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Abstract: Antibiotic resistance requires alternatives to fight multi-drug resistant strains. Antimicrobial
peptides (AMPs) act by disrupting or solubilizing microbial cell walls or membranes in accordance
with mechanisms difficult to counteract from the microbe’s point of view. In this review, structure–
activity relationships for AMPs and their assemblies are discussed, considering not only their self-
assembly but also their interactions with their carriers for optimal delivery or their combinations
with other complementary antimicrobials or moieties covalently bound to their chemical structure.
The effect of the formulations on AMP activity is also evaluated, revealing a myriad of possibilities.
Depending on the interaction forces between the AMP, the carrier, or the elements added to the
formulations, AMP activity can be reduced, enhanced, or remain unaffected. Approaches protecting
AMPs against proteolysis may also reduce their activity.

Keywords: AMPs approved in the clinic; AMP degradation and toxicity; mechanisms of action; AMP
self-assemblies; AMPs combined with other antimicrobials; AMP delivery

1. Introducing Antimicrobial Peptides in Pharmacology

Antimicrobial peptides (AMPs) are ubiquitous in living organisms and are considered
a potentially valuable tool against microbial resistance to antibiotics [1–3]. Although the
number of natural or synthetic AMPs is ever increasing, with more than three thousand
reported, only a few were approved by the Food and Drug Administration (FDA) for use
in the clinic [4,5]; the approved ones are gramicidins [6], polymyxins [7], and nisins [8,9].
Highly modified AMPs such as daptomycin (lipopeptide) [10], bacitracin (cyclic pep-
tide) [11], and gramicidin S (cyclic peptide) [12] are also in current clinical use [13]. Figure 1
illustrates approved AMPs and their clinical uses [4].

Gramicidins are valuable for dermal surface wounds and infections of the upper respi-
ratory system; polymyxins can treat ocular and gastrointestinal infections and systemic
infections by methicillin-resistant Gram-negative bacteria; daptomycin can treat compli-
cated skin infections by Staphylococcus aureus and is often used in combination therapy
to improve treatment efficacy. Nisin is the most investigated AMP; as a bacteriocin, it is
produced by bacteria that kill other bacteria. Besides its applications in food preservation,
other potential therapeutic applications have been described in dental care, stomach ulcer
therapy, and the treatment of colonic infections in humans [8,9]. Although most of the
currently reported AMPs are either antibacterial or antifungal peptides, some of them have
been formulated against viruses, e.g., influenza A virus, severe acute respiratory syndrome
coronavirus (SARS-CoV), HIV, HSV, West Nile Virus (WNV), and others; gramicidin S and
melittin as antivirals can treat SARS-CoV-2 infections [14]. AMPs’ antiviral activities have
also been recently reviewed [4,15,16].

AMPs generally are 10–40 amino acids long and bear a net positive charge; many
also have hydrophobic moieties allowing helical peptide conformations upon binding to
bacteria membranes so that they cause membrane disruption [17,18]. However, effective
and safe therapeutics require not only lysis of the pathogen cell membrane but also the
absence, or at least minimal rupture of the cellular membrane of the host; in addition, AMPs
can interact with membranes as monomers or as oligomers; peptide oligomerization has
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been often reported to influence AMPs’ interaction with membranes and their antimicrobial
activity [17,19–21].
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Figure 1. Approved AMPs for use in clinical settings. STD—sexually transmitted diseases. Repro-
duced from [4].

Numerous natural or synthetic AMPs self-assemble into supramolecular structures
with intermolecular interactions driven by hydrophobic interactions between hydrophobic
residues in adjacent side chains, intermolecular hydrogen bonding, aromatic moieties
stacking, etc., forming a variety of nanostructures such as the nanoparticles (NPs) of
gramicidin D [21] or nanofibers of synthetic WMR peptides engineered with moieties
able to impart WMR self-assembly into stable nanofibers [20]. Figure 2 illustrates the
engineered WMR peptide self-assembly, where the covalent linkage of aliphatic residues to
the amino group of a terminal lysine generated the WMR peptide amphiphile (WMR PA).
The self-assembly enhanced the potency of the AMP, allowing the eradication of biofilms
of Pseudomonas aeruginosa and Candida albicans [20].
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Figure 2. Peptide amphiphiles (PAs) synthesized as molecules containing a hydrocarbon chain
attached to a peptide segment self-assemble into cylindrical nanostructures capable of enhanced
antimicrobial performance. Reprinted with permission from [20]. Copyright 2019 American Chemi-
cal Society.

The cooperative action of hydrogen bonding, hydrophobic interaction, and electro-
static attraction drive the formation of self-assembled nanostructures of AMPs; properties
such as hydrophobicity, aromaticity, geometry, charge, and isoelectric point of various
amino acid residues determine AMPs’ secondary structures, allowing the formation of
self-assembled nanostructures by carefully engineering amino acids sequences in synthetic
AMPs [17,20,22,23].

The clinical applications for AMPs will possibly rely on overcoming the poor stability
of natural AMPs and their toxic effects on the patient, e.g., hemolysis; therefore, developing
synthetic and long-lasting AMP derivatives has been considered a powerful strategy for
the future pharmacology of AMPs [24,25]. For example, antimicrobial peptide–polymer
conjugates [24,26] not only preserve excellent antimicrobial activity but also show reduced
toxicity, offering more functionalities as those represented by biomedical materials such as
hydrogels [27], polymeric materials with applications in wound dressings [28], orthopedic
implant coatings [29], antibiofilm materials [30,31], engineered tissues, etc. [32–36]. The
covalent linkage of AMPs to polymers via labile bonds such as ester, amide, ether, or
anhydride bonds imparts biodegradability to the conjugates [26].

Nanotechnology has also been providing promising approaches for formulating and
delivering AMPs [22,36–39]. AMPs can be protected by nanostructures, having their low
stability circumvented and their release controlled by appropriate pharmacodynamics;
thereby, antimicrobial activity, retention, and biosafety could be enhanced [40,41]. Ap-
proaches combining AMPs with antimicrobial nanomaterials may also lead to synergism
and a broad spectrum of activity [21,42]. Figure 3 illustrates the preparation of a broad-
spectrum and potent antimicrobial coating based on nanoparticles (NPs) [21,42]; NPs
employed were obtained from the self-assembly of gramicidin D (Gr) in a water solution
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(spherical Gr NPs colored in orange) [21] and antimicrobial cationic NPs based on cationic
bilayer fragments/carboxymethylcellulose/poly(diallyl dimethylammonium) chloride
(colored in green) [43–47]. The combinations of gramicidin D and the antimicrobial poly-
mer poly(diallyl dimethylammonium) chloride (PDDA) completely killed Gram-negative,
Gram-positive, and fungus in vitro at reduced doses of both antimicrobial agents when dis-
persed as nanoparticles [21] or as coatings obtained by casting and drying the nanoparticles
on surfaces [42].
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Figure 3. Scheme of antimicrobial coatings on glass based on casting and drying gram-
icidin (Gr) nanoparticles (NPs) [21] and self–assembled NPs of DODAB bilayer fragments
(BF)/carboxymethylcellulose (CMC)/poly (diallyldimethylammonium chloride) (PDDA) [43,44].
The layer–by–layer discoid assemblies of DODAB BF were covered by consecutive layers of CMC
and PDDA, yielding the DODAB BF/CMC/PDDA disks in water dispersion. Reproduced from [42].

The clinical potential of cationic antimicrobial host defense peptides (CHDP) was
recently reviewed; CHDP can control infections not only by their antimicrobial proper-
ties but also by modulating host immune response and limiting inflammation [48]. For
example, one of the main undesirable side effects of corticosteroids currently used against
inflammation is increasing the patient’s susceptibility to infections [49]; alternatively, CHDP
can both kill pathogens and control harmful inflammation due to their direct microbici-
dal properties and/or ability to modulate the host immune responses. Since their first
report in the 1960s, CDHP expression has been found across a broad diversity of species
ranging from microorganisms, plants, and invertebrates to more complex amphibians and
mammals [48]. Nowadays, it is accepted that CHDP has a critical role in immunity, from
activation of innate immunity and enhancement in antigen presentation and phagocytosis
to effects on adaptive immunity and memory functions, with additional and potent anti-
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inflammatory activity. Intense research in this field on developing CHDP as drugs may
lead to clinical applications such as the control of antibiotic-resistant pathogens [50–52],
chronic inflammation in colitis [53], asthma [54], arthritis [55], and cancer [56–59].

The major issues and possible solutions involved in bringing AMPs to the clinic have
been recently reviewed, as schematically illustrated in Figure 4 [60]. AMPs’ drawbacks
hampering their clinical use as drugs are related to their degradation by proteases, their cy-
totoxicity against the host cells, their immunogenicity, and finally, their poor bioavailability
derived from their rapid metabolization by the liver and clearance by the kidneys [61,62].
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by Frontiers.

2. Chemical Structure and Mode of Action for AMPs

The structures of AMPs can be found in an open access database named The Database
of Antimicrobial Activity and Structure of Peptides (DBAASP, https://dbaasp.org/), which
informs on the amino acid sequences, 3D structures, bioactivities, and toxicities of AMPs.
Besides overviewing the structure–function of natural peptides here, we also review some
interesting examples of synthetic peptoids [63]. A few natural AMPs, such as polymyxin,
LL-37, and gramicidin D, were reported to self-assemble in a water solution; recently, this
property was also ascribed to some synthetic peptoids mimicking natural peptides but
designed for improved stability regarding proteolysis [21,63]. The chemical structure of
some AMPs in clinical use is illustrated in Figure 5, taken from [37], with structures for
polymyxin B [7], bacitracin A (cyclic peptide) [11], gramicidin A [64], and nisin [65]. Dapto-
mycin (lipopeptide) [10] and gramicidin S (cyclic peptide) structures were not included in
Figure 5 [12].

https://dbaasp.org/
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Figure 5. Chemical structure of some natural AMPs in clinical use. Polymyxin B (a); bacitracin A (b);
vancomycin (c); gramicidin A (d) as a peptide dimer traversing the membrane and anchoring to the
membrane interface by its four Trp residues. Adapted with permission from [64] Elsevier, copyright
2005. Nisin (e) with its unusual amino acids such as dehydroalanine (DHA), dehydrobutyrine (DHB),
and several intramolecular thio-ether bridges linking β-methyllanthionine (ABU) to an alanine
residue. Reprinted from [65].
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Polymyxins are cyclic AMPs synthesized by Paenibacillus polymyxa, which are not
only active against MDR Gram-negative Pseudomonas aeruginosa and Escherichia coli but are
also able to prevent endotoxin (lipopolysaccharides (LPS) from Gram-negative bacteria)
toxicity in mice [66]. Hemoperfusion using polymyxin B-immobilized fiber column has
been used to treat septic shock in humans [67]. In addition, this same treatment was also
used with positive results for severe cases of COVID-19 progressing to organ dysfunc-
tion [67,68]; there was organ function recovery, hemodynamic improvement, and endotoxin
level reduction [69]. At the core of these medical applications is the mechanism of action
for the polymyxin AMPs. These AMPs display a high affinity for the endotoxins (LPS),
including lipid A, due to multiple binding sites of the polycationic AMP to LPS phosphate
moieties [70,71]. This binding facilitates the insertion of the AMP in the microbial mem-
brane, increasing its permeability via a surfactant-like mode of action so that transient
fluctuations of permeability in LPS/phospholipid model bilayers occur upon binding of
polymyxin B [72]. Soon after their discovery, reversible nephrotoxicity was reported for
different polymyxins; polymyxin B and colistin (polymyxin E) with similar antibacterial
activity were the least nephrotoxic in studies using in vivo models [73]. In a recent review
article on polymyxins, which is very worth reading, the authors conclude that the need to
save lives from the deadly infections caused by Gram-negative “superbugs” justifies major
efforts to improve the clinical utility of the last-line polymyxins, which are considered the
last-resort option for treatment due to their adverse side effects [74].

Bacitracin A (Figure 5b) is the most well-known member of a family of structurally
similar macrocyclic peptides produced by Bacillus lichenformis and Bacillus subtilis; it is
active against Gram-positive bacteria, but its systemic toxicity has restricted its use to
topical formulations [11]. Bacitracin’s antimicrobial properties derive from its ability to
compromise the integrity of the bacterial envelope; it binds undecaprenyl pyrophosphate,
a lipid carrier that shuttles cell wall biosynthetic intermediates from the cell’s cytoplasm
to its exterior [75]. Thereby, the flow of peptidoglycan precursors to the site of cell wall
biosynthesis is interrupted, ultimately leading to cell death [76,77]. Bacitracin can also bind
a variety of metals, but the zinc form of bacitracin strongly supports the ternary complex of
bacitracin–metal–lipid [78].

Daptomycin, gramicidin, and colistin (polymyxin E) are approved for clinical use and
are AMPs acting on the microbe’s membrane [79].

Daptomycin is a last-line-of-defense AMP for treating Gram-positive infections; it pos-
sibly acts by forming transient pores in the target membranes, causing bacterial membrane
depolarization through ion leakage [79]. However, its use has already created bacterial
resistance. To search for its substitutes that might counteract the resistance, its molecular
mechanism of action still requires further clarification. Daptomycin (Dap) forms a unique
complex with calcium ions and phosphatidylglycerol (PG) molecules in the membrane at a
specific stoichiometric ratio: Dap2Ca3PG2. The biophysics of peptide–membrane interac-
tion was recently investigated using an interesting approach combining mass spectrometry
(MS) and fast photochemical oxidation of peptides (FPOP). The daptomycin–membrane
interactions with different lipid bilayer nanodiscs were studied; MS suggested that dap-
tomycin incorporated randomly and did not prefer any specific oligomeric states when
integrated into bilayers, whereas FPOP revealed significant protection in most bilayer
environments; the stronger membrane interactions occurred with more rigid membranes,
and pore formation took place in more fluid membranes exposing daptomycin to FPOP oxi-
dation; membrane conductance supported the observation of polydisperse pore complexes
depicted from the MS analysis [80].

Vancomycin (Figure 5c) is a glycopeptide that has been a life-saving treatment against
multidrug-resistant Gram-positive infections [81–85]. For decades, the treatment of serious
Gram-positive infections relied upon vancomycin as a last line of defense. However, the
emergence of vancomycin resistance highlighted the importance of developing semisyn-
thetic glycopeptides with enhanced antibacterial activities and improved safety profiles,
as recently reviewed in [86]. Vancomycin acts by binding to L-aa-D-Ala-D-Ala groups in
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wall intermediates, inhibiting, by steric hindrance, the formation of the backbone glycan
chains in a reaction catalyzed by peptidoglycan polymerase; the subsequent transpepti-
dation reaction that imparts rigidity to the cell wall also becomes inhibited; consequently,
the active sites of two central enzymes in the construction of the cell wall cannot align
themselves correctly, rendering the acquisition of resistance to the glycopeptide antibiotics
more difficult [87,88].

Gramicidins (Gr) synthesized by Bacillus brevis are 15 amino acid residues long and
come as a mixture of gramicidin A (80%), B (5%), and C (15%) known as gramicidin D; Gr
A, B, and C differ in the 11th amino acid residue. Gr’s poor solubility in water is ascribed
to its composition of hydrophobic amino acids and absence of charged side chains; this also
imparts to Gr strong hydrophobic interaction with bilayer membranes. Gr approval by the
FDA took place in 1955; it was first commercialized as Neosporin® for the control of oph-
thalmic Gram-positive infections. This pharmaceutical product also contains polymyxin
B, a cyclic lipopeptide [89] (its chemical structure is shown in Figure 5a). Recently, we
described the self-assembly of gramicidin D as spherical nanoparticles (NPs) in water
solution; these nanostructures are finding interesting applications as water dispersions
or coatings characterized by potent and broad activity against bacteria and fungus when
combined with additional antimicrobials [21,42]. In these combinations, Gr action depends
on insertion, dimeric channel formation, and an increase in ion permeabilization through
the microbe’s membrane (see Figure 5d to visualize the Gr dimeric channel in the microbial
cell membrane). Gr action was facilitated by a second very important component in the
formulations, the potent antimicrobial and cationic polymer poly (diallyl dimethyl ammo-
nium) bromide (PDDA) [44,45,47,90–93]. PDDA’s strong interaction with the microbial cell
wall paved the way for cell wall disassembly and direct Gr insertion in the microbe’s cell
membrane; as a consequence, synergic action in the combination Gof r/PDDA reduced
required doses and broadened the spectra of action for both antimicrobials against bacteria
and fungus [21,42].

Nisin’s molecular structure is shown in Figure 5e; it is produced by lactic acid bacteria
and acts by interacting with lipid II, an essential precursor for the biosynthesis of cell walls.
In addition, nisin forms pores responsible for cell lysis; thereby, nisin activity extends
to both Gram-positive and -negative bacteria, finding applications in food preservation,
veterinary, pharmaceutical, and healthcare devices [94]. Recently, the emerging role of nisin
and its derivatives against MRSA was reviewed, reporting an increasing number of studies
showing how microorganisms that produce nisin act as probiotics against MRSA [95].
In an interesting study in hospitalized humans, it was observed that microbiota-derived
lantibiotics similar to nisin could reverse resistance in vancomycin-resistant Enterococcus
faecium, a leading cause of hospital infection [96]. Consuming live microorganisms such as
Lactobacillus lactis, able to produce nisin A, decreased infections and mortality in intensive
care units [97,98]. The pore-forming ability of nisin was shown to depend on the lipid
microenvironment, with the lipid cardiolipin facilitating pore formation in mitochondria,
possibly leading to cell death and applications against cancer; small natural molecules,
phloretin and capsaicin, were also found to potentiate the membrane activity of nisin [99].

In a recent review of clinical trials using AMPs, the structure–function relationship,
activity, and toxicity were discussed and updated [100].

Excellent reviews are available on AMPs’ structure–function relationship [101,102].
AMPs affect microorganisms by piercing cell walls and membranes; by inhibiting

enzyme, DNA, or protein synthesis; and by modulating immune responses (Figure 6) [103].
It is broadly recognized that AMPs have great potential as antimicrobials, antibiofilm, and
anti-inflammatory agents. Among all AMPs, those with anti-cancer potential derived from
their pore-forming ability certainly deserve a special bibliographic search; as a case study,
in the next section, we investigated the potential of gramicidin D.



Future Pharmacol. 2023, 3 771

Future Pharmacol. 2023, 3, FOR PEER REVIEW 8 
 

 

by the FDA took place in 1955; it was first commercialized as Neosporin® for the control 

of ophthalmic Gram-positive infections. This pharmaceutical product also contains poly-

myxin B, a cyclic lipopeptide [89] (its chemical structure is shown in Figure 5a). Recently, 

we described the self-assembly of gramicidin D as spherical nanoparticles (NPs) in water 

solution; these nanostructures are finding interesting applications as water dispersions or 

coatings characterized by potent and broad activity against bacteria and fungus when 

combined with additional antimicrobials [21,42]. In these combinations, Gr action de-

pends on insertion, dimeric channel formation, and an increase in ion permeabilization 

through the microbe’s membrane (see Figure 5d to visualize the Gr dimeric channel in the 

microbial cell membrane). Gr action was facilitated by a second very important compo-

nent in the formulations, the potent antimicrobial and cationic polymer poly (diallyl di-

methyl ammonium) bromide (PDDA) [44,45,47,90–93]. PDDA's strong interaction with 

the microbial cell wall paved the way for cell wall disassembly and direct Gr insertion in 

the microbe’s cell membrane; as a consequence, synergic action in the combination Gof 

r/PDDA reduced required doses and broadened the spectra of action for both antimicro-

bials against bacteria and fungus [21,42]. 

Nisin's molecular structure is shown in Figure 5e; it is produced by lactic acid bacteria 

and acts by interacting with lipid II, an essential precursor for the biosynthesis of cell 

walls. In addition, nisin forms pores responsible for cell lysis; thereby, nisin activity ex-

tends to both Gram-positive and -negative bacteria, finding applications in food preserva-

tion, veterinary, pharmaceutical, and healthcare devices [94]. Recently, the emerging role 

of nisin and its derivatives against MRSA was reviewed, reporting an increasing number 

of studies showing how microorganisms that produce nisin act as probiotics against 

MRSA [95]. In an interesting study in hospitalized humans, it was observed that microbi-

ota-derived lantibiotics similar to nisin could reverse resistance in vancomycin-resistant 

Enterococcus faecium, a leading cause of hospital infection [96]. Consuming live microor-

ganisms such as Lactobacillus lactis, able to produce nisin A, decreased infections and mor-

tality in intensive care units [97,98]. The pore-forming ability of nisin was shown to de-

pend on the lipid microenvironment, with the lipid cardiolipin facilitating pore formation 

in mitochondria, possibly leading to cell death and applications against cancer; small nat-

ural molecules, phloretin and capsaicin, were also found to potentiate the membrane ac-

tivity of nisin [99]. 

In a recent review of clinical trials using AMPs, the structure–function relationship, 

activity, and toxicity were discussed and updated [100]. 

Excellent reviews are available on AMPs' structure–function relationship [101,102].  

AMPs affect microorganisms by piercing cell walls and membranes; by inhibiting 

enzyme, DNA, or protein synthesis; and by modulating immune responses (Figure 6) 

[103]. It is broadly recognized that AMPs have great potential as antimicrobials, antibio-

film, and anti-inflammatory agents. Among all AMPs, those with anti-cancer potential de-

rived from their pore-forming ability certainly deserve a special bibliographic search; as a 

case study, in the next section, we investigated the potential of gramicidin D.  

 

Figure 6. AMPs can act directly by killing microbes and/or by modulating immune responses.
Reproduced from Ulm and co-workers [103].

3. Gramicidin D and Its Assemblies

Linear gramicidins have been extensively used to study the organization, dynamics,
and function of membrane-spanning channels due to their self-assembling as dimeric
channels in bilayers, model membranes, and natural membranes [104,105]. They are
pentadecapeptides (molecular weight of about 1900) consisting of alternating L- and D-
amino acids [106]. Their cation-selective channels in model bilayer membranes exhibit
conductances of about 107 ions per second [107]. Natural gramicidins (gramicidin D)
consist of ∼85% gramicidin A, which has four tryptophan residues at positions 9, 11, 13,
and 15; they are intrinsically fluorescent due to their tryptophan residues [108]. Their
hydrophobic side chains impart to them not only low solubility in water but also their
self-assembly as spherical nanoparticles in water solutions [21,42].

In our lab, we have been describing novel assemblies for gramicidins (Gr) and believe
they may become important not only for improving Gr antimicrobial performance but also
for developing novel anti-cancer assemblies. Dissipation of ion concentration gradients
across cell membranes hamper cells from properly regulating their intracellular environ-
ment. The potential anticancer properties of channel formers have been largely overlooked.
Thus, in this section, we overview Gr and its assemblies, hoping to reveal their potential
for novel applications. Figure 7 illustrates Gr’s mode of action [109].
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Several reports emphasize AMPs’ unexplored potential for novel applications, includ-
ing against cancer [110–112]. Gramicidin A not only dissipates ion gradients across cancer
cells but also becomes inserted in the inner mitochondrial membrane, diminishing the H+

gradient and hampering ATP synthesis; there was a cytostatic action at 1 nM Gr against the
human breast cancer cell line MCF-7. Mitochondria malfunction induced mitophagy, and a
lack of ATP caused cell cycle arrest [113]. In another study, similar results were obtained
against gastric cancer cells; Gr inhibited the proliferation of human gastric cancer cells and
the cell cycle and induced apoptosis [114].

Recently, glycoside–Gr A peptide conjugates were prepared; a galactose moiety was
linked covalently to Gr A so that the conjugate became inserted in membranes of liver
cancer cells due to recognition by the Galactose–asialoglycoprotein receptor; thereby, cancer
cells died via apoptosis [110].

Cancer stem cells (CSCs) have unique properties, such as a lack of differentiation,
self-renewal capability, pluripotency, resistance to chemo- and radiotherapy, and higher tu-
morigenicity in comparison with the general population of cancer cells; CSCs in pancreatic
ductal adenocarcinoma contributes to an aggressive prognosis for this cancer and treatment
resistance [115]. The effect of Gr A at 0.05 µM on pancreatic cancer stem cells was tumor
sphere disintegration and a reduction in cell counting; there was CD47 down-regulation
and modulation of macrophage/tumor cell interaction [116].

In another instance, Gr A reduced the proliferation potential of acute promyelocytic
leukemia (APL) and chronic myeloid leukemia (CML) cell lines without any toxicity; in
combination with other anticancer drugs, there was an additional anti-cancer effect related
to down-regulation of oncogenes, such as c-Myc, Eya3, and Axin 2; furthermore, Gr A did
not induce any hemolysis of red blood cells, which shows its safety with no toxicity [117].

The potential use of a variety of AMPs as novel therapeutic agents against gastroin-
testinal cancers was recently reviewed [118].

Recently, tyrosine kinase inhibitors, such as the natural product tannic acid and the
AMP gramicidin A, were shown to bind strongly to four different tyrosine kinases (ALK,
TRK, MET, and ABL), thereby reducing the viability of non-small lung cancer cells (A549
cells) in a concentration-dependent manner and improving the quality of life of cancer
patients [119]. Gr A also inhibits cholangiocarcinoma cell growth and induces necrotic cell
death, providing a treatment against bile duct solid carcinoma progression [120].

Although AMPs, in general, and Gr A, in particular, are promising anticancer agents,
they still display disadvantages, such as low proteolytic and chemical stability, high cy-
totoxicity and hemolytic activity, and salt sensitivity, inhibiting their clinical application;
these drawbacks need to be circumvented, and several strategies have been proposed. For
example, structural modifications, e.g., alteration of amino acids, conjugation, or ligation,
have been proposed; in addition, nanotechnology is an effective strategy to improve AMPs’
functionality and minimize or eliminate their side effects [121].

As an interesting example of assemblies or combinations involving Gr A, a recent
development was the basic demonstration that Gr self-assembles in water dispersions
as nanoparticles (NPs) over a range of Gr concentrations so that inner molecules in the
NPs gain protection from the outer medium [21]. Figure 8 shows Gr NPs visualized by
means of scanning electron microscopy (SEM); their photos in water dispersions; and their
hydrodynamic diameters (Dz), zeta-potentials, and polydispersity (P) over a range of Gr
concentrations, as determined via dynamic light scattering (DLS) [21].

The interaction between Gr and dipalmitoylphosphatidylcholine (DPPC)/dioctadecyld
imethylammonium bromide (DODAB) 1:1 large unilamellar vesicles (LVs) or bilayer frag-
ments (BFs) was studied, revealing that the Gr dimeric channel occurred in LVs, whereas
Gr in BFs displayed an intertwined dimeric, non-channel Gr conformation; this example
illustrated Gr conformations assumed in different media, such as bilayer vesicles or bilayer
fragments (see Figure 9) [122].
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Figure 8. Scanning electron micrograph of gramicidin (Gr) dispersions at 0.05 mM Gr in pure
water and the effect of gramicidin (Gr) concentration on the physical properties of Gr dispersions in
water and 1% trifluoroethanol. Measurements were performed 30 min after preparation of the Gr
dispersions. Physical properties of the dispersions were the macroscopic aspect seen in photos, the
mean z–average diameter (Dz), the zeta–potential (ζ), and the polydispersity (P). All measurements
represent a mean value ± the mean standard deviation. Reproduced from [21].
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Figure 9. Gramicidin D dimers in large bilayer vesicles or bilayer fragments made of dioc-
tadecyldimethylammonium bromide (DODAB) and dipalmitoylphosphatidylcholine (DPPC) 1:1.
Reprinted from [122], copyright (2012), with permission from Elsevier.

For the DPPC/DODAB 1:1 LV dispersions in water submitted to a 50 mM KCl or
100 mM glucose water solution, the turbidity at 400 nm increased as a function of time
due to LV shrinkage caused by the water efflux from LV, in accordance with the solute
gradient [122]; however, incorporation of the Gr channel in the LV bilayer dissipated the
solute gradient, resulting in LV swelling and turbidity decrease kinetics due to solute
entrance through the Gr channel accompanied by water [122].

The cationic lipid DODAB by itself assembles in water as large vesicles (LV) [123,124]
or bilayer fragments (BF) [125–130] and displays antimicrobial activity against Gram-
negative bacteria but poor activity against Candida albicans or S. aureus [131–134]; DODAB
combinations with Gr proved to be advantageous [135]. The antimicrobial activity of
DODAB, Gr, and DODAB/Gr assemblies against E. coli, S. aureus, and S. cerevisiae revealed
the advantages of the combinations. There was indeed high activity of DODAB against
E. coli [131,132] but poor activity against the yeast [134,136], which was complemented
by the microbicidal activity of Gr against S. aureus in the absence of toxicity against the
eukaryotic S. cerevisiae; therefore, the novelty of these combinations was the broadening of
antimicrobial activity to encompass E. coli and S. aureus as representatives of Gram-negative
and Gram-positive bacteria; in addition, the microbicidal activity occurred over a range of
low Gr and DODAB concentrations that were not toxic to S. cerevisiae {135].

In another instance, Gr functional channels combined with DODAB-supported bilay-
ers were characterized and tested against Escherichia coli and Staphylococcus aureus; firstly,
nanoparticles of polystyrene sulfate (PSS) were covered by a cationic lipid bilayer of dioc-
tadecyl dimethylammonium bromide (DODAB) incorporating Gr; the adsorption of the
DODAB/Gr bilayer onto PSS nanoparticles (NPs) increased the zeta-average diameter by
8–10 nm, changed the zeta-potential of the NPs from negative to positive, and yielded nar-
row size distributions for the PSS/DODAB/Gr NPs, which displayed broad and maximal
microbicidal activity at very small concentrations of the antimicrobials, namely, 0.057 and
0.0057 mM DODAB and Gr, respectively. In this case, the effective concentrations in the
nanostructured assemblies not only protected Gr from the outer medium but also achieved
a high organization level, minimizing the microbicidal dose of DODAB required [137].
Self-assembled antimicrobial nanomaterials, in general, and nanoparticles, in particular,
with emphasis on biomimetic ones [138–142], will become very important in drug delivery
against pathogens; peptide-based drugs, such as antimicrobial peptides, cyclopeptides, and
glycopeptides, play important roles in the treatment of drug-resistant bacterial infections
due to their unique lower resistance antibacterial mechanism [38,143]. In the next section,
recent advances in formulations for AMPs are discussed.
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4. Recent Formulations for Antimicrobial Peptides

Biomedical devices such as catheters, stents, pacemakers, prosthetic joints, implants,
and orthopedic devices are foreign materials prone to microbial adhesion and infections,
which may increase patient mortality; AMPs as alternatives to antibiotics are less prone
to resistance development. Furthermore, peptide drugs are not limited to AMPs, and
reviewing their formulations in general can contribute to our understanding of impor-
tant requirements for formulating AMPs. A major review recently discussed successful
formulations for peptides; therefore, formulations for AMPs could benefit enormously
from a better understanding of the general essentials for peptide drugs [144]. As a good
example, insulin therapy started in the 1920s, becoming a landmark for the development of
more than 60 peptide drugs approved by the FDA [145]. As a therapeutic peptide, insulin
requires administration routes other than the parenteral one; several novel formulations for
this peptide hormone are under clinical trials aiming at more suitable administration routes.
Oral insulin delivery has been attempted using lipid-based, synthetic polymer-based, and
polysaccharide-based nano/microparticle formulations. Although insulin-transporting
particles may preserve insulin in the acidic and enzymatic medium and decrease peptide
degradation, in vivo results revealed a lower ability of formulations to reduce glucose in
the blood than the subcutaneous form despite promising in vitro results [146].

The use of advanced formulations involving micro/nanoparticles [135,137,147–149],
hydrogels [150,151], particle/hydrogel combinations [152], and polymer-based scaffolds
could protect peptides from proteolysis, maintaining their activity [153,154]. Oral pep-
tide delivery using liposomes, polymeric nanoparticles, polysaccharides, hydrogels, and
self-emulsifying systems as potential therapeutic approaches have been comprehensively
reviewed [155,156]. Among the most promising formulations are lipid-based nanocarriers
such as emulsions, lipid nanoparticles, liposomes, and micelles because gastrointestinal
(GI) peptidases, as well as sulfhydryl compounds such as glutathione and dietary pro-
teins, are too hydrophilic to enter the lipophilic phase of these carriers; the incorporated
therapeutic peptide is thereby protected from enzymatic degradation as well as unin-
tended thiol/disulfide exchange reactions. Nanocarriers (<200 nm in size) with PEG or
zwitterionic surfaces can permeate the mucus layer, reach the absorption mucosal mem-
brane, and be taken up by endocytosis or transcytosis or by simply fusing with the cell
membrane, followed by releasing their cargo into the systemic circulation [157]. Recently,
zwitterionic (ZW), polyglycerol (PG), and polyethylene glycol (PEG) surfactant oil-in-water
nano-emulsions were shown to diffuse across the mucus barrier on intestinal mucosa and
also be taken up by the epithelial cells of the intestinal mucosa, as illustrated by Figure 10; in
this case, the lipid-based nanocarriers with PEG displayed a lower uptake by the epithelial
cells than the ZW- and PG-based carriers [158].

Many peptides self-assemble into aggregates with defined structures in a concentration-
dependent manner, such as the PTP-7b (FLGALFKALSHLL) [159], gramicidin D [21], and
some cyclic lipopeptides from Bacillus [160,161]. In the case of PTP-7b, the self-assembly
was concentration-dependent and attributed to the interactions between the peptide and
cells with cell lysis due to peptide aggregates in the cell membrane; in the other two in-
stances, the peptides self-assembled in water independently of their interaction with cells.
The cyclic lipopeptides activity against susceptible cells depended on the preservation of
the cyclic moiety, which conferred resistance to proteases; the aggregates were inactive per
se at the pH of the culture medium, which was around 6 or below. Knock out of the sensitive
cells only occurred when the aggregates were disassembled due to a high negative charge
at pH above 6 causing electrostatic repulsion between adjacent peptide molecules in the
aggregate [160]. The self-assembly of gramicidin D in water and its implications on activity
and reduction of in vivo proteolysis by enzymes still deserves further investigation [21].
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Figure 10. Oil-in-water nanoemulsions stabilized by a variety of surfactants evaluated the effect of
the surfactant nature and hydrophobic–hydrophilic balance on the permeation across the mucus and
the epithelial layers of intestinal mucosa; there was a superior permeation across the intestinal cellular
layer for the zwitterionic and polyglycerol surfactants in comparison to polyethylene-glycol based
ones (polysorbates 40 and 60). Stabilizers used for the nanoemulsions were phosphatidylcholine, lyso-
phosphatidylcholine, polyglycerols, and polyethylene-glycols, whereas the oil phase was caprylic
acid. Reprinted from [158].

The cell viability of S. aureus was comparatively evaluated for a variety of gramicidin
D formulations, including the Gr nanoparticles (Gr NPs) first reported in [21]. Figure 11,
reproduced from [21], shows some Gr formulations with bilayers of the cationic antimicro-
bial lipid DODAB, supported or non-supported by nanoparticles. The DODAB bilayers
were used to incorporate Gr and to determine antimicrobial activity against S. aureus. The
cationic lipid bilayer of DODAB bears quaternary ammonium moieties well known for
their activity against Gram-negative bacteria but yielding a poor performance against
Gram-positive ones such as S. aureus. Gr dimeric channels found a very appropriate
microenvironment in the DODAB bilayer prepared as large DODAB vesicles or bilayer
fragments [135]. Furthermore, strong interaction with the DODAB bilayer hampered, to a
certain extent, Gr’s interaction with the coccus [135,137]. With Gr insertion in supported
DODAB bilayers on polymeric nanoparticles of polystyrene sulfate (PSS NPs) [137,162] or
on silica [163], despite some improvements in the activity against S. aureus as compared to
the free DODAB bilayers [164], the complete killing of the pathogen did not take place; the
highest activity against S. aureus was achieved by the Gr NPs themselves, reaching a 7-log
reduction in cell viability; therefore, the insertion of Gr in supported or non-supported
DODAB bilayers diminished Gr activity against S. aureus as compared to the Gr NPs
(Figure 11) [21]. Recent advances in self-assembled peptide nanostructures have been
reviewed [143,165].

Hydrogels are a good example of versatile carriers that can deliver AMPs while dis-
playing convenient properties such as photopolymerization, self-assembly, and controlled
release of AMPs [27]. Polymers employed for constructing hydrogels can be synthetic, such
as PEG and PLGA, or natural, such as collagen, hyaluronic acid, and gelatin, being highly
biocompatible and displaying tunable properties. Hydrogels prepared from hydrophilic
polymers can hold large amounts of water in their three-dimensional networks [166].
Natural polysaccharides such as hemicellulose [167] and alginate are also ideal materials
for the preparation of biomimetic hydrogels because of their good biocompatibility and
biodegradability [168]. In a very interesting study, severe inflammation and dysbiosis
in ulcerative colitis were addressed using epigallocatechin-3-gallate (EGCG)-loaded silk
fibroin-based nanoparticle functionalized with the AMP cathelicidin-BF (CBF); the con-
struct could be internalized by Colon-26 cells and RAW 264.7 macrophages, restoring
colonic epithelial barriers, relieving oxidative stress, promoting epithelium migration, di-
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minishing pro-inflammatory factors, and upregulating anti-inflammatory ones. In addition,
oral administration of the chitosan/alginate hydrogel embedding CBF-EGCG-NPs not
only treated the ulcerative colitis but also increased the diversity and richness of beneficial
bacteria such as Firmicutes and Lactobacillaceae [169].
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Figure 11. Staphylococcus aureus (107–108 CFU/mL) viability, in CFU/mL, after interacting for 1 h
with gramicidin (Gr) nanoparticles or other Gr formulations in dioctadecyl dimethylammonium
bromide (DODAB) bilayers. Cell viability in the presence of Gr in DODAB–supported bilayers
on silica (SiO2/DODAB/Gr) [163]. Gr in DODAB–supported bilayers on polystyrene sulfate (PSS)
nanoparticles (PSS/DODAB/Gr) [137] and DODAB bilayer fragments (DODAB BF) [164] or DODAB
BF/Gr [135]. In the DODAB BF dispersions, Gr dimers in the channel conformation have been
previously described [135,137]. The SiO2/DODAB/Gr stock dispersion was prepared with 2 mg/mL
silica, 0.5 mM DODAB, and 0.05 mM gramicidin, yielding Dz = 280 ± 5 nm, p = 0.20 ± 0.02, and
ζ = 45 ± 4.

In another instance, AMPs were grafted onto chitosan using thiol–norbornene pho-
topolymerization, creating antibacterial hydrogels able to hamper biofilm formation [170].
For wound healing, a combination of reactive oxygen species–scavenger represented by
cerium oxide nanoparticles and one AMP were formulated as a sprayable hydrogel pre-
pared by chemically conjugating gelatin with dopamine motifs imparting improved affinity
to wet skin surfaces; the rapid release of AMP from the hydrogel provided the desired
release and contact ablation against four representative bacterial strains; sprayability, ad-
hesiveness, antimicrobial activity, as well as ROS-scavenging and skin-remodeling ability,
highlighted the potential of this hydrogel for wound management [171]. The lipopeptide
battacin, with high activity against P. aeruginosa and S. aureus, was covalently linked from
its N-terminal cysteine onto polyethylene glycol using a thiol-ene reaction; thereafter, a
crosslinker, a diacrylate spacer, PEG, a photo-initiator, and UV irradiation promoted gela-
tion. At 0.5 wt% peptide relative to the total polymer content, there was effective inhibition
of bacterial growth and dispersion of established biofilms of P. aeruginosa and S. aureus,
plus the absence of hemolysis [172,173].

In dentistry, implants require protection against infection; several adhesive formula-
tions containing AMPs have been developed. Streptococcus mutans is an early colonizer
from dental composites used in restorations that can lead to restoration failure due to
lactic acid demineralizing the adjoining tooth, subsequent growth of other bacteria, and
biofilm formation; spacer-integrated AMPs conjugated to methacrylate (MA) yielding the
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MA–AMP monomers were next copolymerized into dental adhesives as AMP–polymer
conjugates, which displayed a higher compressive modulus than hydrogels and acted
against Streptococcus mutans, promoting efficient restoration. The AMP used was chosen
among the most active against oral pathogenic bacteria [174,175]. Anionic poly(ethyl
acrylate-co-methacrylic acid) microgels were found to incorporate considerable amounts
of the cationic antimicrobial peptides LL-37, protecting them from proteolysis; however,
their activity depended on LL-37 release, which was achieved by decreasing peptide length
and microgel charge density [176]. Peptide loading to the microgels was driven by their
opposite charges, and peptide release took place at physiological ionic strength; for peptide-
loaded microgels, contact killing provided the primary antimicrobial effect at low ionic
strength, whereas at high ionic strength, released peptides accounted for the antimicro-
bial effects [177]. Degradable anionic dendritic nanogels bearing anionic carboxylic acid
binding sites for cationic AMPs, surrounded by PEG chains, were able to load cationic
AMPs such as LL-37, but peptide release was much faster than nanogel degradation, and
bacterial membrane destabilization was largely independent of the nanogel degradation.
Figure 12 illustrates the degradable nanogels and their design, consisting of polyester
chains functionalized with crosslinker and carboxyl moieties [178].
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Figure 12. Scheme for a degradable nanogel based on a polyester polymer functionalized with
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charged and cross-linked cores are surrounded by a PEG corona (grey); the polyester network is
degradable at physiological pH and ionic strength (right). Reprinted from [178], copyright (2023),
with permission from Elsevier.

Electrospinning of polymers combined with AMPs is a key technique for next-generation
polymer-based wound dressings, devices for tissue regeneration, and coatings for pros-
theses [35,36,179]. Examples of polymers that can form fibers by electrospinning are silk
fibroin, gelatin, chitosan, PLGA, PEO, poly (acrylic acid), and others. For the treatment
of osteomyelitis caused by several pathogens, fluconazole, vancomycin, and ceftazidime
were incorporated into biodegradable poly lactic-co-glycolic acid (PLGA) nanofibers sus-
tainably releasing high levels of the three agents for 30 and 56 days in vitro and in vivo,
respectively [180]. Delivery systems for AMPs were recently reviewed [177,181,182]. The
special role and therapeutic potential of AMPs for the treatment of infected wounds were
also very recently updated [28].

In recent years, an exponential growth in research focusing on antimicrobial peptides and
their assemblies can be observed in the literature (AMPs) [183–234]. Natural AMPs are im-
portant immunological defenses against microorganisms [48,49,54–56,103,183,218,234]. They
have been extracted from several organisms, such as bacteria, plants, insects, amphibians,
and humans. AMP activity is generally associated with their interaction with microbial
cell membranes or with the inhibition of microbe cell wall biosynthesis [17,18,21,42,87,88].
AMPs as antibiotics exhibit some advantages: they are relatively small peptides and easy to
synthesize, and they display a broad spectrum of antimicrobial activity and low suscepti-
bility to the development of drug resistance. However, AMPs as antibiotics for clinical use
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are still associated with a few obstacles, including susceptibility towards proteolytic degra-
dation, moderate activity, toxicity against eukaryotic cells, and potential immunogenicity.
Consequently, only a few peptides (vancomycin, teicoplanin gramicidins, and daptomycin)
have been approved as antimicrobials. Before their therapeutic use, their quoted disadvan-
tages have to be eliminated. In this work, the methods of modifying or formulating AMPs
described so far were discussed, focusing on structure–activity relationships for AMPs
and their assemblies, considering not only their self-assembly but also their interactions
with their carriers for optimal delivery or their combinations with other complementary
antimicrobials or moieties covalently bound to their chemical structure. The effervescent
research that occurs nowadays dealing with AMPs and their assemblies gives us hope for
obtaining compounds with strong antimicrobial properties and controllable drawbacks.

5. Conclusions

This overview of the recent present for AMPs allows some insight into their future;
their limitations regarding toxicity to the patient, biodegradable character, rapid clearance,
and poor targeting to their site of action have been circumvented by multidisciplinary
approaches intimately related to formulation design. In this vast field, there are several
players, and strategic design involves deep knowledge of the AMP structure–function
relationship and AMP’s interaction with its carrier. The interaction cannot be too strong;
otherwise, the AMP will not leave the carrier to reach its microbial target. The interaction
should be preferentially weak so that AMP–carrier disassembly allows AMP interaction
with the microbe; this is more so when the carrier is not just a carrier and can also actively
contribute to the microbicidal activity, preferentially in a complementary way, sometimes
triggering a most desirable synergistic action and lowering the effective doses required
for activity.
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