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Abstract: The current study aimed to evidence the strengths and weaknesses of two indirect methods
for assessing the anaerobic alactic contribution to a specific CrossFit® workout. Thirty experienced
crossfitters performed the Fran workout at maximal intensity, and ventilatory data were collected
during the recovery period using a telemetric portable gas analyser to assess the oxygen uptake (VO2)
of the off-kinetics fast component (Anarecovery). The kinetics of maximal phosphocreatine splitting
(AnaPCr) were determined based on the literature. No differences between the two methods were
observed (31.4 ± 4.0 vs. 30.4 ± 4.1 kJ for Anarecovery and AnaPCr, respectively). Despite the existence
of some caveats (e.g., errors derived from a delay at the onset of VO2 recovery and the assumption of
given values in the concentration of phosphocreatine per kilogram of wet muscle, respectively) in
both methods, the data indicate that they yield similar results and allow for estimations of alactic
energy contribution from a short-duration and high intensity CrossFit® routine. The current data
contributes to CrossFit® workout evaluations and training strategies, helping researchers to evaluate
crossfitters more accurately. The advantage of the two methods used in the current study is that they
are non-invasive, which differs greatly from muscle biopsies.
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1. Introduction

Sports bioenergetics have been studied since the 1920s, with a focus on locomotion
and its contribution to athletic performance [1]. The capability to produce mechanical
work during physical exertion is ultimately determined by the muscle cells’ ability to
provide energy by means of two distinct but integrated metabolic processes: the anaerobic
and the aerobic pathways [2]. Aerobic energy release is readily quantified, since there is
a direct relationship between the oxygen uptake (VO2) measured at the mouth and the
whole-body aerobic production of adenosine triphosphate [2,3]. Of the two components
of anaerobic energy contribution, the lactic system is more often investigated, because it
can be estimated based on the net increase in blood lactate concentration at the end of the
exercise, and assumes a given energy equivalent for lactate [1,4].

The anaerobic alactic contribution has been estimated by assuming that phospho-
creatine (PCr) concentration in active muscles decreases by a known amount and with a
given kinetics (AnaPCr) in the transition from rest to exhaustion [2,5]. Another anaerobic
alactic contribution estimation is calculated based on the postexercise VO2 fast component
(Anarecovery), since the greatest part of the O2 debt has been interpreted as the energy
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necessary to rebuild the high energy phosphate compounds which were split at the exercise
onset [3,6]. These methods have been applied before in different exercise modes [7–9],
and are based on questionable assumptions, such as the PCr concentration rest value and
VO2 on response time constant at the muscular level. Moreover, the assumption that the
post-exercise VO2 fast component is independent of blood lactic acid removal has also
been questioned [2].

CrossFit® workouts comprise functional movements performed at high intensity, and
are typically composed of gymnastic-type exercises, metabolic-related conditioning and
weightlifting [10,11]. Fran is one of the most popular CrossFit® benchmarks, a time-scored
workout consisting of three rounds of 21, 15 and 9 front squat to press overheads (using a
43 and 30 kg barbell for males and females, subjects dropped the hips below the knees and
finished the exercise with the knees, hips and elbows in full extension) plus pull-ups (the
chin needed to pass the bar) repetitions [11,12]. This workout is used to evaluate crossfitters’
performance improvements, and is directly related to anaerobic thresholds obtained on
a cycle ergometer [11]. Given the necessity of a more specific method to assess CrossFit®

performance, the use of both aforementioned methods still warrants further research. The
current study aimed to evidence the strengths and weaknesses of two methods for assessing
the anaerobic alactic contribution of a specific CrossFit® workout: (i) using the VO2 off-
kinetics fast component, and (ii) estimating the maximal phosphocreatine splitting in the
contracting muscle.

2. Materials and Methods
2.1. Subjects and Data Collection

Thirty participants (21 males and 9 females) with ≥ five years of previous CrossFit®

training experience volunteered to participate in the current study (28.3 ± 6.2 and
25.2 ± 3.7 years old, 174.5 ± 5.8 and 161.7 ± 4.8 cm of height and 78.2 ± 7.6 and 64.1 ± 3.4 kg
of body mass, respectively). All crossfitters were instructed to maintain the same individual
nutritional habits and to avoid intake of alcohol and caffeine (as well as hard physical
activity) 48 h prior to the test. All volunteers were informed about the experimental
procedures, associated risks and benefits of participation. The experimental procedures
were approved by the Ethics Committee of the Faculty of Sport at the University of Porto
(CEFAD212019), and followed the Declaration of Helsinki and the guidelines of the World
Medical Association for research on humans.

The experiments were conducted at a full equipped laboratory facility with ~22 ◦C
room temperature and 55% relative humidity. After being familiarized with the procedures
and accomplishing a 10 min individualized low intensity warm-up (joint mobility plus
Fran’s specific exercises), participants performed the Fran workout at maximal effort [11].
Performance was measured using a stopwatch (Seiko, Yokohama, Japan) and post-workout
respiratory gas exchange was measured breath-by-breath using a portable gas analyser
for five minutes (Cosmed K4b2, Cosmed, Rome, Italy) [13]. To omit errant breaths (e.g.,
swallowing and coughing) and to reduce the eventual noise from this acquisition, data
were edited according to previously described procedures [13].

2.2. Data Processing

The anaerobic alactic contribution was determined using the VO2 off-kinetics fast
component in the Fran workout—Anarecovery [3,7]. To determine the fast and slow com-
ponent kinetics, mono- and bi-exponential models were computed (Equations (1) and (2))
using VO2FITTING software [14] for data analysis and treatment, as well as for editing and
modelling participants’ responses:

VO2 (t) = A0 − H (t − TDp) Ap (1 − e−(t−TDp)/τp (1)

VO2 (t) = A0 − H (t − TDp) Ap (1 − e−(t−TDp)/τp ) − H (t − TDsc) Asc (1 − e−(t−TDsc)/τsc
)

(2)



Oxygen 2022, 2 623

where VO2 (t) represents the relative VO2 at the time t, A0 is the VO2 at rest, H represents
the Heaviside step function, Ap and Asc, τp and τsc, and TDp and Tsc are the amplitude,
time constant and time delay of the off-VO2 fast and slow components, respectively [14].
Anarecovery was determined as the VO2 time integral derived from the off-fast component,
assuming an energy equivalent of 20.9 kJ·L−1 [1,5]. Peak oxygen uptake (VO2peak) was
obtained by backward extrapolation at zero recovery time using values from the first 20 s
of recovery (Figure 1) [13].
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Figure 1. Individual oxygen uptake curve during the recovery period after the Fran workout (bi-
exponential model fit).

The anaerobic alactic contribution was also estimated using the maximal PCr splitting
in the contracting muscle, by assuming an energy equivalent of 0.468 kJ·mM−1 and a
phosphate/oxygen ratio of 6.25 (Equation (3)) [1,5]:

AnaPCr = PCr·(1 − e−t/τ)·M (3)

where PCr is the phosphocreatine concentration at rest, assumed to be 18.55 mmol·kg−1 in
maximally active muscle mass [7,15], t is the exercise time, τ is time constant of the PCr
splitting at exercise onset (23.4 s) and M is the body mass [1].

2.3. Statistical Analysis

Assuming a statistical power (β) 0.90, a large effect size (0.80) and a 0.05 overall level
of significance, a 19-participant sample size seemed adequate for carrying out the current
study (G*Power 3.1.9.7, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany).
Mean plus SD were computed (GraphPad Prism 6) and data were checked for distribution
normality with the Shapiro–Wilk test. The paired sample t-test was used to compare
Anarecovery with AnaPCr, and the efficiency method agreement was assessed by linear
regression analysis and Bland–Altman plot. The significance level was set at 5%.

3. Results

The Fran workout duration was 192 ± 29 s, while the VO2peak, amplitude, time
delay and time constant of the VO2 primary component during the recovery period were
41.8 ± 4.8 and 30.4 ± 4.1 mL·kg –1·min –1, and 7 ± 5 and 57 ± 14 s, respectively. Figure 2
displays the individual and average values of the anaerobic alactic contribution assessed
through the two used methods, with no differences being observed between Anarecovery
and AnaPCr.
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Figure 2. Individual and mean ± SD values of the VO2 off-kinetics fast component and the maximal
phosphocreatine splitting in the contracting muscle (Anarecovery and AnaPCr, respectively) methods
for anaerobic alactic assessment.

The Bland–Altman plot, comparing differences between the anaerobic alactic contri-
bution assessment methods and its average value, is reported in Figure 3. The average
of the differences between methods was low and close to zero (0.29), indicating that they
presented similar results. The corresponding limits of agreement (average ± 1.96 SD)
ranged between −5.48 and 6.60, indicating a small difference between the two methods
for 95% of the subjects. In addition, the Bland–Altman regression showed no differences
between Anarecovery and AnaPCr for estimating anaerobic alactic contribution.
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Figure 3. Bland–Altman plot comparing the two anaerobic alactic contribution assessment methods,
with black dotted and dashed lines representing the 95% limits of agreement as well as the bias and
linear regression (respectively).

4. Discussion

The alactic anaerobic energy source contributes significantly to the specific energy
expenditure requirements of short-term resistance exercises [4]. Nevertheless, its direct
assessment through invasive methods, such as muscle biopsies, is expensive and complex,
which is the reason why non-invasive alternatives are most frequently used [1,2]. In
the current study, two methods of anaerobic alactic assessment along a CrossFit® short
duration and maximal intensity workout were analysed and compared, evidencing similar
values. Although none could be considered as the gold standard approach, and since both
have limitations (e.g., errors derived from a delay at the onset of VO2 recovery and the
assumption of given value percentage of active muscle mass), the current study underlines
the importance of estimating the anaerobic alactic contribution to assess the total energy
expenditure (aerobic plus anaerobic systems) of a severe-intensity exertion. This will help
researchers and coaches to evaluate their crossfitters accurately, with the aim to adjust the
training plan accordingly to its specificity.
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The post-exercise values of the VO2 fast component amplitude and time delay were
lower than those reported for other exercise modes (e.g., running, rowing and swim-
ming) [5,7]. This may be due to the current study’s higher exercise intensity and to a sport-
specific VO2 answer [2,3]. Regarding the VO2 off-time constant, our results corroborate the
literature conducted in other intensity domains [9,13]. The Anarecovery method was first in-
troduced by Margaria et al. [16], analysing the post-excess VO2 in the recovery period, and
was referred as alactic O2 debt. Accordingly, most of the O2 debt was then interpreted as the
energy necessary to rebuild high-energy phosphate compounds [6]. This interpretation has
been confirmed in experiments in humans and on isolated muscle (in vivo) by assuming
that PCr is rapidly resynthesized in the first 2 min after exercise [17–19]. The advantage of
the Anarecovery method is that it does not interfere with muscle activity during the workout,
maintaining the ecological validity of the measurements. The Anarecovery values reported
in the current study are lower than those reported for cycling (~40 kJ), boxing (~58 kJ)
and running (~40 kJ) [3,8,20], but similar than those reported to swimming (~32 kJ) and
kayaking (~32 kJ) [7,21]. These differences could be attributed to different time durations
and intensities of exercise, and the activation patterns of different muscle masses [2,5].

The AnaPCr method considers that the energy derived from full utilization of PCr
stores (during all-out efforts), which can be estimated assuming during the transition from
rest to exhaustion, decreases in concentration (18.55 mmol·kg−1) in relation to the active
muscle mass [1,15]. The PCr stores assumed in the current study are in accordance with
the decline in PCr measured by muscle biopsy at the end of exhaustive exercise [22,23].
Thus, in contrast to the muscle biopsy method (a highly invasive procedure), this method
enables an easier and more ecological estimate of the anaerobic alactic contribution [4,24].
The values of AnaPCr reported in this study are similar to those described for swimming
(~31 kJ), rowing (~31 kJ) and cycling (~29 kJ) events [5,7].

Although similar values were obtained using the two non-invasive methods, several
limitations should be considered for both, and these could affect the estimation of alactic
anaerobic energy contributions. Regarding the Anarecovery method, the fact that the VO2
fast component is independent of lactic acid removal from blood during the recovery period
is still a matter of debate [2]. In addition, a forced apnea during muscle contractions at the
end of the workout will likely induce an augmented expiration, increasing post-workout
VO2 [4,24]. There are variables that can change the values obtained by the AnaPCr method,
such as the percentage of active muscle mass, the associated time constant of VO2 on-
response at the muscle level and the concentration of PCr per kilogram of wet muscle [1,5].

The possibility of determining the anaerobic alactic contribution is necessary to ad-
equately assess the total energy expenditure and to relate it to high-intensity CrossFit®

workout performance. In addition, CrossFit® researchers, coaches and practitioners should
better understand its metabolic demands if they wish to set accurate energetic training
goals with the aim of specific workout adaptations. Although there are some caveats
regarding both methods, considering the absence of other (non-invasive) approaches, it is
still important to estimate this variable in these types of efforts.

5. Conclusions

In the current study, no differences in anaerobic alactic contribution were observed
between the two investigated methods, suggesting that both methods can be utilized
to estimate anaerobic alactic contribution in a specific CrossFit® workout performed at
maximal exertion. The advantage of determining the alactic anaerobic contribution is
to maintain the ecological validity of the measurements, consequently increasing the
applicability of the results. Future studies should evaluate different CrossFit® workouts
performed at maximum intensity (e.g., Isabel and Grace) to clarify the eventual differences
between the two methods.
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