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Abstract: Simulated stable oxygen isotopic composition (δ18O) of precipitation from isotope-enabled
GCMs (iGCMs) have gained significant visibility nowadays. This study evaluates bias correction
techniques to reduce the systematic and dispersion biases of the modelled δ18O by the ECHAM5-wiso
model compared to the Global Network of Isotopes in Precipitation (GNIP) observations over Central
Europe. mean bias error (MBE) and Root Mean Square Error (RMSE) are substantially reduced
by more than 70% and 10%, respectively, depending on the bias correction scheme, with better
results for Generalized Additive Model (GAM) and linear scaling approach (SCL) methods. The
bias-corrected δ18OECHAM5-wiso values successfully describe the long-term isotopic composition of
precipitation and the isotopic amplitude with the best performances for the EQM method. The
necessity of applying bias correction algorithms is verified by the excellent agreement between the
corrected δ18OECHAM5-wiso with GNIP in high-altitude areas where ECHAM5-wiso fails to reproduce
the observed isotopic variability. The results are expected to bring valuable insights into the utilization
of iGCMs’ relationships in climate studies for understanding the present and past water cycle under
the isotopic perspective.

Keywords: oxygen isotopes; precipitation; GNIP; ECHAM5-wiso; bias correction; goodness-of-
fit statistics

1. Introduction

Stable oxygen isotopes of water have been designated as valuable tracers of the present
and past atmospheric water cycle due to their participation in the various phase changes
accompanied by diffusive, kinetic, and equilibrium fractionation phenomena. A general
‘rule-of-thumb’ [1] denotes that heavier isotopic species are preferably distributed in the
phase with the strongest chemical bonds (i.e., precipitation), leaving the remnant phase
isotopically lighter (i.e., water vapor). The stable isotopic composition is expressed in
δ-values (‰) with negative (positive) cases for isotopically depleted (enriched) samples.
δ18O in precipitation is of principal importance in several hydrological, meteorological, and
climatic applications. For a detailed description of the parameters and processes affecting
18O/16O ratio in precipitation, refer to [2,3].

The Global Network of Isotopes in Precipitation (GNIP) [4], which has operated since
the 1960s, provides the primary source of monthly precipitation isotopic data along with
main climatic parameters (air temperature, precipitation amount, and vapor pressure).
However, the limited spatiotemporal representativeness of the database reflected in the
temporal inadequacy of isotopic measurements and the absence of dense sampling net-
works in several regions around the globe enables the simulation of stable isotopes in
precipitation using statistical or dynamic models. Isotope-enabled General Circulation
Models (iGCMs) and Regional Circulation Models (iRCMs) incorporate isotope physics into
the underlying processes that govern and simulate the ‘normal’ water cycle to model three-
dimensional atmospheric dynamics under the isotopic perspective [5–15]. This means that
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isotopic fractionation processes are simulated in any phase change that occurred during the
individual counterparts of the water cycle. Despite the limitations in the spatial resolution
and the high computational demands, iGCMs and iRCMs document quite accurately the
spatiotemporal isotopic patterns of precipitation and the relevant factors (temperature,
precipitation amount, vapor source, transport dynamics, land cover, topography, etc.) that
modulate the isotopic variability based on long-term and contiguous simulations of δ18O
over a broad range of timescales.

Most intercomparison studies focus on comparing the isotopic composition of precipi-
tation simulated by iGCMs against observations but only few apply bias correction tech-
niques to improve the performance of modelled isotope products [16–18]. Delavau et al. [16]
addressed the effects of using different δ18O precipitation inputs, including regional cli-
mate model outputs from the REMO-iso model to predict streamflow δ18O isotopes in
Canada. Since REMO-iso overestimated (positive bias) the daily observed isotopic compo-
sition, ref. [16] applied a seasonal bias correction scheme in terms of the average seasonal
difference between the monthly amount-weighted REMO-iso output and the Canadian
Network of Isotopes in Precipitation’s observations. In order to generate spatial precip-
itation isoscapes in Eastern China, [17] evaluated two bias correction algorithms (linear
and distribution scaling) at six iGCM simulations. Similar results were extracted with
respect to the mean δ18O by the bias correction methods, while the distribution scaling
technique provided the best results for adjusting the statistical distributions. Recently,
ref. [18] simulated runoff processes in a large catchment at the Tibetan Plateau and applied
bias correction in precipitation isotopes derived from an isotope-enabled Global Spectral
Model (isoGSM) before using it as an input in a tracer-aided hydrological model. The
bias correction algorithm used the average differences between ground observations and
modelled simulations and extended over the whole catchment, considering the spatial
relationship with elevation.

In this study, δ18O isotopic data of monthly precipitation in Central Europe simu-
lated through the isotope-enabled ECHAM5 model (ECHAM5-wiso) are validated against
ground-based observations from the Global Network of Isotopes in Precipitation (GNIP).
The second objective lies in the design and evaluation of bias correction methodologies to
adjust systematic and dispersion errors and increase the overall performance of ECHAM5-
wiso isotopic simulations. The application of bias correction techniques aims to correct
possible inconsistencies related to the non-accurate description of isotopic fractionation
effects, microphysical phenomena related to cloud and raindrop formation, non-accurate re-
solving of the topographic relief, and uncertainties induced by spatiotemporal downscaling
of the modelled isotopic composition from ECHAM5-wiso at pin-point locations.

The paper is structured as follows: Section 2 discusses the data sources, the temporal
structure of the corresponding datasets, and the primary comparison between modelled and
observed data. Section 3 includes the methodology aspects consisting of the description
of bias correction algorithms and the statistical scores used to validate ECHAM5-wiso
against observations. The results are discussed in Section 4, including the verification of
the initially modelled and bias-corrected ECHAM5-wiso δ18O data in precipitation. Finally,
Section 5 summarizes the main outcomes of the study.

2. Data Sources

Monthly isotopic measurements (δ18O) of precipitation and simple meteorological
information (precipitation amount and surface air temperature) were retrieved through
the Global Network of Isotopes in Precipitation (GNIP) database [4] from January 1980 to
December 2013 (period covered by the δ18O ECHAM5-wiso simulations) and for various
stations located within central Europe; an area extending from 6◦ E to 20◦ E longitude and
46◦ N to 54◦ N latitude (Figure 1A). Fifty-eight stations were initially selected; however,
forty-three were retained for subsequent analysis (Table S1). Two data availability crite-
ria were evaluated for station filtering. A sampling site was removed: (a) if data were
entirely missing in one of the following measurement periods: January 1980–December
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2000 (calibration period) and January 2001–December 2013 (validation period), and (b) if
the total amount of monthly measurements was lower than 24 in each of the predefined
periods. The discarded stations are shown in circles with superimposed crosses in Fig-
ure 1A. Germany and Switzerland have the most complete δ18O records, with 24 and 10
stations, respectively. Table S1 provides the basic characteristics for the sampling locations,
including the geographical setting (longitude and latitude), elevation, distance from the
nearest coastline, and climatic class, according to the Köppen–Geiger climate classification
system [19].
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Figure 1. (A) Spatial distribution of GNIP isotope sampling sites ranked in alphabetical order (Table
S1). The colored circles superimposed with station index are used for further analysis. The circle
symbols with superimposed crosses indicate the sampling sites without available measurements
into January 1980–December 2010 (training period) or January 2001–December 2013 (testing period);
(B) heatmap of δ18O data availability for each sampling site from January 1980 to December 2013.
The blank cells correspond to missing δ18O data. (C) Scatter density plot between δ18O from GNIP
(δ18OGNIP) and δ18O from ECHAM5-wiso model (δ18OECHAM5-wiso). (D) Cumulative Distribution
Functions (CDF) for δ18OGNIP (red lines) and δ18OECHAM5-wiso (blue lines). The solid lines correspond
to site-specific CDFs and the dashed lines correspond to the CDFs using all available isotopic records
from GNIP and ECHAM5-wiso model.

The data availability for each sampling site along with δ18O in precipitation from GNIP
(δ18OGNIP) is displayed in Figure 1B. At first glance, δ18OGNIP in central Europe appears
to be mainly depleted (negative isotopic composition), with values mainly distributed
from −15‰ to −5‰. Warm colors indicate less depleted isotopic signatures, while blank
cells indicate missing values due to the absence of rainfall, weathering, non-established
monitoring stations during the periods of interest, end of the monitoring campaign, etc.

In order to reach the research objectives presented in the introductory section, mod-
elled δ18O data were obtained from the isotope-enabled version of atmospheric general
circulation model ECHAM5 (ECHAM5-wiso) [20]. ECHAM5-wiso simulates the water
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cycle components using atmospheric and isotopic tracers, computing explicitly the isotope
fractionation processes extending from ocean evaporation to surface water runoff [11]. It
runs in a spectral mode with a horizontal grid spacing of 1.125◦ and 1.121277◦ in longitude
and latitude, nudged by ECMWF ERA40 and ERA-Interim atmospheric reanalysis data.
More details regarding the ECHAM5-wiso description and the model’s parameterization
can be found in [11,21]. ECHAM5-wiso demonstrates good agreement with observations
at both global and regional scales [11,22]. On a global scale, ref. [11] validated ECHAM5-
wiso δ18O against 70 GNIP stations, reporting dispersion errors extending from 2.2‰ to
1.3‰, with lower values for the finer model’s spatial resolution. Moreover, ref. [22] found
a high correlation between δ18O of winter precipitation from ECHAM5-wiso and GNIP
observations in Europe, also reporting underestimations up to 3% in the highly depleted
Alpine stations.

In this study, ECHAM5-wiso δ18O data (δ18OECHAM5-wiso) in precipitation from Jan-
uary 1980 to December 2013 were provided by [22] for the geographic area of Figure 1A.
For intercomparison and bias correction purposes, δ18OECHAM5-wiso is spatially down-
scaled using bilinear interpolation to GNIP spatial coordinates. According to Figure 1C,
δ18OECHAM5-wiso is in good agreement with δ18OGNIP, with a correlation of determination,
R2, equal to 0.69. A high number of counts exists between −15‰ and −5‰. The inter-
cept is relatively low (−1.12‰), and the slope of the best fit line approaches 0.74. Both
linear model coefficients and R2 are statistically significant under the 95% confidence level
(p-value << 0.05). The regression slope deviates significantly from unity (dashed line in
Figure 1C), suggesting that ECHAM5-wiso overestimates δ18O values and therefore cannot
capture the isotopic depletion observed in the GNIP values. Figure 1D represents the
Cumulative Distribution Functions (CDF) for δ18OECHAM5-wiso (blue lines) and δ18OGNIP
(red lines). CDFs are statistically different, with less negative quantiles for δ18OECHAM5-wiso.
In order to assess the statistical difference of CDFs among δ18OGNIP and δ18OECHAM5-wiso,
the Kolmogorov–Smirnov test is further applied. KS-test compares two statistical distribu-
tions via the KS-statistic, calculated by the absolute deviation of the individual quantiles,
assuming similarity in the null hypothesis. Thus, the KS statistic measures the difference
among the compared distributions with statistically similar distributions as KS approaches
zero. The site-specific KS ranges from 0.09 to 0.44, providing p-value << 0.05 for 42 out
of 43 stations. Only in Nyon, Switzerland (#30), did δ18OECHAM5-wiso follow the observed
statistical distribution, with KS = 0.09 (p-value = 0.143).

3. Methods

The detection of biases between an observed and a modelled parameter explains the
necessity of applying bias correction methodologies. In brief, bias correction techniques
adjust a simulated variable using a transformation function. Depending on the algorithmic
core of the bias correction technique, the final simulated output provides reduced biases
compared to the initial modelled product and a statistical distribution close to that of
observations. A common strategy in bias correction studies involves (a) the creation of a
transfer function using the observed and the modelled parameter of a calibration dataset
and (b) its statistical evaluation in a validation dataset. Moving in this direction, the isotopic
dataset described in the ‘Data sources’ section is divided into the calibration period (CAL)
extending from January 1980 to December 2000 and the validation period (VAL) extending
from January 2001 to December 2013.

This section includes a brief description of the bias correction techniques and the
scoring metrics for the statistical assessment of the results.
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3.1. Bias Correction Methodologies
3.1.1. Linear Bias Removal (LIN)

The linear bias removal method (LIN) [23] firstly draws a linear relationship between
δ18OECHAM5-wiso and δ18OGNIP and then projects δ18OECHAM5-wiso across the identical line
(1:1), eliminating the mean bias between the compared parameters.

δ18OECHAM5−wiso,CAL = a× δ18OGNIP,CAL + b (1)

δ18OLIN
ECHAM5−wiso,CAL = δ18OECHAM5−wiso, CAL −

[
(a− 1)× δ18OGNIP, CAL + b

]
(2)

δ18OLIN
ECHAM5−wiso,CAL = a∗ × δ18OECHAM5−wiso,CAL + b∗ (3)

with δ18OLIN
ECHAM5−wiso the bias-corrected δ18OECHAM5-wiso data using LIN method. The

notations CAL and VAL indicate the calibration and the validation datasets.
Equations (1) and (2)) is formed by δ18OECHAM5-wiso and δ18OGNIP of a calibration pe-

riod. In order to correct δ18OECHAM5-wiso in a validation dataset, the LIN is corrected and the
initial δ18OECHAM5-wiso of the calibration period are linearly related again (Equation (3)).
Thus, the coefficients a*, b* demonstrate a new linear transfer function for correct-
ing δ18OECHAM5-wiso in the validation period. More specifically, the initially modelled
δ18OECHAM5-wiso of the validation period simply replaces δ18OECHAM5-wiso,CAL in Equation (3)
to obtain the corrected δ18OECHAM5-wiso, VAL.

3.1.2. Empirical Quantile Mapping (EQM)

The quantile mapping method attempts to map the statistical distribution of a mod-
elled variable (δ18OECHAM5-wiso) to match the observed distribution (δ18OGNIP) identi-
cally [24–26]. Instead of assuming a parametric function for drawing the statistical distri-
bution of a target variable [25], the empirical cumulative distribution function (ECDF) is
used [26]. The two-dimensional space of ECHAM5-wiso and GNIP percentiles construct a
look-up table, and linear interpolation predicts the values within the percentiles [24],

δ18OEQM
ECHAM5−wiso,CAL = CDF−1

GNIP,CAL

[
CDFECHAM5−wiso,CAL

(
δ18OECHAM5−wiso,CAL

)]
(4)

δ18OEQM
ECHAM5−wiso,VAL = CDF−1

GNIP,CAL

[
CDFECHAM5−wiso,CAL

(
δ18OECHAM5−wiso,VAL

)]
(5)

where δ18OEQM
ECHAM5−wiso is the bias-corrected δ18OECHAM5-wiso using the EQM approach,

CDF and CDF−1 are the cumulative distribution and quantile functions (inverse CDF). EQM
bias correction technique assumes stationarity, and, therefore, the correction algorithm can
be applied both in calibration and validation periods.

3.1.3. Scaling (SCL)

The linear scaling approach (SCL) evaluates a correction factor in the modelled pa-
rameter, which is computed using the average observed and modelled values over the
calibration period [27]. For bounded variables such as precipitation, the correction factor
multiplies the modelled parameter, and it is calculated by the ratio among the average
observed and modelled values [27]. Conversely, the correction factor has an additive form
for variables such as air temperature. It is defined by the differences between the average
observed and modelled values and is then added in the simulations [10]. δ18O values
in precipitation perform similar to air temperature, and the SCL method is expressed
as follows,

δ18OSCL
ECHAM5−wiso,X = δ18OECHAM5−wiso,X + CFCAL (6)

CFCAL = µ
(
δ18OGNIP,CAL

)
− µ

(
δ18OECHAM5−wiso,CAL

)
(7)
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with CF the correction factor, µ the mean value, and X the calibration (CAL) or the validation
(VAL) period. CF in Equation (7) is related to the mean bias error between GNIP and
ECHAM5-wiso isotopic datasets.

3.1.4. Generalized Additive Models (GAMs)

Generalized Additive Models (GAMs) have been extensively used for spatiotemporal
downscaling and the bias correction of climate variables [28–30]. GAMs were firstly pro-
posed by [31] to model a target variable with respect to non-linear responses of explanatory
variables. More specifically, the expectation of a dependent parameter, Y (in this case
δ18OGNIP), is expressed conditionally to the selected auxiliary information (X1, . . . , Xn) in
an additive form as follows,

E(Y|X1, . . . , Xn) =
n

∑
i

f (Xi) + ε (8)

with n the number of auxiliary parameters, f the non-linear functions, and ε the zero-mean
Gaussian error. In this study, physical and geographic parameters are used to model
δ18OGNIP, including δ18OECHAM5-wiso, Longitude, Latitude, Altitude, and distance from
the nearest coastline. The functions f i are piecewise third-order polynomials. A single
GAM is designed using all data from the sampling sites in the calibration period. The
computations are performed by the mgcv package in R [32]. All independent parameters
are significant in GAM with p-value << 0.05. The correlation of determination is 0.75,
indicating an unexplained variation of 25%.

3.2. Goodness-of-Fit Statistics

The initial and the bias-corrected δ18OECHAM5-wiso are compared against GNIP obser-
vations in terms of the mean bias error (MBE), Root Mean Square Error (RMSE), and the
Pearsons’ R correlation coefficient.

MBE =

[
n

∑
i=1

(
δ18OM

ECHAM5−wiso,i − δ18OGNIP,i

)]
/n (9)

RMSE =

[
n

∑
i=1

(
δ18OM

ECHAM5−wiso,i − δ18OGNIP,i

)2
/n

]1/2

(10)

R =
∑n

i=1

(
δ18OGNIP,i − µ

(
δ18OGNIP,i

))(
δ18OM

ECHAM5−wiso,i − µ
(
δ18OM

ECHAM5−wiso,i

))
[

∑n
i=1

(
δ18OGNIP,i − µ

(
δ18OGNIP,i

))2
∑n

i=1

(
δ18OM

ECHAM5−wiso,i − µ
(
δ18OM

ECHAM5−wiso,i

))2
]1/2 (11)

where the superscript M corresponds to RAW, LIN, EQM, SCL, and GAM, and n is the
number of available monthly isotopic data which is different for each station as already
shown in Figure 1B.

MBE and RMSE measure the systematic bias and the dispersion error between the
modelled values and the observations with an optimal value equal to zero. Negative
(positive) MBE implies the under (over-) estimation of the observed parameter. Isotopic
depletion is related to isotopically light precipitation and negative δ18O values. In this case,
MBE overestimation (underestimation) means less (more) depleted modelled isotopic sig-
natures than the observed. The correlation coefficient R examines the overall performance
and measures the linear association between two parameters. When the absolute value of
R reaches unity, the associated parameters are correlated perfectly.
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To further access the performance of the bias-corrected δ18OECHAM5-wiso, an improve-
ment score (IMP) based on the statistical metrics described above is calculated as,

IMPSS(%) = 100× (1− SR) =

SR = SSBC
SSRAW

SS = MBE, RMSE

SR = SSRAW
SSBC

SS = R
(12)

where SS and SR denote the statistical score and the score ratio. The subscripts BC and
RAW represent the bias-corrected and the initially modelled δ18OECHAM5-wiso. In order to
keep a unique explanation of IMP, different SR forms are derived in terms of the statistical
metric (Equation (12)). This is because the optimal value of the error metrics have equals
zero while that of the performance metrics such as the correlation coefficient have equals
one. Therefore, positive values of IMP are related to the desired case using bias-corrected
data, indicating lower errors and higher performances. Since the improvement index deals
with the magnitude of the statistical index and not with its sign, absolute values of MBE
are used in Equation (12).

4. Results

4.1. Validation of δ18OECHAM5-wiso over Central Europe

The temporal distribution of δ18O in precipitation from January 1980 to December 2013
is shown Figure 2A–C. The isotopic composition of precipitation varies seasonally at all
sampling sites. The time series of δ18OGNIP and δ18OECHAM5-wiso are temporally consistent
following a sinusoidal pattern, also depicting similar maxima (less depleted) locations in
summer (Figure 2A,B). This is only to be expected because of the ‘isotope–temperature
effect’. More specifically, the isotopic composition of precipitation at middle and high-
latitude continental areas shows a strong relationship with air temperature, following
the air-temperature sinusoidal pattern across the year. δ18OECHAM-wiso is less depleted
than δ18OGNIP with a lower variability. Figure 2C shows the time series of isotopic biases
(∆δ18O = δ18OGNIP − δ18OECHAM5-WISO). ∆18O are mainly distributed between −5‰ and
5‰ without revealing a distinct seasonal pattern.

In order to explain in detail the seasonality of δ18O in precipitation, monthly distri-
bution isotopic plots are created in the right panels of Figure 2. The “seasonal effect” is
verified with less depleted isotopic signatures in summer for ECHAM5-wiso and GNIP
(Figure 2D,E). The tails of the statistical distributions (Figure 2D) include a higher number
of measurements in all months for GNIP compared to ECHAM5-wiso. On the other side,
the monthly distributions of δ18O are less platykurtic for ECHAM5-wiso in the summer
months, indicating the substantial presence of isotopic data across its monthly mean. Re-
garding Figure 2F, the monthly distributions of isotopic biases are significantly displaced
from zero. The distribution’s shape is almost symmetric, with skewness values ranging
from −0.35 to 0.17; the differences between the mean and median for the monthly biases
slightly differ, extending from −0.14‰ to 0.04‰.

The statistical verification of δ18OECHAM5-wiso against δ18OGNIP is performed in terms
of MBE, RMSE, and R. Figure 3A–C shows the spatial distribution of statistical scores for
the GNIP sampling sites. In general, δ18OECHAM5-wiso overestimates the observed δ18O
in precipitation with positive MBEs in 42 out of 43 stations. The systematic bias ranges
from −0.7‰ (Locarno, Switzerland—#27) to 3.8‰ (Grimsel, Switzerland—#12), with an
average of 1.3‰. MBE does not show a significant zonal or meridional variation, while
the distance from the nearest coastline (Dcoast) does not contribute to the MBE’s spatial
pattern (Figure 3A). Figure 3D represents the Pearson’s correlation matrix between the
statistical indicators and simple geographical and topographical parameters with significant
correlations (p-value < 0.5) for the non-crossed boxes. The pairwise correlations between
MBE and Longitude, Latitude, and Dcoast are not significant under the 95% confidence
level (p-value > 0.05), implying that the ‘latitude’ and ‘continental’ isotopic effects are not
imprinted in the MBE variability. On the other side, elevation is significantly related to
MBE, with a correlation coefficient R = 0.67 (p-value ≈ 0). Figure S1A (blue points) shows
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the MBE–Altitude relationship. The MBE lapse rate equals 1‰/km, with two ‘extreme’
cases in Grimsel (#12) and Pontresina (#32) located in the Swiss Alps at elevations of
1750 m and 1950 m, respectively. ECHAM5-wiso suffers from accurately reproducing the
strongly depleted isotopic signatures of precipitation in alpine regions, giving less depleted
isotopic signatures and a significantly positive MBE. The substantial overestimation from
ECHAM5-wiso relies on the non-accurate resolving of the complex topographic relief such
as alpine mountain ridges and slopes due to the coarse spatial resolution [22], resulting in
an erroneous representation of the associated isotope fractionation phenomena.
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Figure 2. Time series of (A) δ18OGNIP, (B) δ18OECHAM5-WISO, and (C) ∆δ18O = δ18OGNIP− δ18OECHAM5-WISO.
The blue lines represent the temporal distribution of δ18O for the central European stations and
the solid black line represents the average δ18O for the whole study area. The vertical red line
separates the measurement dataset into the calibration (January 1980–December 2000) and vali-
dation (January 2001–December 2013) periods. Monthly statistical distributions for (D) δ18OGNIP,
(E) δ18OECHAM5-WISO, and (F) ∆δ18O = δ18OGNIP − δ18OECHAM5-WISO from January 1980 to Decem-
ber 2013. The plots are generated using all available δ18O measurements for each calendar month.
The colored regions within each distribution plot display the δ18O magnitude.
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Figure 3. Spatial distribution of (A) mean bias error (MBE), (B) Root Mean Square Error (RMSE),
and (C) correlation coefficient (R) calculated between δ18OGNIP and δ18OECHAM5-wiso. MBE and
RMSE are in ‰. (D) Correlation matrix between the statistical indices (MBE, RMSE, and R) and
simple geographical parameters: Latitude, Longitude, Altitude, and Distance from the nearest
coastline (Dcoast). The crosses inside the boxes indicate non-significant correlations under the 95%
confidence level.

Regarding the dispersion error (RMSE), it ranges between 1.6‰ (Buchs/Suhr,
Switzerland—#6) and 4.7‰ (Pontresina, Switzerland—#32), with an average RMSE equal
to 2.3‰. Slight spatial RMSE variation can be observed where the site-specific dispersion
errors are mostly distributed close to the areal average of 2.3‰. According to the corre-
lation matrix of Figure 3D, RMSE is inversely related to latitude and positively related
to elevation. However, the spatial distribution of RMSE (Figure 3B) cannot verify this
latitudinal dependency. The scatter plot of Figure S1B represents the relationship between
RMSE and latitude. It is distinguishable that stations with RMSE > 3‰ form a distinct
cluster, and it probably leads to the significant calculated negative correlation (R = −0.37,
p-value = 0.01) of Figure 3D. This cluster includes three Swiss stations: Grimsel—#12,
Guttannen—#14, Pontresina—#32, with elevations exceeding 1000 m. By removing these
stations, the correlation coefficient is not significant (R = −0.27, p-value = 0.09). Following
MBE, the ‘altitude effect’ is also remarkable for RMSE (R = 0.75, p-value ≈ 0), with a lapse
rate of ~1‰/km (Figure S1A—red points).

The overestimation of the isotopic signal and the existence of dispersion error in
ECHAM5-wiso, due to the incapacity of correctly resolving the complex orography of
mountaineous areas, could be partially reduced by using the new version of ECHAM-wiso
model (ECHAM6-wiso) [33]. This version is characterized by a higher spatial resolution
(~0.9◦ × 0.9◦) and uses the ERA5 reanalysis instead of the ERA-Interim data. However,
the comparison of the two ECHAM-wiso versions and the application of bias correction
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methods on the isotopic products is beyond the scope of this paper and could be addressed
in the future.

Finally, ECHAM5-wiso model and GNIP are compared in terms of the Pearson’s R
correlation coefficient. δ18OECHAM5-wiso shows good agreement against δ18OGNIP with R
ranging between 0.69 (Braunschweig, Germany—#3) and 0.92 (Liptovsky-Mikulas On-
drasova, Slovakia—#25). All calculated R values are significant under the 95% confidence
level. In contrast to MBE and RMSE, R represents remarkable ‘latitude’, ‘continentality’,
and ‘altitude’ isotopic effects. (Figure 3D). According to the spatial map (Figure 3C) and the
scatterplots (Figure S1D,E), a slightly significant positive change of R is depicted for more
continental regions (p-value = 0.01 for R vs. Longitude and p-value = 0.02 for R vs. Dcoast).
The correlation coefficient decreases for higher latitudes, revealing a remarkable latitudinal
change (Figure S1C). Finally, a non-linear pattern is extracted between R and Altitude,
with positive changes for Altitude < 500 m and a neutral pattern for higher elevations
(Figure S1F).

4.2. Bias Correction of δ18OECHAM5-wiso

The existence of systematic and dispersion errors between δ18OECHAM5-wiso and
δ18OGNIP demonstrates the necessity of evaluating bias correction techniques. In this
study, four different algorithms are applied (“Methods”—Section 3), namely Linear Bias
Removal (LIN), Empirical Quantile Mapping (EQM), Linear Scaling (SCL), and General-
ized Additive Models (GAMs). RAW denotes the uncorrected or initial δ18OECHAM5-wiso.
As already discussed in the “Methods” section, the bias correction techniques are firstly
designed using isotopic and auxiliary measurements (geographic and topographic parame-
ters) of the calibration period (January 1980–December 2000), and the evaluation against
observations of the validation period (January 2001–December 2013) is performed in terms
of MBE, RMSE, and R statistical scores.

In general, the performance and the error patterns are substantially improved using the
bias-corrected isotopic composition. Regarding MBE (Figure 4A), all methods perform effi-
ciently with medians (thick black line inside each box) close to zero and minimal variability,
implying the substantial reduction in systematic biases using corrected isotopic products.
It is worth mentioning that LIN adjusts δ18OECHAM5-wiso along the 1:1 line; therefore, it is
normal to eliminate the systematic bias during calibration. The MBE improvement, IMPMBE
(Figure 4D), for the validation period is above 70%, with higher values approaching 85%
for LIN, EQM, and SCL and also high improvements for all bias correction algorithms
(IMPMBE > 90%) during calibration.

According to Figure 4B, the corrected δ18OECHAM5-wiso exhibit reduced dispersion
errors. The median (1.6‰) and the individual quantiles of RMSE are lower for GAMs com-
pared to the other bias correction methods (Figure 4B) for the validation period. IMPRMSE
lies within 0–53.4% and 0–58.5% with median values of 19.9% and 23.5% for SCL and GAM,
respectively (Figure 4E). LIN works efficiently only in the calibration period and IMPRMSE
extends between 5.43% and 66.7%, with a median value of 28%. However, a similar pattern
is not extracted for the validation period, and LIN shows the worst performance in terms of
RMSE (1.2–3.2‰; median = 1.9‰) and IMPRMSE (−17.4–48.3%; median = 10.6%). Similar
but slightly improved metrics are shown for EQM compared to LIN, with RMSE: 1–2.9‰;
median = 1.8‰ and IMPRMSE: −21.4–55.6‰; median = 16.4‰. LIN and EQM also provide
negative IMPRMSE at 10 and 3 sampling sites, respectively.
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Finally, the correlation coefficient (R) and its improvement metric (IMPR) examine
the overall performance of bias-corrected isotopic data. R is high for the RAW and the
bias-corrected δ18OECHAM5-wiso in both calibration and validation periods. EQM, SCL, and
GAMs show similar R patterns with higher R values for LIN during calibration; IMPR
ranges from 2.5% to 17.5%. However, the R for the validation period indicates that the
GAM provides better results than the other methods. Additionally, the boxplots for R and
IMPR regarding the validation period for LIN and SCL result in a non-significant change in
the correlation coefficient, as expected by the algorithmic structure of the bias correction
techniques (“Methods”—Section 3).

The statistical evaluation of the bias-corrected δ18OECHAM5-wiso is also performed in
a monthly basis by grouping the statistical scores for each calendar month. EQM, SCL,
and GAMs show better MBE and RMSE patterns compared to LIN, as obtained by the
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monthly whiskers in Figure 5A,B. The MBE boxplots for LIN from November to March
include mainly negative systematic biases, implying an underestimation of GNIP isotopic
observations and more depleted isotopic signatures for LIN. Moreover, RMSE for LIN is
higher than the other bias correction algorithms for those months. The promising outcomes
from Figure 5A,B are (a) the substantial reduction in systematic biases from bias-corrected
δ18OECHAM5-wiso, and (b) the dispersion error is reduced for all calendar months. Figure 5C
displays the monthly boxplots for the correlation coefficient, R, with a higher correlation
from August to March. However, the differences in the boxplot shapes between RAW and
the bias-corrected isotopic composition are not distinguishable.

Oxygen 2022, 2, FOR PEER REVIEW 12 
 

 

ilar pattern is not extracted for the validation period, and LIN shows the worst perfor-
mance in terms of RMSE (1.2–3.2‰; median = 1.9‰) and IMPRMSE (−17.4–48.3%; median = 
10.6%). Similar but slightly improved metrics are shown for EQM compared to LIN, with 
RMSE: 1–2.9‰; median = 1.8‰ and IMPRMSE: −21.4–55.6‰; median = 16.4‰. LIN and 
EQM also provide negative IMPRMSE at 10 and 3 sampling sites, respectively. 

Finally, the correlation coefficient (R) and its improvement metric (IMPR) examine 
the overall performance of bias-corrected isotopic data. R is high for the RAW and the 
bias-corrected δ18OECHAM5-wiso in both calibration and validation periods. EQM, SCL, and 
GAMs show similar R patterns with higher R values for LIN during calibration; IMPR 
ranges from 2.5% to 17.5%. However, the R for the validation period indicates that the 
GAM provides better results than the other methods. Additionally, the boxplots for R and 
IMPR regarding the validation period for LIN and SCL result in a non-significant change 
in the correlation coefficient, as expected by the algorithmic structure of the bias correction 
techniques (“Methods”—Section 3). 

The statistical evaluation of the bias-corrected δ18OECHAM5-wiso is also performed in a 
monthly basis by grouping the statistical scores for each calendar month. EQM, SCL, and 
GAMs show better MBE and RMSE patterns compared to LIN, as obtained by the monthly 
whiskers in Figure 5A,B. The MBE boxplots for LIN from November to March include 
mainly negative systematic biases, implying an underestimation of GNIP isotopic obser-
vations and more depleted isotopic signatures for LIN. Moreover, RMSE for LIN is higher 
than the other bias correction algorithms for those months. The promising outcomes from 
Figure 5A,B are (a) the substantial reduction in systematic biases from bias-corrected 
δ18OECHAM5-wiso, and (b) the dispersion error is reduced for all calendar months. Figure 5C 
displays the monthly boxplots for the correlation coefficient, R, with a higher correlation 
from August to March. However, the differences in the boxplot shapes between RAW and 
the bias-corrected isotopic composition are not distinguishable. 

 
Figure 5. Monthly boxplots of (A) mean bias error (MBE), (B) Root Mean Square Error (RMSE), and 
(C) correlation coefficient (R) of RAW and bias-corrected δ18ΟECHAM5-wiso for the validation period 
(January 2001–December 2013). The thick black lines inside the boxes represent the median of the 
statistical scores and the black dots correspond to the outliers. 

Figure 5. Monthly boxplots of (A) mean bias error (MBE), (B) Root Mean Square Error (RMSE), and
(C) correlation coefficient (R) of RAW and bias-corrected δ18OECHAM5-wiso for the validation period
(January 2001–December 2013). The thick black lines inside the boxes represent the median of the
statistical scores and the black dots correspond to the outliers.

Another critical aspect is to investigate how bias correction algorithms improve the
statistical similitude between the modelled and the observed parameter. Apart from the
error and the overall performance metrics, bias correction techniques aim to adjust the
modelled statistical distributions to follow those of observations. As already reported in
the ‘Data Sources’ section and in Figure 1D, the statistical distributions of δ18OGNIP and
δ18OECHAM5-wiso significantly differ according to the Kolmogorov–Smirnov statistical test
(KS-test).

The bias-corrected products provide lower KS values compared to the RAW
δ18OECHAM5-wiso (Figure 6A). EQM optimally projects the modelled statistical distribu-
tion to follow the observed ones as presented by the KS boxplots (Figure 6A) and the
Quantile–Quantile (Q-Q) graph (Figure 6B). The EQM quantiles are close to the observed,
with differences mainly in the tails of the observed distribution. SCL behaves similarly
with EQM, though with higher deviations from observed quantiles, especially in the lower
tail. For δ18OGNIP < −20‰, the GAM overestimates and LIN underestimates the observed
quantiles, while, for δ18OGNIP > −5‰, the GAM shows the highest underestimation.
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4.3. Long-Term Performance and Seasonal Amplitude of Bias-Corrected δ18OECHAM5-wiso

The long-term performance is assessed by comparing the climatology between the
RAW and the bias-corrected δ18OECHAM5-wiso against GNIP observations over the valida-
tion period. Long-term monthly means and the corresponding 95% uncertainty ranges
are calculated for each station separately. The initially modelled δ18OECHAM5-wiso data are
less depleted compared to observations providing a positive mean bias of 1.3‰ and a
dispersion error of 1.5‰ (Figure 7A). The long-term δ18OECHAM5-wiso data extends from
−13.7‰ to −6.68‰, with a median of approximately −9‰. Similar ranges and medians
are depicted for the bias correction methods, with a less depleted median value by ~2‰ for
RAW. Bias-corrected δ18OECHAM5-wiso data are in excellent agreement with δ18OGNIP with
R = 0.98, the systematic bias is completely eliminated, and the dispersion biases are very
low (RMSE < 0.38‰). Another significant point, especially for hydrological or climatologi-
cal applications that require information about the long-term isotopic value of precipitation,
is to examine the displacement of the long-term simulated means from the identical line
(1:1). Bias correction techniques adjust the long-term isotopic means to follow the obser-
vations, providing a slight displacement from the 1:1 (~1%) with the relevant linear slope
for RAW to reach 0.68. The long-term isotopic composition is substantially corrected in
high-altitude alpine sampling sites (Grimsel—#12, Pontresina—#14 and Guttannen—#32)
with δ18OGNIP < −12‰. The absolute differences between the RAW δ18OECHAM5-wiso and
δ18OGNIP are higher than 3‰, and, after bias correction, the differences drop to ~0.5‰.

The stable isotopic composition of precipitation varies periodically, and it follows a dis-
tinct seasonal pattern, being more remarkable in continental and non-equatorial regions [34].
The examination of the seasonal amplitude of δ18O in precipitation is emphasized due to
its contribution to climatic studies and estimating the age of young streamflow water and
plant water sources [35,36]. Based on [34–37], the isotopic amplitude of the sampling sites
can be modelled using sinusoidal curves. Here, the amplitudes are calculated for RAW
and bias-corrected δ18OECHAM5-wiso of the validation period and then compared against
GNIP observations. The scatter plots of Figure 7B show the results, where the error bars
correspond to ±1 × SE of calculated amplitudes. The isotopic amplitude for GNIP ranges
from 1.2‰ to 6.5‰, with higher values for more inland stations due to the less pronounced
maritime responses and more remarkable seasonal fluctuation in air temperature. For more
information about the geographical and topographical responses of isotopic amplitude in
Central Europe, refer to [37].
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RAW and SCL have identical amplitudes ranging from 1.7‰ to 4.5‰, since SCL
corrects the modelled δ18OECHAM5-wiso by the systematic bias adjustment. The slope of
the best fit line and the correlation coefficient are calculated equal to 0.5 and 0.78. GAM
produces similar results to RAW and SCL, and it fails to accurately reproduce the GNIP
amplitude, especially for values higher than 4‰. According to Figure 7B, EQM shows
the best results with an amplitude range (1.2‰ to 6.6‰), exhibiting a small displacement
by the 1:1 line (the slope of the best fit line is 0.93) and good agreement (R = 0.92) with
GNIP-observed amplitudes.

5. Conclusions

The isotope-enabled General Circulation Models simulate the spatiotemporal patterns
of the δ18O values of precipitation by incorporating isotope physics into the equations
describing the individual components of the atmospheric water cycle. Although iGCMs
predict with relevant accuracy the precipitation δ18O distribution at regional and global
scales, the inaccurate representation of the isotopic fractionation phenomena during various
atmospheric processes as well as the inability to reproduce the observed δ18O in areas
with complex topographic settings induce several biases into the isotopic outputs. The
application of bias correction methodologies aims to adjust the model inconsistencies by
reducing the systematic and dispersion biases compared to observations.

In this study, δ18O in precipitation from the ECHAM5-wiso GCM model is validated
against GNIP observations in Central Europe over a period extending from January 1980
to December 2013. The intercomparison results show that the ranges of MBE, RMSE,
and R are from −0.7‰ to 3.8‰, 1.6‰ to 4.7‰, and 0.69 to 0.92, respectively. Higher
systematic and dispersion errors exist in high latitude alpine sites since ECHAM5-wiso
fails to capture the isotopic variability in regions with complex topographic relief, mainly
because of its coarse model’s spatial resolution. The statistical scores are strongly related
to elevation, with a p-value << 0.05, while ‘latitudinal’ and ‘continental’ responses are
remarkable only for the correlation coefficient. In order to improve the δ18OECHAM5-wiso
simulations, four bias correction algorithms (LIN, EQM, SCL, and GAM) are employed to
reduce the possible systematic and dispersion errors. MBE is substantially reduced using
the bias-corrected δ18OECHAM5-wiso, with IMPMBE exceeding 70%. Reduced RMSEs are
calculated for the corrected δ18OECHAM5-wiso and show median improvements for SCL and
GAM methods higher than 20%. LIN and EQM show similar ranges and medians for RMSE
and IMPRMSE. The bias-corrected δ18OECHAM5-wiso are compared against δ18OECHAM5-wiso
in terms of the overall performance. However, the correlation coefficient is not substantially
improved. Regarding the statistical similitude, δ18OECHAM5-wiso follows observations with
EQM to provide similar quantiles with the observed ones. Bias correction techniques adjust
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the long-term modelled isotopic means to follow the observations correcting the initial
displacement from the 1:1 line. Promising results are derived for the high-altitude alpine
sites, where the differences among the modelled and the observed δ18O drop to 0.5‰
(from 3‰) after applying bias correction. Finally, the isotopic amplitude for describing the
seasonal variation of precipitation isotopes is calculated using sinusoidal models for the
observed, the initial modelled, and the bias-corrected δ18O. GAM, SCL, and LIN methods
produce accurate isotopic amplitudes for observed cases lower than 4‰, while EQM
reproduces the GNIP amplitudes successfully both in range and magnitude.

A follow-up of this study would be to examine how bias correction methods modulate
the ‘temperature’ and ‘rainfall amount’ effects over various regions in the globe. A possible
application in areas with complex climates could be beneficial in assessing and improving
the performance of iGCMs. The spatiotemporal extension of the bias correction procedure
is planned to derive contiguousness both in time and space bias-corrected δ18OECHAM5-wiso
data instead of using station-wise-corrected isotopic time series.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/oxygen2020010/s1, Table S1: Details of the GNIP sampling
sites used in this study; Figure S1: Statistical scores (MBE, RMSE, and R) against geographical and
topographical parameters.
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