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Abstract: The sea breeze is an atmospheric phenomenon that can appear in many coastal areas of
the world. On the island of Mallorca, in the center of the Western Mediterranean, the coastal breezes
present prototypical characteristics. They are so consistent that their effectiveness allows for easy
scientific verification. The sea breeze system is defined in Mallorca by its multi-directional spatial
behavior and its unifying nature. As a result of the physical insularity of the land, coastal breezes have
multiple orientations and act in opposite directions. This means that they can operate simultaneously
on different coasts, and penetrate inland areas, where they typically converge, eliminating slope
winds and forming convective chimneys, creating storms. In this article, we characterize and label
the coastal breezes of Mallorca, and we verify their influence in the places where this phenomenon
appears. A broader understanding of them reveals their remarkable influence on all spheres of
life and human settlement: climatic, ecological, biological and geomorphological, but also cultural,
territorial, economic and social.

Keywords: coastal breezes; sea-breezes geography; sea-breezes impacts; coastal geography; wind
landscapes; Mallorca

1. Introduction

In coastal areas, one of the most obvious atmospheric demonstrations of the relation-
ship between the maritime and terrestrial domains is the sea breeze, a phenomenon defined
by the World Meteorological Organization (WMO, 1992) [1] as “wind in coastal regions,
blowing by day from a large water surface towards the land as a result of diurnal heating
of the land surface”. Indeed, when the sun heats a portion of the land’s surface, the heated
air in contact with it rises by convection, creating a horizontal pressure gradient that causes
the cooler and denser air from the sea to blow inland in the direction of the lighter, rising
air over land to fill the air void generated there [2].

Although the dynamics and structure of the sea breeze are known [3], its waft is
associated with a complex set of phenomena. Its effects on the climate and local meteorology
of many regions of the Earth have been ratified by the scientific literature, in which we
find works on the impact of the sea breeze on summer air temperature [4–7], air quality in
urban coastal environments [8], or on convective activity [9,10]. In this article we describe a
summarized set of effects and benefits of breezes, with the aim of completing and expanding
the field of their study. Breezes not only control the local weather and climate of coastal and
inland areas, but also affect our lives in many different, often unusual ways, for example
in historical events, such as the famous naval battle of Salamis (480 B.C.), in which the
strategic prediction of the breeze helped the Greeks defeat the Persians [11,12]. Of course,
breezes have also historically conditioned and continue to condition the territorial location
of certain agricultural, energy and service infrastructures, as well as certain recreational
activities related to coastal fishing, sun and beach tourism and sea sports. Information on
sea breezes’ characteristics is also of great interest to coastal cities [13]. They affect daily air

Coasts 2022, 2, 17–35. https://doi.org/10.3390/coasts2010002 https://www.mdpi.com/journal/coasts

https://doi.org/10.3390/coasts2010002
https://doi.org/10.3390/coasts2010002
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/coasts
https://www.mdpi.com
https://orcid.org/0000-0003-0101-5944
https://orcid.org/0000-0002-5773-588X
https://doi.org/10.3390/coasts2010002
https://www.mdpi.com/journal/coasts
https://www.mdpi.com/article/10.3390/coasts2010002?type=check_update&version=1


Coasts 2022, 2 18

temperature, relative humidity and precipitation, not to mention the wind regime [14,15].
These effects and uses are geographic, in the sense that they occur in the living space
of men.

Considering that the impacts of sea breezes cover a wide spectrum of possibilities,
we describe them for Mallorca because on this island these impacts are presented in an
exemplary way. The breezes star in much of the island’s atmosphere for at least half the
year, to the point that they did not go unnoticed by travelers, storytellers and researchers of
the 19th century. A first nineteenth-century reference is found in writings by the Archduke
Ludwig Salvator von Österreich-Toskana, who in his monumental work Die Balearen in
Wort und Bild (‘The Balearic in word and image’, 1871) [16] (pp. 12–25) described how
“around ten o’clock in the morning, every day, or almost every day, a sea breeze rises,
named ‘embat’, very pleasant, which softens the heat; it lasts all day and dies out at sunset.
These winds are not constant and on many days there is dead calm. The ‘embat’ is a fresh
breeze in the proximities of the coast, but inland it is warmer and weaker”.

A second interesting reference, of a scientific and descriptive nature, can be found in
a book of 1854 by the military doctor Fernando Weyler [17] (p. 55), entitled “Topografía
físico-médica de las Islas Baleares y en particular de la de Mallorca”, which explained the
insular characteristics of these local winds, which “blow in different directions and are
damped when strong winds are present”. In more recent times, the Mallorcan local winds
were specifically referred to in a canonical book by Simpson [2], Sea Breeze and Local Wind,
in which the author highlighted the formation of convergence areas due to the collision
of sea breezes blowing from opposite coasts. The scientific interest in this phenomenon
in Mallorca has not diminished, and international studies are still underway to study the
island’s sea breeze.

2. Formal Characteristics of Sea Breezes in Mallorca

Due to its physical dimensions (3619 km2, approximately 100 km × 80 km) and its
latitudinal position (39◦ N), close to the subtropical world and favoring the predominance
of anticyclonic weather, Mallorca, located in the center of the Western Mediterranean, is an
ideal geographical setting for the development of a typical sea breeze system during the
daytime cycle, and a land breeze system at night, especially under conditions of a low or
no atmospheric pressure gradient on the synoptic scale.

From a physiographic point of view (Figure 1), the island has two mountain ranges
on the northwestern and southeastern sides, separated by subsident basins that constitute
the bays of Palma and Alcúdia. There are, therefore, three main morphological units,
corresponding to three different landscape regions. The first is the Tramuntana mountain
range (Serra de Tramuntana), located parallel to the western coast, about 90 km long and
15 km wide on average, with an average height of about 800 m, reaching an altitude of
1445 m at puig Major. The second is the Llevant mountain range, parallel to the eastern
coast, which is an uneven alignment of hills with altitudes not exceeding 600 m, totaling
approximately 46 km in length and 10 km in width. Thirdly, an extensive central area—the
“Pla”, a name used more for its opposition to the surrounding reliefs than to describe a
physical reality—is composed of open valleys and small, modest reliefs, and joins the two
large bays located to the north (Alcúdia Bay and Pollença Bay) and to the southwest of the
island (Palma Bay).

The main precursor of the study of the breeze regime in Mallorca is the work of
the meteorologists J.M. Jansá and E. Jaume, entitled “El Régimen de Brisas en la Isla de
Mallorca” (The Sea-Breeze Regime in the Isle of Mallorca) published in 1946 [18] in the
Revista de Geofísica (Geophysics Journal) of the Consejo Superior de Investigaciones
Científicas, Spain. In this work, the characterization and modeling of the dynamics of the
breeze system is qualitative and is based on the conclusions derived from a campaign of
surveys to farmers and fishermen of the island [19], who gave key oral information to
understand the general scheme of the spatial behavior of the diurnal breeze. According to
this scheme, the island constitutes a space within which maritime flows radially penetrate
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and converge from different coastal origins, mainly the bay of Palma to the southwest,
the bays of Alcúdia and Pollença to the northeast, and the Llevant coast to the east. The
western coastal side is very weakly affected by the breeze due to the buffer effect, as a
barrier, imposed by the orographic screen of the Tramuntana mountain range. The height
and elongation of this mountain range inhibits the attraction effect of the thermal lows
formed in the interior zones of the island. This scheme is represented in the map in Figure 2,
a reelaboration based on a Digital Elevation Model of the map of the maritime currents of
the breeze, elaborated by Jansá and Jaume [18]. The orography and thermal contrasts alter
these winds and cause local maxima and minima.

Figure 1. Geographical framework of the isle of Mallorca.

Mountainous areas and their slopes determine in many cases the distribution of surface
heating, and thus the locations to which the breeze is attracted. The breeze may become
embedded with thermal flows originating in the interior, as is typically the case with the
slope winds, which are adiabatically warmed during the day, thus attracting the breezes. It
may also be the case that thermally induced local scale circulations start earlier in mountain
areas than in coastal areas, due to a more effective heating of the slopes, so that during the
day the convective circulations developed in the mountainous areas merge with the sea
breezes. The breeze unfolds, fanning out when it finds natural ways of penetrating inland,
such as those formed by deep coves and the mouths of valleys.

The inland horizontal reach of the breeze is a few tens of kilometers, taking into
account that, in Mallorca, the maximum distance to the coast corresponds to a point located
24.1 km from the coastline. This is enough for breeze fronts to reach certain inland areas,
constituting convergence areas with interesting local meteorological repercussions [20,21].
For example, when the absorption of the moist breezes by land is high and there is insta-
bility, a high ‘vertical draft’ is initiated that generates storms [20,22,23]. These storms are
reinforced by moist air added by the breezes. If a depression arrives in the region, the
wind associated with the disturbance kills the individuality of the breezes, which are thus
masked or annulled.
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Figure 2. Sea-breeze current lines around the isle of Majorca (continuous line) and convergence areas
(closed dashed lines). Own redrafting based on data from Jansá and Jaume [18], drawn using a digital
elevation model (DEM).

From a climatic point of view, breezes can occur throughout the year, although they
do so mainly from spring and throughout the summer—that is, from April to September,
the warm season in this Mediterranean latitude—and very irregularly in the cold season.
This is especially valid in coastal locations, because one of the most important peculiarities
of these areas is precisely the existence of very well-defined breeze regimes. The numerical
simulation carried out by Ramis and Romero [21] shows that the daytime breeze starts
around 9 a.m. local time, and becomes fully mature around 3 p.m. The system dissipates
completely by around 9 p.m. local time or earlier.

During the early afternoon, maritime air currents penetrate inland in response to the
overheating of inland areas and the corresponding air suction. The main currents penetrate
from the SW in the bay of Palma, from the NE in the bays of Alcúdia and Pollença, and
normally from the SE (or similar) on the eastern side of the island. The wide plains of
Palma, Sa Pobla-Muro and Campos make it easier for the breeze to flow, while on the
eastern side—Llevant—the breezes are normally weaker. In any case, it is frequent that
the strength of the breeze during the hours of highest wind intensity can reach up to 4
on the Beaufort scale (5.5–7.9 m/s = 20–28 km/h). The sea breeze develops as long as
the thermal difference between sea temperature (SST, averaged sea surface temperature)
and land temperature (LST, averaged land surface temperature) is maintained. Under
sea-breeze conditions in the bay of Palma, Grau et al. [24] found that the difference between
LST and SST is greater than 5 ◦C during the central hours of the day.
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It should also be noted that daytime breezes generated on the coasts operate with some
simultaneity, so that breeze episodes generated in different and opposite coastal areas can
coexist [25]. As a consequence of this spatial organization of breezes in Mallorca, the island
is separated by at least two main breeze regimes—one northern and one southern—whose
border is located in the central area. This general scheme has been verified by the numerical
and experimental-theoretical models tested by Ramis et al. [26] and Ramis and Romero [21].

3. Environmental Significance of Sea Breezes
3.1. Climatic Effects

In places where they blow very often and regularly, breezes are true ‘wind clocks’ and
have a marked influence on the hourly, daily and annual wind regime. As a result, the
first environmental consequence of this phenomenon is climatic, and specifically wind-
related. Firstly, the more or less regular and persistent presence of breeze episodes in
Mallorca determines and modifies the general scheme of its annual wind regime, and
causes the regime of each locality to acquire its own characteristics, which is especially true
in coastal locations.

Although the present article does not aim to select, count and statistically analyze
breezy days, it must be said that there is abundant scientific literature on the method used
for selecting genuine sea-breeze days to distinguish them from those that are not. Most
authors [27–32], without relinquishing the combined application of alternative validation
filters (cloudiness, hours of insolation, increase in relative humidity, duration of the sea
flow), emphasize, even as the only selective criterion, the identification of a rapid change
in direction and wind speed. This change takes place sometime in the morning, when the
difference between the land and sea temperature (∆T) is positive. In addition, there are
essential atmospheric requirements for the breeze to blow: synoptic regional conditions
must be stable, so there must be a weak pressure gradient at surface level and a weak
large-scale flow [27,30,31]. The breeze blowing is also evidenced by a sudden increase in
onshore wind velocity, or a sudden decrease in temperature plus an increase in humidity.

In Mallorca, being an island, the change in wind direction occurs differently depending
on the location. In the observatories located around the southern coasts, before the breeze
blows, the wind direction is from the first quadrant (i.e., offshore winds), but when the
breeze blows, during the daytime, the direction changes to the third quadrant, usually
from the southwest (Son Ferriol). On the other hand, at observatories located around the
northern coasts, the wind direction is initially from the second or third quadrant (also land
wind), and the sea breeze changes direction to the first quadrant, usually from the northeast
and east (Sa Pobla).

To verify this, Figure 3 represents a map of Mallorca with the annual wind direction
frequency roses of five meteorological stations at 1 p.m. UTC—i.e., the time when breezes
should have reached their maximum strength (data prior to 1 April 2014 are shown in solar
time). The data from these stations correspond to the period 2004–2017 and come from the
Sistema de Información Agroclimática para el Regadío (Agro-climatic Information System
for Irrigation, SIAR). In Spain, this system has a network of agroclimatic stations designed
to capture, record and transmit the data needed to calculate the water demand of irrigated
areas, referring to air temperature and humidity, solar radiation, rainfall, wind speed and
direction. The same wind roses drawn on the map in Figure 3 are detailed in Figure 4,
showing for each station the frequency distribution of occurrences of winds in each of 16
direction sectors (N = north, NNE = north-northeast, NE = northeast, etc.) and six wind
speed classes for the given location and time period (14-year study period, 2004–2017).
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The represented relative frequency roses allow us to verify, on the one hand, the
complexity of the wind regime in the island, and on the other hand, the influence of sea
breezes in the annual wind regime of each locality, which acquires its own characteristics
depending on its geographical location. The locations closer to or further from the coast
have antithetical daytime wind patterns, so that in a breeze scenario, in the Bay of Palma
(station IB04, Son Ferriol), the absolute predominance of SW and SSW frequencies at 1 p.m.
is instrumentally verified (44.4% and 30.5% of days of the period analyzed, respectively)
(Figure 4a), while in the plain of the opposite Bay of Alcúdia (station IB06, Sa Pobla)
(Figure 4c), the circulation is mainly from the E, NE and NNE (30.8%, 20.7% and 14.5%,
respectively). The pre-coastal areas of the Llevant coast (station IB03, Manacor; station IB05,
Felanitx) (Figure 4d,e) have a more complex aerial regime, and the sea breeze develops there
over a wider range of directions around the second and third quadrants: in Manacor, the
SE (23.1%), E (14.2%), ESE (13.2%) and SW (11.7%) prevail, while in Felanitx, the SE (15.5%),
SSE (13.7%) and SSW (13.6%) prevail. On the other hand, the relative frequency rose of
the Inca station (IB02) (Figure 4b) presents an axial symmetry, with a very well-defined
NE–SW axis (24.2% and 19.6%, respectively), which means that the wind regime in this
inland locality is alternatively influenced by the breeze patterns established in the south of
the island (Bay of Palma) and in the north (Bay of Alcúdia), with a predominance of the
latter (Table 1).

Figure 3. Location of the five weather stations analyzed, and respective wind frequency roses at the
time of theoretical maximum sea-breeze intensity (June, July and August, 1 p.m.), for a 14-year study
period (2004–2017). The polar charts with their corresponding legends are shown in detail in Figure 4.
Percentages represent the frequency of wind direction.
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Figure 4. Polar bar charts of the relative frequency of wind direction (◦) and wind speed (m/s), at
the time of theoretical maximum sea-breeze intensity (June, July and August, 1 p.m.) for a 14-year
study period (2004–2017) in five meteorological stations of the Sistema de Información Agroclimática
para el Regadío (SIAR), Spain: (a) IB04 Son Ferriol; (b) IB02 Inca; (c) IB06 Sa Pobla; (d) IB03 Manacor;
(e) IB05 Felanitx. Percentages represent the frequency of wind direction.

Table 1. Absolute (days) and relative (%) frequency of sea-breeze direction (◦) at the time of theoretical
maximum wind intensity (June, July and August, 1 p.m.) for a 14-year study period (2004–2017) in
five meteorological stations of the Sistema de Información Agroclimática para el Regadío (SIAR),
Spain. Non-windy days at that time (calms) have not been counted.

Wind
Direction

Num. Days
Son Ferriol % Num. Days

Manacor % Num. Days
Sa Pobla % Num. Days

Felanitx % Num. Days
Inca %

N 9 0.7 22 1.7 18 1.4 56 4.4 7 0.5

NNE 8 0.6 56 4.3 187 14.5 40 3.1 28 2.2

NE 81 6.3 60 4.7 267 20.7 49 3.8 311 24.2

ENE 64 5.0 65 5.0 111 8.6 109 8.5 270 21.0

E 17 1.3 183 14.2 396 30.8 183 14.2 58 4.5

ESE 9 0.7 170 13.2 121 9.4 65 5.1 46 3.6

SE 15 1.2 297 23.1 24 1.9 199 15.5 47 3.7

SSE 9 0.7 101 7.8 16 1.2 176 13.7 34 2.6

S 14 1.1 49 3.8 21 1.6 93 7.2 38 3.0

SSW 391 30.5 95 7.4 34 2.6 175 13.6 46 3.6

SW 570 44.4 151 11.7 61 4.7 85 6.6 252 19.6

WSW 66 5.1 22 1.7 15 1.2 29 2.3 113 8.8

W 5 0.4 5 0.4 1 0.1 8 0.6 21 1.6
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Table 1. Cont.

Wind
Direction

Num. Days
Son Ferriol % Num. Days

Manacor % Num. Days
Sa Pobla % Num. Days

Felanitx % Num. Days
Inca %

WNW 3 0.2 5 0.4 4 0.3 8 0.6 7 0.5

NW 8 0.6 2 0.2 5 0.4 8 0.6 3 0.2

NNW 14 1.1 5 0.4 6 0.5 3 0.2 3 0.2

1283 100.0 1288 100.00 1287 100.0 1286 100.0 1284 100.0

The wind-speed frequency distribution plots for each station analyzed are shown in
Figure 5. In all these stations, the most frequent velocity range at 1 p.m. during the summer
months (June, July and August) is between 2.10 and 3.60 m/s. This range dominates even
more in the stations of Sa Pobla (73.8%) and Manacor (68.9%). It can also be said that at
the Son Ferriol station, under the influence of sea breezes from the bay of Palma, winds
reaching 5.7 m/s are also relatively frequent. At this station, the average wind speed is 2.89
m/s. At the Inca station, it is 2.73 m/s, at Sa Pobla it is 2.55 m/s, at Manacor it is 3.00 m/s
and at Felanitx it is 2.09 m/s.

Figure 5. Bar charts of the wind-speed (m/s) class frequency distribution, at the time of theoretical
maximum sea-breeze intensity (1 p.m.) for a 14-year study period (2004–2017) in five meteorological
stations of the Sistema de Información Agroclimática para el Regadío (SIAR), Spain: (a) IB04 Son
Ferriol; (b) IB02 Inca; (c) IB06 Sa Pobla; (d) IB03 Manacor; (e) IB05 Felanitx.

3.2. Moisture and Precipitation

In addition to the influence of breezes on the annual wind regime, there are also their
effects on atmospheric humidity. From the time that maritime airflow ascends over the
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coastline and penetrates into the mainland, breeze fronts transfer moisture to the continental
surfaces [33]. This directly affects not only evapotranspiration, but also has important
repercussions on precipitation processes [34,35]. As in many other cases, in Mallorca, the
wind acts as a vehicle for the displacement of large maritime air masses inland, so that in
the meteorological records of the observatories located in areas relatively far from the coast,
it is evident that the air properties respond to a previous contact with the sea.

The advance of the maritime air mass occurs in a manner reminiscent of a cold
front, and is characterized by a sudden gust of wind, a drop in temperature and an
increase in relative humidity. Under conditions of convective instability, the convergence
of breezes in inland areas at low levels triggers the formation of micro-continental scale
storms [22,35,36]. Guijarro and Heredia [37] identified an increase in the frequency of
cloud-to-ground electrical discharges—lightning—in spring and summer, in inland areas
of Mallorca and in the afternoon, coinciding with the aforementioned confluence of breezes.
These summer storms are associated with cumuliform cloudiness of great interest for the
forecasting meteorologist [38,39]. In relation to this, Ramis and Alonso [20] and Azorin-
Molina et al. [35] developed automatic cloud detection methods from satellite images, with
which they identified convergence processes associated with the sea breeze in Mallorca
(Figures 6 and 7). Alomar-Garau and Grimalt-Gelabert [23] described two models of spatial
distribution of summer rainfall on the island, for which converging sea breezes act as a
trigger: one that draws a transverse strip oriented from southeast to northwest, and which
is strictly related to the theoretical main line of convergence of breezes described by Jansá
and Jaume [18], and another one, more variable, by which the rainfall is focused at some
central point of the island near the aforementioned line.

Figure 6. NOAA image (Sensor Modis, canals 1-4-3) of 1 June 2009 at 1320 UTC, focusing on the
Balearic Sea and the littoral area of Catalonia and Valencia. On the island of Mallorca (bottom-right), a
dense layer of cumulus completely covers the central part of the island, conforming to the theoretical
sea-breeze convergence area. The cloudiness extends to the east, driven by winds from the west in
the middle and upper layers of the atmosphere.
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Figure 7. Cumuliform convective cloudiness due to convergence of breezes over the central area
of Mallorca, from the city of Palma looking north, on 14 June 2005. In the background, inland,
a well-defined line of cumulus (Cu) crosses the center of the island from west to east. Photo: G.
Alomar-Garau.

Regarding summer rainfall, in Mallorca, maximum instability occurs during the end
of warm period, when sea surface temperature (SST) reaches its highest values and some
cold air advections affect the Western Mediterranean. Thus, from March to August, the
lightning density is higher in the inland area than in the maritime area, mainly because of
the most important diurnal heating being of the terrestrial surface rather than the maritime
surface, and due to the sea breeze and its convergence area in the inner part of the island,
that with some particular conditions brings on the development of summer storms. A
monthly analysis [40] showed a variation in August and September thunderstorm activity,
mainly in terrestrial areas. August’s percentage of activity tends to grow as we move to
the inner part of Mallorca, and September’s percentage tends to decrease. When analyzing
the innermost region, where the distance to the shoreline is greater than 15 km, August,
with 33.1%, accumulates a greater number of instances of lightning than September (32.7%).
Hourly analysis shows an important increase in diurnal thunderstorm activity as we move
to the inner part of the island, reaching a peak of 56% of the total activity for the 10–14
UTC period in the innermost region. At the same time, nighttime activity tends to decrease.
As we move into the maritime zone, nighttime activity tends to grow, and diurnal activity
tends to decrease.

3.3. Temperature and Climate Comfort

The effect of sea breezes in reducing the maximum thermometric values is well-
known, relieving the heat to a certain extent. It has been said that insolation heat stroke
has a euphoric effect and incites optimism [41,42]. In the same way, breezes provide a
climatic comfort—added to that already provided by the Mediterranean climate—which
explains the development of tourism in many areas of the Balearic and Mediterranean
coast in general. This is because light winds (up to 19 km/h) are part of the catalog of
weather types conducive to tourism [43]. Additionally, due to the effect of continentality,
the thermal oscillation in Mallorca increases inland and is more pronounced in summer
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than in winter. Even so, under sea-breeze conditions, the isotherms are noticeably curved
towards the central areas of the island, due to the moderating thermal effect of the breezes.

In the same way, wind is a determining factor in measuring the thermal comfort of
cities, and hence certain urban plans of the late nineteenth century in coastal cities such as
Palma reproduced the hygienist arguments of the time to draw the streets perpendicular
to the coastline, and thus allow the healthy circulation of breezes [44]. Climatic comfort is
understood as the existence of combinations of environmental parameters (temperature,
humidity, radiation and wind) that do not generate stress in the human body. The limits
of this comfort are very narrow. According to Olgyay’s human climatic comfort criteria,
they are limited to a temperature range between 23.9 ◦C and 29.5 ◦C, and a relative
humidity range between 20% and 70% [45]. Above the maximum allowable thermal value,
comfort can be achieved by the cooling effect of wind, as the movement of air increases the
dissipation of energy by evaporation or convection, provided that the skin temperature
is lower than the air temperature. However, when temperatures are above 40 ◦C, wind
increases the heat sensation.

Under urban heat island conditions, sea breezes cool the hot city environment during
the summer, but the urban morphology can decrease wind speed, increasing discomfort
due to humid heat. Although the thermal increase decreases the relative humidity, this
decrease is hardly noticeable because maritime air currents keep the humidity in. In the
coastal city of Palma, Alomar and Llop [46] noted urban heat island intensities of up to
4.9 ◦C in July, which may contribute to overheating the breeze along its urban route through
neighborhoods that are not strictly maritime. In contrast, in more open areas close to the
sea or in higher-level housing, sea breezes have a cooling effect, which often moderates
summer heat.

According to data from the Spanish Agencia Estatal de Meteorología (AEMET), the
normal climatological values at Palma airport for the period 1981–2010 indicate that the
annual average of maximum daily temperatures is 22.4 ◦C, and in August it is 31.3 ◦C. It is
also common for the rural village of Sa Pobla, in the north of Mallorca, to reach maximum
temperatures of over 30 ◦C in summer. This happens especially when sea breezes blow only
from the southern coasts and not from the north, so that they have to travel a long distance
to reach this locality, thus having more time for their temperature to increase [47]. When the
breezes do reach Sa Pobla, they play a cooling role and the maximum temperature decreases.
The main effect of the breeze in relation to thermal comfort is to prevent temperatures in
the central hours of the day from reaching extreme values. To illustrate this point, Figure 8
describes the time evolution of temperatures at the Son Ferriol weather station, placed near
the coast of the Bay of Palma, between June 2 and 9 2020. It can be seen how the irruption
of the sea breeze (June 2, 3, 6, 7 and 9) results in an interruption of the temperature rise as
the day progresses. This means that sea breezes strongly contribute to moderating heat
stress in any environment. In contrast, on days with no sea breezes (June 4, 5 and 8), the
normal temperature rise is not interrupted. The sea breeze on June 9 exceeded 3 m/s speed
(about 6 knots), blowing stronger than on previous days. This higher speed resulted in
lower temperatures during the early afternoon, due to the cooling effect of the wind. Since,
on the hottest days of the year, inside cities the thermal sensation is of additional ‘heat’,
designing streets and buildings to be ventilated by daytime breezes can be considered a
good urban planning practice.
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Figure 8. Daily time-series of temperature, wind direction and wind speed at the Son Ferriol weather
station (Mallorca) between June 2 and 9, 2020. At times when the sea breeze typically blows from
the S or SW (red colored circles), the temperature rise slows down and stabilizes temporarily. June 4
and 5 were days with no sea breezes. June 8 was a day with general northerly winds. In the top plot,
arrows marked SB indicate the starting time of the sea breeze in the bay of Palma and therefore at the
station.

3.4. Transport and Diffusion of Pollutants

Breezes actively collaborate in the transport of atmospheric pollutants. The dynamics
of atmospheric aerosols, and ultimately the evolution of their concentration, are examples of
the chemical effects of breezes, as corroborated by Millán et al. [48] in a study characterizing
the dynamics of these pollutants in the Mediterranean basin. The effects of the breeze
as a factor both in air renewal and air quality, and in the transport and distribution of
pollutants, have been extensively studied [8] to reach a reliable conclusion: breezes disperse
and transport the pollutants emitted within the atmospheric layer in which this circulation
is formed, but do not necessarily clean it. On the contrary, sea breezes cause a small
subsidence inversion in coastal areas, which can lead to the spraying of pollutants once
they have been trapped within the layer topped by the inversion [49].

In winter, the not-infrequent situations of anticyclonic atmospheric stability in the
western Mediterranean region induce stagnation of air masses and consequent episodes of
urban pollution. In addition, within the atmospheric boundary layer, there is a vigorous
mixing of the air which favors the chemical reactions of pollutants, creating new chemical
compounds that translate into new pollutants. However, in situations of strong and well-
established breezes, these effects are clearly attenuated.

In any case, breeze circulation activates the pollutant recirculation processes. If insola-
tion is high, pollution may be of photochemical origin, and it is then that ozone records
become important. In this sense, if anthropogenic activities cause tropospheric ozone con-
centrations to rise to low levels, the aerial behavior of this gas depends on the atmospheric
dynamics at the site, and therefore on the influence of a possible coastal breeze’s circulation
established at the locations where the gas is generated. In Mallorca, Romero and Ramis [50]
numerically simulated the evolution of an eventual emission of atmospheric pollutants
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produced in the north of the island, based on the hourly behavior of the sea breeze, and
pointed out that the line of confluence of coastal flows typically formed in the central part of
the island limits the expansion of pollutants towards the south, and diverts their transport
towards the Tramuntana mountain range, which acts by blocking the pollutants.

3.5. Life Cycle of Plants and Animals

From a biological and agroclimatic point of view, wind is a determining factor in a
multitude of vital processes. It intervenes in the distribution and transport of birds and
flying insect species, as well as in the spread of pollen and transport of seeds over long
distances, dispersing the spores and pollen of anemophilous plant species (wind-pollinated,
to differentiate them from entomophilous species, pollinated by insects). In Mallorca, Vives
et al. [51] showed that certain local sea breeze conditions affect the cross-fertilization of
maize in crop fields oriented according to the direction of the breeze. In this sense, the
aerological regime of a place determines, in part, its yield in the cultivation of certain plants.

The presence of hardwood forests in the center of the island, in contrast to the more
xerophytic vegetation of the coasts, responds mainly to edaphic factors, not to rainfall in
inner areas of Mallorca. Nevertheless, certain traditional agricultural practices, such as the
production of summer vegetables in the central plain, can be favored by eventual summer
rains. An insular landrace of tomato (Solanum lycopersicum), the so-called “tomàtiga de
ramellet”, is particularly resistant and adapted to summer drought [52], but its growth
benefits from summer storms favored by the convergence of sea breezes inland.

Morphological analyses of some elements of nature used as climatic indicators of
local winds are not new. For instance, tree inclination has been used to determine decadal
variations in wind direction and intensity in places [53,54]. This inclination constitutes a
historical record of the prevailing wind direction, usually in coastal locations where the
air arrives laden with marine aerosols. Likewise, the limiting effect of wind on vegetation
growth causes plants to protect themselves by adopting sclerophyllous structures to prevent
the plant’s transpiration rate from exceeding the rate of water absorption by the roots. This
results in a morphological modeling action in trees, shrubs and scrubs. Wind interference
on vegetation growth is basically due to the influence of the salt spray transported by the
force of the moving air. Breezes do not cause sufficient swell to result in the formation
of salt spray that could interfere with the development of vegetation. In Mallorca, this is
rather affected by the general wind regime, especially incoming winds from the north or
west, and Mediterranean atmospheric disturbances.

Moreover, light breeze conditions seem to be decisive in the recurrent blooms of the
toxic algae Alexandrium taylori near the coast in summer conditions, as demonstrated by
Basterretxea et al. [55], studying a case in the bay of Santa Ponsa, in Mallorca’s southwest. It
is, by the way, a curious fact that there is a flowering plant, Erigeron glaucus, whose popular
name is “Sea Breeze” [56], an herbaceous plant of the daisy family, which is reputed to
drive away fleas. It usually grows on the southern coasts of Great Britain, so it is ideal for
coastal and beach gardens.

3.6. Coastal Geomorphology

Beach-dune systems can be interpreted in wind terms, not only because the wind
regime is one of the factors involved in the dynamics of the dunes—controlling the subaerial
dynamics—but also because in these systems, the predominant wind direction can be
observed. Around seventeen beach-dune systems have been developed in Mallorca, such
as Es Comú de Muro, Sa Mesquida, Son Real and Sa Canova in the north of the island; Es
Trenc or Es Carbó in the south; and s’Amarador in the southeast, located in the Natural
Park of Mondragó. These systems are located in most coastal inlets, taking advantage of the
prevailing winter and autumn winds (north and west) and summer (sea breezes), although
they are characterized as being a confluence of geological, climatic and biological factors.

The formation of these dunes is due to aeolian processes of erosion (deflation and
abrasion), transport (displacement of individual grains or of ‘migratory’ dune morpholo-
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gies) and sedimentation of materials [57]. The critical wind speed needed to move sandy
sediment is 4.5 m/s [58], which shows the capacity of breezes to mobilize it, and ultimately
its role in beach dynamics during periods of low-energy waves [59,60].

Moreover, Ponce de León and Orfila [61] carried out a study of sea breezes and their
impact on the wave field around Mallorca Island. The observations confirm a modifica-
tion of the hindcasted wave propagation direction for breeze speeds higher than 7.5 m/s.
These breezes induce changes in the incident wave field in late morning or early after-
noon, increasing wave height, shortening the mean wave period and changing the wave
propagation direction, according to the sea breeze. In areas where the sea breeze reigns
(Alcúdia Bay to the north and Palma Bay to the south), its effects on the coastal dynamics
are sizeable. It is concluded that the Weather Research and Forecasting—WRF—wind
fields model properly depicts the local land–sea breezes around the island of Mallorca: the
strength of the sea breezes in Alcúdia Bay during the day is greater, and they have a longer
duration than in Palma Bay.

4. Cultural, Socioeconomic and Territorial Significance

Sea breezes have a notable influence on human activities, a circumstance that has
been explored very little. To begin with, in many parts of the world, the determina-
tions of the breezes are of such magnitude that the phenomenon is manifested in the
language and dialect, through the popular fixation of a proper name that describes it. In
the Catalan-speaking Mediterranean territories, the sea breeze takes the local terms “mari-
nada” (Catalonia), “embatà del migdia” (Valencia) and “embat” (Mallorca), representing
three exemplary cases of eolionymy. The local cooling afternoon sea breeze in southwest
Australia is named the ‘Fremantle doctor’ [62]. When the breeze is named in a distinctive
way, it means that the phenomenon is perceived to be of great importance and significance.

One of the most obvious influences of breezes on human working systems is that
of the energetic exploitation of wind, both in the past and in the present (modern wind
farms for electricity production are a constant feature in many developed countries around
the world). In fact, local winds are one of the factors that explain the selective location of
certain agricultural infrastructures in many regions of the Mediterranean and the world. In
Mallorca, until the arrival of mass tourism in the mid-twentieth century, the conformation
of the agricultural space was accompanied by the development of agricultural fields in
which windmills and threshing-floors were massively deployed. Windmills in Mallorca are
of two types: flour windmills, and windpumps used to extract water from aquifers and
irrigate crops. In the Mediterranean, the construction of threshing floors for separating the
chaff from the grain has been documented at least since Homer (8th century B.C.). From the
most remote antiquity onwards, the threshing and winnowing of barley were carried out
not only in places strategically selected to place threshing floors, but also taking advantage
of the coincidence of the threshing work with the time when the breezes were more likely
and regular.

Both in the case of threshing floors and of windmills, their geographic location and
topographical placement are justified by the need to maximize their efficiency and prof-
itability. The main factor of this placement is the quantity and quality of available eolian
recourses, since if there is no wind, grains cannot be ground, and nor can they be obtained
through the threshing floors. Alomar-Garau and Grimalt-Gelabert [63] tested a novel
method to recreate and model the wind scenario of Mallorca at a time when neither instru-
mental nor meteorological data were available. The method was based on the inspection of
aerial photographs from 1956 to geolocate and map the threshing floors where the ears of
wheat used to be threshed and winnowed in summer. Analyzing and using these threshing
floors as an ethnographic wind proxy made it possible to draw a map of wind directions
on an island scale. This map reconstructs the spatial arrangement of the sea breezes in
the island.

With regard to windmills, they are constructions directly created to take advantage of
the kinetic energy of the wind and convert it into mechanical energy in order to grind the
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grain. This is why windmill sites look for places where ventilation is constant, or at least
regular. In Mallorca, this constancy and regularity is offered by the summer sea breezes,
and as a consequence, flour windmills are located in elevated places to better capture the
breeze, or in front of the coast (in the rural villages and cities of Mallorca, these places
are known as “molinars”). Windpumps do not have the same location as flour windmills,
since their function is different, and they are located on the plains open to the sea breeze,
near the coast. This way it is possible to draw a map of the wind potential of a territory by
observing the geographical location of these infrastructures.

Although nearly all are derelict or in disrepair, windmills in Mallorca are ubiquitous
and visually striking in many areas of the island [64,65]. As many as 818 old flour wind-
mills [66] and 2445 windpumps have been inventoried, with almost all of the latter (92.3%)
being located in the three main areas of intensive agriculture: the plain or basin of Palma in
the south, the plain of Sa Pobla-Muro in the north and the plain of Campos in the south.
These areas are always coastal and are therefore well ventilated by the corresponding sea
breezes (Figure 9).

Figure 9. Location of windpumps in Mallorca. Curved lines show the common direction of the
coastal breezes according to Jansá and Jaume [18], penetrating inland. Two photos show typical
windmills of the plains of Palma and Sa Pobla-Muro.

From a social point of view, the recreational use of the sea breeze is also significant,
conditioning the practice of sports such as windsurfing, kitesurfing and all types of sailboats
in certain coastal hot spots. To these sports we can add surfing and paragliding. We must
also include the boats that participate in official sports competitions such as the King’s
Cup sailing competition, which in summer uses the Bay of Palma as a regatta course
precisely because of its wind aptitude for sailing: constant, benevolent winds that are easy
to predict. In the case of surfing, whose practice depends on the prevailing swell, the breeze
is considered a short-period, low-energy sea wind, which ‘fouls’ the swell and eliminates
its effectiveness in generating low-height, low-energy coastal waves, degrading the surf.
The sea breeze fetch (the distance over which the wind blows in a single direction) is very
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short, only a few kilometers long, so under sea breeze conditions a few kilometers away
from the coast there is no onshore wind at all. When the sea breeze starts, its fetch extends
only a little way off the coast, but as the strength of the breeze increases, the fetch extends
further offshore until it reaches a maximum, although this rarely exceeds about 15 km.

The vertical forcing of the air produced by breeze fronts and orographic air ascents
is also used for the practice of paragliding, which follows the same flight rules used by
certain gliding birds, and which is evidence of the existence of a thermal bubble of air rising
from the ground.

On the other hand, the strategic geographical location of Palma’s airport (Son Sant
Joan), close to the coast, facing the wide bay, responds mainly to a climatic cause focused
on the breeze regime. The SW breezes generated in the bay of Palma are responsible for the
SW–NE orientation of the runways, because airplanes need a headwind both for takeoff
and landing. Therefore, the coastal breezes of the bay regulate the runway time changes,
which are decided in the control tower. Runway length also depends on the properties
of the air near the ground. The density of the air decreases as it becomes warmer and
more humid, and also decreases as the altitude increases. For this reason, the lower the air
density on runways is, the higher the speed of the aircraft must be to take off and fly up,
so in warmer places—or in airports located at elevations above 1000 m—you need longer
runways so that larger airplanes can reach the needed speed in order for take off.

5. Conclusions

The sea breeze is an atmospheric phenomenon widely represented in the areas of the
world with a land–sea border. This phenomenon has outstanding and diverse environmen-
tal effects along the coast and in adjacent inland regions. Therefore, reducing breezes to the
common category of “variable light winds” is as ambiguous as it is simple, and masks the
significance of a phenomenon that moves masses of maritime air over tens of kilometers,
eliminating slope winds and forming convective chimneys, sometimes causing storms.
This is why sea breezes can be considered a specific feature that determines climate and
weather on a local scale. They also have diverse effects on different human activities.

On the island of Mallorca, the breeze system acquires prototypical characteristics of
frequency and intensity. In addition to episodes with high occurrence values, there is the
simultaneity with which these thermally induced winds operate, generated in different
and geographically opposed coastal areas: sea breezes flow simultaneously from the north,
south and east coasts of the island, generating typical convergence zones inland. Mallorca,
especially during the summer season, is uniquely subjected to the influence of a breeze
system whose spatial and temporal scope includes and conditions all spheres of human
settlement: first, the environmental sphere—the breeze system has major bioclimatic,
agroclimatic, chemical, climatic and meteorological effects; second, the territorial sphere—
the breeze has historically conditioned the location, distribution and design of agricultural,
architectural and tourist infrastructures, whose spatial organization can be interpreted in
a wind key; third, the economic and social sphere—the breeze has influenced traditional
agricultural and fishing activities, and is now influencing sports activities related to the sea;
and fourth, the cultural sphere—the breeze has been reflected in local popular culture. All
this raises the need to observe the breeze phenomenon as an element whose repercussions
transcend the atmospheric sphere and manifests itself territorially, and shapes a wind and
energy landscape that deserves further research. It is important to continue improving our
understanding of sea breezes, their impact and potential benefits, since a large part of the
human population lives in major cities in coastal areas.
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62. Rafiq, S.; Pattiaratchi, C.; Janeković, I. Dynamics of the Land–Sea Breeze System and the Surface Current Response in South-West
Australia. J. Mar. Sci. Eng. 2020, 8, 931. [CrossRef]

63. Alomar-Garau, G.; Grimalt-Gelabert, M. Air Photo Interpretation for Spatial Analysis of Heritage Agrarian Structures in
Mediterranean Settings as Sea-Breezes Proxy-Data. Application to the Island of Mallorca. Remote Sens. 2021, 13, 4652. [CrossRef]

64. Buswell, R.J. Mallorca: The Making of the Landscape; Dundin Academic Press: Edinburgh, UK, 2013.
65. Doolittle, W.E. Stacking Rocks to Transport Water: Folk Aqueduct Bridges of Mallorca and Spanish Colonial California. Sustain-

ability 2020, 12, 5257. [CrossRef]
66. Cursach, M.F. Anàlisi sobre la protecció del patrimoni molinològic a Mallorca, present i futur. In Proceedings of the IV

International Molinology Conference, Mallorca, Spain, 1–3 May 2003; Consell Insular de Mallorca: Mallorca, Spain, 2005; Volume
2, pp. 389–408.

https://journals.flvc.org/jcr/article/view/81219
http://doi.org/10.1016/j.apor.2012.12.003
http://doi.org/10.3390/jmse8110931
http://doi.org/10.3390/rs13224652
http://doi.org/10.3390/su12135257

	Introduction 
	Formal Characteristics of Sea Breezes in Mallorca 
	Environmental Significance of Sea Breezes 
	Climatic Effects 
	Moisture and Precipitation 
	Temperature and Climate Comfort 
	Transport and Diffusion of Pollutants 
	Life Cycle of Plants and Animals 
	Coastal Geomorphology 

	Cultural, Socioeconomic and Territorial Significance 
	Conclusions 
	References

