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Abstract: This paper introduces a new measure of quantum entropy, called the effective quantum
entropy (EQE). The EQE is an extension, to the quantum setting, of a recently derived classical
generalized entropy. We present a thorough verification of its properties. As its predecessor, the
EQE is a semi-strict quasi-concave function; it would be capable of generating many of the various
measures of quantum entropy that are useful in practice. Thereafter, we construct a consistent
estimator for our proposed measure and empirically test its estimation error, under different system
dimensions and number of measurements. Overall, we build the grounds of the EQE, which will
facilitate the analyses and verification of the next innovative quantum technologies.

Keywords: axioms; estimation; generalized entropy; quantum entropy; semi-strict quasi-concavity;
schur-concavity

1. Introduction

Quantum communication systems bring higher performance possibilities in terms of
storage, processing, transmission, and security [1]. Therefore, when designing the new tools to
assess the complexity or efficiency of these new systems, the quantum nature of the produced
quantities needs to be taken into account. For this purpose, the fundamental notions of
classical information theory and communication theory should be appropriately extended to
the quantum setting and thoroughly analyzed. One of these key notions is entropy.

Beyond its value in communications, quantum entropy has found usage in statistical
physics (e.g., in the ergodic theorem or irreversible systems) [2], quantum computing [3],
among many other new systems. For instance, in quantum cryptography, the quantum
entropy (or an estimator of it) could help to verify the proper behavior of the quantum
random number generators [4]. Similarly, given the complex sampling process, appropriate
estimators of the quantum entropy often appear in the literature. In Ref. [5], the degree of
unpredictability of the hyper-chaotic and high-dimensional temporal fluctuations of the
output of a semiconductor laser is quantified using an estimator of the permutation entropy,
which is an exceptionally robust measure in noisy environments. In Ref. [6], the chaotic
signals generated by vertical-cavity surface-emitting lasers is numerically investigated
using a similar estimator of the permutation entropy. In Ref. [7], the complexity of the
chaotic intensity obtained from an external-cavity semiconductor laser is also investigated
via the sample entropy (SampEn) algorithm.

Therefore, the literature on classical and quantum entropy measures and their proper-
ties and applications is now extensive. Carlen [8] showed an elementary introduction to
the subject of trace inequalities and related topics in analysis, with a particular focus on
results that are relevant to quantum statistical mechanics. Wilde’s book [9], on the other
hand, extensively surveyed the quantum information theory. Overall, numerous measures
of classical entropy, and extensions to the quantum setting, have been introduced over the
last few years:

Classical measures: Alfred Rényi proposed the Rényi entropy [10], which is a gen-
eralization of the Shannon entropy [11], by relaxing an axiom that characterizes it. That
axiomatic approach has been beneficial and is summarized in a survey paper by Csiszar [12].
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On the other hand, Constantino Tsallis introduced the entropy in a nonextensive direc-
tion [13] as a generalization of the traditional Boltzmann–Gibbs entropy. Américo et al.
recently proposed a new generalizing framework for conditional entropies given concavity,
core-concavity, or quasi-concavity [14]. In general, a helpful tool to construct a new type
of entropy is convexity/or concavity. We refer to Cambini’s book [15] for many valuable
properties of the generalized convexity.

Quantum measures: As the most relevant extension in the quantum setting, the most
natural extension of the entropy is the well-known von Neuman entropy −Tr(ρ log(ρ));
for a density operator characterizing a quantum system, denoted ρ [16]. There also exist
quantum Rényi entropy (1− r)−1 log(Tr(ρr)) [17] by Muller et al. and quantum Tsallis
entropy (1− r)−1 log(Tr(ρr)− 1) [18,19]; both with parameters r > 0, r 6= 1. Following
then axiomatic approaches surveyed on Csiszar’s [12] in the classical setting, there exist
axiomatic characterizations with a minimum of conditions for entropy as a function on
the set of states. As such, and more recently, other generalized measures have also been
introduced. Hu et al. [20] introduced a generalized family of quantum entropies with
nonnegativity, continuity, and concavity. However, their generalization failed to satisfy
subadditivity and additivity. Baumgartner [21] presented a new axiomatic characterization
with a minimum of conditions for entropy as a function on the set of states in quantum
mechanics. Bosyk et al. [22] presented another family of generalized quantum entropies.
Their generalization is relatively unified, so they established basic properties satisfied by
other well-known quantum entropies such as von Neumann and quantum versions of
Rényi and Tsallis entropies. Furthermore, Fan et al. [23] studied the monotonicity of the
unified quantum entropy following the work of Hu et al. [20]. Slomczynski et al. [24]
studied two information-theoretical invariants for the projective unitary group acting on
a finite-dimensional complex Hilbert space: PVM- and POVM-dynamical quantum en-
tropies. They quantified the maximal randomness of the successive quantum measurement
results in the case of the evolution of the system between every two consecutive measure-
ments. Moreover, Ref. [25] proved essential properties of the quantum relative entropy
through axiomatic approaches, i.e., continuity in the first argument, the validity of the
data-processing inequality, additivity under tensor products, and super-additivity. Ref. [26]
also studied super-additivity of quantum relative entropy and provided an extension of
this inequality for arbitrary density operators. Ref. [27] followed Csiszár’s approach [12] in
classical information theory, and showed the quantum α-relative entropies with parameter
α ∈ (0, 1).

All in all, three distinctive approaches could be adopted to generate new classical
measures [28]. Simply put, the new measures could be derived from axioms or principles,
they could be extrapolated from physical experiments, or they could be qualified using a
checklist of properties. This paper will adopt the latter approach to generate a new measure
of quantum entropy. Our objective is to contribute to the growing tools for analyzing new
quantum systems. Our main contributions are two-folds:

A new measure of quantum entropy of EQE: Generalizing frameworks on entropy has a
long history in information theory. Similar to our lines of generalization in quantum entropy,
Pastor et al. [28] constructed a sparsity measure to quantify the simplicity of the system. Our
construction of the EQE is motivated by this sparsity measure as an inverse to quantify the
randomness of the quantum system. We call this measure the effective quantum entropy
(EQE). The EQE is derived from the classical entropy proposed by Ref. [28]; and the EQE
will inherit atypical properties from it, e.g., the EQE will be semistrict quasi-concave, thus
revealing original insights. However, the EQE will also satisfy several of the typical properties
of quantum entropy, such as unitary invariance or Schur concavity. One of the practical
advantages of the EQE is its broad sensitivity, which two parameters could control.

A partially consistent estimator for the EQE: We could compute the von Neumann or
Rényi entropy if a quantum state is known. However, when characterizing an unknown
system or when one seeks to verify that a system is behaving as desired experimentally,
we need to use an estimator [29]. The estimation for quantum Rényi entropy has been
extended to the quantum system [30]. On the other hand, Lopes [31] studied a ratio
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form of an entropy in a classical setting. Ref. [31] introduced and studied the estimation
of a family of entropy-based sparsity measures (‖v‖q/‖v‖1)

q/(1−q) parameterized by
q ∈ [0, ∞], for a real vector v. For an unknown state, we estimate the EQE given independent
measurements of the state. Since sampling a state can be quite costly, it is desirable to
minimize the number of measurements that are required to estimate the entropy to a
desired precision and confidence. As explained by Keyl and Werner [32], a quantum
system cannot be measured on a single system unlike a classical probability distribution. It
can be estimated on an ensemble sequence of identically designed systems. Suppose we
could fully determine the density operator on a single quantum system. Then, we could
connect the measurement with a device, equipping multiple identical systems with the
measured density, contradicting the no-cloning theorem [33]. We thus adopt this complexity
as our figure-of-merit. Therefore, we numerically show the EQE’s parameters’ effect on the
sampling requirements.

The paper is organized as follows. First, Section 2 introduces the preliminaries, includ-
ing the main notation. The section will also present our proposed measure of quantum
entropy, called the effective quantum entropy (EQE). We will then list and demonstrate a
large set of properties of the EQE in Section 3. In Section 4, we will construct a consistent
estimator of the EQE. Finally, Section 5 will present our conclusions and recommendations
for future research. Our primary notation is summarized in Table 1.

Table 1. Summary of the main notation.

Symbol Description

9.9p Schatten p-(pseudo-)norm of matrices
.⊕ . concatenation of vectors
. � . majorization pre-order of density operators
α, β parameters of the EQE, Heq(.)
Θ(.) increasing function
π(.) permutation (component-wise) of vectors

Heq(.) effective quantum entropy (EQE)
heff (.) effective (classical) entropy
sign(.) sign (component-wise) of vectors
v, vi, vj vector (in bold) and its components
ρ, σ, τ density operators
µ, π maximally mixing and pure state, respectively

U, V, W unitary matrices
(.)† conjugate transpose (or Hermitian transpose)
Tr(.) trace of matrices
log(.) natural logarithm of matrices

v probability mass function vector
|.| component-wise absolute value

c1, . . . , c5 scalar (real numbers)
sup(.) supremum operator

.⊗ . tensor product

2. Proposed Measure

In the following, 9ρ9r = (Tr |ρ|r) 1
r denotes the Schatten-r pseudo-norm of matrices [8],

9ρ9r = (Tr |ρ|r) 1
r , for r ∈ [0, ∞), where Tr(.) is the trace, and |.| is the component-wise

absolute value.

2.1. Characterization of Classical Entropy

According to [28], a few distinctive approaches could be followed to generate new
measures of classical entropy. In the quantum setting, that categorization holds. In brief,
new measures of quantum entropy could be derived, proposed, or verified:
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Axiomatic approach: New measures could be derived from the first principles. How-
ever, these principles could also impose strong requirements and produce fewer mea-
sures [34]. Examples include the von Neumman entropy, −Tr(ρ log(ρ)) [3,16], and the
quantum entropy of type r, (r − 1)−1(9ρ 9r −1), with r > 0, r 6= 1 [35], which is an
extension of the classical generalized entropy [36].

Operational approach: New measures could be designed to have a specific operational
meaning in a physical or information-theoretic sense. However, the new measures could
have a tight focus and serve only systems of similar nature as the one initially tested.
Examples include the quantum min-entropy, − log 9ρ9∞, and quantum Hartley (max)
entropy, log 9ρ90, which operational meaning was studied in the context of quantum
systems in Ref. [37], and the quantum collision entropy, 9ρ92 [17].

Verification approach: New measures could be proposed and then qualified as valid
measures after verification of traditional properties. This approach could be innovative
because the newly qualified measure could lead to atypical properties or original insights.
Examples include the quantum Rényi entropy, (1− r)−1 log(9ρ9r

r) [17], and quantum
Tsallis entropy (1− r)−1 log(9ρ 9r

r −1) [18], both with parameter r > 0, r 6= 1.
In this paper, we will follow the third approach. Our problem then will consist of three

steps. First, to select a relevant measure of classical entropy. Second, to extend the selected
measure into the quantum setting. Moreover, third, to verify that the extended measure
satisfies the fundamental properties of quantum entropy. We will complete the first two
steps in the rest of this Section.

2.2. The Effective Quantum Entropy (EQE)

We start by adopting the recently derived effective entropy measure in Ref. [28], which
generates numerous of the standard measures of classical entropy by fixing one or two of its
parameters or by applying an increasing transformation. This is a measure of generalized
entropy, which follows a quotient-of-functions functional form, heff(p) =

‖p‖α

‖p‖β
, 0 ≤ α ≤ 1 ≤

β ≤ ∞, α 6= β, where p denotes a probability mass function. Intuitively, if the vector p has k
non-zero components, that is, if p is associated to a process producing k different outcomes,

then, heff (p) ≤ k
1
α−

1
β by the Cauchy–Schwarz inequality, i.e., when k decreases or as the

process becomes more certain, effective entropy decreases.
In quantum systems, a density operator, ρ, will play the role of a probability mass

function, p, in the classical setting. In particular, the maximally mixing state will resemble
the uniform distribution (i.e., where the probability mass is equally allocated among all of
the possible outcomes), and the pure state will mimic the distribution of a constant variable
(i.e., where all the probability mass is concentrated into one single outcome). Then, in order
to extend the effective entropy to the quantum setting, we first proceed to replace the vector
r-norm, ‖.‖r, by the Schatten-r pseudo-norm of matrices. We are now ready to propose a
new measure.

Definition 1 (Effective Quantum Entropy). The function,

HEQE(ρ) =
9ρ9α

9ρ9β
, 0 ≤ α ≤ 1 ≤ β ≤ ∞, α 6= β, (1)

measures quantum entropy.

Similar to the effective entropy, the parameters α and β will tune the sensitiveness of
the EQE. We will study the effect of both parameters later in Section 4. Before that, in the
next Section 3, we will verify that the EQE satisfies the fundamental properties of quantum
entropy. An essential tool in many of the proofs will be the notion of majorization. Let
vectors, v and w, whose components, vi and wi, with i = 1, . . . , n, are set in decreasing
order; it is said that “v is majorized by w”, denoted v ≺ w, when ∑k

i=1 vi ≤ ∑k
i=1 wi, for

k = 1, . . . , n− 1, and ∑n
i=1 vi = ∑n

i=1 wi. Moreover, if the vectors do not share the same
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length, then, by convention, the shorter one is considered complete by zero entries. We
require to extend this notion to operate with density operators (instead of with vectors).
To do so, we exploit that the quantum entropy of density operators is given by the set of
its eigenvalues [21]. Then, we claim that the majorization relationship between density
operators will be given by their set of eigenvalues (which could be represented by vectors).
Our primary notation is summarized in Table 1.

3. Properties of Quantum Entropy

The previous Section 2 introduced the preliminaries and the effective quantum entropy.
In this Section, we will verify that the EQE satisfies the fundamental properties of quantum
entropy. Other practical properties will be verified as well. Unless otherwise noted, the
primary notation from Table 1 holds.

3.1. Fundamental Properties

Property 1 (Unitary invariance). Let σ = VρV†, with V unitary, e.g., a rotation. Then,
HEQE(σ) = HEQE(ρ). In particular, let ρ = UΛU† and σ = VΛV†, with U, V unitary. Then,
HEQE(σ) = HEQE(ρ).

Proof. The result follows from the unitary invariance of the Schatten pseudo-norm.

Property 2 (Schur concavity). Let ρ ≺ σ. Then, HEQE(ρ) ≥ HEQE(σ), with equality if and
only if σ = VρV†, with V unitary.

Proof. Note that 9 ·9r is a convex function when r ≥ 1, and a concave one when r ≤ 1. Then,
if σ � ρ, we have that 9ρ9α ≥ 9σ9α and 9ρ9β ≤ 9σ9β by ([38], Proposition 3-C.1). So

9ρ9α

9ρ9β
≥ 9σ9α

9σ9β
. (2)

Therefore, the result follows. For the infinite-dimensional case, the result can be easily
extended by following ([39], Property 2.2.7).

Property 3 (Semicontinuity). It holds that HEQE(ρ) = supσ{HEQE(σ)|ρ ≺ σ}.

Proof. Let ρ ≺ σ. Then HEQE(ρ) ≥ HEQE(σ) by Property 2. Now, by taking the supremum
with respect to σ, supσ, in both sides, we have that

HEQE(ρ) ≥ sup
σ
{HEQE(σ)|ρ ≺ σ}. (3)

The equality is satisfied since ρ ≺ ρ.

Property 4 (Semistrict quasiconcavity). Let ρ, σ such that HEQE(ρ) 6= HEQE(σ), and
τ = c1ρ + (1− c1)σ, with c1 ∈ (0, 1). Then, HEQE(τ) > min{HEQE(ρ), HEQE(σ)}.

Proof. The result follows by the functional form of HEQE, and ([15], Theorem 2.3.8), which
characterizes the quasi-concavity of the ratio of functions. Essentially, ([15], Theorem 2.3.8)
says that a function z(x) = f (x)/g(x) is semistrictly quasiconvex, if f is non-negative and
convex, and g is positive and concave.

Property 5 (Expansibility). Let ρ, σ with eigenvalues Λ = [λ1, . . . , λn] and Γ = [λ1, . . . , λn, 0],
respectively. Then, HEQE(σ) = HEQE(ρ).

Proof. The result directly follows from the notion of majorization and by its convention on
different dimensions.
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These typical properties tell that the EQE is a semi-continuous and Schur concave
function whose value depends on the eigenvalues of its argument. Besides this expected
behavior, the EQE is semistrict quasi-concave, a new feature inherited from the classical
effective entropy.

3.2. Other Properties

Property 6 (Concentration). Let ρ, σ with eigenvalues Λ = [λ1, . . . , λn], and Γ = [γ1, . . . , γn−1],
respectively, with γ1 = λ1 + λ2, and γi = λi+1, for i = 2, . . . , n− 1. Then, HEQE(ρ) ≥ HEQE(σ).

Proof. Let τ with eigenvalues Γ = [γ1, . . . , γn], with γn = 0. Then, HEQE(τ) = HEQE(σ)
by Property 5. Note that

k

∑
i=1

λi ≤
k

∑
i=1

γi for k = 1, . . . , n− 1, and
n

∑
i=1

λi =
n

∑
i=1

γi. (4)

This implies that Λ ≺ Γ. The result follows by Property 2.

Property 7 (Monotonicity). Let ρ be a density operator with eigenvalues Λ = [λ1, . . . , λn] where
for 0 ≤ c

2 ≤ a ≤ b ≤ c ≤ 1 and two indices j<k, λj = a and λk = c− a, so 1− c = ∑i 6=j,k λi. Let
σ be a density operator with eigenvalues Γ = [γ1, . . . , γn] where γi = λi for i 6= j, k, and γj = b
and γk = c− b. Then HEQE(ρ) ≥ HEQE(σ).

Proof. Since λj = a ≤ γj = b, we have a majorization Λ ≺ Γ. The result follows by
Property 2.

Property 8 (Regularity). Let ρ be a density operator with largest eigenvalue, λ1 ≥ λi, for i 6= 1.
And let σ = (ρ + c1|e1〉〈e1|)/(1 + c1) and τ = (ρ + d1|e1〉〈e1|)/(1 + d1), where |e1〉 is from
an orthonormal basis of ρ and associated with the largest eigenvalue λ1, and 0 ≤ c1 < d1. Then,
HEQE(σ) ≥ HEQE(τ).

Proof. The eigenvalues of σ are Λ := [λ1 + c1, λ2, . . . , λn]/(1+ c1), and the eigenvalues of τ

are Γ = [λ1 + d1, λ2, . . . , λn]/(1 + d1). Since λ1+c1
1+c1

≤ λ1+d1
1+d1

, Λ ≺ Γ thus
HEQE(σ) ≥ HEQE(τ), by Property 2.

Property 9 (Limits). Let µ, π be the maximally mixing and pure states. Then, HEQE(π) ≤
HEQE(ρ) ≤ HEQE(µ). Moreover, in a finite dimension, |HEQE(ρ)| < ∞.

Proof. For the first part of the inequality, note that π � ρ � µ, for any ρ, by [40]. The result
follows by Property 2.

For the second part of the finite EQE, note that 9ρ9β ≤ 9ρ9α, for α ≤ β,
by ([41], Proposition 6.11), i.e., 1 ≤ HEQE(ρ). For the upper bound, assume that rank(ρ) <
∞. Then,

HEQE(ρ) ≤ HEQE(µ) = (rank ρ)
1
α−

1
β < ∞ (5)

by applying the first part inequality.

Property 10 (Homogeneous growth). Let ρ 6= In, and σ = ρ + c1 In, with c1 > 0. Then,
HEQE(σ) > HEQE(ρ).

Proof. Let τ = c2ρ + (1− c2)In, with c2 = 1
1+c1

< 1, because c1 > 0. First, HEQE(τ) =

HEQE(σ), by Property 1. Then,

HEQE(σ) > min{HEQE(ρ), HEQE(In)} (6)
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by Property 4. Note that In is a maximally mixing operator. Therefore, HEQE(σ) > HEQE(ρ)
by Property 9.

The next property is about acting a bistochasic operator. An operator E between two
finite dimensional densities is called bistochastic if given an orthonormal basis {|ei〉}n

i=1,
E can be represented as E = ∑n

i,j=1 Ei,j|ei〉
〈
ej
∣∣ with ∑i Ei,j = 1 and ∑j Ei,j = 1.

Property 11 (Bistochastic operator). Let σ = E(ρ), with E a bistochastic operator. Then,
HEQE(σ) ≥ HEQE(ρ), with equality if and only if E(ρ) = VρV† for unitary V.

Proof. By the quantum Hardy–Littlewood–Pólya theorem, σ ≺ ρ ([42], Lemma 12.1). Then,
the result follows by Property 2.

Property 12 (Mixture). Let ρ with eigenvalues Λ = [λ1, . . . , λn] with orthornormal basis
{|ei〉}n

i=1, and σ = ∑n
i=1 λi|ψi〉〈ψi| be a mixture of arbitrary rank-one densities πi = |ψi〉〈ψi|.

Then, HEQE(ρ) ≥ HEQE(σ).

Proof. By Schrödinger mixture theorem [42,43] (Theorem 8.2 in Ref. [42]), there exists a
bistochastic map E such that σ = E(ρ). Then, Λ ≺ Γ by Property 11. The result follows by
Property 2.

The next property is about POVM (positive operator-valued measurement), which is a
collection of {Ei} of positive definite operators such that ∑m

i=1 Ei = In. Suppose that the
measurement Mi from Ei = M†

i Mi is performed upon a system in the state |ψi〉. For more
details, see Section 2.2.6 in [3].

Property 13 (POVM). Let σ be an operator on an arbitrary orthonormal basis {|ei〉}n
i=1 with eigen-

values γE
i (ρ) = Tr(Eiρ) where E = {Ei}m

i=1 is a rank-one POVM. Then, HEQE(σ) ≥ HEQE(ρ).
Moreover, HEQE(ρ) = minE∈E HEQE(σ), ∀E ∈ E, where E is the set of all rank-one POVMs.

Proof. For any rank-one POVM E = {Ei}m
i=1, there exist unitary operators Ui such that

Mi = Ui
√

Ei, where Ei is the POVM to the measurement ([3] Exercise 2.63). Then M†
i = Mi.

Let

EE(ρ) =
m

∑
i=1

MiρMi =
m

∑
i=1

γE
i (ρ)

MiρMi
Tr(Eiρ)

=
m

∑
i=1

γE
i (ρ)|ψi〉〈ψi|, (7)

where |ψi〉 is a normalized pure state from Mi since Ei is a rank-one operator. Then since
∑m

i=1 Ei = In, EE(ρ) is a bistochastic operator. Therefore, the first inequality follows from
Property 11.

HEQE(σ) ≥ HEQE(ρ). (8)

For the second property, since E can be arbitrary rank-on POVM,

HEQE(ρ) ≤ min
E∈E

HEQE(σ). (9)

If we consider E∗ = {|ei〉〈ei|}n
i=1 where {|ei〉}n

i=1 is an orthonormal basis that diago-
nalizes ρ. Then E∗ is a rank-one POVM. Therefore the equality holds. c.f., see the proof
of ([22], Proposition 8).

Property 14 (Reparametrization). Let σ be a density operator with eigenvalues γi = 〈ei|ρ|ei〉 by
acting on an arbitrary orthonormal basis {|ei〉}n

i=1. Then, HEQE(σ) ≥ HEQE(ρ).

Proof. We can decompose ρ with the orthonormal basis {|ei〉}n
i=1 into the form

ρ = ∑n
i,j=1 ρi,j|ei〉

〈
ej
∣∣ where the diagonal terms are ρi,i = γi. Therefore, we can apply
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the Schur–Horn theorem [44,45] implying that γi’s of diagonal terms of ρ and the eigen-
values of σ is majorized by the eigenvalues of ρ, i.e., σ ≺ ρ. Then the proof follows by
Property 2. c.f., see Proposition 5 in [22].

Property 15 (Core-concavity). Let ρ, σ such that, HEQE(σ) < HEQE(ρ). Then, Θ ◦HEQE(σ) <
Θ ◦HEQE(ρ), for any increasing transformation Θ.

Proof. The result follows from the monotonicity of increasing functions, c.f., proof
of ([46], Property 9).

These other properties illustrate the response of the EQE when its argument is spar-
sified (i.e., the probability mass is concentrated in few, or even one possible outcome) or
democratized (i.e., the probability mass is spread along any or all of the possible outcomes).
Overall, these properties bring practical insights into the dynamics of the EQE.

3.3. Specific Properties of Composite Operators

Property 16 (Replication). Let σ = ρ⊕ · · ·⊕ ρ (r-repeated states). Then, HEQE(σ) > HEQE(ρ).
In particular, let µ̃ be the maximally mixing state of dimension ñ, with ñ > n. Then, HEQE(µ̃) >
HEQE(µ).

Proof. Let τ with eigenvalues Ξ = [ξ1, . . . , ξrn], with ξi = λi, for i = 1, . . . , n and ξ j = 0,
for j = n + 1, . . . , rn. Then, HEQE(τ) = HEQE(ρ) by Property 5.

Note that the eigenvalues of σ are Γ = [γ1, . . . , γrn], with γi+jn = λi
r for i = 1, . . . , n,

j = 0, . . . , r− 1. This implies that ∑k−1
i=1 γi ≤ ∑k−1

i=1 ξi, for k = 1, . . . , rn and ∑rn
i=1 γi = ∑rn

i=1 ξi,
i.e., Γ ≺ Ξ. The result follows by Property 2.

Property 17 (Decomposition). Let π be the pure state, and σ = ρ ⊗ π. Then, HEQE(σ) =
HEQE(ρ).

Proof. Let ρ = UΛU†, π = VΠV†, with U, V unitary, and Π11 = 1, Πij = 0 elsewhere. Then
ρ⊗ π = (U ⊗ v⊗ e1)Λ(U ⊗ v⊗ e1)

†, with vi = Vi1. The result follows by Property 1.

Property 18 (Composite pure). Let π = ρ⊗ σ be a composite pure state. Then, HEQE(σ) =
HEQE(ρ).

Proof. Applying the Schmidt decomposition ([42], Theorem 9.1), for any pure state |ψ〉 in
ρ⊗ σ, we have

|ψ〉 =
n

∑
i=1

√
λi|ei〉 ⊗

∣∣e′i〉, (10)

where {ei}
nρ

i=1 and {e′i}
nσ
i=1 are orthonormal bases in ρ and σ, and note that n = min{nρ, nσ}

where nρ and nσ are dimensions of operators ρ and σ. Therefore ρ and σ should have the forms:

ρ =
n

∑
i=1

λi|ei〉〈ei|, and σ =
n

∑
i=1

λi
∣∣e′i〉〈e′i∣∣. (11)

Therefore, the eigenvalues of ρ and σ should be the same. Then the result follows by
definition. c.f., see the proofs of ([20], Proposition 8) or ([22], Proposition 13).

We finish this Section by showing how the proposed fundamental properties of the
EQE, and other derived properties, are also obeyed by the classical quantum entropy.
Previous research works have proposed and extensively studied the inherent properties
of classical quantum entropy [20–22], namely the unitary invariance, Schur concavity,
semicontinuity and expansibility (Properties 1, 2, 3, and 5, respectively). Remarkably, most
of the other properties proposed in this work (Properties 6–15), could be derived using the
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Schur concavity of the EQE. Table 2 shows this mapping between our proposed properties
to axioms, propositions, and properties by previous research. Granted, the originality
and novelty of this work is based on the Property 4, which introduces the quasi-concavity
nature of the quantum entropy. However, although the EQE verifies typical properties of
composite states (Properties 16–18), the additivity properties for independent systems and
subadditivity will not generally hold (except when one parameter is set equal to 1 and the
other approaches 1). Nonetheless, numerical experiments suggested a tight bound that is
worth further investigation.

Table 2. Mapping of the proposed properties to axioms, propositions, and properties by previous works.

Proposed Properties Previously Adopted Properties

Fundamental properties:
Property 1 ([21], Axiom B), ([22], Property 6)
Property 1 (second part) ([21], Property 1)
Property 2 ([20], Property 5), ([21], Axiom C’), ([22], Property 1)
Property 3 ([21], Axiom F’)
Property 4
Property 5 [22]

Other properties:
Property 6 [22]
Property 7
Property 8
Property 9 ([20], Propositions 1 and 2), ([22], Proposition 2)
Property 10
Property 11 ([22], Property 7)
Property 12 ([22], Property 4)
Property 13 ([22], Proposition 8)
Property 14 ([22], Proposition 5)
Property 15

Specific to composite operators:
Property 16 ([21], Axiom C)
Property 17 ([21], Axiom A)
Property 18 ([20], Proposition 8), ([22], Proposition 13)

Conjecture 1 (Arithmetic Mean). The proposed EQE would hold the following arithmetic
mean property.

HEQE(ρ⊕ σ) /
9ρ91

9ρ⊕ σ91
HEQE(ρ) +

9σ91

9ρ⊕ σ91
HEQE(σ). (12)

The next Section 4 will present an application example. We will discuss how to
estimate the EQE of unknown systems in practice.

4. Numerical Experiments

In the estimation of EQE, the main challenge comes from the treatment of the ratio of
two norms. Lopes [31] studied an estimation of the ratio of two norms in a sparsity setting,
but it does not fit into the quantum setting because of different measurement procedures.
For the quantum Rényi entropy with a parameter α > 0, Acharya et al. [30] extensively
studied the error bound of the Schur estimator for integral α’s and the natural Empirical
Young Diagram (EYD) estimator [32,47,48] for non-integral α > 0. For simplicity, we adopt
the natural EYD estimator analyzed in Ref. [30] for any α, β > 0. The analysis of the error
bounds is beyond the scope of this paper. Instead, we illustrate the empirical performance
of estimation errors by applying the EYD algorithm for any α, β > 0.
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EYD Algorithm

The EYD algorithm is a natural and the most straightforward way of estimating a spec-
trum of an operator ρ. As discussed in [30], it is a quantum analog of the classical empirical
estimator. Let m be the number of observations, and γi be the number of observations of
the state i. (1) For each symbol i, find the empirical distribution γi

m , (2) return an operator ρ̂
of the mixed state with eigenvalues of γi

m . Then we estimate the α-norm of ρ̂ as follows:

9ρ̂9r =
[
∑
(γi

m

)r]1/r
. (13)

Therefore, our EQE estimator can be given by HEQE(ρ̂) =
9ρ̂9α

9ρ̂9β
. In general, we cannot

guarantee the unbiasedness or the consistency of EYD estimator for our EQE.

Property 19. The EYD estimator is not an unbiased estimator in general.

E
(γi

m

)α
≤ λα

i for α ≤ 1, E
(γi

m

)β
≥ λ

β
i for β ≥ 1. (14)

Proof. Jensen’s inequality implies both inequalities because E
( γi

m
)

= λi for each
i = 1, · · · , n.

However, if we fix β = 1, it is similar to the classical Rényi entropy, but we have an
additional exponent 1/α outside the summation. We can prove that it is still consistent.

Property 20. HEQE(ρ̂) is consistent when β = 1.

Proof. For α = 1, it is true because ∑i
( γi

m
)
= ∑i λi = 1. From Lemma 20 in [30] (or

applying the triangle inequality), we have when α < 1,

E

∣∣∣∣∣∑i

(γi
m

)α
−∑

i
λα

i

∣∣∣∣∣ ≤ O
(

1

m
α
2

)
. (15)

Then for a sufficiently large constant C(t) > 0 not depending on m,

P

∣∣∣∣∣∣
(

∑
i

(γi
m

)α
)1/α

−
(

∑
i

λα
i

)1/α
∣∣∣∣∣∣ > t

 ≤P[C(t)

∣∣∣∣∣∑i

(γi
m

)α
−∑

i
λα

i

∣∣∣∣∣ > tα

]
(16)

≤
C(t)E

∣∣∣∑i
( γi

m
)α −∑i λα

i

∣∣∣
tα

(17)

≤O
(

1

m
α
2

)
, (18)

where (17) is by applying Markov’s inequality, and (18) is from (15). Then the proof follows
by taking m→ ∞.

For (16), let Γm :=
(

∑i
( γi

m
)α
)1/α

and λ :=
(
∑i λα

i
)1/α. We know that 0 ≤ λ ≤ n1/α.

Then

{|Γm − λ| > t} = {Γm > λ + t} ∪ {Γm < λ− t}, and (19)

{C(t)|Γα
m − λα| > tα} =

{
Γm >

(
λα +

tα

C(t)

)1/α
}
∪
{

Γm <

(
λα − tα

C(t)

)1/α
}

. (20)

For a sufficiently large C(t) > 0 not depending on m, since λ lies in a compact domain,

we can have λ + t ≥
(

λα + tα

C(t)

)1/α
and λ− t ≤

(
λα − tα

C(t)

)1/α
. This means
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{Γm > λ + t} ⊆
{

Γm >

(
λα +

tα

C(t)

)1/α
}

, and (21)

{Γm < λ− t} ⊆
{

Γm <

(
λα − tα

C(t)

)1/α
}

, (22)

implying that {|Γm − λ| > t} ⊆ {C(t)|Γα
m − λα| > tα}. Therefore (16) holds.

Then, Table 3 and Figure 1 show the behavior of the empirical L1-error of the EYD
estimator of EQE. i.e., L1-error =

∣∣HEQE(ρ̂)−HEQE(ρ)
∣∣. We report the number of required

measurements to achieve a target L1-error given the dimension of ρ for various choices
of α and β’s. For fixed 0 ≤ α ≤ 1 and β ≥ 1, as the dimension increases, it requires more
measurements to achieve the same L1-error, as expected. For fixed α ≤ 1 and the dimension,
it tends to require more measurements to achieve the same L1-error as β increase. For fixed
β ≥ 1, it requires less measurements as α increases.

Table 3. The required number of measurement samples scaled by log10 to achieve a target estimation
L1-error for various α and β values. The value > 9.0 means that we are not able to find a proper
number of measurements since it requires a large memory for simulation.

log10 (# of Measurement Samples)

Case Dimension L1-Error α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 1.0

β = 2.0

2
0.5 2.98 2.12 1.61 1.37 1.16 1.04 0.61 0.30 0.30

0.75 2.79 1.92 1.44 1.16 0.87 0.61 0.30 0.30 0.30
1.0 2.67 1.80 1.34 1.04 0.61 0.30 0.30 0.30 0.30

4
0.5 4.16 3.06 2.38 2.05 1.83 1.57 1.32 1.04 0.91

0.75 3.97 2.88 2.21 1.85 1.63 1.39 1.08 0.91 0.61
1.0 3.85 2.74 2.07 1.71 1.49 1.22 0.91 0.61 0.30

8
0.5 6.17 5.35 3.32 2.79 2.34 2.16 1.93 1.69 1.47

0.75 5.92 5.51 3.10 2.62 2.17 1.93 1.73 1.45 1.20
1.0 5.79 5.45 2.98 2.48 2.05 1.78 1.56 1.27 1.00

β = 10.0

2
0.5 3.99 3.05 2.43 2.12 1.88 1.75 1.59 1.35 1.15

0.75 3.80 2.86 2.24 1.90 1.47 1.42 1.27 0.91 0.61
1.0 3.68 2.70 2.07 1.69 1.25 1.13 0.91 0.30 0.30

4
0.5 5.27 4.00 3.49 3.08 2.91 2.62 2.45 2.31 2.09

0.75 5.08 3.80 3.23 2.89 2.65 2.38 2.19 2.02 1.83
1.0 4.95 3.68 3.05 2.72 2.48 2.17 2.00 1.81 1.59

8
0.5 7.13 6.35 5.89 4.09 3.66 3.34 3.20 3.03 2.93

0.75 6.94 6.17 5.38 3.87 3.42 3.15 3.00 2.81 2.67
1.0 6.53 5.73 4.55 3.71 3.27 3.03 2.84 2.64 2.45

β = +∞

2
0.5 5.43 4.23 3.23 2.60 2.33 2.14 1.87 1.73 1.52

0.75 5.25 3.87 2.88 2.23 1.88 1.63 1.34 1.10 1.06
1.0 5.18 3.56 2.55 2.02 1.54 1.20 0.96 0.78 0.48

4
0.5 8.34 6.84 4.96 4.35 3.83 3.44 3.20 3.08 2.91

0.75 8.19 6.58 4.54 4.00 3.44 3.06 2.82 2.64 2.48
1.0 7.80 6.15 4.28 3.66 3.17 2.82 2.55 2.31 2.14

8
0.5 > 9.0 > 9.0 7.15 6.70 6.13 5.38 4.59 4.26 4.07

0.75 > 9.0 8.71 6.92 6.41 5.39 4.52 4.12 3.94 3.63
1.0 > 9.0 8.28 6.35 5.84 4.78 4.24 3.85 3.70 3.32
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Figure 1. EQE estimation error contour plots for various α and β’s. We interpolate the curve on
non-integer grid points over both dimension and number of measurements for a better visualization.
We fix L1-error = 0.5 (lower band), L1-error = 0.75 (middle line), and L1-error = 1.0 (upper band)
for illustrating the error-range.

5. Conclusions

In recent years, the measures to compute quantum entropy have been formulated from
their counterparts in the classical setting. Similarly, a recently derived classical entropy
has enabled a new formulation in this paper. We have introduced and demonstrated the
effective quantum entropy (EQE). Like its predecessor, the EQE inherits a functional form,
which conceptually unifies quotients of functions that have been repeatedly observed in
the literature.

Lastly, quantum entropy is a central notion in modern (quantum) systems, aiming
to exploit the large-dimension and correlation of underlying random processes. Granted,
the possibilities for future research from this paper are extensive. An extension of EQE to
relative and conditional quantum entropy would be desirable. It would also be interesting
to explore how EQE can be efficiently optimized in democracy sensing algorithms. To
that end, the work presented in this paper suggests new insights into the dynamics and
properties of quantum entropy that may benefit the design of algorithms.
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