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Abstract: Background: Infertility, defined as the failure to conceive after one year of regular, unpro-
tected intercourse, affects 50–80 million people worldwide. A male factor is involved in approximately
20–30% of cases. In the etiology of male infertility, the association between poor semen quality and ox-
idative stress (OS) is well known. High levels of reactive oxygen species (ROS) allow the oxidation of
DNA, proteins, and lipids of sperm cells, modifying their vitality, motility, and morphology. Methods:
To evaluate the effects of antioxidants on sperm in infertile men, we queried the MEDLINE database
(via the PubMed interface) for published studies in the last 10 years (2011–2021). The following
keywords were used: “infertility” and -“inositol”, -“alpha-lipoic acid”, -“zinc”, -“folate”, -“coenzyme
Q10”, -“selenium”, and -“vitamin”. Results: Inositol regulates OS levels in sperm cells thanks to its
role in mitochondrial reactions and is involved in several processes favoring sperm–oocyte interac-
tions. Alpha-lipoic acid (ALA) reduces ROS damage and improves semen parameters in terms of
spermatozoa’s motility, morphology, and count. Poor zinc nutrition may be related to low quality
of sperm. Supplementation of folate plus zinc has a positive effect on the sperm concentration and
morphology. Supplementation with CoQ10 increases sperm concentration, total and progressive
motility. Selenium (Se) supplementation improves the overall semen quality and is related to a
higher ejaculated volume. Among vitamins, only vitamin B12 shows a positive effect on semen
quality; it increases sperm count and motility and reduces sperm DNA damage. Conclusions: In
men showing low-quality semen, diet supplementation with antioxidants may improve the sperm
quality by alleviating OS-induced sperm damage and enhancing hormone synthesis and spermatozoa
concentration, motility, and morphology. Future clinical trials should be focused on the possible
association of several antioxidants to take advantage of combined mechanisms of action.
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1. Introduction

Infertility, a male or female reproductive system disease, is defined by the failure to
conceive within one year of regular, unprotected sexual intercourse [1].

World Health Organization (WHO) statistics reveal that infertility affects 50–80 million
people worldwide, and male factors account for approximately 20–30% of all infertility
cases [2].

According to the International Classification of Diseases, 11th Revision (ICD-11)
(Geneva: WHO 2018), male infertility is commonly caused by alterations in semen ejection,
absence or low levels of sperm, or sperm morphology and motility alterations [3].
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Spermatogenesis represents the process by which spermatozoa production occurs. It
is composed of spermatocytogenesis (a mitosis where stem-cell spermatogonia produce
primary spermatocytes), meiosis (composed by an exchange of genetic material between
homologous chromosomes of primary spermatocytes and a reduction division producing
haploid spermatids), and spermiogenesis (the final process where spherical spermatids
differentiate into mature spermatids, which are released in seminiferous tubules as sperma-
tozoa with fertilization capacity) [4]. The whole process is under the control of the testes’
Sertoli cells that facilitate the progression of germ cells to spermatozoa via direct contact [5].

Once produced, spermatozoa are released by the ejaculation process, leading to
spermatozoa-oocyte interaction. In the process, called capacitation [6], sperm become
motile, are attracted towards the oocyte, bind to it, undergo the acrosome reaction, and
finally fuse with the oocyte plasma membrane to create a zygote [7].

One of the most relevant factors in fertility is gamete quality. It is defined as the
ability of spermatozoa and oocyte to interact in order to develop a normal embryo [8]. The
spermatozoa quality is normally assessed by a spermiogram [9].

In the heterogeneous etiology of male infertility, the association between poor semen
quality and oxidative stress (OS) is well known. OS is defined as the result of an imbalance
between reactive oxygen species (ROS) and antioxidant defenses [10]. The first evidence
on the role of ROS as a potential contributor to male infertility was discovered in the
1940s [11]. Since then, a vast advance in understanding of the effects of ROS on infertility
and spermatic functions has been gained [12].

ROS are highly reactive oxygen-containing molecules, including hydroxyl (HO−) and
superoxide (O2

−) free radicals and non-radical molecules, such as hydrogen peroxide
(H2O2). ROS are mainly produced via the mitochondrial electron transport chain and
by enzymatic reactions involving cyclooxygenases, NADPH oxidases (NOXs), xanthine
oxidases, and lipoxygenases, and through the iron-catalyzed Fenton reaction. Finally, ROS
are generated after exposure to physical agents, such as ultraviolet rays and heat [13].

Eukaryotic cells benefit from antioxidants, as they tightly regulate ROS levels. Indeed,
even though moderate ROS levels are needed during sperm capacitation and fertilization,
high ROS levels could lead to spermatozoa damage [14]. Therefore, antioxidants represent
a defense mechanism against OS by reacting with and quenching ROS [15]. Based on their
activity, antioxidants are classified in two main groups: enzymatic and non-enzymatic an-
tioxidants. Enzymatic antioxidants, such as superoxide dismutases (SODs) and glutathione
peroxidase and reductase, convert dangerous oxidative products to hydrogen peroxide
(H2O2) and then to water in a multistep process in the presence of cofactors such as zinc,
copper, manganese, and iron. Non-enzymatic antioxidants, endogenously produced or
consumed from food or supplements, function by interrupting free radical chain reactions.

OS is an important cause of male infertility due to detrimental changes during sper-
matogenesis, epididymal maturation, and sperm capacitation [12].

Sperm cells are extremely sensitive to damage caused by high ROS levels because of the
large amounts of unsaturated fatty acids in their membranes, which are essential for sperm
capacitation, acrosome reaction and sperm/oocyte interaction. Oxidative peroxidation of
unsaturated fatty acids mediated by ROS represents the main mechanism of ROS-induced
sperm damage, leading to infertility [16].

In sperm cells, due to the high concentration of plasma membrane polyunsaturated
fatty acids and the lack of cytoplasmic defense mechanisms [17], high levels of ROS can
increase OS by triggering the oxidation of sperm cell DNA, proteins, and lipids, and
modifying sperm vitality, motility, and morphology [18].

Sperm DNA integrity and chromatin condensation are pivotal for fertilization. Any
form of sperm chromatin alteration or DNA damage results in male infertility [19]. Testicu-
lar (defective maturation and abortive apoptosis) and post-testicular (OS) modifications
are involved in the sperm-DNA-fragmentation etiology.

DNA packaging alterations could affect sperm chromatin decondensation, which
would be detrimental to fertility. The chromatin condensation could be modified by several
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factors, such as zinc deficiency and alterations of protamines, proteins replacing histones
during spermatozoa maturation [20].

Commonly, DNA fragmentation is a result of ROS-mediated damage. Direct or
indirect ROS-mediated damage results in single- or double-strand fragments and abnormal
apoptosis. Sperm DNA fragmentation is caused by extrinsic factors (e.g., smoking, heat
exposure, chemotherapeutics, and environmental pollutants) and intrinsic factors (e.g.,
abortive apoptosis, defective germ cell maturation, and OS) [21].

Caspase activation, phosphatidyl serine externalization, mitochondrial membrane
potential change, and DNA fragmentation are apoptosis markers detectable in human
ejaculated sperm [22]. ROS impact multiple signaling pathways involved in the activation of
extrinsic and intrinsic pathways of apoptosis. However, compelling evidence suggests that
in the majority of cases ROS apoptosis induction depends on intrinsic pathway activation,
which affects the integrity of the mitochondrial permeability transition pores. ROS also
trigger apoptosis by inactivating or increasing Bcl-2 anti-apoptotic protein ubiquitination.
In addition, the ROS-dependent induction of apoptosis is related to the disruption of
mitochondrial membrane potential upon JNK and p38 phosphorylation stimulation ([23]
and refs. therein).

The growing interest in ROS-mediated damage is related to the increasingly no-
ticed role of environmental influence on spermatozoa production. Indeed, as showed by
Gallo et al. [8], spermatozoa are exposed to several environmental factors able to increase
OS induced by ROS.

Currently, the association of several natural antioxidants, such as inositol, alpha-lipoic
acid, zinc, folate, coenzyme Q10, selenium, and vitamins, with sperm quality improvement
by acting as a defense mechanism against OS is well documented.

The current narrative review aims to evaluate the updates on the roles and mechanisms
of action of the antioxidants most commonly used in nutrition supplementation as a strategy
to improve sperm quality.

2. Materials and Methods

The MEDLINE database (via the PubMed interface) was queried for studies published
in the last 10 years (2011–2021).

The following keywords were used: “infertility” and -“inositol”, -“alpha-lipoic acid”,
-“zinc”, - “folate”, - “coenzyme Q10”, - “selenium”, and -“vitamin”.

Systematic reviews and in vitro or in vivo trials related to the effects of antioxidants
on sperm cells in low-quality human semen were evaluated.

Studies on animals, studies published before 2011, articles not in the English language,
and articles that had not been fully published were excluded.

Two investigators (B.F.M. and G.V.) independently evaluated studies suitable for
inclusion. The following data were extracted from all qualified studies: authors, year of
publication, study design, and results.

3. Inositols

In nature, the most abundant form of inositol is myoinositol (myo-Ins). Serum myo-
Ins cannot cross the tight junctions at the testicular level and is therefore transported into
cells by a sodium/myo-Ins cotransport protein, whose expression is sensitive to osmolar
changes [24]. Consequently, the concentration of myo-Ins in the seminiferous tubule fluid
is greater than in the seminal plasma.

In spermatozoa, the main site of action of myo-Ins is the mitochondria, where, by
controlling the intracellular Ca2+ levels, it regulates mitochondrial oxidative metabolism
and ATP production. Consequently, myo-Ins improves sperm mitochondrial function,
enhancing many processes, such as capacitation, acrosome reaction, and regulation of
sperm motility [25]. This leads to an improvement of sperm motility in patients with
altered sperm parameters [26]. Accordingly, Governini et al., have demonstrated that
treatment with myo-Ins results in a significant increase in sperm motility [17].
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Once ejaculated, spermatozoa undertake several processes in which myo-Ins is in-
volved, such as capacitation, acrosome reaction [27], and sperm–oocyte interactions [28].
Moreover, Calogero et al., have shown that myo-Ins is a safe supplement able to significantly
rebalance serum gonadotropin and inhibin B (a serum marker assessing the presence and
function of testicular tissue [29]) levels and to increase the percentage of acrosome-reacted
spermatozoa, sperm concentration, total count, and progressive motility [27].

In vitro studies showed that myo-Ins exerts a protective effect against abnormal sperm
morphology, and improves sperm progressive and total motility by enhancing mitochon-
drial ATP production [17,30,31].

Taken together, myo-Ins regulates OS levels in sperm cells thanks to its role in mi-
tochondrial reactions, helps to restore some hormones’ balance in subfertile men, and is
involved in several processes favoring sperm production and sperm–oocyte interactions
leading to fertilization.

4. Alpha-Lipoic Acid

Alpha-lipoic acid (ALA) acts as the coenzyme for pyruvate dehydrogenase and alpha-
ketoglutarate dehydrogenase in the mitochondria, contributing to ATP production, which is
necessary for sperm viability [32]. Inside cells and tissues, ALA is reduced to dihydrolipoic
acid (DHLA), which has a higher antioxidant capacity [33]. ALA and DHLA chelate ROS
and transition metals to prevent membrane lipid peroxidation and protein damage [34].

In Haghighian et al., ALA supplementation was compared with placebo in a random-
ized, triple-blind, placebo-controlled clinical trial. The treated group showed significantly
increased sperm concentration, sperm count, and sperm total motility after about 3 months
of treatment [35].

Taherian et al., evaluated the intracellular OS and the percentage of sperm DNA
fragmentation in a group of subfertile men. Both parameters were significantly reduced by
an ALA in vitro preparation. This was likely achieved by reduction in ROS production [36].

Accordingly, Di Tucci et al., carried out a systematic review on the effects of ALA
supplementation in couples’ fertility. Their analysis identified the potential antioxidant
effect of ALA in reducing ROS damage, and showed improvement in semen parameters in
terms of spermatozoa motility, morphology, and count [37].

The beneficial effects of ALA supplementation have been tested in men undergoing
varicocelectomy for subfertility due to varicocele (varicocele has been one of the conditions
potentially involved in the genesis of sperm OS [38]). Abbasi et al., performed a triple-blind
randomized control trial assessing the effects of ALA vs. placebo treatment for 80 days
after the surgery. At the end of the study, ALA treatment after surgical repair of varicocele
demonstrated enhanced sperm quality compared to the control [39].

ALA was also tested as cryoprotection agent during the freezing–thawing process
that occurs in assisted reproductive techniques (ART). During cryopreservation, sperm
is exposed to different changes that may result in incremental OS and may induce some
adverse effects due to cryodamage. Asa et al., have demonstrated that an optimal con-
centration of ALA protects against ROS production and cryodamage. This is reflected in
the improvement of sperm motility and viability and by a decrease in DNA damage, and,
consequently, apoptosis [40].

5. Zinc

Zinc is the most abundant element in human semen, where its concentration is signifi-
cantly higher than that found in blood. Seminal plasma zinc originates from the prostate
gland and reflects the prostatic secretory function [41]. Zinc affects essential physiological
processes, such as cellular responses to OS, DNA repair, cell cycle, and apoptosis [42].

Zinc is necessary for testicular development and normal spermatogenesis. It is in-
volved in antioxidant defense, production, storage, secretion, and function of several
enzymes which play important roles in meiosis during spermatogenesis and other gameto-
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genesis stages [43]. It affects the stability of sperm chromatin and biological membranes in
general, as it influences the fluidity of lipids [44].

Normozoospermics show high zinc levels in seminal plasma, followed by asthenotera-
tozoospermics, oligoasthenoteratozoospermics, and azoospermics [45].

Colagar et al., demonstrated that poor zinc nutrition may be an important risk factor
for low sperm quality and idiopathic male infertility. Routine determination of zinc levels
during infertility investigation is therefore recommended [46].

Alsalman et al., carried out a randomized clinical trial comparing the effects of zinc
supplementation on seminal plasma in fertile and infertile men. The results showed that
zinc supplementation enhanced the semen quality in infertile men. This effect was depicted
in terms of spermatogenesis induction, sex organ growth stimulation, activation of 5α-
reductase (converting testosterone into the chemically active form), and an increase in
zinc-containing enzyme activity, which improved sperm motility [47].

On the other hand, another study on the role of zinc in male fertility declared that,
while zinc improves sperm motility and capacitation in vitro, dietary supplementation has
not been shown to increase the pregnancy rate in humans [48].

Taken together, it is apparent that further studies in fertile and infertile men are
required to determinate the exact beneficial effects and the optimal doses of zinc in male
infertility management.

Zinc and Folic Acid

Folic acid plays a pivotal role in nucleic acid synthesis and amino acid metabolism.
It also shows ROS-scavenger properties, making it a potential antioxidant for male
subfertility treatment.

No robust results are reported in the current literature to support supplementation
with folic acid alone for subfertile men, but it has a certain role in association with zinc.
The effect of this association is analyzed in several studies. Zinc plus folic acid increased
inhibin B in peripheral blood [49]. Since inhibin B reflects the quality of Sertoli cells, it is a
marker of active spermatogenesis in humans [50].

However, Raigani et al., did not show significant improvements in sperm concentra-
tion, motility, and morphology after supplementation with folic acid, zinc, or a combination
of them [51]. In contrast, a systematic review and meta-analysis by Irani et al., showed
that supplementation with folate plus zinc had a statistically significant benefit to sperm
concentration, morphology, and serum folate level compared to the placebo. Accordingly,
folate supplementation alone did not seem to be more effective than the placebo [52].

6. Coenzyme Q10

Coenzyme Q10 (CoQ10) is an essential cofactor for energy production and has high
antioxidant properties [53]. It is a component of the mitochondrial respiratory chain which
regulates ROS production, thereby protecting the cell membrane against lipid peroxidation-
induced damage [54]. For adequate motility, the sperm cells require a high energy viability,
which is produced in mitochondria via oxidative phosphorylation. In the mitochondria,
CoQ10 neutralizes free radicals produced during the electron transport chain [55]. However,
subfertile men show low CoQ10 concentration levels [53].

Low seminal plasma concentrations of CoQ10 have been correlated with impaired
sperm parameters, such as motility. Accordingly, evidence revealed that CoQ10 improves
sperm count and motility in infertile men [56,57].

Nadjarzadeh et al., carried out a double-blind, randomized clinical trial to assess
the role and the effects of CoQ10 supplementation in improving seminal parameters in
oligoasthenoteratozoospermic (OAT) men. They found that the semen of most OAT men
exhibits increased OS, which impairs semen parameters and leads to the failure of sperm
functions. Moreover, seminal plasma analysis confirmed the already known significant
direct correlation between CoQ10 levels and sperm motility and morphology. In their study,
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CoQ10 supplementation for at least three months attenuated OS in seminal plasma and
improved antioxidant enzyme activity [58].

Accordingly, García-Díaz et al., observed that CoQ10 supplementation for three
months significantly increased sperm concentration, total motility, and progressive motil-
ity [59].

Thakur et al., found that the seminal concentration of CoQ10, by improving the total
antioxidant capacity, was correlated with some of the most important semen parameters,
such as sperm concentration, motility, and morphology [60].

The optimal dosage of CoQ10 is still unknown. However, CoQ10 is one of the most
promising molecules to treat idiopathic male infertility [53].

7. Selenium

Selenium (Se) is incorporated in a large number of proteins, named selenoproteins, in-
volved in several metabolic pathways related to antioxidant defense, redox state regulation,
and cancer prevention [61].

During normal spermatogenesis, mitochondrial activity, and capacitation, Se is in-
volved as a cofactor of antioxidative enzymes responsible for the neutralization and preven-
tion of the synthesis of ROS [62]. Among all selenoproteins involved in male reproduction,
glutathione peroxidase plays a critical role in many redox reactions. In spermatozoa, it
is incorporated into the mitochondrial membrane, counterbalancing the ROS production
occurring in the motility process [63].

Moreover, selenoproteins, such as selenoprotein P (SePP), are required for normal
spermatogenesis. SePP is highly concentrated in the testis and in seminal fluid, where it
plays an important role in the protection of sperm during storage, genital tract passage,
and changes until sperm–oocyte interaction. Indeed, seminal plasma SePP concentration is
positively correlated with sperm density and the percentage of vital sperm [64].

Mistry et al., showed the effects of daily Se supplementation in improving the overall
semen quality, including sperm count, concentration, morphology, and motility [65]. More-
over, Taleby et al., demonstrated that higher selenium intake was associated not only with
an improvement in sperm total motility, but also with higher ejaculated volume [66].

However, selenium levels, in both blood and seminal plasma, should be adequately
controlled to avoid excess. Se supplementation may not induce therapeutic benefits and
may even reduce the general reproductive potential in males by disrupting the optimal
degree of ROS necessary for motility and acrosomal reaction [67]. Indeed, studies on fertile
men showed that high levels of plasma Se resulted in sperm morphology impairment and
motility reduction [68].

Therefore, at appropriate levels of serum Se, sperm morphology is of good quality, but
if the recommended value is exceeded, the morphology becomes compromised. Recent
findings call for attention to the use of antioxidant supplements with Se megadoses. Future
clinical studies are required to find the effective beneficial dose of Se [69].

8. Vitamins
8.1. Vitamin E

Vitamin E is the primary antioxidant component of the spermatozoa and protects the
cell membrane from ROS [70]. Rengaraj and Hong showed that vitamin E deficiency causes
abnormal spermatogenesis [71].

Vitamin E has positive effects on testis and sperm functions, but supplemental pre-
scriptions containing vitamin E have do little to improve overall sperm quality [70].

8.2. Vitamin C

Similar to vitamin E, vitamin C has a potential role as a membrane protector against
ROS. In Cyrus et al., vitamin C supplementation did not improve sperm count, but had
some beneficial effects on sperm motility and morphology [72]. However, the real effects of
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supplementation with this nutrient are still controversial and not clear yet. Future clinical
trials are required to evaluate the role of this vitamin in male infertility [73].

8.3. Vitamin B12

Vitamin B12, or cobalamin, is a cofactor in DNA synthesis and in both fatty acid and
amino acid metabolism [74]. Vitamin B12 positively influences semen quality by increasing
sperm count and sperm motility and by reducing sperm DNA damage [75].

Moreover, as with ALA, this nutrient has also been tested for protecting spermatozoa
from cryodamage during the freezing–thawing process that occurs in ART. Its addition to
cryopreservation medium improves sperm viability and motility and reduces the DNA
fragmentation that occurs in the freezing–thawing process [76].

Taken together, even though other vitamins display antioxidant effects, only vitamin
B12 demonstrated a major role in subfertility management with antioxidant supplementa-
tion (even if its mechanism of action is still unclear).

9. About the Combination of Antioxidants

In the current literature, the potential role of cotreatment of male infertility by using
several antioxidants has been analyzed [19,77,78].

According to Bish et al., a combination of antioxidants could be useful in order
to exploit their functions in ROS-inactivation and decreasing ROS production due to
enzymatic activities. Thus, the authors recommend a diet containing a mix of antioxidants,
especially zinc and selenium [79].

Santoro et al., assessed the in vitro and in vivo effects of supplementation with a mix-
ture of antioxidants containing mainly myo-Ins. Antioxidant preparations could have a
beneficial role in semen preparation for in vitro fertilization procedures. Moreover, oral
supplementation with the nutraceutical mix improves the performance of OAT sperm,
without any risks or side effects [80]. Accordingly, Scaruffi et al., showed an increase in fer-
tilization rates by administering a mix of antioxidants to men before semen deposition [81].
However, both studies agree on the need of further studies to enhance the understanding
of the effects.

Contrasting data were found in a recent multicenter, double-blind, randomized,
placebo-controlled trial, which concluded that combination antioxidant treatment for the
male partner does not improve in vivo pregnancy or live birth rates and does not improve
semen parameters or DNA integrity in infertile males’ spermatozoa [82].

One of the natural sources of a combination of antioxidants is vegetables. Dietary
modifications showed potential benefits in improving sperm quality, and the recommenda-
tion is to adhere to a healthy dietary pattern rich in plant-based foods, such as a vegetarian
diet, the Dietary Approach to Stop Hypertension (DASH) diet, or the Mediterranean diet,
alone or in association with antioxidant supplementations [83,84].

Taken together, the peculiar effect of the combination of antioxidants has not yet been
clarified. This is due to the poor populations involved in clinical studies and the lack of
randomized, placebo-controlled, double-blind clinical trials. Indeed, a retrospective study
noted that the antioxidant therapies available currently may not improve sperm function,
and the high cost of treatment could lead to poor patient compliance [85].

10. Conclusions

The etiology of several diseases, including male infertility, is strictly dependent on
OS [86]. Consequently, normal spermatozoa production, function, and vitality requires a
balance between ROS and antioxidants.

In men presenting low-quality semen, diet supplementation with antioxidants showed
a potential role in improving the overall sperm quality by alleviating OS-induced sperm
damage and enhancing hormone synthesis, spermatozoa concentration, motility, and
morphology. Future clinical trials should focus on the association of several antioxidants to
take advantage of their combined mechanisms of action.
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