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Abstract: Barrier islands within sheltered environments are an important natural defense from se-

vere storm impacts for coastal communities worldwide. Despite their importance, these fetch-lim-

ited barrier islands remain understudied and their ability to withstand and recover from storms is 

not well-understood. Here, we present a case study of Sugarloaf Island in North Carolina that 

demonstrates the operational use of openly accessible LiDAR and aerial imagery data to quantify 

synoptic habitat, shoreline, and volumetric change between 2014 and 2020, a period that encom-

passes four hurricanes and a winter storm event. During this time period, our results show: (1) an 

11–13% decrease in marsh and shrub habitat, (2) an average landward shoreline migration of 2.9 m 

yr−1 and up to 5.2 m yr−1 in extreme areas, and (3) a net volume loss of approximately 9800 m3. The 

results of this study highlight the importance of storms as a driver of morphologic change on Sugar-

loaf Island and have implications for better understanding the resiliency of fetch-limited barrier 

islands to storms. This work helps to enhance prerestoration data availability and supports 

knowledge-based decision-making regarding habitat change, erosional issues, and the efficacy of 

nature-based solutions to increase the resiliency of a coastal community in North Carolina. 
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1. Introduction 

Barrier islands are highly dynamic coastal landforms that provide storm defenses for 

roughly 10% of the world’s open-ocean coastlines, particularly in the U.S., where 24% of 

the world’s barrier islands occur [1]. While open-ocean-facing barrier island evolution has 

been subject to intense scientific study for nearly 180 years (e.g., [2–18]), barrier islands 

that form within sheltered and fetch-limited environments such as bays, lagoons, and 

sounds have received little attention or systematic research. In fact, they were an unrec-

ognized coastal landform until recently [14,15]. Termed fetch-limited barrier islands 

(hereinto fetch-limited islands), these islands are about six times more numerous than 

open-ocean-facing barrier islands and, often, front estuarine shorelines with sensitive 

community development [15–21]. As such, fetch-limited islands serve as important barri-

ers for coastal communities that buffer them against intense wave action and other storm 

event impacts [22,23]. By the end of the century, coastal issues are anticipated to have 

worsened as a result of spatiotemporally variable accelerated sea-level rise (e.g., [24]), 
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elevated storm frequency and intensity (e.g., [25]), and increased coastal development 

(e.g., [20]). Barrier islands will be particularly vulnerable to these factors, considering that 

a 50% acceleration in barrier island retreat is expected due to a lagged response to previ-

ous sea-level rise [26]. It is therefore critical to better understand the spatiotemporal resil-

iency of fetch-limited islands to storms, particularly where coastal communities rely on 

them as nature-based coastal defense infrastructure. 

Fetch-limited islands have a complex evolutionary dynamic with storms. Intense 

and/or prolonged coastal storms can subject islands to elevated water levels, wave runup, 

and/or wave attack that exceed the island’s ability to withstand prolonged erosion, 

thereby causing them to disappear entirely [1,14]. Yet overwash, the storm-driven process 

where sediments eroded from the beach and foredune are carried inland and deposited 

into back barrier marsh environments, is typically the most important sediment transport 

process responsible for fetch-limited island evolution [15]. During nonstorm conditions, 

fetch-limited island morphology is predominately influenced by low-energy, locally gen-

erated waves and negligible aeolian inputs [15,21,27,28]. As a result, fetch-limited island 

systems are thought to show little change during poststorm recovery periods, making 

their morphology a product of storm events [15,21,27,28]. In comparison, during non-

storm conditions, open-ocean-facing barrier systems can be exposed to higher-energy, 

nonlocally generated waves, such as those from further offshore or other ocean basins 

[21,27,28]. As a result, open-ocean-facing barrier systems can experience cyclical post-

storm recovery patterns, where mobilized offshore bars are transported landward and 

provide a sediment source for features such as dunes to reform following damage from 

storm events [15,27–32]. Fetch-limited islands are thus particularly vulnerable to high-en-

ergy coastal storms if they do not experience a poststorm recovery period like open-ocean 

barrier systems. However, recent work (e.g., [21]) on inlet barrier islands (a subgroup of 

fetch-limited islands studied by [15]) in North Carolina suggests that over time, some 

fetch-limited islands may fall into and out of conformance with the open-ocean-facing 

barrier system poststorm recovery model. Considering the lack of studies and lack of 

agreement between studies in the available literature, it is important to better understand 

and monitor the spatiotemporal resiliency of fetch-limited islands to storm events. 

Storm impacts on barrier islands are primarily a function of the combined effects of 

storm-induced water levels, wave energy, storm duration, island morphology, and the 

island’s resiliency to prolonged erosion [33,34]. However, other variables such as storm 

path, storm timing, and vegetation cover can also affect coastal responses to storms [35]. 

This relationship is conceptualized in the Sallenger Storm Impact Scale by four storm im-

pact regimes with increasing magnitudes of potential hazards [33]. These four regimes are 

defined as swash, collision, overwash, and inundation. The swash regime is the lowest 

impact level and defined where wave runup is confined to the foreshore and where no 

net change occurs [33]. The next impact level is the collision regime where wave runup 

exceeds the base of the foredune ridge or berm and results in net dune erosion [33]. The 

overwash regime is the third highest impact level and is defined where wave runup over-

tops the foredune ridge or berm and results in net landward sediment transport and net 

landward migration of the barrier island [33]. Lastly, the highest impact regime is the in-

undation regime where water level only is sufficient to continually submerge the barrier 

island, resulting in net landward sediment transport over the barrier island in quantities 

and distances greater than what occurs during overwash regime impacts [33]. The Sal-

lenger Storm Impact Scale can be used to reasonably predict the coastal response to storms 

and explain aspects of the spatial variability observed related to shoreline and volumetric 

change magnitude [36]. Since many fetch-limited islands are typically uninhabited and 

unmonitored, quantitative historical information regarding their morphological change is 

not readily available and may only be anecdotal in nature, if it exists at all [15]. Openly 

available (e.g., NOAA’s Data Access Viewer) remote sensing datasets, such as Light De-

tection and Ranging (LiDAR) and aerial imagery, therefore play a critical role in providing 
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accurate and reliable data for synthesizing historical change estimates and monitoring on-

going changes in complex coastal environments [15,37–41].  

Here we present a case study that demonstrates the operational use of remote sensing 

technologies to support knowledge-based management of coastal resources. The main ob-

jectives of this study are two-fold: (1) to further understand the influence of storms on the 

bio-geomorphology of fetch-limited islands, and (2) to synthesize a remotely sensed 

knowledge base for an ongoing coastal restoration project. Specifically, we use openly ac-

cessible LiDAR and aerial imagery data to quantify synoptic habitat, shoreline, and volu-

metric change on a fetch-limited island in central eastern North Carolina between 2014 

and 2020, a period that encompasses four hurricanes and a winter storm event. This work 

is unique and timely in that it (1) enhances understanding of the relationship between 

coastal processes and the bio-geomorphology of fetch-limited islands, (2) contributes to a 

larger multidisciplinary coastal governance project that combines efforts from private cit-

izens, governmental and nongovernmental organizations, and academia, and (3) en-

hances prerestoration data availability that supports knowledge-based decision-making 

regarding habitat change, erosional issues, and the efficacy of innovative science- and na-

ture-based solutions to increase the resiliency of fetch-limited islands. 

2. Site Description and Historical Context 

The North Carolina coastal region comprises of ~23 open-ocean-facing barrier islands 

that cover ~320 km of shoreline, as well as over 4800 km of estuarine shoreline comprising 

coastal communities, back barrier marsh, and oyster-reef habitats known as the Inner 

Banks [42,43]. Sugarloaf Island is a small, anthropogenically modified fetch-limited bar-

rier island (~14 ha) located in Morehead City, North Carolina, within a region called the 

‘Crystal Coast’ (indicated by the red dot and green outline in Figure 1A). Sugarloaf Island 

is situated landward of the developed open-ocean-facing barrier island, Bogue Banks, in 

the eastern end of the Bogue Sound near its confluence with the Beaufort Inlet Channel 

that connects the Sound with the Atlantic Ocean (Figure 1B). As early as 1888, modern 

Sugarloaf Island was identified on nautical charts as a marsh island [44]. By 1913, the Is-

land is shown to have developed some subaerial exposure [45], which is likely due to 

dredge-spoil deposition associated with the construction of an anchorage basin along 

Morehead City’s waterfront between 1910 and 1913 [46]. Dredge-spoil deposition would 

continue to augment islands in this area throughout the 20th century. A portion of Sugar-

loaf Island was modified from spoils associated with Port of Morehead City navigational 

improvements along the city’s waterfront in the 1950′s [46–48]. However, no additional 

spoil deposition on the Island has been documented by the Army Corps of Engineers for 

at least the past 35 years [48], and the island has characteristics of a natural fetch-limited 

barrier island. 

Contemporarily, Sugarloaf Island is bounded on the north and east sides by the Har-

bor Channel, separating the Island by approximately 100 m from the city’s commercial 

downtown waterfront and port areas. The western end of the Island is characterized by a 

recurved sandy spit (i.e., West Spit in Figure 1C) that partially encloses a shallow back-

barrier lagoon and marsh along its northern-facing shoreline (i.e., Back Barrier Marsh in 

Figure 1C). Moving to the east, the south-facing shoreline transitions to a rapidly eroding 

sediment bank escarpment with dense woody vegetation (e.g., Morella cerifera (wax myr-

tle)). Past the sediment bank to the east (i.e., East Spit in Figure 1C), the Island is again 

characterized by a sandy barrier ridge and spit with washover deposits and a back barrier 

marsh dominated by Spartina alterniflora (smooth cordgrass). Within the back barrier 

marsh, there are two tidal creeks that can segment the Island into three smaller islands 

during elevated water levels. During higher-than-normal tides and storm conditions, this 

area can experience overwash, as is evidenced by the presence of washover deposits. The 

south- and southeast-facing shorelines along the East Spit are characterized by a thin 

sandy shoreface with scattered patches of beach and dune grasses (e.g., Spartina patens 

(salt meadow cordgrass)). On both the West and East Spit areas, previously buried marsh 



 2022, 2 305 
 

 

deposits are exposed along the shoreline and are actively eroding away. Examples of the 

different habitat types on Sugarloaf Island are shown in Figure 1D. Sugarloaf Island ex-

periences semidiurnal tides with a mean tidal range of 0.9 m (Beaufort, Duke Marine Lab, 

NC—Station ID: 8656483). Sugarloaf Island’s proximity to and parallel orientation with 

the city’s waterfront area provides the community with protection during marine weather 

events and is critical to Morehead City’s future resiliency. 

 

Figure 1. Maps of different scales of Sugarloaf Island located in North Carolina’s Crystal Coastal 

region. (A) The location of Sugarloaf Island is indicated by a red dot. The dotted circle denotes a 60 

nautical mile radius from the Island where hurricanes passed. Hurricane-best-track data obtained 

from: https://www.nhc.noaa.gov/data/ (accessed on 25 October 2022), (B) 2010 bathymetry model 

from TCarta Marine LLC, (C) RGB aerial imagery from 2020, (D) visual line of sight captured while 

in the field in June 2022. 

Anecdotally, the seaward shoreline of Sugarloaf Island experiences shoreline erosion 

from wave exposure and currents that destroy vegetation and sweep sediment from the 

Island into the water, thereby contributing to nearby navigational channel infilling and 

water quality deterioration. This trend is shown in historical satellite imagery from 1984 

to 2020, which shows the island contracting in the north, east, and west directions with no 

visually noticeable recovery year over year [49]. Moreover, local reports document strik-

ing and accelerating morphologic and ecologic changes to Sugarloaf Island in association 

with storms; however, to the authors’ knowledge, the Island has never been formally stud-

ied and historical changes are poorly documented. In an effort to increase the resiliency 

of downtown Morehead City, a partnership consisting of private citizens, governmental 

and nongovernmental organizations, and academia was created to protect Sugarloaf Is-

land from continued erosion by implementing nature-based stabilization methods. These 

methods include: (1) wave attenuation devices to reduce erosion, (2) aquatic and 
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terrestrial plantings to stabilize sediment and create habitat, and (3) living shorelines to 

build saltmarsh and upland vegetation. In recognition of the economic importance of this 

island as a tourist destination and coastal defense resource, the project was awarded USD 

2 million by the North Carolina General Assembly in the state’s 2022 budget. To support 

the implementation of this project, remote sensing techniques were used to enhance 

Sugarloaf Island’s prerestoration data availability in order to (1) better understand recent 

habitat, shoreline, and volumetric change in relation to storm events and (2) establish a 

baseline dataset by which the efficacy of future restoration activities can be assessed. 

3. Data and Methods 

3.1. Data Availability and Description 

At the time of this study, the best available openly accessible topobathymetric LiDAR 

and corresponding aerial imagery were from 2014 and 2020 and are available through 

NOAA’s Data Access Viewer (https://coast.noaa.gov/dataviewer/; accessed on 25 October 

2022). Both the 2014 and 2020 topobathymetric LiDAR were collected between the months 

of November and April, while the 2014 and 2020 aerial imagery were collected between 

the months of January and April. All datasets are horizontally referenced to the North 

American Datum of 1983 (NAD 83) and projected to the State Plane Coordinate System in 

meters. Additional aerial imagery were available, but corresponding LiDAR collected 

during the same year and season were not. Since wetland plant productivity and growth 

is sensitive to small variations in elevation on the order of centimeters [50], LiDAR eleva-

tion is an important feature when driving a machine learning algorithm to classify habitat 

[51]. For these reasons, the authors limited the study to the 2014 and 2020 datasets. 

The 2014 and 2020 topobathymetric LiDAR were acquired using Riegle VQ sensors 

and then classified as ground and submerged topography classes before the vendor gen-

erated 1 m horizontal resolution topobathymetric LiDAR DEMs. The vertical accuracy of 

each DEM was assessed by each vendor using independent survey checkpoints. The re-

ported open terrain vertical Root Mean Square Error (RMSE) was 0.057 m for the 2014 

DEM and 0.037 m for the 2020 DEM [52,53]. The 2014 and 2020 DEMs were vertically 

referenced to the North American Vertical Datum of 1988 (NAVD 88) using Geoid 12B. In 

this study, we converted the DEMs to local tidal datums of Mean Lower Low Water 

(MLLW) and Mean Higher High Water (MHHW) using NOAA’s open-source vertical da-

tum transformation tool, VDatum (https://vdatum.noaa.gov/; accessed on 25 October 

2022). MLLW represents the modern lowest low-water mark, which allows us to identify 

where land is dry daily. On the other hand, MHHW is the modern highest high-water 

mark, and is used in this study as a baseline to capture areas inundated by storms. The 

maximum cumulative uncertainty, which is the value from the transformation from the 

International Terrestrial References Frame to a tidal datum, is 0.09 m for the North Caro-

lina coastal region (https://vdatum.noaa.gov/; accessed on 25 October 2022).  

The 2014 aerial imagery was acquired with an Intergraph/Leica DMC sensor at a 0.35 

m ground sampling distance and horizontal accuracy tested at 0.53 m [54]. The specifica-

tions for the 2020 aerial imagery included data acquisition with a Leica ADS100 

pushbroom sensor, a slightly better ground sampling distance of 0.3 m, and horizontal 

accuracy of 0.28 m [55]. Both the 2014 and 2020 imagery contained 4 bands (i.e., Red (R), 

Green (G), Blue (B), and Near-Infrared (NIR)), but were not tidally controlled. Therefore, 

we performed a quality assessment in a GIS by overlaying the transparent imagery with 

the respective DEM relative to MLLW to determine any potentially submerged areas that 

were dry at low tide [56]. The results showed that the 2014 imagery was collected at low 

tide, while the 2020 imagery was collected near low tide. Since the images were collected 

at similar tidal stages, they were considered suitable for further analysis as recommended 

by other previous studies [56–61].  
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3.2. Image Analysis and Classification Workflow 

In this study, we use a well-established workflow to segment and classify aerial im-

agery using object-based image analysis (OBIA) and the Random Forest (RF) machine 

learning algorithm. OBIA is a technique used to recognize homogeneous objects in digital 

imagery through image segmentation and classification [62]. The defined objects can have 

varying shapes and sizes and can also incorporate spectral, textural, and contextual sta-

tistics associated with them to classify objects. RF is an ensemble classification technique, 

developed by [63], that can be used to predict image classes based on the partition of data 

from multiple uncorrelated decision trees. Advantages of RF include its speed, capability 

to deal with complex relationships between predictors, ease of input parameter specifica-

tion, and accuracy of its classifications compared to other machine learning models 

[64,65].  

This study used an OBIA workflow in Esri’s ArcGIS Pro v2.9.3, which consisted of 

the following three main steps. In the first step of the OBIA workflow, the Segment Mean 

Shift algorithm uses a moving window average to group pixels with similar spectral char-

acteristics into segments [66]. In the algorithm, there are three adjustable parameters: (1) 

spectral detail, (2) spatial detail, and (3) minimum segment size. The spectral detail and 

spatial detail parameters set the level of importance given to the spectral difference and 

the proximity between features, respectively. Both parameters range from 1 to 20, with 

higher numbers signifying greater sensitivity to slight differences between features. The 

minimum segment size parameter is directly related to the minimum mapping unit (i.e., 

the smallest size that can be used to capture a feature), and segments smaller than the 

minimum segment size are merged by the algorithm with their best-fitting neighbor seg-

ment. In this study, a spectral detail of 17, spatial detail of 15, and minimum segment size 

of 20 were used as inputs in the Segment Mean Shift algorithm.  

The second step in the OBIA workflow involved the use of tools within Esri’s Train-

ing Samples Manager to create representative class categories and training samples for 

each class and imagery date. Commonly, real-time kinematic global navigation satellite 

system (RTK-GNSS) data of each class type are collected at the time of imagery acquisition 

to aid in training. However, since no ancillary RTK-GNSS data were available for this 

study, training sample objects were created for each class category and imagery year 

through a supervised image classification scheme and a priori knowledge of the habitat 

types on the island over the past several years. Class categories were based on four major 

habitat types on the island: (1) high marsh, (2) low marsh, (3) sand, and (4) shrub (i.e., 

those shown in Figure 1D). High and low marsh were differentiated by a combination of 

RGB and false-color aerial imagery, DEMs relative to MHHW and MLLW, and a priori 

field observations (e.g., Figure 1D). A total of 1272 training sample objects were selected 

for the 2014 imagery and 952 for the 2020 imagery.  

The last step in the OBIA workflow used Esri’s Compute Segment Attributes tool to 

extract analytical information for each segment within the image. In this study, six explan-

atory variables were extracted and included: (1) LiDAR elevation minimum, (2) LiDAR 

elevation mean, (3) RGB band mean, (4) NIR band mean, (5) segment compactness (the 

degree to which a segment is compact or circular), and (6) segment rectangularity (the 

degree to which the segment is rectangular). The derived analytical information from each 

image was then synthesized into object layers and used as an input into the RF classifica-

tion algorithm.  

Esri’s adaptation of the RF supervised classification algorithm, called Forest-based 

Classification and Regression (Spatial Statistic Tools), can be used to train the models be-

fore making predictions on unseen data. Training samples are randomly split into two 

datasets used to: (1) train and fine-tune the model’s parameters used to classify the objects 

(80% of the training samples) and (2) test the predictive performance of the model used to 

generate the habitat maps (20% of the training samples). Based on trial and error, we used 

500 trees in a forest where each tree included every one of the four habitat classes, a max-

imum tree depth that was data driven (set on the 500 trees and six explanatory variables), 
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and the number of randomly sampled explanatory variables used to create each decision 

tree was set to two. For each year, a total of 25 model runs were carried out to determine 

the most stable model based on the highest R2 value. To help reduce overfitting, training 

time, and improve model accuracy, an automatic attribute selection was used for deter-

mining the relevant explanatory variables. The variables of importance identified for both 

imagery datasets included the LiDAR mean and minimum elevation as well as the RGB 

and NIR mean values. Once the models were trained, all training samples were used to 

make predictions on unseen data that were used to generate habitat maps. 

3.3. Habitat, Shoreline, and Volumetric Change Detection 

Changes in habitat were determined by calculating the total area for each habitat 

class category and calculating the percent difference between the 2014 and 2020 imagery. 

By analyzing various accuracy and error metrics of the classified maps, we can assess their 

suitability for understanding the relative composition of the major habitat types on the 

Island between 2014 and 2020. The validation of the model’s performance is based on ran-

domly selected independent test sample objects used to calculate the overall accuracy and 

kappa value. The overall accuracy provides information on what proportion of the test 

sites were correctly classified. On the other hand, the kappa value evaluates how well the 

classification performed when compared to randomly assigned classifications, with val-

ues close to 1 indicating classifications are better than random. Classification accuracies 

can also be examined from the map user and producer points of view. The user accuracy 

represents the probability that an object classified as a known class on the map represents 

that class on the true ground. On the other hand, the producer’s accuracy represents how 

well the training sample objects of the ground class features are classified on the map. All 

these accuracy statistics were used in this study to assess the suitability of the classifica-

tions.  

The shoreline is generally defined as the physical interface of land and water [66], yet 

this definition is challenging to objectively apply due to the dynamic water levels at the 

coastal boundary [56]. As such, numerous shoreline indicators have been used in the lit-

erature to define shoreline change through time (for a review see [56]). In this study, the 

shoreline was determined through a tidal datum-based indicator rather than a visually 

discernable feature-based indicator in order to increase objectiveness of our shoreline def-

inition [56,67]. Specifically, we used the MLLW tidal datum to define the land–water 

boundary [68,69] in order to minimize tidal variation between years [70]. Changes in 

shoreline were calculated using a common endpoint method, where shoreline rate of 

change is equal to the change in horizontal shoreline position divided by the change in 

time between the two shorelines [70–72], with positive values indicating accretion and 

negative values indicating erosion. We calculated shoreline change rates at shore-normal 

transects spaced 5 m along the shoreline. The 2014 and 2020 horizontal shoreline positions 

from each transect were then used to calculate an annual rate of change. Consistent with 

NOAA’s Coastal Mapping Program standards, where imagery must meet a 1.5 m hori-

zontal accuracy at the 95% circular error confidence interval, we chose to remove all shore-

line positions with differences in horizontal distance less than 1.5 m [53,54]. This was our 

minimum critical threshold for determining horizontal changes. 

Morphological changes were quantified using the DEM of Difference (DoD) ap-

proach, a common method used in various morphological change-detection studies [73–

75]. In this study, we applied the DoD approach to the 2014 DEM and 2020 DEM to quan-

tify volumetric change. Since ground truth measurements were not available to estimate 

spatially variable DEM error [73], we subjected the spatially uniform DEM error to the 

Linear Error (LE) at a 95% confidence interval (RMSE × 1.96 = LE) [76] using the DEM with 

the highest error, which, in our case, was the 2014 DEM (RMSE = 0.057 m). In this study, 

the LE of ±0.11 m (0.057 × 1.96 = 0.11 m) was used as the minimum critical threshold for 

determining vertical changes. We chose to remove all DoD grid cells within the LE of ±0.11 

m. The remaining DoD grid cells were then used to estimate erosion (negative values) and 
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deposition (positive values) volumes and create a volumetric difference map and histo-

gram showing the distribution of elevation change across the Island. Given the synoptic 

nature of this study, we use the Sallenger Storm Impact Scale to understand the cumula-

tive effect of storms on Sugarloaf Island’s morphology and landscape composition be-

tween 2014 and 2020. This was performed by examining hourly wind speed, wind direc-

tion, and water level observations from a nearby (~2 km) tide station (Beaufort, Duke Ma-

rine Lab, NC—Station ID: 8656483) for each storm and topographic profiles extracted from 

each DEM to infer impacted regions across the Island.  

4. Results 

4.1. Habitat Change and Model Validation 

Maps showing the total habitat distribution for the 2014 and 2020 imagery are shown 

in Figure 2A,B, respectively, with a table summarizing the important statistics below in 

Figure 2C. Overall, between 2014 and 2020, high marsh and shrub habitat experienced the 

largest percent change, both decreasing by 12.7% between 2014 and 2020. The low marsh 

habitat also experienced a decrease during this period, losing 11.8% of its 2014 area. In 

contrast to the other habitat types, the area predominantly characterized by sand in-

creased by 1.2% between 2014 and 2020. Another noticeable difference between the habitat 

maps is the change in the shape of the Island, particularly the sand spits located on the 

eastern and western ends. This difference is highlighted by superimposing a black solid 

line parallel to the eastern and western extents of the 2014 Island in Figure 2A,B.  

 

Figure 2. (A) 2014 habitat map, (B) 2020 habitat map, and (C) table showing the percentage of habitat 

decrease from 2014 to 2020. In the habitat maps, a color scheme was chosen where high marsh was 

assigned olive green, low marsh was leather brown, sand was medium sand, and shrub was spruce 

green.  

As shown in Table 1, the overall accuracy of the 2014 and 2020 imagery classification 

is similar, with values of 0.921 and 0.903, respectively. Based on the minimum overall 

accuracy criteria of 0.85 set by the U.S. Geological Survey [77], these classifications are 

acceptable. Additionally shown in Table 1 are the kappa values for the 2014 and 2020 im-

agery classification. Like the overall accuracy results, the kappa values between the 2014 

and 2020 classification are also similar, with values of 0.895 and 0.876, respectively. 
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Table 1. Classification accuracies for 2014 and 2020 of Sugarloaf Island. 

Imagery Date Overall Accuracy  Kappa Value 

2014 0.921 0.895 

2020 0.903 0.876 

A summary of the user and producer accuracies per-class for the 2014 and 2020 hab-

itat classification is shown in Table 2. For the 2014 imagery classification, the results show 

that the user and producer accuracies are the same for the high marsh and shrub classes. 

In contrast, the user accuracy for the low marsh class is less than the producer accuracy, 

while the user accuracy for the sand class is greater than the producer accuracy. For the 

2020 imagery classification, no classes had the same user and producer accuracies. In con-

trast to the 2014 imagery, the high marsh, low marsh, and sand classes have a user accu-

racy that is less than the producer accuracy, while the shrub class has a greater user than 

producer accuracy. Overall, all user and producer accuracies are greater than or equal to 

0.75, and the 2014 and 2020 imagery classifications were considered suitable, particularly 

when considering all accuracy statistics that were assessed.  

Table 2. Per-class accuracy for habitat classification of Sugarloaf Island. Where UA = User’s Accu-

racy and PA = Producer’s Accuracy. 

Classes 
2014 Imagery 2020 Imagery 

UA PA UA PA 

High Marsh 0.866 0.866 0.750 0.857 

Low Marsh 0.937 1.000 0.818 0.900 

Sand 1.000 0.750 0.882 0.937 

Shrub 0.960 0.960 1.000 0.823 

4.2. Shoreline Change 

A more detailed map of the changes to the Island’s shoreline is shown in Figure 3. 

Between 2014 and 2020, the Island decreased in area by 1.7 ha from 15.9 ha in 2014 to 14.2 

ha in 2020. Like the habitat change maps, the shoreline change map in Figure 3 shows 

marked changes particularly on the eastern and western ends of the Island. Overall, the 

shoreline migrated landward between 2014 and 2020 by 2.9 m yr−1 on average and up to 

5.2 m yr−1 in extreme areas such as the western end of the island. Another area of noticea-

ble change is related to the tidal creeks in the northeastern portion of the Island. In both 

cases, the tidal creeks are observed to elongate toward the south–southeast and become 

more incised in the landscape. In general, the shoreline on the northern side of the island 

showed little to no change in position over the study period. 

 

Figure 3. Shorelines derived from object-based image analysis techniques, where blue indicates 2014 

and red indicates 2020. 



 2022, 2 311 
 

 

4.3. Volumetric Change 

The DEMs generated from the 2014 and 2020 LiDAR data relative to MHHW are 

shown in Figure 4A,B, respectively. Here, shades of blue indicate where beach and low 

marsh habitat are inundated at higher high tide, while shades of green and brown indicate 

areas with higher elevation such as high marsh and shrub habitat. Based on a qualitative 

inspection of the DEMs, there are several areas on the Island that have had noticeable 

volumetric change and are highlighted in Figure 4A,B by colored arrows. Highlighted by 

the red arrow in Figure 4A,B, we see that in 2014, there was a small breach in the narrow 

foredune just to the southeast of the tidal channel, but in 2020, the dune area above 

MHHW had grown more robust in width and height, and the breach had been filled. To 

the west and highlighted by the black arrow, we see a narrow foredune exposed just above 

MHHW in 2014, but in 2020, overwash had created a channel cutting through the narrow 

foredune. 

 

Figure 4. (A) 2014 DEM relative to Mean Higher High Water (MHHW); (B) 2020 DEM relative to 

MHHW, (C) difference of DEMs (DoD’s) where the 2014 DEM was subtracted from the 2020 DEM 

and spatially uniform DEM error removed (+/−0.11 m) to reveal morphological change as erosion 

(red negative values) and deposition (blue positive values), and (D) corresponding bar graph show-

ing elevation change distributions. Colored arrows in (A,B) depict features described in the text. 

To provide a quantitative assessment of volumetric change as erosion and deposi-

tion, the differences between the 2020 and 2014 DEMs relative to MHHW were calculated, 

as shown in Figure 4 by the map (Figure 4C) and histogram (Figure 4D). Erosion is shown 

in red as negative values, while deposition is shown in blue as positive values. Overall, 

between 2014 and 2020, the Island experienced a net volume loss of approximately 9823 

m3. There are three distinct erosional patterns shown in Figure 4: (1) very little to no 

change, (2) erosion without inland deposition, and (3) erosion with inland deposition. In 
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general, on the northern side of the Island, there is very little volumetric change detected 

between 2014 and 2020, with some stretches in this area experiencing no detectable volu-

metric change. In contrast, areas generally oriented to the south and associated with the 

sediment bank experienced moderate to high erosion without landward deposition, while 

areas generally oriented southwest or southeast experienced moderate to high erosion 

with landward deposition. Of the area that experienced detectable change between 2014 

and 2020, approximately 61.8% experienced volumetric loss, while approximately 38.2% 

experienced volumetric gain. A histogram summarizing the distribution of volumetric 

change within the area that experienced detectable change between 2014 and 2020 is 

shown in Figure 4D.  

4.4. Storm Characteristics 

A summary of the wind and water level characteristics of the storm events that im-

pacted Sugarloaf Island between 2014 and 2020 are shown in Table 3 in chronological or-

der. For this study, a storm was considered to be any 24 h period where at least 1 h of 

tropical storm force winds (i.e., >17.4 m s−1) impacted Sugarloaf Island. Over the course of 

the study, Sugarloaf Island received a total of approximately 22 h of tropical storm force 

winds over four hurricane events and one winter storm event. On average, Sugarloaf Is-

land experiences gentle breeze conditions from the southeast with an average hourly wind 

speed of 3.7 m s−1. Additionally, on average, the Island experiences approximately 0.14 m 

of inundation above MHHW for 3 h per day. Generally, the storms fall into two categories: 

(1) winds predominately from the west to southwest (e.g., Arthur, Matthew, Winter 

Storm, and Dorian) and (2) winds predominately from the east to southeast (e.g., Flor-

ence). Of all storms, Hurricane Florence reported the highest maximum and average wind 

speeds (i.e., 24.1 and 18.3 m s−1, respectively), duration of tropical storm force winds (i.e., 

13 h), maximum water level above MHHW (i.e., 1.12 m), duration of water level above 

MHHW (i.e., 23 h), and magnitude of average water level above MHHW (i.e., 0.50 m). 

Next, Hurricane Matthew and Dorian reported similar maximum and average wind 

speeds (i.e., 20.0 and 10.5 m s−1 and 19.6 and 10.6 m s−1, respectively), duration of tropical 

storm force winds (i.e., 3 h), and duration of water levels above MHHW (i.e., 11 and 10 h, 

respectively). However, Hurricane Matthew reported higher maximum water levels (i.e., 

0.64 m) and magnitude of average water level above MHHW (i.e., 0.28 m) than Hurricane 

Dorian (i.e., 0.41 and 0.23 m, respectively). Lastly, Hurricane Arthur and Winter Storm 

report similar maximum and average wind speeds (i.e., 20.3 and 6.5 m s−1 and 17.5 and 9.9 

m s−1, respectively) and duration of tropical storm force winds (i.e., 2 and 1 h, respectively). 

However, Winter Storm reports higher maximum water level above MHHW (i.e., 0.49 m), 

duration of water levels above MHHW (i.e., 6 h), and magnitude of average water level 

above MHHW (i.e., 0.28 m) than Hurricane Arthur (i.e., 0.42 m, 4 h, and 0.17 m, respec-

tively).  

Table 3. Summary of wind and water level characteristics of storm events that impacted Sugarloaf 

Island, NC, between 2014 and 2020. Note that maximum hourly wind speed is reported outside of 

parentheses, and average hourly wind speed is reported inside parentheses. Wind and water level 

duration are reported in hours (h). Duration of water level >MHHW for the total study period is 

reported in hours per day (h d−1) and is highlighted by the asterisk. 

Name 
Date Near Sugar-

loaf Island 

Hourly Wind 

Speed (m s−1) 

Max (Avg.) 

Duration of 

Tropical Winds 

>17.4 m s−1 

Avg Hourly 

Wind Direc-

tion 

Max Hourly 

Water Level 

>MHHW (m) 

Duration of 

Water Level 

>MHHW 

Avg Magnitude 

of Water Level 

>MHHW (m) 

Total Study Period 24.1 (3.7) 22 h 169° 1.12 3 h d−1* 0.14 

Arthur (H2) 4 July 2014 20.3 (6.5) 2 h 237° 0.42 4 h 0.17 

Winter 

Storm 
7 February 2016 17.5 (9.9) 1 h 254° 0.49 6 h 0.28 
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Matthew 

(H1) 
9 October 2016 20.0 (10.5) 3 h 283° 0.64 11 h 0.28 

Florence 

(H2) 

14 September 

2018 
24.1 (18.3) 13 h 106° 1.12 23 h 0.50 

Dorian (H2) 6 September 2019 19.6 (10.6) 3 h 227° 0.41 10 h 0.23 

5. Discussion 

5.1. Morphological Indicators of Dominant Storm Impact Regimes  

Our short-term (i.e., <10 years) synoptic investigation of two openly accessible, re-

motely sensed datasets reveals dynamic changes to Sugarloaf Island’s habitat, shoreline, 

and morphology between 2014 and 2020, a timeframe that encompasses the impacts of 

four hurricanes and one strong winter storm on the region. The results of this study high-

light the importance of storms as a driver of morphologic change on Sugarloaf Island, 

similar to other fetch-limited islands documented in the literature [14,15,21]. The locations 

of four selected topographic profiles distributed across the island are shown in Figure 5. 

In each of the profiles, blue denotes the topography in 2014, while red is the topography 

in 2020. Changes in habitat along the profiles and maximum hurricane water levels are 

also summarized in Figure 5. To contextualize the morphological changes to Sugarloaf 

Island, refer to the summary of the wind- and water-level observations for the study pe-

riod, previously shown in Table 3. For reference, coastal terminology usage is consistent 

with the standards outlined in [78].  

Profile 1 (Figure 5A) was extracted from the western spit area of Sugarloaf Island, 

where substantial changes to the Island’s morphology were observed during the study 

period. Minimal change in habitat type occurred along Profile 1, since this area was pre-

dominately sand in 2014 and 2020 (Figures 2A,B and 5A). However, we see a marked 

change in the location of the spit area with its shoreline location having shifted to the east 

by approximately 15 m from its original location in 2014. While changes in the horizontal 

location of the western spit are clearly evident, the feature generally retained its overall 

shape and appearance, which is consistent with [39]’s conceptual profile translation 

model. Under nonstorm conditions, the 2014 and 2020 profiles are located within the in-

tertidal zone, both becoming inundated by average MHHW conditions for several hours 

every day (Table 3). During storm conditions in our study, water levels were, on average, 

2 times higher and persisted for 3.5 times longer than average MHHW conditions during 

nonstorm times (Table 3). The pronounced landward translation of the western spit likely 

occurs during high-water events that are accompanied by storm waves and is consistent 

with impacts expected during overwash and inundation regimes on the Sallenger Storm 

Impact Scale [33–35]. Given the low elevations in this area of Sugarloaf Island, it is highly 

susceptible to storms where water levels and winds are elevated for prolonged periods, 

such as Hurricane Florence. During Hurricane Florence, Sugarloaf Island experienced 

persistent tropical storm-force winds, which coincided with prolonged elevated water 

levels (Table 3). However, it is also important to consider the orientation of Sugarloaf Is-

land in relation to the average wind direction. For instance, the long axis of Sugarloaf 

Island is oriented approximately west to east and parallel with the direction of maximum 

fetch within the Bogue Sound. Storms that produce winds out of the west to southwest, 

such as Arthur, Winter Storm, Matthew, and Dorian, could enhance wave heights on the 

western side of Sugarloaf Island given the additional fetch the Island experiences from 

that direction. It is likely that higher wave energies from the direction of maximum fetch 

contribute to the observed landward translation despite the lower durations of tropical 

winds and elevated water levels of the storms when compared to Hurricane Florence (Ta-

ble 3). However, based on our synoptic dataset, it is uncertain which storm metric is most 

important for predicting future impacts from specific storms on Sugarloaf Island.  
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Figure 5. Morphology change is shown at selected profiles where the 2014 shoreline is blue and the 

2020 shoreline is red. (A) Profile 1 of western spit, (B) Profile 2 of sediment bank, (C) Profile 3 of 

beach and foredune flattened into a washover fan, and (D) Profile 3 where waves cut back the dune, 

forming a scarp. The water levels for the four hurricanes are also shown to match the color of their 
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tracks in Figure 1, as are 2019 images of sediment bank and dune scarp by Niels Lindquist and 2022 

images of western spit and washover fan by Matthew Sirianni. 

Moving to the east, Profile 2 (Figure 5B) was extracted from the sediment bank of 

Sugarloaf Island, where substantial erosion occurred. Profile 2 shows a landward shore-

line migration of nearly 15 m between 2014 and 2020, which is similar to Profile 1. While 

a clear change in horizontal position of the sediment bank was observed, the height of the 

bank remained unchanged between 2014 and 2020. Under nonstorm conditions, the nar-

row foreshore is situated within the intertidal zone, with the sediment bank toe represent-

ing the intersection point of the profile with MHHW. The backshore is characterized by 

the steep cliff face of the sediment bank that extends approximately 2 m above MHHW. 

The dominant morphology of this area, a scarp, is indicative of a collision impact regime 

on the Sallenger Storm Impact Scale. Scarping takes place when the resistive strength of a 

sediment bank is exceeded by destabilizing forces, such as wave attack, via processes such 

as sliding, notching, and slumping along failure planes [79–82,]. Considering the height 

of the sediment bank (Figure 5B) and the water level record (Table 3), it is likely that the 

sediment bank remains supratidal during storm conditions, which is also consistent with 

the collision impact regime. Compared to other areas of Sugarloaf Island, the sediment 

bank is heavily vegetated. Vegetation exerts a strong control on the resistance of the sed-

iment banks to erosion through above- and below-ground biomass [79–82]. As such, the 

presence of toppled trees and exhumed root systems along the scarp toe are obvious evi-

dence of previous erosion and shoreline retreat events. This response was commonly ob-

served throughout North Carolina’s estuaries following Hurricane Florence [83,84], and 

is likely related to the prolonged and intense storm conditions exerted by Hurricane Flor-

ence on Sugarloaf Island (Table 3). Coincidently, foreshore vegetation plays a significant 

role in dissipating wave energy [85,86]. The presence of foreshore vegetation (albeit dead 

vegetation in this scenario) along the sediment bank may therefore exert a stabilizing ef-

fect and help to prevent future erosion during lower magnitude and shorter duration 

storms similar to Hurricane Arthur. However, further work is needed to assess how the 

presence or absence of toe-slope debris contributes to the Island’s resiliency and storm 

response.  

The eastern spit shows some of the most striking changes observed in the study, par-

ticularly where the washover deposit is present. The extracted profile from this area (i.e., 

Profile 3 shown in Figure 5C) shows an approximately 15 m shoreline retreat and an over-

all flattening of the topography between 2014 and 2020. Under nonstorm conditions, the 

2014 profile has a roughly 25 m wide supratidal exposure with a maximum height of ap-

proximately 0.25 m above MHHW. Immediately beyond the landward extent of the 

subaerial dune, the topography drops sharply and then smooths out through the rest of 

the profile. In contrast to the 2014 profile, the 2020 profile is flattened, fully situated within 

the intertidal zone, and does not have any supratidal exposure. Given the low elevation 

shown in the 2014 and 2020 profile, this area of Sugarloaf Island is susceptible to overwash 

and inundation regime impacts considering the persistently elevated water levels during 

the storm events of this study (Table 3). Unlike the other profiles shown in Figure 5, Profile 

3 shows sediment accretion as thick as 0.5 m landward of the 2014 subaerial dune that 

corresponds with areas that were classified as low marsh in 2014 (Figures 2A,B and 5C). 

This pattern of foreshore erosion and back barrier marsh deposition is consistent with 

overwash regime impacts on the Sallenger Storm Impact Scale. It is likely that Hurricane 

Florence was a major source of overwash, particularly given the parallel orientation of the 

tropical storm-force winds (Table 3) with the direction of washover deposit growth (Fig-

ures 4C and 5C). When coupled with elevated inundation time and inundation magni-

tude, the higher energy waves generated from tropical storm-force winds were likely suf-

ficient to mobilize the sediment landward. However, it is important to note that given the 

synoptic nature of our study, individual storm impacts cannot definitively be quantified. 

While sediment transported to the back barrier marsh contributes to annual marsh 
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accumulation and can enhance marsh growth [29,87–89], burial of marsh vegetation be-

yond the optimal depth of 0.05 to 0.1 m has been found to lead to plant mortality [83], 

which, consequently, impacts island resiliency. Commonly, barrier islands experience 

breaching and channel incision in response to inundation regime impacts [35]. For in-

stance, the 2014 profile (Figure 5C) shows the presence of a thin supratidal dune that is 

continuous toward the eastern end of the Island (Figure 4A). In the 2020 profile (Figure 

5C), we observe destruction of the dune and the creation of a breach that connects the 

foreshore with the back barrier marsh via an incised channel (Figure 4B) that was not pre-

viously active in 2014 (Figure 4A). Furthermore, it is also notable that the breached area 

corresponds to a tidal channel seen in the back barrier marsh, suggesting an antecedent 

control on the position of the breach. The filled channel may extend beneath the barrier to 

the south and offer less resistance to erosion than the surrounding cohesive marsh peat 

platforms underlying the foreshore in other areas. A relationship similar to this was noted 

with respect to the formation of Isabel Inlet on North Carolina’s Outer Banks [16].  

Extracted from the eastern extent of Sugarloaf Island, Profile 4 (Figure 5D) shows the 

largest magnitude change in the horizontal location of the shoreline, where roughly 35 m 

of shoreline migration occurred. The 2014 profile is convex in nature and characterized by 

a sloped foreshore within the intertidal zone and a backshore with an approximately 60-

meter-wide subaerial dune up to 1 m above MHHW at its maximum. Comparatively, the 

2020 profile is generally concave in nature and characterized by a wider and more gently 

sloping foreshore within the intertidal zone and a backshore with a steep scarp and a berm 

height of approximately 1 m above MHHW. As discussed previously in regard to Profile 

2, scarping is an indicator of the collision impact regime on the Sallenger Storm Impact 

Scale. In contrast to Profile 2, however, Profile 4 does not have extensive vegetation pre-

sent, as summarized by the horizontal bars above the profile in Figure 5D. The lack of 

vegetation and its stabilizing influence helps to explain why Profile 4 experienced approx-

imately two times greater horizontal shoreline migration compared to the densely vege-

tated region of Profile 2 [79–82], since they were both subjected to similar storm conditions 

(Table 3). Similar to Profile 2, however, the sediment that was eroded from Profile 4 seems 

to have been lost to transport offshore or longshore, since there is not landward deposition 

of sediment observed in the profile or in Figure 4C. Without the stabilizing effect of veg-

etation, this area of the island will likely experience additional scarping during future 

storm events, shifting the shoreline further inland such as what was observed between 

2014 and 2020. Loss of sediment from the Island not only impacts its future persistence, 

but it also impacts the Port of Morehead City’s navigational channels surrounding the 

Island, since the sand is known to be infilling the channel on the Island’s eastern end. 

5.2. Implications for Future Restoration Monitoring  

Due to growing concern over Sugarloaf Island’s continued erosional issues, plans are 

being made to increase the resiliency of Morehead City’s downtown waterfront by en-

hancing Sugarloaf Island’s capacity to (1) mitigate disturbances such as hurricanes and (2) 

return to a predisturbance state. Commonly, structural hardening of the shoreline through 

bulkheads, seawalls, and revetments is one way in which coastal communities have at-

tempted to address erosional issues [90]. However, these hardened structures can bring 

about a number of negative side-effects such as loss of biodiversity, erosion and scouring, 

reduced storm protection, and loss of ecosystem services [91–95]. Alternatively, nature-

based infrastructure solutions, such as living shorelines, have recently gained attention as 

a method to increase coastal resiliency while limiting negative repercussions [92–95]. Liv-

ing shorelines work by harnessing the adaptive capacity of natural habitats, such as salt 

marshes and oyster reefs, in combination with low-lying engineered structures, such as 

sills and breakwaters, to stabilize the shoreline and restore critical habitat and ecosystem 

services [92–95]. Since each restoration technique has its pros and cons, the Sugarloaf Is-

land project design aims to employ a hybrid approach that combines nature-based solu-

tions and engineered structures to enhance the Island’s resiliency. This hybrid approach 
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consists of several living shoreline restoration approaches and includes offshore hollow 

Wave Attenuation Devices (WADs), seagrass planting, oyster reef installation, and upland 

dune enhancement. WADs may be able to reduce wave heights and stabilize the shoreline 

position and volume of sand on the beach during storms, but this will depend on the Is-

land’s coastal processes and underlying geology [96]. Seagrasses can provide additional 

erosion control, habitat for economically important aquatic species, and carbon sequestra-

tion [97]; however, seagrass beds cannot be installed until sediment has gathered land-

ward of the WAD and wave-sheltered conditions are present. Oyster reefs complement 

seagrass beds and provide habitat, water filtration, coastal stabilization, and fisheries, 

which can enhance recreation, although this can be highly variable by location [98]. Up-

land dune enhancement through the planting of appropriate plants, such as Spartina pat-

ens, can help to stabilize existing dune features, adding to the sediment’s cohesiveness via 

above-ground and below-ground biomass and trapping aeolian transported sediment. 

Assessment of similar designs demonstrates that marsh vegetation is established within 

three to eight years, and sediment accretion and organic matter accumulation occur at 

rates similar to or greater than natural fringing marsh [93,99]. However, the success of 

these projects will vary regionally and are based on specific design parameters [100]. Con-

sidering that sediment from Sugarloaf Island is infilling the Port of Morehead City’s nav-

igational channels, dredge spoils are a potential sediment source for new dune and beach 

creation; however, periodic replenishment of the sediment will likely be needed [101]. 

Ideally, all of these approaches will work in conjunction with one another to stabilize the 

island while also continuing to provide public recreational access to the Island for boating, 

fishing, and beach-going. Short- and long-term monitoring of Sugarloaf Island is another 

critical future component of the project since there is a distinctive need to understand the 

efficacy of living shorelines and other restoration devices at different spatial and temporal 

scales to improve coastal resiliency [94,95]. With the rapid advancement of small Unoccu-

pied Aircraft Systems (sUAS) (e.g., [102]), on-demand remote sensing devices are availa-

ble for high-resolution, real-time monitoring pre- and poststorms and long-term resiliency 

assessments. Given that aerial imagery has a limited ability to measure bathymetry, future 

work should consider coupling sUAS imagery data with nearshore bathymetric data, or 

the use of a sUAS equipped with a topobathymetric LiDAR payload, for a more holistic 

understanding of the coastal geomorphology.  

5.3. Study Limitations  

The most glaring limitation of this study is its synoptic nature, in that we are only 

able to infer the cumulative impact of storms rather than assess specific storm event im-

pacts. For example, our dataset shows erosion over the six-year period of the study, which 

we inferred to be related to episodic occurrence of hurricanes based on an interpretation 

of the predominant morphological features on the Island. However, studies such as [21] 

used sUAS imagery and higher-frequency surveys to capture a fetch-limited island re-

sponse to individual storms and identify a pattern of poststorm recovery that contradicts 

the standard evolutionary model [15]. Our study was unable to determine if Sugarloaf 

Island experienced any recovery period following the storms that impacted the area dur-

ing the study; thus, it is unclear if the Island conforms to the standard evolutionary model 

for fetch-limited islands [15] or contradicts the model [21]. Yet, even with higher-fre-

quency surveys, repeated storms in quick succession can prevent or potentially mask a 

recovery stage, which could thus lead to the misclassification of the Island’s poststorm 

behavior.  

While LiDAR and aerial imagery are critical tools for monitoring coastal change, it is 

important to understand their associated limitations. For example, timing available satel-

lite and/or aircraft coverage to coincide with pre-/poststorm comparisons can be difficult, 

and factors such as weather conditions, sun angle, and water levels can negatively impact 

the quality or comparability of the collected datasets [103]. Moreover, the datasets’ spatial 

resolution and geolocation error are important considerations, as changes in location and 
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elevation below that error threshold cannot be differentiated from noise in the data [21]. 

While the availability of openly accessible and reliable remotely sensed data is a great 

benefit, it comes at a cost, because ground truth data for certain locations are often not 

collected simultaneously. The logistics of collecting ground truth data simultaneously 

with state or federal government survey campaigns can be complex. For this study, it 

would have been best to collect RTK-GNSS data with corresponding attributes of latitude, 

longitude, elevation, and vegetation species at hundreds of locations spread throughout 

the Island. Since the Island is experiencing rapid change, it would be best to collect the 

data for both dates being monitored, which can be labor intensive and expensive, since 

the Island is only accessible by boat. This type of data could then be used to train and 

validate a machine learning or deep learning model to better classify habitat and coastal 

landforms [104]. Another use of this data would be as a correction factor for the LiDAR 

DEMs, particularly in the marsh areas where LiDAR may not penetrate the vegetation and 

thus overestimate the marsh surface [105]. Moreover, ground truth data would also allow 

for each DEM’s error to be analyzed spatially when calculating the volume of sediment 

deposition and erosion on the Island [74]. This issue of collecting ground truth data sim-

ultaneously can be addressed with sUAS survey campaigns, which involves experienced 

scientific pilots and data processing and analysis workflows [106].  

In addition to the DEM error, future work should consider the transformation errors 

when defining the minimum critical threshold for determining vertical changes. In this 

study, we used the DEM’s Linear Error (LE) at a 95% confidence interval (RMSE × 1.96 = 

LE) [76] to define the minimum critical threshold to estimate erosion and deposition vol-

umes. Our estimates are likely overestimated because they do not incorporate the uncer-

tainty in datum transformations. It is best to consider the DEM and transformation error 

when defining the minimum critical threshold.  

6. Conclusions 

In this study, we used openly accessible topobathymetric LiDAR and aerial imagery 

to quantify synoptic changes to Sugarloaf Island’s habitat, shoreline, and morphology in 

response to storms between 2014 and 2020. Our workflow uses several proven data pro-

cessing and analysis techniques by combining OBIA to segment the images into homoge-

neous vegetation patches rather than pixels, machine learning to classify the landscape 

patches into habitat types, and raster algebra to calculate areas of sediment erosion and 

deposition. Our results highlight the overall impact of recent storms on the Island and 

demonstrate that the Island’s current morphology is a legacy of cumulative storm im-

pacts, which is consistent with other previous studies. In summary, Sugarloaf Island lost 

approximately 1.7 ha of area and 9800 m3 of sediment during the study period. Although 

this study is limited by its lack of individual storm impact quantification, it suggests that 

if the current trend in storms continues, Sugarloaf Island may not recover naturally and 

may therefore be susceptible to further inundation or rapid transgression and erosion. 

Due to growing concern over Sugarloaf Island’s dynamic erosion problem, a multidisci-

plinary coastal governance project that combines efforts from private citizens, govern-

mental and nongovernmental organizations, and academia was brought together to de-

sign and implement a shoreline stabilization project for future implementation. In order 

to manage and monitor the project’s success, the authors suggest that future work should 

implement the use of sUAS and RTK-GNSS in seasonal and/or annual surveys. 
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