first m members of Tm.

An example of the implementation of Construction 1 is illustrated in Figure 6 for the case
of m = 15. In this case, T15 = {0, 1, 3, 6, 10, 0, 6, 13, 6, 0, 10, 6, 3, 1, 0, | 0, 1, 3, 6, 10, 0, 6, 13, 6, 0,
10, 6, 3, 1, 0}, where the vertical line indicates the end of the first m elements of T15. As per
the construction algorithm, V = T̂15 = {0, 1, 3, 6, 10, 13}. The edge set is determined by the
path {0− 1− 3− 6− 10− 0− 6− 13− 6− 0− 10− 6− 3− 1− 0}. The edges are indicated
by the dashed gray arrows in Figure 6. One should note that repeated edges are not counted.
This yields E = {(0, 1), (1, 3), (3, 6), (6, 10), (0, 10), (6, 13)}.

8.2. Structure of the Graph Representation

The structures of the graph are consequences of the theorems regarding Tm. Figure 10
show the typical graphs for m = 2n, m = p where p is prime, and m = p2. Both powers
of 2 and primes give rise to simple linear paths. Prime-squared cases give rise to “flower”
graphs. The structures of these graphs are summarized with the following propositions
that follow directly from the structure theorems.
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Figure 10. Several examples of graph representations of Tm. All powers of two are linear path graphs
of size m. Likewise, all primes are linear path graphs of size m+1

2 . Prime squares are “flower” graphs
with m−1

2 petals and one stem. The stem has m−1
2 vertices made up of m− 1 vertices. Finally, there is

one central vertex called the ultimate vertex which is of degree m. The base of the stem is of degree
one; all remaining vertices are of degree two. The graphs are colored according to whether a vertex
represents a perfect square (red) or a nonsquare (blue).

Proposition 7. Graphs, Gm, for m = 2n where n is a non-negative integer, are simple linear graphs
on 2n vertices.

Proof. The proof follows directly from Theorem 8.

The example of G8 is shown in Figure 10.

Proposition 8. Graphs, Gm, for m = p where p is an odd prime, are simple linear graphs on p+1
2

vertices.

Proof. The proof follows directly from Theorems 9 and 10.

The example of G13 is shown in Figure 10 where one sees a simple linear graph on
7 vertices.

Proposition 9. Graphs, Gm, for m = p2 where p is an odd prime, are flower graphs on 1
2
(

p2 − p + 2
)

vertices. The flower has petals which are linear paths of length p− 1 and the stem is of length p−1
2 .

Finally, there is one ultimate vertex of degree p that links all the petals and the stem.

Proof. The proof follows directly from Theorem 11.
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The example of Gp2 for p = 3, 5, 7, 11 and 13 is shown in Figure 10.
Prime powers are very interesting because, in a general sense, the even powers

maintain the flower structure and the odd powers maintain the linear structure. Figure 11
shows the cases for p = 5. The left column of the figure shows even powers 2 through
6. One sees that the two petals, one stalk flower structure is maintained while the edges
expand into sets of linear subpaths as the power increases. This will be discussed more
below. The right column shows the odd powers 3 and 5. Here, the linear structure is
maintained with an expansion of edges into linear subpaths as the power increases.

Figure 11. Examples of graphs for prime powers, m = 5a for a ranging from 2 through 6 are shown.
The even powers maintain the general shape of the flower graph. The scaling procedure is described
in Section 10. The odd powers maintain the general shape of the linear path for the base prime (again,
scaling is described in the text). The vertices are referred to using the ultimate, penultimate, and
antepenultimate vernacular. For the case of m = p4, there is one ultimate vertex of degree p2 and
each petal has p− 1 penultimate vertices. For the case of m = p6, there is one ultimate vertex of
degree p4, and each petal has p− 1 penultimate vertices; between each penultimate vertices there are
p− 1 antepenultimate vertices (too small to see in the figure). The odd powers proceed in a similar
manner. The graphs are colored according to whether a vertex represents a perfect square (red) or a
nonsquare (blue).

Several examples of cases where m is a composite are shown in Figure 12. The top
graph shows a highly composite number m = 3 × 5 × 7 × 11× 13 = 15,015. While the
graph is complicated, there still remains a hint of net-like structure that is seen in doubly
composite numbers, m = p1 · p2, where p1 and p2 are odd primes. One example of that
type, G17×31, is shown in the lower left. An interesting observation about the net-like
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graphs is that they satisfy the criteria for being planar graphs. There are p1−1
2 · p2−1

2 internal
faces. All but one of these faces are quadrilaterals, with the one exception being a triangle.

Conjecture 5. Graphs for doubly composite values of m = p1 · p2, where p1 and p2 are odd primes,
are net-like. That is, there are only vertices of degree 4 (internal to the net) and degree 2 (edge of net)
and one vertex of degree 1. The net has p1−1

2 · p2−1
2 internal faces, precisely one face is a triangle.

and the remainder are quadrilaterals.

While outside the scope of this work, we will make one comment on the triangle sub-
graph. Triangle subgraphs are of interest in network analysis in relation to the “small-world”
phenomenon [15]. The graphs associated with Tm actually have a dearth of triangle sub-
graphs. Numerical analysis suggests the following conjecture regarding triangle subgraphs
for doubly composite graphs.

Conjecture 6. The number of triangle subgraphs for composite graphs, G∏n
j pj

, where the pj are

odd primes, is given by the Gaussian binomial coefficients,
[

n− 1
2

]
2
.

Remark 2. In general, the Gaussian binomial coefficients (or simply, Gaussian coefficients) are [16],
page 36: [

x
y

]
z
=

(1− zx)(1− zx−1) · · · (1− zx−y+1)

(1− z)(1− z2) · · · (1− zy)
.

Finally, powers of two times a prime are shown in the lower right of Figure 12.
Multiplication by two, as in G2×31, essentially “twins” each vertex. Likewise, multiplication
by eight, as in G8×31, creates eight vertices out of each one for the corresponding odd prime.

One way to characterize the graphs is by the ratio of the number of edges to the
number of vertices. Figure 13 shows |E||V| for the first 15,000 values of m. Most of the values
exceed 1 which is indicative of a more connected graph, although all the graphs are very
far from being complete. For powers of 2 and for odd primes, the graphs are simple linear
paths which means that the ratio is less than 1 and goes to 1 in the limit of large m.

8.3. Perfect Squares and Nonsquares in the Graph Representation

It is particularly enlightening to superimpose the partitioning of Tm into perfect
squares and nonsquares onto the graph representations. Figure 6 shows this for the case of
G15. Under modulo m = 15, the perfect squares are 0, 1, 6, and 10 (indicated as red vertices),
and 3 and 13 are nonsquares.

Returning to Figure 10 through 12, the graph representation provides additional
insight into the nature of the perfect square and nonsquare subsets. First, is it recognized
that the ultimate vertex is sometimes a perfect square and sometimes a nonsquare according
to the following conjecture.

Conjecture 7. For m = p where p2 is an odd prime, then if p = 1 mod 8 or 3 mod 8, the
ultimate vertex is a perfect square. Likewise, if p = 5 mod 8 or 7 mod 8, then the ultimate
vertex is a nonsquare.

Additionally, the edges of the petals, i.e., p−1
2 and p+1

2 away from the ultimate vertex,
are always nonsquares. This is a direct consequence of Theorem 11. Finally, one can state
the following conjecture.

Conjecture 8. Analogous vertices on the petals of Gp2 graphs are of the same type: perfect square
or nonsquare.
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Figure 12. Examples of graphs in which m is composite. The top graph shows the case for
m = 3 × 5 × 7 × 11 × 13 = 15,015. High composites get rather complicated, but one can still
see a web-like overall structure which is the nature of double composites (two distinct primes). The
lower graphs show three examples. In cases where both primes are odd, there is one vertex of
degree one; otherwise, the nodes are of degree four (interior of the web) or two (edge of the web).
Additionally, on graphs for all products of two odd primes there are p1−1

2 · p2−1
2 internal faces. There

is always exactly one triangle. The remaining internal faces are four-sided quadrilaterals. The graphs
are colored according to whether a vertex represents a perfect square (red) or a nonsquare (blue).

Figure 13. Plot of |E||V| (ordinate) for m up to 15,000 (abscissa). Here too, the scatter plot shows
striations. While there is a preponderance of ratios that are greater than 1, graphs for m = 2n and
m = p, where p is prime have a ratio that goes to 1 for large m.
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9. Self-Similarity

One method for generating the triangular numbers is to write out the positive integers
starting with k = 1 in rows of a table, where the first row contains only one column. Each
subsequent row contains one additional column. It is obvious that the right-most entries in
such a table will be the triangular numbers. One can now replace each integer in the table
by its corresponding value modulo m. Then the rightmost entries are the triangle numbers’
moduli m. The three tables below are for m = 4 (left), m = 5 (middle), and m = 6 (right).

1
2 3
0 1 2
3 0 1 2
3 0 1 2 3
0 1 2 3 0 1
2 3 0 1 2 3 0
1 2 3 0 1 2 3 0
1 2 3 0 1 2 3 0 1
2 3 0 1 2 3 0 1 2 3
0 1 2 3 0 1 2 3 0 1 2
3 0 1 2 3 0 1 2 3 0 1 2
3 0 1 2 3 0 1 2 3 0 1 2 3
0 1 2 3 0 1 2 3 0 1 2 3 0 1
2 3 0 1 2 3 0 1 2 3 0 1 2 3 0
1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0

1
2 3
4 0 1
2 3 4 0
1 2 3 4 0
1 2 3 4 0 1
2 3 4 0 1 2 3
4 0 1 2 3 4 0 1
2 3 4 0 1 2 3 4 0
1 2 3 4 0 1 2 3 4 0
1 2 3 4 0 1 2 3 4 0 1
2 3 4 0 1 2 3 4 0 1 2 3
4 0 1 2 3 4 0 1 2 3 4 0 1
2 3 4 0 1 2 3 4 0 1 2 3 4 0
1 2 3 4 0 1 2 3 4 0 1 2 3 4 0
1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1

1
2 3
4 5 0
1 2 3 4
5 0 1 2 3
4 5 0 1 2 3
4 5 0 1 2 3 4
5 0 1 2 3 4 5 0
1 2 3 4 5 0 1 2 3
4 5 0 1 2 3 4 5 0 1
2 3 4 5 0 1 2 3 4 5 0
1 2 3 4 5 0 1 2 3 4 5 0
1 2 3 4 5 0 1 2 3 4 5 0 1
2 3 4 5 0 1 2 3 4 5 0 1 2 3
4 5 0 1 2 3 4 5 0 1 2 3 4 5 0
1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4

The vertical line in these tables demarks the first 2m cycle. The self-similarity of the
triangular numbers modulo m is nicely exposed in this arrangement. One quickly notices
that if the columns to the left of the vertical line are deleted, the resulting table is identical
to the original.

Figure 14 is a visual representation of the self-similar nature of the triangular num-
bers’ moduli m. The graph shows the (grayscale normalized) T(k) mod m (horizontal
dimension) versus m (vertical dimension). The dark band running from the origin to the
point (1000, 500) is the manifestation of the terminal zeros in each cycle. The alternating
dark/light band running along the 45 degree line is a manifestation of the odd (zero) and
even ( m

2 ) value at the mid-point of the cycle.
The repeated pattern appears in the upper-right portion of the graph. One sees a

scaling of the visual features seen in the lower-left portion of the graph.

Figure 14. Visual representation of the structure of the triangular numbers modulo
m for 0 ≤ m < 1000. The vertical axis is the m value and the horizontal axis is the value of
T(k) mod m. The scaling structure is seen quite clearly as the eye sweeps from the lower-left corner
to the upper-right corner of the plot. Gray represents low values and white represents high values
(values normalized by 1/m to show better contrast).
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10. Scaling Properties

The graphical representation of m being a prime power clearly exposes a scaling
feature for Tpn ←→ Tpn+2 This will be explored in this section.

10.1. Sprays

The concept of a spray is introduced to aid the study of the scaling properties of the
Tm graphs.

Definition 8. Spray. A set of simple linear paths between two primary vertices. The distinct paths
are otherwise identical. That is, they have the same numbers of intermediate vertices and edges, and
the degree of the intermediate vertices is exactly two. The paths of a first order spray do not share a
vertex. A second-order spray can be thought of as a spray of first order sprays; jth order sprays are
sprays of (j− 1)th order sprays.

Figure 11 shows an example of sprays as seen in the G53 and G54 graphs. In these
cases, one sees that between each primary vertex there are five distinct linear paths, and
in each path there are four intermediate second degree vertices. The examples of G55 and
G56 show second order sprays, as one sees five sprays emerging from either the ultimate
or penultimate vertices. The first order sprays occur between adjacent antepenultimate
vertices (and also between an antepenultimate vertex and either an ultimate or penultimate
vertex). These feature generalize for all odd primes. The above analysis continues for Gp2n−1

and Gp2n in the obvious way.

10.2. Sprays, Renormalization, and Fractal Character

A natural renormalization scheme is provided by the sprays for prime power graphs.
If the first order sprays in Gpn are replaced by edges, the graph reduces to Gpn−2 . In this
process, second-order sprays become first order sprays. Likewise, kth order sprays become
(k− 1)th order sprays. This process can be repeated until Gpn is fully reduced to Gp when k
is odd and Gp2 when k is even.

The reverse of the renormalization scheme can be performed to scale up a graph from
base graphs Gp and Gp2 . In this case, each edge is replaced with a spray of p paths; each
path has p edges. In a certain sense, this “fractalizes” the graph in that each edge is blown
up into a spray indefinitely. As an example, one can consider the scale up from G52 to G54

to G56 seen going down the left side of Figure 11. The ultimate vertex in G52 has five edges
emerging from it. These become five groups of five or 52 edges in G54 and 53 edges in G56 .
The other vertices behave similarly. Thus, the act of raising the power on the prime is akin
to zooming in on a fractal object.

Some characteristics of the graphs of prime powers can be immediately gleaned from
their scaling structures. This leads to two conjectures regarding the graph’s diameter
and radius.

Conjecture 9. The graph diameter,

d
(
Gpn
)
=

{
p

n
2 − 1 if n even

p
n+1

2 −1
2 if n odd.

Conjecture 10. The graph radius r
(
Gpn
)
=

d(Gpn)
2 . This does not hold when n is odd and p = 3.

Specific to the even prime powers case, in which the broad scale flower structure is
maintained upon scaling, two definitions related to diameter and radius are useful. In
those cases, there is a single ultimate vertex. We then define the following.

Definition 9. Ultimate distance, u. The distance from a vertex from the ultimate vertex.
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Definition 10. Ultimate radius ur. The maximum distance from the ultimate vertex for a graph.

Consideration of these definitions leads to the following conjecture.

Conjecture 11. The ultimate radius and the graph radius are related as ur
(
Gpn
)
= r
(
Gpn
)
.

11. Application to Harmonic Analysis

An interesting application of the triangular numbers mod m is the consideration of
the lacunary trigonometric function defined on the unit circle in the complex plane, where
τ ≡ eiφ [17,18].

f (z) =
∞

∑
k=0

τT(k).

Associated with such a function is the sequence of partial summations, F ≡
{

f N},
where N ∈ N and

f (N)(z) =
N

∑
k=0

τT(k).

The special cases of τ = e
iπ
n give rise to an interesting family of functions. Here,

fn

(
e

iπ
n

)
=

∞

∑
k=0

(
e

iπ
n

)T(k)
=

∞

∑
k=0

e
iπT(k)

n .

The triangular lacunary trigonometric function can be written as a Jacobi theta function
(see [19], chapter 16). Writing

fn =
∞

∑
k=0

e
iπq
2n (k2+k).

Completing the square in the exponent, extending the dummy index to −∞, and
dividing by two yields

fn =
1
2

e
iπq
8n

∞

∑
k=−∞

e
iπq
2n (k+ 1

2 )
2

,

where the summation is recognized at the second Jacobi theta function (see [19], chapter 16),

fn =
1
2

e
iπq
8n ϑ2

(
0, e

iπq
2n

)
.

While the above relation is helpful in putting these triangular lacunary trigonometric
systems in a larger mathematical context, it is as interesting to study the sequence of partial
summations associated with the lacunary function. The Nth member of the associated
finite summation is

f (N)
n

(
e

iπ
n

)
=

N

∑
k=0

e
iπT(k)

n .

The 2π periodic nature of eiφ gives rise to T(k) mod 2n. Thus, the machinery of the
above theorems can be brought to bear on these functions.

A consequence of Theorem 1 suggests the sequence of finite sums of a given n has
4n-cycles (bounded but not convergent). This suggests that a useful representation of fn is
a 4n member sequence that consists of one cycle.

Definition 11. 4n-cycle representation. The 4n-cycle representation of fn is denoted by Fn. The

auxiliary set of individual terms, e
iπT(k)

n , is denoted by En.

As a first example, consider f1:
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f (N)
1

(
eiπ
)
=

N

∑
k=0

eiπT(k).

It is immediately clear that one need only consider T2 = {1, 0, 1, 0} to determine that
Fn = {1, 0,−1, 0}. f1 itself is the infinite summation, f1 = 1 + 0− 1 + 0 + 1 + 0− 1 . . ..

As a second example, consider f4. Here T4 = {0, 1, 3, 2, 2, 3, 1, 0} leads to
F2 = {1, 1 + i, 1, 0,−1,−1− i,−1, 0}.

While not convergent, one can see that the fn are Cesàro summable and Cesàro
converge to zero (see [20], page 96).

A lemma and a theorem regarding fn follow quickly from the theorems in the above
sections.

Lemma 4. The jth element of En has its additive inverse at the 2n + jth element of En 0 ≤ j ≤ 2n.

Proof. Given that the jth element of En is ei πT(j)
n , the 2n+ jth element is ei πT(2n+j)

n . Expanding

and simplifying the expression leaves one with −ei πT(j)
n . This is the additive inverse of the

jth term.

Theorem 21. The sum of the elements of Fn is zero.

Proof. From Lemma 4, one notices that each term j in En will have its additive inverse at
the (2n + j)th term. From Theorem 1, one also recognizes the (2n + j)th term =(2n− j)th
term. Remembering that Fn is a 4n cycle, it is clear to see that the sum of Fn will be zero at
the 2nth term. Therefore, the jth term will have its additive inverse at the (2n + j)th term.
This leads to the summation of all the elements of Fn being zero.

Interestingly, this is related to the theory of Gaussian summations [21–23].

12. Conclusions

This work focused on the structure and properties of the triangular numbers modulo
m. The most important aspect of the structure of these numbers is their periodic nature. It
was proven that the triangular numbers’ moduli m form a 2m-cycle for any m. Additional
structural features and properties of this system were presented and discussed. This
discussion was aided by various representations of these sequences, such as graphs and
through discrete Fourier transformation. The concept of saturation was developed and
explored, as were monoid sets and the roles of perfect squares and nonsquares. The
triangular numbers’ moduli m have self-similarity and scaling features which were briefly
discussed as well. It is hoped that this work serves to collect some of the characteristics of
the important case of triangular number modulo m.

The story of the triangular number modulo m is far from complete. The numerous
conjectures are awaiting proof. Direct numerical analysis and network analysis are certain
to provide deeper insight than was presented here. A suggestion from an anonymous
reviewer was, “Since the triangular numbers are by definition from all distinct drawings of
subsets, a set algorithms refining random generators for order statistics may benefit from the
series of triangular numbers modulo m”. An potential example here is the Mersenne Twister
generator [24,25]. Finally, models of physical phenomena could potentially be found.
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