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Abstract: Selenium is one of the eight necessary trace elements humans require for active health
balance. It contributes in several ways to the proper functioning of selenoprotein. Selenium has
received enormous interest recently due to its therapeutic potential against a number of ailments. To
date, numerous chemical compounds containing selenium have been investigated for the therapy
of cancer and other disorders. Unifying the selenium atom into chemical components (typically
organic) greatly increased their bioactivities. We foresee that the structure–property relationship of
recently developed materials could significantly decrease the laborious work of background research
to achieve target-oriented drug design in coming years. This review summarizes the research progress
in the last 10 to 15 years and the application of selenium-containing compounds in the design and
synthesis of those materials for potential antioxidant and anticancer agents.
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1. Introduction

Selenium is a nonmetal/metalloid with characteristics halfway between those of
sulfur and tellurium [1,2]. In the Earth’s crust, it hardly ever exists in either its elemental
state or as a pure ore complex. Jöns Jacob Berzelius made the discovery of selenium in
1817 and remarked that it resembled the already-known element tellurium [1]. Although
minute amounts of selenium are required for normal cellular function, elemental selenium
and selenium salts are hazardous in even small levels and can lead to selenosis [3]. The
antioxidants glutathione peroxidase and thioredoxin reductase, as well as deiodinase
enzymes, contain selenium, which is listed as an element in many multivitamins and
other nutritional supplements [4,5]. Thioredoxin reductase and glutathione peroxidase
catalyze processes that are necessary for shielding biological components from oxidative
and free radical damage. The amount of selenium needed by different plant species varies
from high levels to zero level [6]. The current recommended daily selenium allowance or
recommended dietary allowances (RDA) for adult men and women is 55 micrograms [7].

Selenium-based heterocycles have made a valuable contribution in material science
due to their electron-donating and electron-accepting abilities and their ability to mod-
ify electronic, structural, and morphological properties [8–11]. Selenium-based hetero-
cycles have been utilized in small molecules, oligomers, and polymers to improve the
electronic properties in an incremental direction [12–15]. Multiple selenium-containing
compounds [12,16] have also been developed to improve the electronic behavior with
higher mobility value in field-effect transistor (FET) devices [17]. They have also been
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used as polymers in organic solar cells and organic electronic devices for better power
conversion efficiency (PCE) and mobility value for implementation purposes [18].

Selenium-containing compounds have been of great significance in the domain of
medicinal chemistry. Selenium and selenium-containing compounds continue to be top-
ics of substantial interest in the fields of biochemistry, epidemiology, and pharmacology.
Numerous diseases that are now known to be linked to selenium deficiency have historically
affected specific groups [19,20]. When considering medicinal uses, it is vitally important to
manage the right amount and the right molecular types of selenium-based pharmaceuticals.
It is important to note that more than 40 years ago, the idea that selenium might have a
preventive effect against human cancer was explored in mainstream scientific literature [21,22].
Cancer death rates were found to be much lower in US counties with moderate or high
selenium levels, as opposed to counties with low selenium levels, which revealed an in-
verse relationship between selenium levels and cancer incidence [23]. Low selenium levels
have been perceived in breast cancer patients and patients with pancreatic carcinomata.
Selenium compounds have been shown to have antitumorigenic properties in several
animal studies [24].

As a crucial trace element, selenium also performs a number of exclusive activities
and has significant metabolic impacts on human health [25]. Numerous clinical studies
have demonstrated that selenium deficit in the human body can lead to many significant
life-threatening disorders, such as cancer, liver disease, organ failure, and cardiovascular
disease [26,27]. Several studies have demonstrated that individuals with low or deficient
selenium levels require an appropriate selenium supplement, which helps in boosting
antioxidant activity and augmenting cellular defense capability [28]. As a result, the devel-
opment of unique selenium compounds provides a desirable toolset for medical chemists
in building effective pharmaceuticals. Selenium-containing compounds have been found
to have antioxidants, anticancer agents, and antiparasitic, antibacterial, antiviral, anti-
fungal, and neuroprotective properties [24,29,30]. We foresee that the structure–property
relationship of recently developed materials could significantly decrease the laborious
work of background research to achieve target-oriented drug design in coming years. This
review summarizes the research progress that has taken place in last 10 to 15 years and the
application of selenium-containing compounds from differential structural aspects, which
will be helpful in increasing interest in the community in the design and synthesis of those
materials for applications as potential antioxidant and anticancer agents.

2. Antioxidant Activity

Selenocysteine can substitute the effect of cysteine and shield healthy cells from the
adverse effects of reactive oxygen species (ROS); in other ways, specific selenium com-
pounds (Figure 1) are classified as antioxidant agents that preserve the redox environment
in healthy cells [31]. In contrast, oxidation occurs at advanced levels in cancer cells and
affects various aspects of their activity with ineffective antioxidant mechanisms [32]. Sele-
nium can be administered in its elemental form or after combining it with other inorganic
or organic compounds, where low doses promote cell development and high levels exhibit
a cytotoxic impact [32].

The excellent antioxidant and glutathione-peroxidase-like properties of diphenyl
diselenide 1 help to defend macrophages from atherogenic signaling. Pretreating J774A.1
macrophages with 1 substantially reduced the formation of ROS driven by oxidized low-
density lipoprotein (oxLDL) [33]. Without affecting by inherent cytotoxicity, 1 was able
to prevent breast cancer (MCF-7) cells from oxidative damage imposed by tamoxifen [34].
Cyclic diselenide, compound 2, outperformed in terms of anti-lipid peroxidation activity
(IC50 = 10.7 µM) [35]. In actuality, the coexistence of dithiothreitol [Se− Se−] caused by
the diselenide (Se-Se) bond reduction resulted in highly active [Se−, Se−] that helped to
convert H2O2 to H2O and reintroduce the original Se-Se form [36]. Moreover, Se-Se directly
converted the lipid peroxide to the respective alcohol and inhibited the chain reaction of
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free radicals as an antioxidant in the process of lipid peroxidation of lecithin/cholesterol
liposomes caused by 2,2′-azobis (2-aminopropane) dihydrochloride (AAPH).
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Dimethylselenourea 3 and its pyrrolidine analog 4 with IC50 values of 6.8 and 6.5 µM,
respectively, showed antioxidant behavior and rapidly scavenged O2

− produced by poly-
morphonuclear leukocyte (PMNs). Selenoureas appeared to readily scavenge O2

− and
generate O2, with little to no NADPH oxidase activity inhibition. Selenourea analog 5
also showed excellent anti-free radical properties and acted as a biomimetic catalyst for
glutathione peroxidase to scavenge H2O2 (IC50 value of 3.76 µM on HeLa cells) [37]. Simi-
larly, selenourea-based compound 6 demonstrated strong radical scavenging activity in
2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azinobis-(3-ethylenebenzothiazoline)-6-
sulfonic acid (ABTS) assays and had a preventive role on cells against oxidative stress [38].
Phenyl-ring-containing selenamides 7 and 8, with IC50 values of 11.3 and 20.3 µM, respec-
tively, efficiently scavenged O2

− from PMNs [39].
With good water solubility, cycloselenide 9 catalyzed the dielectronic reduction of

H2O2 to H2O and the oxidation of mercaptan (RSH) to disulfide (RSSR) through a catalytic
cycle akin to the GPX [40]. The stimulation of the apoptotic signaling pathway in healthy
cells was caused by a disparity in redox and immunological homeostasis initiated by the
zidovudine derivatives 10 and 11 [41]. Ebselen (EBS) was demonstrated to be a glutathione
peroxidase mimic and a peroxynitrite scavenger [42]. EBS pretreatments significantly
reduced the amount of thiobarbituric acid-induced substance production on mouse skin.
Leukocyte infiltration and activation were specifically prevented by EBS, which reduced
the H2O2 level. Compounds 13, 14, and 15 were capable of neutralizing the DPPH activity
by 20% at 0.25 mg/mL, whereas compound 16 scavenged the DPPH activity by >40% at
0.25 mg/mL. The result indicated that the selenadiazoles ability to scavenge free radicals
was concentration-dependent [43].

3. Anticancer Activity

Cancer is one of the most serious threats to human health. It affects millions of individ-
uals and imposes a tremendous burden on research, social life, and the economy [44]. There
is a limit to current treatments’ efficacy for the prevention and treatment of cancer [45,46].
The creation of novel pharmaceuticals [47,48], radiopharmaceuticals [49–51], therapeutic
targets, and modified molecules with improved drug transport and efficacy have received
attention in recent years [52,53].
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3.1. Inorganic Se Compound

Common inorganic selenium compounds are hydrogeno selenides (H2Se), hydrogeno
metal selenides (HSeM), dimetal selenides (M2Se), hydrogeno diselenides (H2Se2), metal
diselenides (M2Se2), metal selenocyanates (MSeCN), and metal selenosulfates (4) (SO3SeM2)
(Table 1). Sodium selenite (Na2SeO3) is one of the imperative inorganic selenium salts.
Na2SeO3 is a component of dietary supplements, such as multivitamins/minerals. The US
Food and Drug Administration (FDA) approved a general form of Na2SeO3 as a supplement
to animal diets. Cholangiocarcinoma (a type of malignancy) has been exploited to explore
the effects of sodium selenite (Na2SeO3), primarily in preclinical models. Na2SeO3, when
applied to cholangiocarcinoma cells at concentrations between 1 and 10 µM, significantly
reduces invasion, migration, and the epithelial-to-mesenchymal transition by causing
apoptosis and downregulating N-cadherin [54]. It has been demonstrated that at the
molecular level, treatment (10 µM) with Na2SeO3 can restrict cell proliferation in gastric
cancer. At 30 µM, it caused apoptosis and elevated Se-binding protein 1 (SBP1) expression
levels, which are key mediators for anticancer effects of selenium compounds. Additionally,
sodium selenite reduced the levels of β-catenin, glycogen synthase kinase 3β (GSK3β), and
nuclear factor erythroid 2-related factor 2 (NRF2) [55].

Table 1. Category of selenium-containing compounds with anticancer activity.

Compounds Chemical Functionality Activity

Inorganic Se
Compound

Hydrogeno selenides (H2Se),
hydrogeno metal selenides
(HSeM), Sodium selenite
(Na2SeO3), etc.

Inhibits cholangiocarcinoma and gastric cancer.

Peptides Organic Se-based
peptide molecules

Inhibits melanoma, nasopharyngeal carcinoma,
acute myeloid leukemia, colorectal
adenocarcinoma, breast adenocarcinoma, and
hepatocellular carcinoma.

Ebselen (EBS)
1,2-benzoselenazol-3-one
carrying an additional phenyl
substituent at position 2

Anti-inflammatory, antioxidant, and
cytoprotective; scavenges hydrogen peroxide
and peroxynitrite in human cells by acting as a
Glutathione (GSH) peroxidase mimic.

Seleninic Acid Methylseleninic acid
(CH3SeO2H)

Inhibits human pancreatic (PANC-1 cells) and
breast prostate cancer cells.

Selenides
R-Se-R, selenoethers,
selenium equivalents of
ethers and sulfides

Antioxidant (redox-modulating, antioxidant,
and chemopreventive chemicals) and
anti-tumoral (antiproliferative, cytotoxic,
and apoptotic).

Diselenides
R–Se–Se–R, two covalently
linked selenium atoms in the
same molecular construct

Cytotoxicity on neuroblastoma; activates
caspase-dependent and independent pathways
to cause apoptosis and hinder the growth of
human breast cancer.

Selenocyanates SeCN present Cytotoxic against breast cancer, melanoma, and
T-lymphoblastic leukemia.

Selenoureas Se instead of an O in the
urea group

Reactive oxygen species scavenger; inhibits
colon cancer cells; potent antiproliferative,
glutathione peroxidase-like, and
antiradical properties.

Selenazoles

Se-containing compound in
the series of heterocyclic
5-membered ring azoles with
nitrogen heteroatoms

Antitumor activity against mouse melanoma;
antitumor activity for breast (MDA-MB-231) and
human prostate (PC3) cancer cells.

3.2. Peptides

The majority of inorganic Se compounds are poisonous and the minimum lethal
dose is relatively low. Therefore, the ideal characteristics of these supplements include
organic Se molecules with high biological activity, low toxicity, and few adverse effects.
In addition, food proteolysis byproducts have been found to contain peptides with phys-
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iologically active properties, including the capacity to chelate minerals. Selenocystine
(SeCys, 17), a diselenide product of selenocysteine (Figure 2) and nutritionally available
selenoamino acid, displayed a significant cytotoxic effect against melanoma (A375 cells),
nasopharyngeal carcinoma (CNE2 cells), acute myeloid leukemia (HL60 cells) cells and
colorectal adenocarcinoma (SW620 and Colo201 cells), breast adenocarcinoma (MCF7 and
MDA-MB-231 cells), and hepatocellular carcinoma (HepG2 cells) cancer cells with the IC50
values of 3.6, 5.6, 34.5, 7.3, 16.2, and 17.5 µM, respectively [56–58]. A monomethylated
derivative of selenocysteine, Se-methylselenocysteine (MeSeCys, 18), might be converted
into methylselenol by selenocysteine-conjugated β-lyase [59]. The intensity of the active
metabolite methylselenol is the only factor affecting the potency of MeSeCys. In the mi-
cromolar range, MeSeCys showed cytotoxic effects against many human cancer cell lines,
including melanoma (A375 cells), nasopharyngeal carcinoma (CNE2 cells), acute myeloid
leukemia (HL60 cells), colorectal adenocarcinoma (SW620 cells), and breast adenocarci-
noma (MCF7 and MDA-MB-231 cells) cancer cells (IC50 = 54, 138.7, 459.0, 632.8, 193, and
255.8 µM, respectively) [56]. Selenomethionine (SeMet, 19) demonstrated significant cy-
totoxicity against melanoma (UACC-375 cells), lung cancer (A-549 cells), breast cancer
(MCF-7/S cells), colon cancer (HT-29 cells), prostate cancer (DU-145 cells), and other cancer
cells (IC50 = 50, 65, 45, 130, and 40 µM, respectively) [60].

3.3. Ebselen (EBS)

Numerous organoselenium compounds have been produced and studied for various
pharmacological applications since 1984, when ebselen 12 (Figure 1) was evaluated as a
mimic of the important antioxidant enzyme glutathione peroxidase (GPx) [3]. Since then,
the wide range of uses for ebselen’s anti-inflammatory, antioxidant, and cytoprotective
effects when administered orally or by subcutaneous injection has been investigated in
various studies and clinical trials. Ebselen scavenges hydrogen peroxide and peroxyni-
trite in human cells by acting as a GSH peroxidase mimic and primarily as a peroxire-
doxin mimic through thioredoxin (Trx) and thioredoxin reductase (TrxR) [61]. Ebselen
inhibits TrxR in prokaryotic cells, which increases reactive oxygen species (ROS). Ebselen
has been developed as a possible antibiotic in recent experiments using the distinction,
particularly when combined with silver, that allows ebselen to kill multi-drug-resistant
Gram-negative bacteria [61]. An analog of ebselen, called ethaselen 20 (Figure 2), can
specifically inhibit TrxR activities, which reduces nuclear factor κB (NF-κB) activities and
causes the overexpression of Bax protein and the downregulation of Bcl-2 protein [62]. It
is often delivered orally or by intravenous injection. In K562/CDDP cells, the elevated
Bax/Bcl-2 ratio subsequently causes a cytochrome c release from mitochondria to cy-
tosol and Caspase-3 activation. Numerous cancer cell lines that have TrxR inactivation
experience cell death through apoptosis commencing 24 h after treatment, particularly
at ebselen concentrations between 20 and 40 µM [62]. In a phase II clinical trial for the
treatment of non-small-cell lung tumors overexpressing TrxR, ethaselen was the second
organoselenium to have achieved this milestone (Ethaselen for the Treatment of Thiore-
doxin Reductase High Expression Advanced Non-small Cell Lung Cancers. Available
online: https://clinicaltrials.gov/ct2/show/NCT02166242 (accessed on 16 March 2022).

3.4. Seleninic Acid

Methylseleninic acid (CH3SeO2H) is an organoselenium compound with one car-
bon atom derived from seleninic acid, wherein the hydrogen atom next to selenium was
swapped by a methyl functionality. It functions as a histone deacetylase inhibitor, an anti-
neoplastic agent, and a human xenobiotic metabolite. Methylselenic acid showed inhibition
potency for human pancreatic (PANC-1 cells), breast (MCF-7 cells), and prostate (PC-3 cells)
cancer cells with IC50 values on MCF-7 cells of 2.6, 2.0, and 8.4 µM, respectively [63].
According to the mechanisms, CH3SeO2H suppressed several cancer cells by triggering
numerous caspase pathways, inducing the unfolded protein response (UPR), cytochrome C
release, and cleaving poly (ADP-ribose) polymerase (PARP) [64].

https://clinicaltrials.gov/ct2/show/NCT02166242
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3.5. Selenides

In comparison with their diselenide counterparts, organic selenides (R-Se-R), com-
monly known as selenoethers, are the selenium equivalents of ethers and sulfides (Figure 2).
Antioxidant substances (redox-modulating, antioxidant, and chemopreventive chemicals)
and antitumoral substances (antiproliferative, cytotoxic, and apoptotic) are the two main
categories of selenides. Methylimidoseleno carbamates 21 [65], which are multi-kinase
inhibitors, blocked PI3K/Akt/mTOR and ERK1/2, simultaneously causing autophagy
and death in cancer cells. They demonstrated anticancer activity against the human
prostate cancer cell line PC-3 with an IC50 value of 1.85 mM. The similar derivative 22 [66]
showed antiproliferative action against breast cancer MCF-7 (IC50 = 3.4 nM), colon cancer
HT-29 (IC50 = 0.3 nM), lymphocytic leukemia K-562 (IC50 = 6.1 µM), hepatocarcinoma
Hep-G2 (IC50 = 0.6 µM), and prostate cancer PC-3 (IC50 = 1.3 µM) cells. The Se-containing
quinazoline 23 had a potent cytotoxic impact on lymphocytic leukemia (CCRF-CEM cells)
and breast cancer (MCF-7 cells) with IC50 values of 2.99 and 2.92 µM, respectively [67].
A series of Se-containing zidovudine derivatives, 10, 11, and 24, showed potential antitumor
effects with IC50 values of 78.85, 51.63, and 40.4 µM, respectively, against human bladder
cancer cell 5637 [68]. Targeting the COX-2 and PI3K/Akt signaling pathways, selecoxib-1-
GSH, 25, demonstrated increased potency against melanoma cells with an IC50 value of
7.66 µM, compared with celecoxib (IC50 = 55.6 µM), and reduced xenograft tumor forma-
tion by almost 70% with minimal toxicity [69]. The IC50 values for compound 26 were
0.59 µM for human promyelocytic leukemia (HL-60 cells) and 0.37 µM for human colon
cancer (HCT-116 cells), respectively [70]. With IC50 values between 6 and 15 nM, compound
27 with a benzodiazepine scaffold showed potent cytotoxicity against five cancer cell lines:
A549, MDA-MB231, HepG2, HeLa, and HCT116 [71]. Mechanistic investigations revealed
that 27 interfered with intracellular microtubule organization, stopped the cell cycle at the
G2/M phase, and ultimately promoted cell death. With IC50 values of 0.67 and 0.90 µM,
respectively, compound 28 with a phenylselenide tail effectively inhibited the proliferation
of both sensitive (PAR) and resistant (MDR) mouse T-lymphoma cell lines [72].
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3.6. Diselenides

Organic diselenides (R–Se–Se–R) have two covalently linked selenium atoms in the same
molecular construct. Numerous diselenides were produced using various synthetic tech-
niques and demonstrated potential antitumor efficacy, Figure 3. Through ERK1/2-mediated
apoptosis, diphenyl diselenide 1 demonstrated blatant cytotoxicity on neuroblastoma cell
SHSY5Y (IC50 = 30 µM) [73]. Subsequently, it was shown that substituted diaryl dise-
lenide, 3-(trifluoromethyl) diphenyl diselenides 29 and 4-methoxydiphenyl diselenides
30 activated caspase-dependent and independent pathways to cause apoptosis in HT-29
cells [74]. One of the earliest examples of a diselenide that showed synergistic potency
when paired with well-known antitumor medications was diphenyl diselenide 31, which
had a significant effect on MCF-7 cells (IC50 = 15 µM) [75]. Diselenide 32, which has a
pyridazine scaffold, significantly inhibited the growth of human breast cancer cells MCF-7
(IC50 = 10.3 µM) [76]. Aggregation induced emission (AIE) properties were visible in
the fluorescent 9,10-distyryllanthracene (DSA) derivative 33 that contains a diselenide
group [77]. SeDSA-SePTX-Co-NPs (Co-NPs), which provided improved advantages in cell
imaging and antitumor activity with strong selectivity between tumor and normal cells,
were produced by the combination of 33 and a paclitaxel analog. With IC50 values of 3.9
(Caco2 cells), 8.3 (BGC-823 cells), 6.8 (MCF-7 cells), and 6.6 (PC-3 cells), µM compound 34
showed powerful anticancer properties [78]. Diselenide 35, which has a lengthy selenide
chain, demonstrated effective early melanocytic lesion prevention and showed reduced
HDAC activity and controlled Akt activity [79].
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3.7. Selenocyanates

Selenocyanate (SeCN) (Figure 3) has been demonstrated to be a crucial pharmacophore
for drugs that enhance anticancer activity through synergistic effects brought on by the
combination of both functions (Se and CN). SeCN compounds like p-xylene selenocyanate
and benzyl selenocyanate have been investigated for their anticancer properties for a
very long time and numerous new active selenocyanate compounds with strong cytotoxic
properties have been found in recent years. The tubulin polymerization and Akt phospho-
rylation were inhibited by compound 36, a benzyl selenocyanate derivative that exhibited
cytotoxicity against the MCF-7 breast cancer cell line with an IC50 value of 1.5 µM [80].
Compound 37 was an SeCN-containing derivative of vorinostat (an FDA-approved drug)
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that demonstrated cytotoxicity against melanoma cell line WM115 with an IC50 value of
0.8 µM [79]. It was also utilized to stop the onset of early melanocytopathy. Without
compromising the development of human fibroblasts, selenium-containing triterpenoids
38 demonstrated low micromolar cytotoxic action with an IC50 value of 2 µM against
T-lymphoblastic leukemia [81]. Selenocyanate analog selnocoxib-1 39 inhibited the develop-
ment of the prostate cancer cells PAIII and PC-3M with low IC50 values (5 µM for each) by
downregulating the levels of p-AKT, COX-2, and HIF-1a [82]. Phenylalkyl isoselenocyanates
(ISCS), which were discovered to be effective antitumor drugs, are isoselenium analogs of
phenylalkyl isothiocyanates (ITCs). Phenylbutyl isoselenocyanate 40 exhibited strong anti-
proliferative activity against the cell lines of fibrosarcoma HT-1080 (IC50 = 11 µM), melanoma
UACC 903 (IC50 = 10 µM), fibrosarcoma HT-1080 (IC50 = 11 µM), glioblastoma T98G
(IC50 = 27 µM), prostate cancer PC-3 (IC50 = 19 µM), fibrosarcoma HT-1080 (IC50 = 11 µM),
and colon cancer Caco-2 (IC50 = 12 µM) [83].

3.8. Selenoureas

Seleniourea, a functional group containing a Se instead of an O in the urea group,
has been reported to have antitumor potential (Figure 4). As a mimic of glutathione peroxi-
dase, compound 41 with an N-phenylselenourea group is an efficient reactive oxygen species
scavenger [84]. On HeLa cells, it had a potent antiproliferative impact (IC50 = 1.9–11.8 µM).
Low IC50 values (0.7–6.6 µM) for compound 42 with two selenourea groups were perceived
in a number of cancer cell lines, including HCT116, A549, 1205Lu, DU145, and PANC-1 [85].
With IC50 values ranging from 0.7 to 2.5 µM, 42 effectively lowered the viability of three
colon cancer cell lines (HCT116, HT29, and RKO). Selenourea 43 exhibited potent antipro-
liferative, glutathione peroxidase-like, and antiradical properties when used against HeLa
cancer cells [37].
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3.9. Selenazoles

Selenazoles (Figure 4) are selenium-containing compounds in the series of hetero-
cyclic 5-membered ring azoles with nitrogen heteroatoms. Significant efforts have been
made to develop selenazoles as effective cancer chemotherapeutics. In this category,
compound 44 was the onset compound having substantial antitumor activity against
mouse melanoma [86]. Next-generation selenazole 45 displayed effective antitumor activity
for breast (MDA-MB-231) and human prostate (PC3) cancer cell lines [87]. Among the
other selenazoles, compound 46 also showed potent antitumor activity against melanoma
(A375 cells IC50 14.3 µM), breast cancer (MCF-7 cells IC50 46.0 µM), and liver cancer
(HepG2 cells IC50 19.6 µM) [88]. On the other hand, compound 47 showed a practical
antiproliferative effect with benzimidazole functionality [89]. Compounds 47a, 47b, 47c,
and 47d displayed antiproliferative effects for MCF-7 and MDA-MB-231 cells with lower
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ranges (1–26 µM) IC50 values. Selenium-based small molecules have been explored not
only as potential antioxidant and anticancer agents but also as antimicrobial, antialzheimer,
antidepressant, antidiabetic, antifibrolytic, antiparasitic, antiviral, antifungal, and neuro-
protective agents. Recent interest focused on selenium-based nanomedicines in confronting
various diseases, especially as antitumor and antidiabetic agents. However, most of the
work involving selenium compounds is still in the preclinical stage. We can expect that
new selenium-based pharmaceutical compounds with therapeutic promise against human
diseases will continue to be developed in coming years, because our knowledge of the
biology, biochemistry, and pharmacology of selenium is quickly expanding.

4. Conclusions

Selenium-containing compounds with a variety of functional groups have been found
to have antioxidant and anticancer activities. In the search for effectiveness in the pre-
vention and treatment of cancer and other related disorders, selenocyanates, selenoureas,
selenoesters, selenium-containing heterocycles, selenium nanoparticles, selenides, and dis-
elenides have been taken into consideration. In addition to the antioxidant and anticancer
activities of selenium-containing compounds, they have also been explored as antifibrolytic,
antiparasitic, antibacterial, antiviral, antifungal, neuroprotective, and even anti-Alzheimer
agents. Although selenium in its elemental form is usually seen as a harmful element with
few or no benefits, significant progress has been made when it is incorporated into bioactive
compounds. However, due to the high toxicity of selenium, limited clinical exploration of
selenium-based drug components has been observed. Efforts must be focused on finding
the proper balance of the dose a person could receive as a drug molecule that should not
exceed the safe amount of elemental selenium. The conjugation of selenium in organic or
inorganic compounds under a structural modification approach or in combination with
other reactive safe chemical functionalities or hybrid platforms could lead to a solution
towards more clinically approved selenium-based drug molecules. As our fundamental
knowledge of selenium biology, biochemistry, and pharmacology grows, it will be possible
to predict future innovative approaches for the logical development of new therapeutics
that are selenium-based or that target particular parts of selenium metabolism.
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