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Abstract: Complex adaptive and evolutionary systems can, at least in principle, be modelled in
ways that are similar to modelling of complex mechanical (or physical) systems. While quantitative
modelling of turbulent reacting flows has been developed over many decades due to availability of
experimental data, modelling of complex evolutionary systems is still in its infancy and has huge
potential for further development. This work analyses recent trends, points to the similarity of
modelling approaches used in seemingly different areas, and suggests a basic classification for such
approaches. Availability of data in the modern computerised world allows us to use tools previously
developed in physics and applied mathematics in new domains of scientific inquiry that previously
were not amendable by quantitative evaluation and modelling, while raising concerns about the
associated ethical and legal issues. While the utility of big data has been repeatedly demonstrated in
various practical applications, these applications, as far as we can judge, do not involve the scientific
goal of conceptual modelling of emergent collective behaviour in complex evolutionary systems.

Keywords: turbulent combustion modelling; multiscale phenomena; chaotic order; big data; modelling
complex systems

1. Introduction

The remarkable expansion of the internet and computer technologies has brought
unprecedented opportunities for accumulating data, implying that hypotheses and theories
that previously had purely qualitative characteristics can now be quantified and tested [1].
These changes should bring an extension of methods developed in exact sciences and
applied mathematics into areas of scientific enquiry associated with social and other related
complex systems. These methods, of course, are not limited to basic statistics and conven-
tional data processing, and they involve a number of different approaches associated with
modelling complex systems.

One of the most complex mechanical systems we know is turbulence [2]. Turbulent
reacting flows combine the complexity of randomness and coherence with a large number
of species and reactions. Modelling turbulent reacting flows was perhaps one of the first
attempts of quantitative simulations of a fairly complex system. While these efforts had their
successes and failures, they certainly led to the development of advanced modelling tools
(recently reviewed in [3]), and some of these tools have generic properties, i.e., can be used to
simulate and analyse different complex systems. This conceptual similarity, which is shaped
by the nature of complexity, has been occasionally discussed in publications [4]. While the
author of this work has introduced and, in cooperation with his colleagues, developed new
effective approaches to modelling reacting flows (e.g., conditional methods [3]), which also
allow for general systemic applications, this work is not restricted to the consideration
of conditional models. We explore a broad scope of conceptual issues associated with
modelling complex systems in conditions of emerging revolutionary trends of extending
quantified knowledge from mechanical and physical into social and psychological domains.
The key impetus for developing conceptual ideas examined here is, perhaps, summarised
best by the following quote:
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“The revolution developed from people’s attempt to understand disorder—or
apparent disorder—in nature, including turbulence in fluids, the erratic flows of
epidemics, and the arrhythmic writhing of a heart in the moments before death.
These ideas have begun to be applied within the social realm, so now there is
use of chaos and complexity theory by social theorists, economists, and people
looking at therapies and therapeutic communities.”

Antony Bryant [5]

2. The New Age of Data Collection and Its Implications for Modelling Complex Systems

The low cost associated with electronic accumulation and storage of data has cre-
ated a situation where companies and organisations store virtually all data available to
them. While this is, indeed, the simplest and safest policy, it does not automatically make
organisations more knowledgeable and/or more efficient. As noted by Eisenhauer [6],
large volumes of data can obscure or hide information that is really useful or important.
To become useful, data need to be processed and properly categorised. This often requires
not only knowledge of data processing and database maintenance but also knowledge of
the real world that these data represent.

These trends become even more evident when dealing with data used for the expansion
of scientific knowledge and research. On one hand, the availability of data characterising
complex social systems opens up, at least in principle, the possibility for the development
and validation of new quantitative theories and methodologies in areas which were not
previously amenable to quantitative analysis. Numerous methods of applied mathematics
can now be used for quantitative analysis in areas that previously could be studied only
qualitatively. On the other hand, data are just data, and the formal use of mathematical tools
without developing proper physical understanding of the processes can lead to illusory
successes. For complex systems, these data are usually represented by a sparse set of points
in spaces of extremely large dimensions; these points reflect both systemic dependencies
and effects of numerous unpredictable factors that can be seen and treated as random.
For such systems, conventional tools of data analysis (such as correlation and principal
component analyses) may or may not produce useful results. Indeed, even if we observe
a correlation or an apparent dependence between two factors, this, generally, does not
mean that one of these factors is caused by another since, for example, this co-dependence
might be induced by a third factor that remains undetected. A relationship derived purely
from data does not, by itself, represent a scientific theory and, if interpreted as a theory
confirmed by these data, can lead us to erroneous conclusions. A rational theory needs
to be based on the development of understanding, a reasonable hypothesis, application
of logic and analysis, construction of a model, performing simulations, and validation
and adjustment of the model in comparison with data from the real world. Although
important, data are just one of many components needed for creating knowledge. Cross-
disciplinary fertilisation of mathematical models and methods is very promising but it
cannot be mechanistic and must be based on a deep understanding of both similarities and
differences associated with different fields of study.

The new trends in application of mathematical methods to social systems of high
complexity can be detected in the domain of internet research and advertising, but the exact
scope and extent of these applications often remain unknown to the public; algorithms
created and tuned to influence human choice are most effective when people are unaware
about them. The few cases published in the literature [7,8] point to gathering extensive
data on many people, followed by cross-disciplinary analysis and its subsequent appli-
cation using individually tailored messages. While these examples are often associated
with numerous ethical and legal failures, the question of whether these examples have
nevertheless introduced any new science or conceptual understanding remains.

Kaiser [7] examined an apparent success in using data collected about voters by
the infamous company “Cambridge Analytica” and characterised this approach not only
as “effective” but also as “revolutionary”. While this approach may indeed have some



AppliedMath 2022, 2 249

intellectual achievements from the practical (although certainly not moral) perspective,
does it involve any breakthroughs in science? Experts in public relations know that well-
thought and accurately targeted communications are likely to have a more pronounced
effect on an individual. The claimed success of Cambridge Analytica had two major
factors: (1) delivering personalised messages on a massive scale using modern means of
communication and monitoring, and (2) people receiving messages remained unaware that
they were placed within a virtual informational environment tailored specifically for them.
From the systemic perspective, this is like the spreading of a virus, which is especially fast
and effective (for the virus, of course) when we are unaware of its existence. However,
after being exposed to various informational infections a few times, people in democratic
societies will start learning from their mistakes and acquire some degree of intellectual
immunity (and science has an obligation to help). While some people may like personalised
messages and services, the second of the two factors listed above is not only unethical but
also potentially dangerous for systemic stability.

While this new style of advertising campaigns may involve some intellectual achieve-
ments, its apparent successes are more related to the unorthodox breaking of unwritten, eth-
ical and, possibly, legal rules than to principal scientific advances. Determining responses of
individuals to personalised advertising does not involve predicting the collective dynamic
of propagation of information between different groups of people, which is the essence of
complex behaviours in evolutionary systems. The emerging practice of group-orientated
messages and services seems to induce polarising trends, which are rather alarming and can
become destabilising in democratic societies. The collective dynamic of complex systems
needs to be studied, understood, and ultimately conveyed to the public, while the science of
modelling complex systems must play a principal role in these advances. In physics, such
collective trends correspond to the difference between single-particle and joint multiparticle
distribution functions, or between average properties of a single element and complex
behaviour of the whole system involving many elements.

In this work, we are more interested in modelling complex systems as a whole rather
than in the autonomous modelling of individual elements of these systems. In this context,
our goal is to establish fundamental links between modelling approaches used in different
domains of science and suitable for complex systems, as well as a broad categorisation of
these approaches.

3. Turbulence as the Beginning of Complexity
3.1. Solving Turbulence

In the early 1920s, Arnold Sommerfeld, who was interested in the stability of fluid
flows and turbulence, decided to give this problem to his most talented student, Werner
Heisenberg. While the student subsequently won the Noble Prize in Physics, the problem
of turbulence remains unresolved. It was investigated not only by Heisenberg but also
by other most brilliant scientists (Kolmogorov, Batchelor, Obukhov, and many others),
who had occasional success, but the full solution of the problem does not seem any closer
than it was a century ago. Richard Feynman once reportedly characterised turbulence as
“the most important unsolved problem of classical physics”. Difficulties with solving the
problem of turbulence became commonly known. When, as a junior student, I asked senior
fellow students for advice about exciting directions of research, the answer was rather
sobering “whatever you do, stay away from turbulence—many tried and all failed”. These
difficulties that have lasted over a century reflect our first encounter with complexity.

Turbulence is a system of a large dimension that lies at the borders of order and
chaos, possessing something we can call a chaotic order. We learned how to describe
deterministic mechanical systems and can deal with purely random behaviour (such as
that of molecules in thermodynamic objects), but we have difficulties with combinations
of both [9]. Turbulence is random and diffusive, and yet it has coherent structures that
tend to persist for surprisingly long times. Whatever we can say about turbulence is
valid and invalid at the same time. The Kolmogorov theory of inertial interval seems
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to be correct [10]. It is correct but it needs refinements to account for fluctuations of
the dissipation. These refinements need further refinements to account for intermittency
(Kuznetsov and Sabelnikov [11]) and so on. Is Kolmogorov’s law of inertial interval correct
or incorrect? As in all complex systems, the answer depends on perspective.

While turbulence is a complex system and has similarities with other complex systems,
there are noticeable differences between turbulence and what we call complex evolutionary
systems—biological, social, economic, and technological systems (most complex adap-
tive systems are evolutionary of have evolutionary origins). Turbulence does have some
inheritance [12] (when large eddies breakup into smaller eddies, the latter inherit some
properties of the former), but this inherence is not reliable enough and significant enough
to originate any substantial evolutionary processes. Eddies merely keep breaking up until
they are dissipated by viscosity. Turbulence is ubiquitous and can be observed at differ-
ent scales in a lab, in rivers and lakes, in the atmosphere, on other planets, and in the
interplanetary space (see Figure 1). It is a mechanical phenomenon, and experiments with
turbulence are repeatable, at least on the lab scale. This, however, does not usually apply to
complex evolutionary systems; one cannot run one set of economic reforms and then the
other one in the same conditions and make an objective comparison. The models developed
for turbulence are expected not only to emulate the observed effects but also possess at
least some predictive capabilities, while predicting phenomena in complex social systems
is often very difficult if not impossible.
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Figure 1. Examples of coherent structure in turbulent flows. Left: experimental laser-induced fluores-
cence image of a submerged turbulent jet (Fukushima and Westerwee, Wikipedia). Centre: Kármán
vortex street induced by wind flowing around the Juan Fernández Islands (NASA, Wikipedia).
Right: MMC simulation of Sandia Flame F [13].

Turbulence is essentially the first complex system that science encountered and, there-
fore, our initial idea of “solving turbulence” in the same way as we solve other mechan-
ical problems was naïve. Complex systems do not have a single ultimate solution; they
have many solutions and approaches that should be used under different circumstances.
Complex systems permit and, perhaps, demand analyses and modeling using different
perspectives. Two seemingly contradictory statements about complex systems may be
correct at the same time, depending on qualifications and perspectives.

3.2. Turbulent Reacting Flows

While turbulence is complex, its complexity is to some extent limited. Common
models of turbulence are never completely right but neither are they completely wrong in
most cases, typically producing a substantial but limited error of 20–40%. The situation
changes when we have chemical reactions involved [14]. These reactions are very sensitive,
and inaccuracies in modelling can easily give predictions that differ from reality by orders
of magnitude [15,16]. Complex evolutionary systems often have complex elements; the ele-
ments of human society are humans, which are also complex. Turbulence is a mechanical
system, and its elements are notional fluid particles, which are not complex (at least in
comparison with humans). The presence of reactions changes this; common combustion
of, say, petrol, involves hundreds of species and thousands of chemical reactions which
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take place in every fluid particle. Turbulent reacting flows are complex systems comprising
complex elements.

Do turbulent reacting flows have evolutionary properties? In the present conditions,
these properties do not seem particularly relevant (although one may note that genetic
replication can be interpreted as a specific complex form of a chemical reaction). We do not
know how the first replicators appeared on Earth, but evolutionary complexity must have
emerged from a more basic form of complexity somewhere at the border between order
and chaos. The latter provides for variability, while the former allows for some structures to
exist, at least for some limited time. It seems that, as the primary and ubiquitous mechanical
phenomenon, turbulence in conjunction with chemical reactions could have played a role
in creating first replication mechanisms.

3.3. Turbulent Combustion Models

One of the simplest models used in reacting flows is the plug-flow reactor, which
assumes an average uniform mixture that gradually evolves from the inlet of the reactor to
its outlet [17]. This evolution is specified by the following ordinary differential equations
for the average mass fractions:

u
d〈Yi〉

dx
= Wi(〈Y1〉, 〈Y2〉, . . .). (1)

This model may work as a reasonable estimate for slow reactions but is rather crude
when handling intensive combustion processes.

Another group includes quasi-laminar models that evaluate special variations but
neglect turbulent fluctuations. These models are governed by the conventional reactive
scalar equations [17].

d〈Yi〉
dt

+ u·∇〈Yi〉 −
∇(Dtρ∇〈Yi〉)

ρ
= Wi(〈Y1〉, 〈Y2〉, . . .). (2)

Using average quantities is inaccurate for most realistic combustion processes. The plug-
flow reactor and quasi-laminar models can be referred to as average models or, more precisely,
unconditionally averaged models.

Conditional models do take into account at least some of the turbulent fluctuations and
are reasonably accurate but only for some classes of combustion processes that do not
involve more complex phenomena such as extinctions and reignitions. CMC (conditional
moment closure), which is the most widely known example of the conditional models is
given by the following equations [18]:

dQi
dt

+ 〈u|Z 〉·∇Qi + . . . = NZ
∂2Qi
∂Z2 + Wi(Q1, Q2, . . .), (3)

for Qi = 〈Yi|Z〉, i.e., for the expectation of reactive scalar Yi, conditioned on a given
value of the mixture fraction Z (see Klimenko and Bilger [18] for the complete form of
the CMC equation). Here, NZ =

〈
(∇Z)2

∣∣∣Z〉 is the conditional scalar dissipation, u is
velocity, and W is the source term. The models associated with the stationary frame of
reference are referred to as Eulerian, while models connected to moving fluid are called
Lagrangian. The conditional and unconditional (quasi-laminar) models specified above
are Eulerian. The conditional models are intermediate in their complexity and accuracy
between quasi-laminar models and Lagrangian PDF models considered below.

The Lagrangian PDF (probability density function) models are used for Monte Carlo
simulations of the probability density functions of reactive scalars. These models are
formulated using stochastic differential equations.
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(a) dx(k) = u(k)dt + (2D)
1
2 dw(k)(t)

(b) dY(k)
i = Wi(Y1, Y2, . . .)dt +

_
M
[
Y(k)

i , Y(m)
i , . . .

]
dt

(4)

The superscript k marks different particles, and each of the particles possesses a num-
ber of properties Y1, Y2, . . . Here, w(k)(t) denotes the independent Wiener process. The La-
grangian PDF methods were analysed in the seminal work of Pope [19]. The PDF models
also allow for Eulerian implementations called “stochastic fields” [20]. The synergy of the
PDF and conditional methods resulted in the MMC (multiple mapping conditioning) approach,
which involves adding stochastic equations for the so-called reference variables [21,22],

dξ
(k)
l = a(k)l dt + b(k)l dw(k)

l (t), (5)

to the system in Equation (4) and conditioning [22] of the mixing operator M̂ [23] not only
on physical coordinates x = (x1, x2, x3) but also on the reference variables x1, x2, . . . MMC
models are often implemented combining Eulerian simulations of dynamic properties and
sparse Lagrangian simulations of reactive components. Note that using Markov families
of larger dimension due to additional (i.e., reference) stochastic variables such as those in
Equation (5) allows us to represent a wider spectrum of effects.

In this section, we use notations involving ensemble averages, but the modelling
approaches introduced above can also be used in conjunction with LES (large eddy simulation)
filtering [24]. In LES methods, all fluctuations are divided into resolved fluctuations,
which are fully simulated, and sub-filter (sub-grid) scales, which are modelled. Cascade
interactions between different scales is an important problem in turbulence. As the filtering
scale decreases and approaches the Kolmogorov scales (the scales of the smallest vortices
present in a turbulent flow), LES models approach DNS (direct numerical simulations),
a complete emulation of the turbulent reacting flows without modelling assumptions.

3.4. Transplantation of Models

As noted above, turbulent combustion has highly sophisticated modelling tools that
have been developed over many decades. Quite often, these tools are general and may be
used for modelling other complex systems, which are not necessarily directly related to
combustion and may range from physical to social systems. Here, we need to distinguish
ontological and epistemological sides of this problem. Modelling of complex systems is a
less developed but rapidly growing area of scientific enquiry and engineering application.

From the epistemological (methodological) perspective, we are interested in modifying
and adapting modelling tools and methods to simulate other processes, whether these pro-
cesses are physically related to combustion or not. The existence of some broad similarities
is sufficient.

From the ontological (physical) perspective, any complex reality is formed, in one
way or another, by numerous chemical kinetic processes that must be consistent with
the fundamental laws of thermodynamics. This complex systemic reality is an emergent
property of many reactions; it is not reduceable to these reactions but ultimately must be
consistent with the fundamental properties of the reaction models.

Despite large differences between different complex systems, we find that these sys-
tems tend to have at least some physical similarities, which enables the application of
similar modelling methodologies to these systems. In the rest of this article, we try to
address the ontological and epistemological sides of the problem examining both method-
ological and physical implications of using models of varying levels of complexity that are
applicable to both combustion systems and general systems.

4. Classes of Systems Models

This section presents major classes of models that can be effectively used for mod-
elling general complex systems introduced by Gell-Mann [25] and many others [26]. If we



AppliedMath 2022, 2 253

account for terminological differences (i.e., agents in fluids simulations are convention-
ally called particles, whether they represent a physical particle or not), classes of general
systems models have their analogues in the different types of models used in simulating
turbulent combustion.

4.1. Historical Classification

The most common models used for modelling general systems is system dynamics (see
Forrester [27]), which involves more conceptual causal loop diagrams and more specific stock
and flow diagrams that help analyse complex systems while dividing them into familiar
types of interactions between the elements involved. From the mathematical perspective,
the models of system dynamics correspond to a system of ordinary differential equations,

dyi
dt

= Fi(y), (6)

which may be both linear and nonlinear. We can easily see that the models of system
dynamics (6) use the same class of equations as those used by the plug-flow reactor (1).
The models based on ordinary differential equations, such as system dynamics, generally
originated in the 1960s and 1970s where typical computer power was sufficient only for
solving ODEs. The recent decades have been marked by the emergence of more detailed,
yet more computationally expensive models that pertain to partial differential equations,
account for motions in physical space, and/or simulate spatially inhomogeneous processes.

While quasi-laminar (2) models can be used in general systems modelling, this is not
common. The most comprehensive methods associated with systems modelling are the
agent-based models [28]. These models involve movements of agents (deterministic and
stochastic) and interactions between them. It is easy to see that these models correspond
to the PDF models (4) of turbulent combustion, where modelling agents are represented
by notional particles. For general systems modelling, the mixing operator M needs to be
generalised to reflect various possible types of interactions between agents (particles). In-
teractions of elements in evolutionary systems are often competitive. It would be reasonable
to call more general versions of M the “interaction operator” [4,12]. These generalisations
are considered in the next section. A class of models called cellular automata [28] can be
seen as a special case of agent-based models where agents interact with their neighbours
without moving in physical space. Cellular automata usually presume relatively simple
interaction algorithms, illustrating a principle rather than modelling realistic physical
objects. Overall, cellular automata are more historical than the conceptual category; models
called agent-based can also have non-moving agents.

While conditional and LES-type models are well developed for (and extensively
used in) combustion modelling, application of these approaches to general systems seems
quite promising but uncommon at present. Lastly, we note that comprehensive DNS-
type modelling resolving the smallest details of the processes under consideration is very
difficult for turbulent combustion but practically impossible for complex systems due to
their complex, multidimensional, multiscale, and hierarchal nature. The correspondence of
turbulent combustion and general system models is summarised in Table 1.

Table 1. Relations between turbulent combustion and general system models.

Models for Turbulent Reacting Flows Models for General Complex Systems

Average and quasi-laminar models,
plug-flow reactor

System dynamics and other models
dealing with direct emulation of overall
performance of the system

PDF Monte Carlo models, Largangian
particle implementations, mixing

Agent-based models with interaction
between moving agents; particles are called agents

Eulerian implementation of stochastic
simulations (e.g., stochastic fields)

Stationary agents and/or cellular
automata, where agents do not move and usually
represented by stationary cells
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Table 1. Cont.

Models for Turbulent Reacting Flows Models for General Complex Systems

Conditional models and conditional/PDF
models

Elements of conditional methods are used
occasionally but the methodology is not well
developed for general systems

LES and similar models with direct
simulation of large scales and modelling
small scales

Reproducing large scales in conjunctions with a
simplified treatment of processes at small-scales is
promising, especially in
conjunction with conditional models

DNS or complete simulation of all (from
large-scale to small-scale) features

Modelling of all details is usually
impossible for general complex systems

4.2. Conceptual Classification

First, we must distinguish average models that simulate the overall properties of
complex systems and agent-based models that reproduce properties of complex systems
by emulating behaviours of multiple elements. System dynamics is, perhaps, the best-
known approach to average modelling, but the average category can involve many other
methods. For example, the behaviour of complex systems may be reproduced by using
neural networks or other forms of AI [20].

Among the agent-based models, we distinguish global, Eulerian, Lagrangian, and com-
bined models. In global models, agents interact globally without any constraints imposed
by localisation. This can simulate homogeneous conditions (e.g., homogeneous turbulence)
or correspond to instantaneous interactions at long distances. The other types of models
(i.e., Eulerian and Lagrangian) involve localisation in physical space (or any other localisa-
tion space, for example, using the mixture fraction space in MMC), where agents interact
only with their neighbours. In Eulerian models, the agents are stationary, for example,
representing nodes, cells, or locations, as in cellular automata models. In Lagrangian
models, the agents (or particles, as agents are called in fluids applications) move and,
consequently, interact with different neighbours. The motion can involve both directional
and random components.

Lastly, global, Eulerian, and Lagrangian models can be combined. For example,
propagation of information within a population involves a network of stationary, Eulerian
agents (individuals or groups of individuals), and each of these agents possesses a set of
properties characterising human behaviour, while information is represented by Lagrangian
agents, which move between Eulerian nodes and possess a different set of properties. In the
context of modelling reaction flows, MMC, which was mentioned in Section 3.3, combines
Eulerian and Lagrangian characteristics into a single model.

The major classes of models used in simulating complex systems can be summarised
as follows:

• Average models

# System dynamics
# Other average models (AI, neural networks, . . . )

• Agent-based models (Monte Carlo and particle methods)

# Global (homogeneous)
# Eulerian
# Lagrangian
# Combined (Eulerian–Lagrangian)

• Modified and hybrid models

# Conditional, multiscale, multilevel, etc.

The group of modified and hybrid models is added to the classification to account
for various modifications and combinations of the models. Conditional models either
involve some kind of incomplete (conditional) averages or, as applied in MMC, enforce
some conditional properties on the behaviour of the agents. Different models can be used at
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different scales and different levels of systemic hierarchy. Elements of a complex system are
often complex systems on their own. These elements can be represented by agents, and each
of these agents is linked to another model associated with the complex behaviour of the
subsystems. Each of these subsystems can have elements that are also complex systems. In
addition, we may distinguish, as conventionally applied in turbulence, macroscopic and
microscopic processes.

While possibilities of combining different models in simulating complex systems are
limitless, we need to raise a voice of caution. Complex systems are usually far too complex
for modelling everything down to the smallest details as achieved in DNS. Practical success
can be achieved by modelling certain features of interest associated with a complex system.
A reasonable traffic model does not need to involve modelling mood for each driver. If a
complex system consists of elements represented by complex subsystems, we face two
types of complexity: (1) the emergent complexity associated with collective actions of
elements, and (2) the complexity inherited from each element. While modelling a complex
system, we are (and should be) predominately concerned with the emergent complexity,
since this is the central element of systemic analysis, allowing us to achieve a practical
outcome with a reasonable investment of resources. The complexities associated with
each element often partially negate each other to form common statistical properties.
In physics, for example, statistical thermodynamic properties often become independent
of the detailed characteristics of the elements (molecules). While full-scale multilevel
modelling can be avoided in many cases, this avoidance cannot be always guaranteed,
and model hybridisation may become a necessity.

5. Major Features of Complex Systems and Models

This section outlines conceptual similarities and major differences that need to be
bridged between combustion and systems modelling. In this context, a number of features
need to be considered from both ontological and epistemological perspectives.

5.1. Modelling Multiscale Processes

Turbulent combustion processes have a wide range of scales, typically from 10−5

to 10−1 s for turbulence and from 10−9 to 1 s for chemical kinetics [17]. Interactions of
different scales are one of the major problems that turbulent combustion models need to
deal with. For example, the Flamelet model [11,29] is very effective in dealing with fast
localised reactions interacting with slower and larger turbulence, while MMC implements
PDF treatment of smaller scales combined with conditional modelling at larger scales [22].

While complex systems usually involve multiscale interactions of systemic hierarchies,
multiscale modelling is less common due to a dramatic increase in complexity. Modelling
strategies for complex systems usually involve significant simplifications focusing on
a particular time scale and on a particular level in the hierarchy of emergent systems.
The range of nine orders of magnitude would correspond to the range of scales between
1 h and 1 M years. While modelling such a range is neither practical nor feasible, studying
interactions between more close and more related scales is to become common in the future.

Complex systems are hierarchal when, for example, elements of a system are also
systems consisting of more minute elements. Multiscale and multilevel properties of
complex systems are usually closely related to each other. Modelling multilevel hierarchal
systems can be difficult and often requires simplifications.

5.2. Conserved Properties and Information

Speaking about properties of systems and their elements, we need to distinguish con-
servative properties, which are preserved (or changed due to transport, sinks, and sources),
and information, which is not preserved and can be easily replicated or destroyed. The stock
and flow diagrams of system dynamics [30] distinguish stocks that change due to flows
and feedback loop information that can be easily multiplied or divided by a constant.
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The quantities used in chemical kinetics are conservative and are either preserved (e.g.,
energy and elements) or changed only due to reactions. The conventional mixing operator
M is, therefore, conservative. While it can be easily generalised to handle information
(for example, competitive mixing considered by Klimenko and Pope [4]), this addresses the
problem epistemically but not ontologically. The emergence of information from conserva-
tive properties is a principal step that needs explanation; information used by biological
and social systems must be based upon some chemical or physical transformations. It ap-
pears, however, that information emerges even in conventional reacting flows, specifically
in premixed combustion.

In turbulent premixed combustion (whose accurate modelling remains one the most
difficult unresolved problems of the 20th century), the two major states (fresh and burned)
are separated by a very thin transitional region, which we can overlook for this discussion.
A fluid particle in the fresh state yf transits to the burned state yb when and only when it
receives a temperature boost from another burned particle [4].

y(k)f + y(l)f → y(k)f + y(l)f

y(k)f + y(l)b → y(k)b + y(l)b

y(k)b + y(l)b → y(k)b + y(l)b

(7)

where we can assume that yf = 0 and yb = 1; in combustion, such a variable y is convention-
ally called the reaction progress variable. The possibility of extinction is not considered in
this model. If we have many particles in a uniform container, then

d〈y〉
dt

= W = c〈y〉(1− 〈y〉), (8)

where <y> and 1 − <y> specify the average fractions of the burned and fresh particles,
and the constant c is proportional to the probability of interaction between two particles.
Equation (8) corresponds to the BML (Bray–Moss–Libby) model of turbulent premixed
combustion and at the same time; this is the so-called logistic equation—a model for the
propagation of innovation or simulation of a simple epidemic [4]. It is easy to see that
(8) can be integrated <y> = (1 + e−ct)−1.

It is obvious that transformation (7) replicates 1 bit of information from particle “l”
to particle “k”, which underpins the wide systemic applicability of the logistic equation
given by (8). Therefore, while chemical kinetics deals with conserved properties, it can
emulate replication of information—the principal element of all complex evolutionary
systems—even under conditions of common combustion processes. The distinction of
conserved properties, information, and signals is blurred.

5.3. Emergence of Chaotic Order

One of the most principal assumptions known in modern physics is the hypothesis of
molecular chaos of Ludwig Boltzmann. The main implication of this hypothesis is Boltz-
mann’s H-theorem that aligns kinetic equations with the second law of thermodynamics.
Considering systems of notional particles or agents [31,32], the hypothesis of chaos can
be expressed by P(y(k), y(l)) = P(y(k))P(y(l)), where P(y(k)) is probability of particle k having
properties y(k). This hypothesis imposes severe constraints on the complexity of the system,
restricting system behaviour to basic thermodynamics-like randomness and prohibiting
hierarchal multiscale dependencies. Further research into the particle systems indicates that
dependencies violating particle chaos emerge under some conditions [31]. This generally is
not desirable in conventional combustion simulations but can be instrumental in simulating
complex systemic effects.
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5.4. Emergence of Intransitivity

Chemical kinetics is always compliant with the laws of thermodynamics, which en-
forces transitive total preorder of the states of the system as determined by increasing
entropy (or decreasing Gibbs free energy—Gyftopoulos and

Beretta [33]). Therefore, kinetic systems usually relax towards equilibrium or partial
equilibrium without oscillations. This is in contrast with many complex systems where
cyclic behaviours are quite common [12,34].

We need to note that thermodynamic constraints mentioned above are unbreachable
only for closed systems. External interference can, at least in principle, reduce systemic
entropy. Yet, oscillations are not common for chemical reactions, even in open systems.
In this context, the example of periodic evolution (in open systems, of course) of the
Belousov–Zhabotinsky reaction [35] clearly indicates that neither thermodynamics nor
reaction kinetics prohibits cyclic behaviour. While transitive competitions can be accounted
for by effective thermodynamics [12], the emergence of intransitivity [34,36] is an important
step in developing the complexity of evolutionary systems [37]. Intransitivity should be
expected to emerge naturally in open systems.

5.5. Complex Topologies, Networks and Emergence of the Small World

The models we primarily consider above are formulated either for homogeneous
conditions or for plain physical space. Numerical methods use uniform rectangular grids
to represent the topology of plain spaces. Modern models, however, may need to deal with
more complex topological connectivity. For reacting flows in porous media, this connec-
tivity can be expressed by a complex network of pores of different sizes [38]. The models
developed for turbulent combustion [39] can also be useful for evaluation of reactive trans-
port in porous medium; however, in the case of particle-based models, they need to replace
random walk in the open physical space with random walk on graphs that reflect the
structure of the porous medium [40,41].

A general expression for Markov random walk on graphs is given by the following
recurrent expression:

p(n+1) = T·p(n), (9)

for probabilities p(n) = (p1, p2, . . . , pk)(n) of particle location at nodes 1, 2, . . . , k for the
timestep n. Here, T is the stochastic matrix (positive elements summing up to unity for
each column), which specifies Markov transition probabilities [41].

For complex general systems, network structure appears to be even more important [40].
In such networks, localised links between nodes may be combined with long-distance con-
nections. For example, using models (7)–(8) for simulation of a simple epidemic may need
to take into account not only local travel, which may be approximated by a conventional
Brownian-type random walk (such as Equation (4a)), as well as occasional long-distance
flights. Considering the representation of connectivity by a graph, these flights correspond
to occasional connections between remote nodes. For such graphs, we face a new phe-
nomenon called the small-world effect when the number of nodes nr in a graph grows
exponentially nr ~ exp(cr) with the distance r from a selected central node [42]. This is in
contrast with nr ~ r2 for a localised grid on a two-dimensional surface. This small-world
effect results in an exponentially fast propagation of epidemic, making the modern intercon-
nected world more capable of and more susceptible to the fast propagation of information
and viruses.

6. Concluding Remarks

Modelling reacting flows has been developed over many decades offering a spectrum
of modelling methodologies with a wide range of complexity and refinement. The success
of this development is largely determined by the availability of experimental data and the re-
peatability of experiments. While turbulence and realistic combustion kinetics are complex
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systems, modelling tools in combustion can always be checked against experiments or
more detailed simulations.

Over many decades, studies of complex evolutionary systems could not enjoy the
same level of verifiability and quantification and often had to resort to more qualitative
analysis and observation. While reacting flows commonly allow for a definite formulation
of the problem, this is usually not the case with complex socioeconomic systems, where
even formulation of the problem is subject to a substantial degree of ambiguity, and proper
experimental validation is often impossible. It is not a surprise that modelling of general
complex systems was limited to more basic (yet still very useful, of course) approaches,
such as system dynamics.

The age of the internet brought new conditions of effective communication networks
and availability of social data, which will have far-reaching implications for further tech-
nological development and social dynamic. Some of these implications are undoubtedly
positive and some are not. The availability of data opens possibilities for the quantifica-
tion of social science and expansion of applications and methods previously used only
in physics and mathematics to a much wider spectrum of problems. More effective and
experiment-tested types of models can be applied to various complex evolutionary sys-
tems addressing numerous social and environmental challenges that humankind has to
face [43]. These opportunities, however, are often forfeited in favour of ad hoc applications
of available data to achieve immediate political and economic gains. While it is not raw
data but the ability to construct a suitable model or theoretical framework using these data
that can be successful, publicly available information indicate noticeable intensification in
using data for political and economic gains. This intensification, however, does not extend
to the main issue associated with complex evolutionary systems—the patterns of collective
emergent behaviours.

Without introducing any new models, we demonstrate a broad consistency of models
for reacting flows and general complex systems and examine two types of issues: physical
(ontological) and methodological (epistemological). It is arguable that, while having
numerous emergent properties, complex systems involve, at some basic level, transport
and reaction; therefore, they must be consistent with the laws controlling reacting flows.
Here, we discuss that reacting systems do allow for the emergence of multiscale behaviour,
information, chaotic order, and cyclic intransitivity. Previously, we demonstrated the
emergence of cooperation in general intransitive systems with intransitive competition.
Note that a reduction of complex behaviour to the level of chemical reactions is usually
either impossible or impractical and certainly is not proposed or advocated here.

Hence, further progress in modern methodologies for modelling complex systems
(which involve not only physical but also social, economic, and technological processes)
is likely to implement, explicitly or implicitly, the extensive set of methods developed in
combustion modelling in conjunction with necessary adjustments and adaptations of these
models to more general environments.
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