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Abstract: While it is true that pharmacotherapy has achieved desired health outcomes, significant
unmet medical needs persist in the field of central nervous system (CNS) drugs, particularly for
neurodegenerative diseases such as Alzheimer’s disease, as well as ocular diseases such as diabetic
retinopathy and age-related macular degeneration. Drugs cannot enter the brain from the bloodstream
due to the presence of the blood–brain barrier (BBB). Similarly, they cannot enter the eyes from the
bloodstream due to the blood–retina barrier (BRB), which is composed of the endothelium or the
epithelium. Thus, innovative drug delivery systems that can overcome these barriers based on
efflux transporters, hydrophobic lipid bilayer membranes, and tight junctions should be developed
using patient-friendly techniques distinct from craniotomy procedures or intravitreal injections.
Brain-penetrating CNS drugs and antihistamine drugs commonly share N-containing groups. These
findings suggest that certain types of cation transporters are involved in their transportation across
the cell membrane. Indeed, the proton-coupled organic cation (H+/OC) antiporter, whose specific
characteristics remain unidentified, is responsible for transporting compounds with N-containing
groups, such as clonidine and pyrilamine, at the BBB, and likely at the BRB as well. Therefore, well-
designed low-molecular-weight drugs containing N-containing groups as transporter recognition
units can enter the brain or the eyes through carrier-mediated transport. In this perspective review,
I introduce the implementation and potential of H+/OC antiporter-mediated transport across the
endothelium at the BBB or the BRB using drugs consciously designed with N-containing groups as
their substrates.

Keywords: the blood–brain barrier; the blood–retina barrier; drug delivery system; transmembrane
drug delivery; the proton-coupled organic cation antiporter; carrier-mediated transport

1. Introduction

In drug discovery and development, cell membrane impermeability poses a significant
challenge. Central nervous system (CNS) drugs face difficulties in entering the brain from
the circulating blood due to the blood–brain barrier (BBB). Indeed, clinical trials for CNS
drugs targeting Alzheimer’s disease (AD) have frequently resulted in failure [1]. Moreover,
eye drugs administered orally or intravenously face challenges in entering the retina
from the circulating blood due to the blood–retina barrier (BRB). Therefore, drugs for
treating retinopathy in diabetes or age-related macular degeneration encounter difficulties
in reaching the retina due to the presence of the BRB [2]. While drug administration
through craniotomy procedures or intravitreal injections is technically feasible, it can cause
significant stress and discomfort for patients. Hence, alternative approaches need to be
developed. In general, drugs are categorized into low-molecular compounds (molecular
weight (MW) < approx. 500), high-molecular compounds (MW > approx. 3000), and middle-
molecular compounds (MW approx. 500–approx. 3000) [3]. Carrier-mediated transport
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can serve as a solution for enabling low-molecular-weight drugs to traverse the barriers,
because a variety of transporters with substrate specificity are expressed at the BBB or the
BRB [Figure 1] [4–6]. However, high-molecular-weight drugs, such as monoclonal antibody
drugs, cannot penetrate the narrow pores of transporters due to their size. The delivery
of high-molecular-weight drugs into cells must utilize other strategies, such as receptor-
mediated endocytosis, macropinocytosis, or membrane disruption [3,7–10]. Receptor-
mediated transcytosis, using antibodies that target receptors such as the transferrin receptor
or insulin receptor on the surface of capillary endothelial cells, is a relatively common
approach for delivering drugs into the brain across the BBB. Antibody-drug conjugates
can exhibit highly selective delivery into the brain. Nonetheless, low-molecular-weight
drugs offer the advantage of being easy to manufacture, handle, and preserve. Regarding
biomedicines such as antibody-drug conjugates, reproducing the exact same product is
difficult due to post-translational modifications such as sugar chains and conjugation
sites linked to drugs. These modifications are biologically produced and introduced in
a probabilistic manner. Biosimilars have entered the market as identical copies of the
original biomedicines. As the name suggests, biosimilars are not identical to their original
biopharmaceuticals, such as antibody drugs, but they are highly comparable to them.
Furthermore, they are sometimes not identical to each other between different batches [11].
Moreover, antibody drugs must be stored at a low temperature when preserved for more
than one week until they are used. In these aspects, low-molecular-weight drugs are
superior. In this perspective review, I introduce the delivery of low-molecular-weight
N-containing drugs across the BBB or the BRB through carrier-mediated transport, utilizing
the proton-coupled organic cation (H+/OC) antiporter [Figure 2].
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small intestine and cancer cell membranes. MDR1 captures drugs that are in the process of passing 
through the lipid membrane via passive diffusion and expels them to the outside. SLC transport-
ers are expressed in a tissue-specific manner. 

Figure 1. The passage of drugs absorbed by SLC transporters or excreted by MDR1 commonly
at the blood–brain barrier (BBB) in the brain and the inner blood–retina barrier (BRB) in the eyes.
Additionally, they interact with SLC transporters or MDR1 at the epithelial cell membrane in the
small intestine and cancer cell membranes. MDR1 captures drugs that are in the process of passing
through the lipid membrane via passive diffusion and expels them to the outside. SLC transporters
are expressed in a tissue-specific manner.
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charge under physiological pH conditions in the bloodstream. Charged compounds face difficulty 
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In general, peptide transporters carry peptides as substrates, while amino acid transport-
ers carry amino acids as substrates. It is true that some substrates may be recognized by 
multiple transporters simultaneously. However, transporters named after their substrates 
generally do not transport compounds other than those substrates. Accordingly, SLC 
transporters recognize the structures of their substrates during transportation, although 
they may demonstrate relaxed substrate specificity in some cases. Thus, compounds that 
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pletely elucidated yet, primarily due to the challenging analysis of temporal dynamic 
changes in microstructure. However, X-ray crystal structures of SLC transporter protein-
substrate complexes have revealed binding modes at a molecular level, both in an inward-
open state [15] and in an outward-open state [16], consistent with an alternating access 
mechanism [17]. These findings regarding the interaction between the binding sites of var-
ious transporters and the transporter recognition units of corresponding substrates are 
beneficial for transporter-conscious drug design. Computational calculations can suggest 
transport mechanisms. The structures of designed drugs need to be refined and optimized 
through iterative transport experiments conducted in vitro and in vivo. 

  

Figure 2. The absorptive passage of drugs with N-containing groups as the transporter recognition
unit is mediated by the H+/OC antiporter. In general, amines such as memantine carry a positive
charge under physiological pH conditions in the bloodstream. Charged compounds face difficulty in
penetrating the lipid membrane through passive diffusion.

2. Discussion
2.1. Transporter-Conscious Drug Design

Transporters [12] are membrane transport proteins that absorb or excrete materials
across the cell membrane through homeostatic mechanisms. They play a pharmacokinetic
role in absorption, distribution, metabolism, and excretion (ADME). Efflux transporters,
such as the ATP-binding cassette (ABC) transporters, eliminate waste or hydrophobic toxic
materials from cells [13]. On the other hand, transporters that mediate facilitated diffusion,
such as the solute carrier (SLC) transporters [Table 1] [14], absorb water-soluble nutritive
materials into cells or transport them out of cells to the tissues in need. Representative
SLC transporters include peptide transporters, amino acid transporters, organic anion
transporters (OCTs), and glucose transporters, reflecting their respective substrates. In
general, peptide transporters carry peptides as substrates, while amino acid transporters
carry amino acids as substrates. It is true that some substrates may be recognized by
multiple transporters simultaneously. However, transporters named after their substrates
generally do not transport compounds other than those substrates. Accordingly, SLC
transporters recognize the structures of their substrates during transportation, although
they may demonstrate relaxed substrate specificity in some cases. Thus, compounds
that mimic the structure of various transporter substrates can also be transported by
those respective transporters. Transporter-conscious drug design is a promising strategy
for drug delivery [3,4]. Mechanically, SLC transporters are categorized into uniporters,
symporters, and antiporters based on their material transport mechanisms. The transport
mechanisms of SLC transporters, driven by concentration gradient energy, have not been
completely elucidated yet, primarily due to the challenging analysis of temporal dynamic
changes in microstructure. However, X-ray crystal structures of SLC transporter protein-
substrate complexes have revealed binding modes at a molecular level, both in an inward-
open state [15] and in an outward-open state [16], consistent with an alternating access
mechanism [17]. These findings regarding the interaction between the binding sites of
various transporters and the transporter recognition units of corresponding substrates are
beneficial for transporter-conscious drug design. Computational calculations can suggest
transport mechanisms. The structures of designed drugs need to be refined and optimized
through iterative transport experiments conducted in vitro and in vivo.
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Table 1. Representative solute carrier (SLC) transporters.

# Categories Transporters/Subtypes Substrates

(1) Amine transporters

The proton-coupled organic cation (H+/OC) antiporter,
organic cation transporter novel type 1 (OCTN1), OCTN2,
OCTN3, multidrug and toxin extrusion protein 1 (MATE1),
MATE2, MATE3, plasma membrane monoamine
transporter (PMAT)

Cationic amine compounds

(2) Peptide transporters Peptide transporter 1 (PEPT1), PEPT2 Peptides
(3) Amino acid transporters L-type amino acid transporter 1 (LAT1), LAT2, LAT3, LAT4 Amino acids

(4) Organic cation
transporters (OCTs) OCT1, OCT2, OCT3, OCT4 Cationic compounds

(5) Organic anion
transporters (OATs)

OAT1, OAT2, OAT3, OAT4, OAT5,
organic anion transporting peptides (OATP1A2), OATP1B1,
OATP1B3, OATP1C1
OATP2A1, OATP2B1, OATP3A1, OATP4A1, OATP4C1,
OATP5A1, OATP6A1

Anionic compounds

(6) Glucose transporters Glucose transporter1 (GLUT1), GLUT2, GLUT3, GLUT4,
GLUT5, GLUT6, GLUT7 Glucose

2.2. The BBB

It is a well-known fact that compounds generally cannot penetrate the brain from the
circulating blood due to the presence of the BBB [18]. The BBB is composed of (i) a biological
barrier based on excretion by MDR1 (P-glycoprotein), a representative ABC transporter,
expressed as a transmembrane protein at the apical membrane of the capillary endothelial
cells, (ii) a physical barrier based on the hydrophobic lipid bilayer membrane of the capillary
endothelial cells, (iii) a physical barrier created by tight junctions between the capillary
endothelial cells due to adhesion molecules such as claudin, and (iv) a physical and biological
barrier lined with pericytes and astrocytes. Pericytes are situated on the abluminal aspect
of the capillary endothelial cells and provide structural support to capillaries from behind.
They secrete certain types of cytokines or bioactive substances to the capillary endothelial
cells, contributing to the maintenance of BBB function, such as in its tight junctions and
vesicle trafficking [19]. The endfeet of astrocytes physically encircle the capillaries, which are
made up of capillary endothelial cells. Vascular smooth muscle cells are positioned between
the astrocytic endfeet and the capillary endothelial cells. Astrocytes secrete certain types
of bioactive substances to the capillary endothelial cells [20]. In effect, hydrophobic low-
molecular weight compounds passing through the membrane are captured by MDR1 and
excreted into the circulating blood. However, it is well-known that certain pharmaceutical
agents, such as CNS drugs and antihistamine drugs, can penetrate the brain through the
BBB. Most CNS drugs have structurally incorporated N-containing groups in their molecules.
Brain-penetrating compounds (1–10) recently reported in the last year or two also possess
N-containing groups [Figure 3] [21–30]. This fact suggests that N-containing groups act as
the transporter recognition unit for a specific type of cation transporter at the BBB. Moreover,
although memantine (MEM), a clinically approved AD drug with an N-containing group,
forms a positively charged salt under physiological pH, it has demonstrated membrane
penetration in a concentration-dependent manner and reached saturation in penetration
above a specified concentration level at the BBB [31]. Positively charged salts cannot pass
through the hydrophobic lipid bilayer membrane via passive diffusion. Accordingly, MEM
was internalized across the membrane not through passive diffusion, but through carrier-
mediated transport [Figure 2]. Thus, the internalization through SLC transporters into cells
can bypass both intramembranous capture by MDR1 and the physical barrier based on the
hydrophobic lipid bilayer membrane [Figures 1 and 2]. Transporter-mediated drug delivery
across the BBB into the brain can provide a solution to the membrane impermeability of drugs
for CNS disorders such as AD, Parkinson’s disease (PD), and epilepsy.
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Figure 3. Recently reported brain-penetrant compounds (1–10) possessing N-containing groups. 
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2.3. The Proton-Coupled Organic Cation (H+/OC) Antiporter at the BBB

OCT1, OCT2, OCT3, organic cation transporter novel type 1 (OCTN1), OCTN2, mul-
tidrug and toxin extrusion protein 1 (MATE1), MATE2, and plasma membrane monoamine
transporter (PMAT) are well-known as typical transporters for organic cations. However,
which transporters facilitate the uptake of CNS drugs with N-containing groups at the
BBB remains unknown. It has been suggested that the H+/OC antiporter might facilitate
their transport, although its amino acid sequence and topology have not been biologi-
cally identified yet [32]. Clonidine, quinidine, p-chloroamphetamine, cocaine, codeine,
diacetylmorphine, diphenhydramine, MDMA (3,4-methylenedioxymethamphetamine),
methadone, morphine, nalbuphine, nicotine, oxycodone, and tramadol [Figure 4] have
been shown to be transported by the mouse H+/OC antiporter in apical membrane of the
capillary endothelial cells across the BBB in an in situ mouse brain perfusion assay [33].
Moreover, pyrilamine, oxycodone, quinidine, amantadine, diphenhydramine, MEM, and
aconitine [Figure 5] have been shown to be transported by the human H+/OC antiporter
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in apical membrane in an in vitro assay using human CMEC/D3 cells [34–36] as the BBB
model [37]. All of these substrates possess N-containing groups. Therefore, the H+/OC
antiporter may be a strong candidate for transendothelial transport of compounds with
N-containing groups at the BBB. Transporter-conscious drug design targeting H+/OC
antiporter is an effective method for drug delivery across the BBB [32,38,39]. The transport
of compounds with N-containing groups through an H+/OC antiporter has been shown
to be not inhibited competitively by tetraethyl ammonium (TEA) (OCT1-3, OCTN1, and
OCTN2 substrate) or serotonin (PMAT substrate) [4]. The rank order of expressed mRNA
level in human CMEC/D3 cells was OCTN2 >> OCTN1 > PMAT >> OCT3 > OCT1 [34].
The mRNA level of the H+/OC antiporter was undetectable due to its unknown amino
acid sequence. OCTN2 transported L-carnitine, acetyl-L-carnitine, acetylcholine, dopamine,
norepinephrine, thiamine, quinidine, verapamil, TEA, 1-methyl-4-phenylpyridinium, pyril-
amine, diphenhydramine, procainamide, and lidocaine in an in vitro assay using human
embryonic kidney (HEK) 293 cells stably expressing mouse OCTN2 [40]. Interestingly,
the H+/OC antiporter and OCTN2 share the same substrates, such as quinidine, pyril-
amine, and diphenhydramine, due to relaxed substrate specificity. Pharmaceutical scientists
should pay close attention to the analysis and consideration of experimental results.
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2.4. The BRB

It is also known that compounds generally cannot penetrate the retina from the
circulating blood due to the BRB. This barrier system maintains certain physiological home-
ostatic conditions in the eyes. The BRB is anatomically divided into the inner BRB [41] of
the retinal capillary endothelial cells and the outer BRB of the retinal pigment epithelial
cells [Figures 6 and 7]. The inner BRB is constructed by (i) a biological barrier based on
excretion by MDR1 expressed at the apical membrane of the capillary endothelial cells,
(ii) a physical barrier based on the hydrophobic lipid bilayer membrane of the capillary
endothelial cells, (iii) a physical barrier based on the tight junctions between the cap-
illary endothelial cells due to adhesion molecules such as claudin, and (iv) a physical
and biological barrier lined with pericytes and Müller cells. Similarly, the outer BRB
is constructed by (i) a biological barrier based on excretion by MDR1 expressed at the
apical membrane of the retinal pigment epithelial cells [42], (ii) a physical barrier based
on the hydrophobic lipid bilayer membrane of the retinal pigment epithelial cells, and
(iii) a physical barrier based on the tight junctions between the retinal pigment epithelial
cells due to adhesion molecules such as claudin. In fact, the inefficiency of drug administra-
tion into the retina at the BRB is an issue that needs to be addressed for patients suffering
from retinopathy of diabetes or age-related macular degeneration. On the other hand, eye
drops are susceptible to drainage into the nose through the nasolacrimal duct due to tears.
The external eye barrier structure prevents eye drops from reaching the retina. Further-
more, intraocular administration through injection poses risks of increased ocular pressure,
bleeding, and infections. Therefore, a non-invasive drug delivery system across the BRB
into the retina should be developed, and, as many types of transporters are expressed at
the BRB, carrier-mediated transport across the BRB is suggested as a potential method
for this [43,44].

2.5. H+/OC Antiporter at the Inner BRB

It has been clarified that compounds with N-containing groups are transported into the
retina across the inner BRB. Clonidine (a substrate of the H+/OC antiporter) has been shown
to be absorbed at the inner BRB via carrier-mediated transport in a pH-dependent manner,
implying H+/OC antiporter-mediated transport. Moreover, clonidine has been shown
to competitively inhibit transport of desipramine, propranolol, pyrilamine, verapamil,
imipramine, quinidine, amantadine, and timolol at the inner BRB in an in vitro assay using
TR-iBRB2 cells. Furthermore, clonidine did not inhibit TEA and L-carnitine transportation
in this assay system [45]. These results suggest that the H+/OC antiporter was involved in
the transport of compounds with N-containing groups at the inner BRB. Thus, transporter-
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conscious designed drugs with N-containing groups can be delivered into the retina across
the inner BRB.
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2.6. Implementation of Transporter-Conscious Drug Design with N-Containing Groups

Transporters recognize the structures of their substrates. Therefore, compounds
with transporter recognition units can be transported across the membrane through
the pores of their corresponding transporters. There are two approaches to transporter-
conscious drug design: (i) drug compounds that possess N-containing groups on their own,
and (ii) conjugates of drugs and compounds that possess N-containing groups with appro-
priate linkers.

Fundamentally, the design of substrates for H+/OC antiporters can be achieved by em-
ulating current CNS drugs that contain N-containing groups, such as the N,N-dimethylalkyl
groups. In CNS drug development, N-containing groups are introduced either inadver-
tently or through empirical methods. In practice, drugs linked to N-containing transporter
recognition units via cleavable linkers can be transported across the BBB or BRB by H+/OC
antiporters. After these linkers are cleaved, the delivered drugs will exhibit their activity ac-
cordingly, following the prodrug system. Strictly speaking, the parent compounds may be
enzymatically generated from their respective prodrugs in capillary endothelial cells before
the prodrugs permeate the basolateral membrane, either in the cerebrospinal fluid (CSF)
or in the brain parenchyma after the prodrugs permeate the basolateral membrane. This
process depends on the characteristics of the compounds and the design of the drugs. The
mechanism by which existing CNS drugs with N-containing groups cross the basolateral
membrane after H+/OC antiporter-mediated internalization into capillary endothelial cells
across the apical membrane is not yet understood. It is thought that they probably cross
the basolateral membrane into the CSF not through passive diffusion but rather through
carrier-mediated transport or exocytosis, because the normal cellular pH level is approxi-
mately 7.0, which is slightly more acidic compared with the pH of approximately 7.4 in
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the blood. Nevertheless, the possibility of direct translocation, initiated by the interaction
with anionic phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) at the inner lipid bilayer
and cationic N-containing groups, such as cytosolic full-length TAT (101 amino acids) [46],
cannot be firmly dismissed.

A pyrilamine derivative with the benzamide zinc-binding group as a histone deacety-
lase (HDAC) inhibitor has been shown to be absorbed into hCMEC/D3 cells through
H+/OC antiporter-mediated transport in an in vitro assay [Figure 8] and to successfully
cross the BBB in an in situ brain perfusion assay using rat. This compound exhibited
HDAC1 inhibitory activity and holds promise as a brain-penetrating HDAC inhibitor for
the treatment of CNS diseases [47].
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Figure 8. The mechanism of absorption mediated by the H+/OC antiporter for a pyrilamine derivative
with an N-containing group, acting as a histone deacetylase inhibitor.

Diphenhydramine analogs were assessed for cellular uptake via the H+/OC antiporter
using hCMEC/D3 cells. Some of these exhibited more efficient transport than the unmodi-
fied original diphenhydramine. The rank order of initial uptake rate (mL/mg Protein/min)
using hCMEC/D3 cells is D (293 ± 16) > C (273 ± 26) > B (188 ± 23) > diphenhydramine
(127 ± 8) > G (114 ± 23) > F (105 ± 19) > E (76.9 ± 9.8) > A (31.6 ± 5.6) > J (16.4) > H
(3.70 ± 0.50) > I (2.05 ± 0.63). It has been implied that a heterocyclic amine moiety serves
as a favorable transporter recognition unit [Figure 9] [39].

Chlorambucil (CHL), a chemotherapy medication, cannot penetrate the membrane
due to the hydrophilic nature of the carboxyl group. The prodrug chlorambucil-scopine
(CHLS), a conjugate of CHL and scopine linked by an ester bond, was observed to cross
the BBB in an in vitro assay using murine brain endothelial cells and in an in situ rat brain
perfusion assay. This internalized prodrug was enzymatically cleaved to trigger its activity
against glioma in the brain. The N-containing scopine unit was identified as a substrate
by the H+/OC antiporter, as evidenced by the lack of inhibition of this transport by TEA
[Figure 10] [38,48]. The parent compound chlorambucil would remain in the brain without
crossing the BBB in the opposite direction.
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Figure 10. The mechanism of H+/OC antiporter-mediated absorption and metabolism of the prodrug
chlorambucil-scopine with an N-containing group.

N-[3,4-bis(pivaloyloxy)dopamine]-3-(dimethylamino)propanamide (PDDP) is a dou-
ble prodrug of dopamine, consisting of the conjugation of dopamine with pivaloyl groups
on the phenolic hydroxy groups and the 3-(dimethylamino)propanoyl group serving as
the transporter recognition unit. PDDP was distributed in the brain in an in vivo assay
based on intravenous injection in rats. PDDP was likely internalized into cells via the
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H+/OC antiporter and subsequently hydrolyzed to form dopamine in an in vitro assay
using bEnd.3 cells [Figure 11]. This transport was inhibited by pyrilamine, propranolol,
and imipramine, but not by choline, L-carnitine, and TEA [49].
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Figure 11. The mechanism of H+/OC antiporter-mediated absorption and metabolism of the prodrug
PDDP with N-containing group, which was subject to enzymatic hydrolysis to form the parent
compound DDP and eventually dopamine.

The transport evaluation of dexibuprofen and its prodrugs, including prodrug I with
the (N, N-dimethylamino)ethyl group, prodrug II with the (N, N-diethylamino)ethyl group,
prodrug III with the (N-methylamino)ethyl group, and prodrug IV with the aminoethyl group,
was conducted [Figures 12 and 13]. The rank order of transport across the membrane through
H+/OC antiporter in an in vitro assay using capillary endothelial cells was prodrug I > prodrug
II > prodrug III > prodrug IV > dexibuprofen. The cellular uptakes of prodrug I, prodrug
II, prodrug III, prodrug IV, and dexibuprofen in the right brain hemisphere at 37 ◦C were
117.69 ± 20.66, 99.59 ± 9.88, 66.51 ± 16.85, 50.03 ± 11.76, and 9.24 ± 1.50 (nmol/g), respectively,
in an in vivo rat brain perfusion assay [50]. The (N, N-dimethylamino)ethyl group was identified
as a potent H+/OC antiporter recognition unit.

Currently, research in low-molecular-weight drug delivery aimed at crossing the BBB
through carrier-mediated transport is being conducted, targeting characteristically iden-
tified transporters such as glucose transporter 1 (GLUT1), probably because of the ease
of rational drug design [51]. Furthermore, GLUT1 is expressed on both the apical and
basolateral membranes of capillary endothelial cells, facilitating the successive transport
of its substrate from the bloodstream into the brain. Thus, it is important to identify the
H+/OC antiporter as early as possible to advance research in drug delivery, although
its features have already been investigated [52,53]. The pharmacophore for the H+/OC
cation antiporter inhibitor was calculated using computer software based on data ob-
tained from in vitro competitive permeation assays using labeled substrates in hCMEC/D3
cells [54]. Similarly, the chemophore, serving as a transporter recognition unit, can be
obtained through calculation [4,55]. If the three-dimensional structural information of the



Future Pharmacol. 2023, 3 753

H+/OC cation antiporter is utilized, transporter-conscious drug design targeting it will be
conducted with high accuracy. Nevertheless, the design of compounds to cross the BBB
has often been undertaken empirically, unconsciously, and fortuitously by incorporating
N-containing groups as transporter recognition units, without making use of identified
transporters such as GLUT1 [Figure 3]. This is highly significant in CNS or eye drug
development because it indicates the ease of H+/OC cation antiporter-mediated transport.
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Moreover, nanoparticles are commonly employed as carriers for the transendothelial
delivery of not only low-molecular-weight drugs but also middle- and high-molecular-
weight drugs [3,56].

2.7. H+/OC Cation Antiporter-Mediated Transport of PROTACs across the BBB for CNS Diseases

Targeted protein degradation [57] has garnered much recent attention because it can
irreversibly and catalytically degrade target proteins, some of which were previously
considered undruggable by other methods. Structurally, targeted protein degraders consist
of a ligand for the target protein and a ligand for an E3 ligase (ubiquitin ligase) connected
via a linker. After the target protein and E3 ligase come into proximity due to ligand binding,
the target protein undergoes polyubiquitination and is subsequently degraded through the
ubiquitin–proteasome system [Figure 14]. Several technologies have developed, including
proteolysis targeting chimera (PROTAC) [58], which uses ligands to von Hippel–Lindau
(VHL) as an E3 ligase; degronimid [59], which uses ligands to cereblon (CRBN) as an E3
ligase; and specific and nongenetic inhibitor of apoptosis protein (IAP) dependent protein



Future Pharmacol. 2023, 3 754

eraser (SNIPER) [60], which uses methyl-bestatin (MeBS) targeting cellular inhibitor of
apoptosis protein (cIAP) as an E3 ligase. Nonetheless, the technology of targeted protein
degradation with a chimera and bi-functional structure is currently collectively referred
to as PROTAC, and includes PROTAC, degronimid, and SNIPER. However, VHL, CRBN,
and cIAP are ubiquitously expressed in various tissues. To avoid off-target side effects,
E3 ligases that are specifically expressed in particular tissues or cells should be utilized,
as there are approximately 600 different types of E3 ligases. Otherwise, tissue- or cell-
specific internalization across the cell membrane should be pursued, even when targeting
ubiquitous E3 ligases.
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Figure 14. The canonical structure of targeted protein degraders, such as PROTAC molecules, and
their degradative pathway for target proteins. As PROTAC molecules have a target protein ligand
and an E3 ligase ligand connected via a linker, the target protein and E3 ligase are brought into
proximity by the binding of the PROTAC molecule. The target protein undergoes ubiquitination
and is subsequently degraded through the ubiquitin–proteasome system. Abbreviations: PROTAC,
proteolysis targeting chimera; Ub, ubiquitin; E2, ubiquitin conjugating enzyme; E3 ligase, ubiquitin
ligase; VHL, von Hippel–Lindau; CRBN, cereblon; cIAP, cellular inhibitor of apoptosis protein.

Immunomodulatory drugs (IMiDs) such as thalidomide, pomalidomide, and lenalido-
mide [Figure 15], which can penetrate the blood–brain barrier (BBB), are recognized as CRBN
modulators. Interestingly, pomalidomide is used in PROTACs as an E3 ligase ligand. Thalido-
mide is not a substrate of MDR1, whereas pomalidomide and lenalidomide are substrates
of MDR1. The rank order for BBB penetration is thalidomide > pomalidomide > lenalido-
mide. Transporters responsible for the transportation of thalidomide, pomalidomide, and
lenalidomide have not been identified yet [61]. The introduction of the amino group al-
tered the affinities for transporters between thalidomide and pomalidomide. The H+/OC
antiporter might be a candidate for mediating the BBB permeation of pomalidomide due to
its N-containing group. Thus, PROTACs with pomalidomide as an E3 ligase ligand might act
as substrates for the H+/OC antiporter. The competitive inhibitory tests using substrates and
non-substrates of the H+/OC antiporter will clarify this.

Future Pharmacol. 2023, 3, FOR PEER REVIEW 14 
 

 

Immunomodulatory drugs (IMiDs) such as thalidomide, pomalidomide, and lenalid-
omide [Figure 15], which can penetrate the blood–brain barrier (BBB), are recognized as 
CRBN modulators. Interestingly, pomalidomide is used in PROTACs as an E3 ligase lig-
and. Thalidomide is not a substrate of MDR1, whereas pomalidomide and lenalidomide 
are substrates of MDR1. The rank order for BBB penetration is thalidomide > pomalido-
mide > lenalidomide. Transporters responsible for the transportation of thalidomide, 
pomalidomide, and lenalidomide have not been identified yet [61]. The introduction of 
the amino group altered the affinities for transporters between thalidomide and pomalid-
omide. The H+/OC antiporter might be a candidate for mediating the BBB permeation of 
pomalidomide due to its N-containing group. Thus, PROTACs with pomalidomide as an 
E3 ligase ligand might act as substrates for the H+/OC antiporter. The competitive inhibi-
tory tests using substrates and non-substrates of the H+/OC antiporter will clarify this. 

Thalidomide

N

O

O

NH
O

O N

O

O

NH
O

O N

O
NH

O

O

NH2 NH2

Pomalidomide Lenalidomide  
Figure 15. The structures of representative immunomodulatory drugs (IMiDs). 

The radical cure for AD has not been established due to its complex pathobiology. 
Although many etiologies for AD have been proposed, amyloid β (Aβ) and tau are typical 
disease biomarkers [8]. Thus, it is suggested that Aβ and tau are significantly associated 
with the pathobiology of AD, ultimately leading to progressive neurodegeneration and 
subsequent dementia. Recently, the anti-Aβ monoclonal antibody aducanumab [62] was 
approved by the FDA in 2021. Moreover, the anti-Aβ protofibril monoclonal antibody 
lecanemab [63] was clinically approved by the FDA in 2023. The anti-Aβ monoclonal an-
tibody donanemab [64] completed a phase 3 clinical trial with favorable results for early 
AD in 2023 (NCT04437511). Therefore, it is believed that the so-called amyloid hypothesis 
is prominent in AD drug development. Although Aβ and tau pathologies initially pro-
gress independently, Aβ pathology eventually becomes involved in enhancing the patho-
logical process driven by tau pathology. It has been revealed that the population of neu-
rofibrillary tangles (NFTs) containing tau, rather than Aβ plaques, is correlated with the 
pathogenesis of AD dementia [8]. Thus, the clearance of tau species can be a promising 
medical treatment for AD. PROTACs have been developed for clearing tau in the brain 
[65]. The tau species are found in both the extracellular and intracellular regions, although 
NFTs are formed within neuronal cells [8]. Intracellular tau can be captured by PROTACs 
that cross the BBB and subsequently cross the neuronal cell membrane. The ubiquitin–
proteasome system acts within cells. 

QC-01-175 [Figure 16], a PROTAC composed of a tau ligand (18F-T807 derivative) and 
a CRBN ligand (pomalidomide) connected with a linker, has been shown to induce the 
clearance of aberrant tau in neuronal cell models derived from frontotemporal dementia 
(FTD) patients in an in vitro assay [66]. QC-01-175 crossed the neuronal cell membrane, 
though it is uncertain whether QC-01-175 was able to cross the BBB or not. QC-01-175 
could potentially be a substrate for H+/OC antiporter due to the presence of N-containing 
groups. On the other hand, C004019 [Figure 16], a PROTAC composed of a tau ligand 
(ID220149 [67]) and a VHL ligand (VHL Ligand 1 [68]) connected by a linker, reduced tau 
levels in the brains through subcutaneous administration in an in vivo assay using wild-
type, hTau-transgenic, and 3xTg-AD mice, leading to improvements in synaptic and cog-
nitive functions [69]. This finding suggests that C004019 crossed both the BBB and the 
neuronal cell membrane. Although it is unknown which transporters recognize ID220149 
or VHL Ligand 1 as transporter recognition units, both units contain N-containing groups. 

Figure 15. The structures of representative immunomodulatory drugs (IMiDs).



Future Pharmacol. 2023, 3 755

The radical cure for AD has not been established due to its complex pathobiology.
Although many etiologies for AD have been proposed, amyloid β (Aβ) and tau are typical
disease biomarkers [8]. Thus, it is suggested that Aβ and tau are significantly associated
with the pathobiology of AD, ultimately leading to progressive neurodegeneration and
subsequent dementia. Recently, the anti-Aβ monoclonal antibody aducanumab [62] was
approved by the FDA in 2021. Moreover, the anti-Aβ protofibril monoclonal antibody
lecanemab [63] was clinically approved by the FDA in 2023. The anti-Aβ monoclonal
antibody donanemab [64] completed a phase 3 clinical trial with favorable results for early
AD in 2023 (NCT04437511). Therefore, it is believed that the so-called amyloid hypothesis
is prominent in AD drug development. Although Aβ and tau pathologies initially progress
independently, Aβ pathology eventually becomes involved in enhancing the pathological
process driven by tau pathology. It has been revealed that the population of neurofibrillary
tangles (NFTs) containing tau, rather than Aβ plaques, is correlated with the pathogenesis
of AD dementia [8]. Thus, the clearance of tau species can be a promising medical treatment
for AD. PROTACs have been developed for clearing tau in the brain [65]. The tau species
are found in both the extracellular and intracellular regions, although NFTs are formed
within neuronal cells [8]. Intracellular tau can be captured by PROTACs that cross the BBB
and subsequently cross the neuronal cell membrane. The ubiquitin–proteasome system
acts within cells.

QC-01-175 [Figure 16], a PROTAC composed of a tau ligand (18F-T807 derivative) and
a CRBN ligand (pomalidomide) connected with a linker, has been shown to induce the
clearance of aberrant tau in neuronal cell models derived from frontotemporal dementia (FTD)
patients in an in vitro assay [66]. QC-01-175 crossed the neuronal cell membrane, though it is
uncertain whether QC-01-175 was able to cross the BBB or not. QC-01-175 could potentially
be a substrate for H+/OC antiporter due to the presence of N-containing groups. On the other
hand, C004019 [Figure 16], a PROTAC composed of a tau ligand (ID220149 [67]) and a VHL
ligand (VHL Ligand 1 [68]) connected by a linker, reduced tau levels in the brains through
subcutaneous administration in an in vivo assay using wild-type, hTau-transgenic, and 3xTg-
AD mice, leading to improvements in synaptic and cognitive functions [69]. This finding
suggests that C004019 crossed both the BBB and the neuronal cell membrane. Although it is
unknown which transporters recognize ID220149 or VHL Ligand 1 as transporter recognition
units, both units contain N-containing groups. C004019, capable of penetrating the brain,
might potentially serve as a substrate for H+/OC antiporter.

Accordingly, brain-penetrating PROTACs show promise as CNS agents, both pharma-
codynamically and pharmacokinetically. Non-brain-penetrating PROTACs could poten-
tially cross the BBB when N-containing groups, such as the (dimethylamino)ethyl group
(MW 73.14), are introduced into them as the recognition unit for H+/OC antiporters, with-
out interfering with target protein binding and E3 ligase binding. Moreover, after crossing
the endothelium, PROTAC molecules are internalized into cells across the membrane
via passive diffusion and/or carrier-mediated transport involving specific transporters.
The internalization mechanisms depend on the features of PROTAC molecules, particu-
larly in terms of hydrophobicity and their potency as transporter substrates. If PROTACs
demonstrate poor membrane permeability, the introduction of vectors such as transporter
recognition units, cell-penetrating peptides, or antibodies can facilitate their entry into cells.

2.8. Eye-Specific Drug Therapy

It is worth noting that there are some issues, such as selectivity, because H+/OC
antiporters are expressed at both the BBB and BRB. Probabilistically, drugs containing
N-groups would likely be preferentially delivered to the brain due to its larger size com-
pared with the eye. Tissue-selective pharmaceuticals can be achieved by employing pro-
drugs containing N-containing groups, which can be activated into the respective active
form by tissue-specific enzymes present in either the brain or the retina. Consequently, this
approach helps in avoiding off-target side effects.
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Figure 16. The structures of QC-01-175 and C004019. These contain N-containing groups that could
potentially act as recognition units for proton-coupled organic cation (H+/OC) antiporters. 18F-T807
is an imaging compound that targets tau. Therefore, labeling such as 18F is not necessary for the
treatment of Alzheimer’s disease. A derivative of 18F-T807 simply needs to bind to the tau protein.

There are several differences between the H+/OC antiporter at the BBB and the BRB.
The population of H+/OC antiporters at the BBB is much larger than that at the BRB. H+/OC
antiporters at the BRB are exposed to light, whereas those at the BBB are not. Blue light,
with wavelengths ranging from 380 to 500 nm, carries intense light energy within the visible
light spectrum (wavelengths from 400 to 800 nm), allowing it to reach the retina without
absorption by the cornea and lens. On the other hand, blue light cannot penetrate the brain
enclosed within the bony skull. Therefore, tissue selectivity between the eyes and the brain
can be regulated by differences rooted in the biophysical structuralism advocated by Dr. Lévi-
Strauss [70,71]. Specially designed low-molecular-weight drugs containing N-groups could
be transported by H+/OC antiporters and potentially exhibit an eye-specific drug effect. This
could be achieved without off-target side effects in the brain, through photoactivation using a
prodrug system with blue light. The N-methyl-7-hydroxyquinolinium (N-Me-7-HQm) caging
chromophore, serving as the photosensitive protecting group, undergoes cleavage when
exposed to blue light at 458 nm [Figure 17] [72]. Prodrugs, covalently conjugated between
a pharmacologically active compound with an N-containing group and N-Me-7-HQm as
the photosensitive protecting group [Figure 18], could cross the endothelium at the BRB via
H+/OC antiporters. Subsequently, they would be activated by blue light, exposing their
active sites within the molecule. Caged prodrugs distributed in the brain would remain
inactive in the absence of light and would eventually undergo metabolism. Modifications
may be necessary to protect the conjugate linkage from enzymatic hydrolysis in serum during
intravenous or oral administration. Alternatively, in some cases, modifications to enhance
absorption in the small intestine, through both the paracellular and transcellular routes after
oral administration instead of intravenous administration, might be needed.
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Figure 18. The structures of potential eye-specific prodrugs, covalently conjugated between a phar-
macologically active compound with an N-containing group and N-Me-7-HQm as the photosensitive
protecting group.

Enzymes specific to the retina include guanylate cyclase-activating protein (GCAP) [73],
rhodopsin kinase (Rk or GRK1) [74], esterases [75], and retinal dehydrogenase. Enzymes
specific to the brain comprise brain-specific aminopeptidase [76], γ-glutamyl transpepti-
dase [77,78], and glutamyl aminopeptidase [79–81]. I anticipate that inspired readers will
design drugs capable of demonstrating either retina-specific or brain-specific activity upon
activation of prodrugs by tissue-specific enzymes.

3. Conclusions

The impermeability of drugs at the BBB or the BRB presents a challenge in drug
discovery and development. At present, neurodegenerative diseases such as AD and PD,
as well as eye diseases such as diabetic retinopathy and age-related macular degeneration,
represent significant unmet medical needs. Hence, an innovative therapeutic strategy needs
to be devised to deliver drugs effectively and selectively to target sites across these barriers.
Transporters exhibit tissue-specific expression. It has been revealed that CNS drugs are
transported into the brain by H+/OC antiporters [Table 2]. Transporter-conscious designed
drugs with N-containing groups as transporter recognition units can cross the endothelium
at the BBB or the BRB through carrier-mediated transport using the H+/OC antiporter.

Currently, clinically approved drugs available for treating age-related macular degen-
eration and diabetic retinopathy are antibody fragments targeting vascular endothelial
growth factor (VEGF), including aflibercept, ranibizumab, and brolucizumab. Thus, alter-
native low-molecular-weight drugs specific to the eyes should be developed, considering
cost and patient-friendly administration routes other than intravitreal injection. Therefore,
a low-molecular-weight drug delivery system targeting the eyes must be promptly estab-
lished based on carrier-mediated transport across the BRB. Low-molecular VEGF inhibitors,
both with N-containing groups and N-Me-7-HQm, are potent drug candidates. On the other
hand, low-molecular-weight CNS drugs for the treatment of neurodegenerative diseases,
including AD and PD, should also be developed.
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Table 2. Summary of the potential substrates for the proton-coupled organic cation (H+/OC) an-
tiporter discussed in this review.

# Compounds The Barrier to Cross Tissues to Be
Absorbed Status References

(1) 1–10 BBB Brain Basic research Figure 3, [21–30]
(2) Clonidine BBB, Inner BRB Brain, eyes Launched Figure 4, [33,45]

(3) Quinidine BBB, Inner BRB Brain, eyes Launched Figures 4 and 5,
[33–36,45]

(4) p-Chloroamphetamine BBB Brain Launched Figure 4, [33]
(5) Cocaine BBB Brain Launched Figure 4, [33]
(6) Codeine BBB Brain Launched Figure 4, [33]
(7) Diacetylmorphine BBB Brain Launched Figure 4, [33]
(8) Diphenhydramine BBB Brain Launched Figures 4 and 5, [33–36]

(9) MDMA (3,4-
methylenedioxymethamphetamine) BBB Brain Basic research Figure 4, [33]

(10) Methadone BBB Bain Launched Figure 4, [33]
(11) Morphine BBB Braun Launched Figure 4, [33]
(12) Nalbuphine BBB Brain Launched Figure 4, [33]
(13) Nicotine BBB Brain. Launched Figure 4, [33]
(14) Oxycodone BBB Brain Launched Figure 4, [33]
(15) Tramadol BBB, Inner BRB Brain, eyes Launched Figure 4, [33,45]
(16) Pyrilamine BBB, Inner BRB Brain, eyes Launched Figure 5, [34–36,45]
(17) Oxycodone BBB Brain Launched Figure 5, [34–36]
(18) Amantadine BBB, Inner BRB Brain, eyes Launched Figure 5, [34–36,45]
(19) Memantine (MEM) BBB Brain Launched Figure 5, [31,34–36]
(20) Aconitine BBB Brain Basic research Figure 5, [34–36]
(21) Desipramine Inner BRB Eyes Launched [45]
(22) Propranolol Inner BRB Eyes Launched [45]
(23) Verapamil Inner BRB Eyes Launched [45]
(24) Imipramine Inner BRB Eyes Launched [45]
(25) Pyrilamine derivative with benzamide BBB Brain Basic research Figure 8, [47]
(26) Diphenhydramine analogs BBB Brain Basic research Figure 9, [39]
(27) Chlorambucil-scopine (CHLS) BBB Brain Basic research Figure 10, [38,48]

(28)
N-[3,4-bis(pivaloyloxy)domapine]-3-
(dimethylamino)propanamide
(PDDP)

BBB Brain Basic research Figure 11, [49]

(29) Dexibuprofen prodrugs BBB Brain Basic research Figures 12 and 13, [50]
(30) QC-01-175 BBB Brain Basic research Figure 16, [66]
(31) C004019 BBB Brain Basic research Figure 16, [69]

(32) PROTACs with vectors BBB Brain Under analysis in
Tashima lab -

(33) Prodrugs with N-containing group and
N-Me-7-HQm Inner BRB Eyes Under analysis in

Tashima lab -

Drug discovery and development should take into account the structures based on
the biological system at the BBB or BRB, following the principles of structuralism advo-
cated by Dr. Lévi-Strauss [70,71]. In particular, transporter-conscious designed drugs
will be systematically and comprehensively regulated to ensure delivery, metabolism if
necessary, and activation at their intended sites, based on structuralism. The urgent need
lies in the identification of the H+/OC antiporter, enabling the design of substrates with
strategically positioned N-containing groups that can interact effectively with each other
and be subsequently transported through its pore. The SLC transporters constitute a
superfamily comprising over 400 membrane transport proteins. The H+/OC antiporter
might be discovered within the orphan SLC transporters. Alternatively, the H+/OC an-
tiporter protein could be captured using affinity-based probes through affinity labeling
methods, such as photo-affinity labeling. This process involves the use of modified cloni-
dine with an azide group on the benzene ring, either in the absence of TEA or in the
presence of excess TEA to saturate other cation transporters. Furthermore, AMG-595, an
anti-EGFR (epidermal growth factor receptor) antibody-drug conjugate with DM1 (mertan-
sine) linked via a non-cleavable maleimidomethylcyclohexane-1-carboxyl (MCC) linker, has
been shown to be catabolized into Lys-MCC-DM1 in lysosomes. The lysosomal membrane
transporter SLC46A3, which transports Lys-MCC-DM1 to the cytoplasm, was identified
through shRNA analysis [82]. The H+/OC antiporter can be identified using a similar
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strategy. Living organisms are composed of biological and physical systematic structures,
such as cells and tissues, regulated by structuralism [Figure 19] [70,71]. However, even
within such constrained structures, new systems can be created based on existentialism, as
advocated by Dr. Jean-Paul Sartre. Based on the principles of structural pharmaceutical
science and existentialism, medicinal chemists and pharmaceutical scientists should strive
to develop novel CNS or eye drugs that act as substrates for the H+/OC antiporter, aiming
to provide effective treatments for patients.
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