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Abstract: Colorimetric gas detectors have been widely applied in many fields such as environmental
sciences, industrial hygiene, process control, forensic science and indoor air quality monitoring. They
have a history of about 100 years and include devices such as gas detector tubes and paper-based gas
detectors. The sensitivity and selectivity of the colorimetric gas detector are relatively high compared
to other types of gas detectors such as semiconductor, catalytic combustion and electrochemical gas
detectors. Detection of gas concentration can be performed by the naked eye in some colorimetric
gas detectors. These methods do not require an electrical power source and are simple, so they are
suitable for field operations. This review introduces the history and provides a general overview of
the development in the research of colorimetric gas detectors. Recently, the sensitivity and selectivity
of colorimetric gas detectors have improved. New materials such as enzymes or particles with a large
surface area have been utilized to improve selectivity and sensitivity. Moreover, new gas detectors
without toxic materials have been developed to reduce the environmental load. At present, there is a
rapid development of IoT sensors in many industrial fields, which might extend the applications of
colorimetric gas detectors in the near future.
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1. Introduction

Gas detectors have been developed to protect human life, property and the environment.
They are widely applicable and convenient for users who are not specialists in this field.

In World War I, animals such as dogs, birds and snails were used to alert people to
the presence of toxic gases or oxygen deficiency [1] (p. 5) [2]. The operator confirmed the
presence of toxic gases from the abnormal behavior of these animals. These were called
“animal detectors”. However, some animals are not sensitive to toxic gases. Moreover, it is
not easy to confirm the information as to the presence of toxic gases from these animals.

The development of simplified detectors for mustard agent was attempted with
selenious acid, iodine pentoxide or hydrogen sulfide based on the principle of chemical
discoloration. However, none of these detectors were perfected before the end of World
War I [1] (p. 4).

A gas detector tube method was developed in the USA in 1918. Hoover et al. de-
veloped the first detector tube for carbon monoxide (CO). The gas detector tube method
consists of a manual aspirating sampling pump and a disposable gas detector tube. The
color of a chemical reagent in a glass tube changes upon reaction with CO. That tube was
only used for qualitative detection as quantitative measurement was not yet possible [3].
Kitagawa developed a detector tube that was able to quantify hydrogen sulfide (H2S) gas
concentration in 1946 [4]. Today, many companies have expanded the product line of
detector tubes capable of detecting more than 300 different gases.
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A gas sensing paper and color intensity reader for the gas monitoring system using a
color reaction was developed in 1940 [5]. The degree of color change of the gas detection
paper was monitored as a function of the intensity of the reflected light from a lamp. A tape-
type gas detection paper monitor has a continuous monitoring and alarm capability [6].

A gas detection paper method is a visual detector and does not need any other extra
devices for its operation [7]. Some gas detection paper can be used as a “passive sampler”.
The sampler is designed like a badge and clips to a worker’s body for personal sampling. It
can also be placed in an appropriate location in the area to be sampled. After several hours,
the sampler is simply detached from the worker’s body and transferred to a photometer
for measurement of gas concentration [8].

Recently, biosensors for detecting various gases have been developed to improve the
selectivity for target gases. Enzymes with high selectivity are used for gas detectors. The
color of detection paper is changed by enzymatic reaction. Gas concentration can be read
by the naked eye and can be measured by a photometer [9,10].

Colloidal silica gel possesses many superior properties because of its large surface
area [11]. In particular, the reactivity of a sensing material coated with colloidal silica can
be changed because of its high surface-to-volume ratio. Colloidal silica-decorated materials
such as particles or paper are sensing materials with high sensitivity.

As a recent trend, research on gas sensors using Internet of Things (IoT) and smart-
phone technology has been reported. In the future, the digitization of gas sensing will be
promoted with the development of IoT [12,13]. These applications will have broad market
prospects for gas sensing such as in industrial safety and process control.

In this present review, the highlights of the history and new technology of tube- and
paper-based colorimetric gas detectors are introduced. Colorimetric gas detectors are a
simple, easy to operate and rapid technique without expensive devices or specified skilled
operators for analytical chemistry.

The application of these colorimetric gas detectors in collaboration with new materials
and IoT technology is very bright.

2. Gas Detector Tube Method

The gas detector tube method was developed by A.B. Lamb and C.R. Hoover in 1918.
They developed a simplified CO detector for mines, industrial plants, etc. A mixture of
pumice stone, fuming sulfuric acid and iodic anhydride was used as a chemical reagent
in the glass tube. Both ends of the tube were hermetically sealed with flame. Before
measurement, both ends of the detector tube were opened with an ampoule cutter.

A rubber bulb was attached to the end of the tube to force gas through the tube
(Figure 1). The chemical reagent for the detection of CO was in the glass tube, where the
presence of CO would cause the characteristic color change from white to brown. The
color of the tube changed instantly at a concentration of 1% and changed within 15 s at
a concentration of 0.01%. This tube was only used for qualitative detection [3]. Because
the amount and flow rate of gas was not controlled, there was no stable relationship
between discoloration and gas concentration. Therefore, quantitative measurement was
not yet possible.

Kitagawa developed a detector tube that can quantify H2S gas concentration from the
length of the discolored layer in 1946 [4]. In order to control the process during fertilizer
production, it was necessary to easily measure H2S, which is a catalytic poison. The amount
and flow rate of gas through the tube were controlled in this method. The sample gas
was sent into the detector tube at a definite velocity (1 min) and volume (100 mL) with a
piston-type sampling pump and rubber tubing, as shown in Figure 2a.
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Figure 1. Picture of the first gas detector tube: (H) gas detector tube of CO; (K) stopper; (F) detec-
tor tube fixing tube (M) granular active charcoal; (N) porous plug; (L) spring; (O) rubber bulb [3]. 

The chemical reagent was made of lead acetate and silica gel particle. This reagent 
was loaded into a glass tube with a 3 mm inner diameter. If H2S exists in the sample, the 
detector tube changes immediately from its white original color to dark brown from the 
gas inlet side and shows a distinct length of the discolored layer when gas sampling is 
finished. The length of the discolored layer is proportional to the concentration of H2S in 
the sample gas. The measurement of a discolored length enables the determination of the 
concentration of H2S with the concentration chart shown in Figure 2b. 

This method was confirmed with an accuracy of ±5%. 
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Figure 2. Picture of the gas detector tube and concentration chart: (a) picture of the gas detector tube for simultaneous 
detection of H2S and PH3 [14]; (b) first concentration chart for gas detector tube of H2S [4]. 

Figure 1. Picture of the first gas detector tube: (H) gas detector tube of CO; (K) stopper; (F) detector
tube fixing tube (M) granular active charcoal; (N) porous plug; (L) spring; (O) rubber bulb [3].
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Figure 2. Picture of the gas detector tube and concentration chart: (a) picture of the gas detector tube for simultaneous
detection of H2S and PH3 [14]; (b) first concentration chart for gas detector tube of H2S [4].

The chemical reagent was made of lead acetate and silica gel particle. This reagent
was loaded into a glass tube with a 3 mm inner diameter. If H2S exists in the sample, the
detector tube changes immediately from its white original color to dark brown from the
gas inlet side and shows a distinct length of the discolored layer when gas sampling is
finished. The length of the discolored layer is proportional to the concentration of H2S in
the sample gas. The measurement of a discolored length enables the determination of the
concentration of H2S with the concentration chart shown in Figure 2b.

This method was confirmed with an accuracy of ±5%.
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Nowadays, the aspirating pump and direct reading tube method have been used for
gas detector tubes, as shown in Figure 3. By pulling the pump handle, the pressure inside
the pump is reduced, and the sample gas is aspirated into the pump through the detector
tube. Sampling velocity is controlled by the pressure drop of the detector tube.
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Nowadays, more than 300 different gases and vapors such as CO2, CO, O2, O3, HCN, 
HCl, NOx, SO2, H2O, H2O2, NH3, Cl2, H2 and VOCs can be measured using the gas detector 
tube method [16]. This method is used in various fields such as industrial hygiene [17,18], 

Figure 3. Picture of the pump and gas detector tube: (a) aspirating pump for gas detector tube;
(b) sampling method for gas detector tube. Adapted with permission from ref. [15]. Copyright
2021 Japan Society for Analytical Chemistry.

The gas concentration scale is printed directly on the detector tube. This makes
it convenient for taking gas measurements on-site because the tube is read just like a
thermometer (Figure 4).
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Figure 4. Example of the printed scale on the detector tube and discolored layer. Adapted with
permission from ref. [15]. Copyright 2021 Japan Society for Analytical Chemistry.

Temperature can affect the measurement in several ways: (1) an increase or decrease in
the sample volume due to temperature change, (2) a change in the quantity of gas absorbed
by the detecting reagent and (3) a change in the rate in which the detecting reagent reacts
with the gases. These effects can overlap each other, causing the length of the discolored
layer in the detector tube to increase or decrease, or they can offset one another, thereby
having no effect on the measurement result. Some gas detector tubes that can be affected by
the temperature are provided with a temperature correction table as part of the instruction
manual of the detector tube.

The detecting reagents in gas detector tubes are formulated to react uniquely with
the gas to be measured. However, detector tubes can also show a similar reaction (color
change) with another gas having similar properties. A coexisting gas can have a similar
or different color change. It is necessary to be aware of a color change different from that
stated in the instruction manual of the detector tube.

Nowadays, more than 300 different gases and vapors such as CO2, CO, O2, O3,
HCN, HCl, NOx, SO2, H2O, H2O2, NH3, Cl2, H2 and VOCs can be measured using the
gas detector tube method [16]. This method is used in various fields such as industrial
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hygiene [17,18], fire prevention [19], forensics science [20], atmospheric environment [21],
indoor air quality [22], odor measurement [23] and science education [24–26].

The detector tube has been improved to measure ultralow concentrations of gas with
an electric sampling pump (Figure 5a). The sensitivity is improved by increasing the
volume of the sample being drawn [22,27]. The formaldehyde (HCHO) detector tube
using hydroxylamine as a reaction reagent can detect down to 0.08 ppm (World Health
Organization standard [28]) of HCHO gas for prevention of sick building syndrome (SBS).
The sampling time is 30 min and the sampling volume is 9 L. In addition, a detector tube
with improved sensitivity has been developed by increasing the surface area of the reagent
carrier. A detection reagent was prepared using quartz sand coated with colloidal silica to
increase the surface area as a carrier. The detector tube for acetic acid and formic acid was
developed by using this method. That detector tube can measure a concentration as low as
10 to 1000 µg/m3 (Figure 5b). The sampling time is 60 min and the sampling volume is
12 L [11].
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sampling pump; (b) gas detector tube of acetic and formic acid for low concentration gas detection.

A simplified detection method based on thermal desorption (TD) coupled to a gas
detector tube (TD-GD method) was developed to improve the sensitivity of the gas detector
tube method in 2000 [29]. The TD-GD method is based on the absorption of the VOCs in a
charcoal tube and then thermally desorbing them. A large amount of gas is sampled and
concentrated in the charcoal tube with an electric sampling pump. The VOCs are desorbed
with heat and are detected with a gas detector tube (Figure 6). The detector tube is based
on the principle that toluene gas reacts with iodine pentoxide producing a brown-colored
product, iodine. This method is able to detect down to 0.012 ppm (50 µg/m3) of toluene
gas, a lower concentration than the WHO guideline value (0.07 ppm) for indoor air [28]. It
can be utilized in the control and prevention of SBS.
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Total volatile organic compounds (TVOCs) that cause suspended particulate matter
(SPM) and oxidants have been used as a pollution index of the atmospheric environ-
ment [30]. The Japanese Air Pollution Control Act has an emission regulation for exhaust
TVOCs from factories. However, the composition ratio of VOCs in the exhausted gases
always differs depending on the factory’s process of manufacturing. Because the sensitivity
of simple methods such as gas detector tubes differs depending on the type of VOC, the
simple gas detector cannot measure the absolute concentration (mg/m3, ppm) of mixed
VOC gases in principle.

The catalytic combustion gas detector method (CC-GD method) was developed to
detect TVOCs with a gas detector tube [31]. TVOCs are oxidized by a heated catalyst at
300 ◦C to produce CO2 as shown in Equation (1). Generated CO2 is measured with a gas
detector tube for CO2 (Figure 7a,b).
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Figure 7. (a) Diagram of the CC-GD method; (b) diagram and picture of the CC-GD method. Adapted with permission
from ref. [31]. Copyright 2006 Kawamura and Honma.

Various VOCs are oxidized and produce an amount of CO2 in accordance with the
carbon amount of each VOC. As an example, 100 ppm of toluene is oxidized to 700 ppm of
CO2. A pH indicator is used as the reaction reagent in the CO2 detector tube. Sample gas
is collected in a gasbag. Background CO2 in the bag is measured as a blank. The gasbag,
catalytic combustor and gas detector tube are then connected as shown in Figure 7a. Sample
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gas in the gasbag is aspirated into the gas detector tube through the catalytic combustor.
VOCs are decomposed into carbon dioxide by heated catalysis and then measured as CO2.
The concentration of background CO2 in the blank is subtracted from the concentration of
CO2 that passed through the catalytic combustor to determine the concentration of TVOCs.

The concentration of TVOCs measured by the CC-GD method can be confirmed
by a gas chromatography–flame ionization detection (GC-FID) method. The results are
displayed in Table 1. The concentration of VOCs obtained by the CC-GD method was in
good agreement with that of the GC-FID method.

Table 1. Measurement results for CC-GD method and GC-FID method [31].

VOC CC-GD
(ppmC)

GC-FID
(ppmC)

Bias of CC-GD for GC-FID
(%) 1

Toluene 2960 2945 0.5
Ethyl acetate 2445 2618 −1.4

Mixed VOC 1 2 2660 2440 9.0
Mixed VOC 2 3 420 428 −1.9

1 Bias % = measurement result of (CC-GD − GC-FID)/GC-FID × 100. 2 Toluene: 463 ppmC, methyl ethyl ketone:
542 ppmC, ethyl acetate: 755 ppmC, hexane: 680 ppmC. 3 Toluene: 419 ppmC, methyl ethyl ketone: 9 ppmC.

Toxic heavy metals such as mercury or chromium oxide (VI) (Cr(VI)) are used for gas
detector tube reaction reagents as shown in Equations (2)–(4) [32–34]. Mercury chloride
(HgCl2) is used for the detection of PH3, H2S, mercaptans and so on. Cr(VI) is used for
the detection of VOCs as an oxidizer in detector tubes. The color of mercury and Cr(VI)
in the detector tubes changes upon reaction with target gases. Figures 8 and 9 show a gas
detector tube that contains mercury and Cr(VI) as an example. However, these metals are
toxic and regulated in many countries to prevent environmental pollution [35].

H2S + HgCl2 → HgS + 2 HCl2
White Black

(2)

PH3 + 3HgCl2 → P(HgCl)3 + 3HCl
White Yellow

(3)
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ethyl ketone: 542 ppmC, ethyl acetate: 755 ppmC, hexane: 680 ppmC. 3 Toluene: 419 ppmC, methyl 
ethyl ketone: 9 ppmC. 
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detector tube reaction reagents as shown in Equations (2)–(4) [32–34]. Mercury chloride 
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detector tubes changes upon reaction with target gases. Figures 8 and 9 show a gas detec-
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2 2 2H S    +    HgCl       HgS     +   2 HCl  
                          White    Black 

→　　 　    

       
 (2) 

3 2 3( )         PH + 3HgCl P HgCl + 3HCl
White          Yellow

→    　       

　　　　　　　 　　 
 (3) 

The reagent color of the detector tube changes with HCl and a pH indicator. 

(a) 

 
(b) 

 

Figure 8. Picture of a PH3 detector tube that contains mercury chloride: (a) before gas sampling;
(b) after gas sampling. Adapted with permission from ref. [36]. Copyright 2019 Kawamura, Saegusa
and Miyazawa.
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Gas detector tubes for VOC detection without Cr(VI) have been developed [15]. Po-
tassium manganate (VII) (KMnO4) was chosen as an indicator because it is a well-de-
scribed VOC oxidizer and its environmental impact potential is relatively low. The white 
discolored layer on the purple detector tube with KMnO4 increased as vapor concentra-
tions of alcohols (ethanol, methanol and 2-propanol) increased in a range of 0–300 ppm. 
Figure 11 shows a gas detector tube for alcohols as an example. The sampling time is three 
minutes and the sampling volume is 100 mL. This method is based on the principle that 
alcohols react with KMnO4 to produce a colorless product (Equation (6)).  

Figure 9. Picture of an ethanol detector tube that contains Cr(VI): (a) before gas sampling; (b) after
gas sampling.
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The reagent color of the detector tube changes with HCl and a pH indicator.

VOCs + Cr6++H2SO4 → Cr3++Oxidation product
Yellow or orange Pale blue or brown

(4)

The color change depends on the design of the chemical reagent.
Recently, detector tubes that do not use toxic heavy metals have been developed to

reduce the environmental load. In particular, mercury and its compounds are regulated
in many countries to prevent mercury poisoning. More than 140 countries agreed in the
Minamata Convention on Mercury by the UNEP to prevent the emission of mercury [37].
Therefore, detector tubes using gold chloride have been developed, but the price of gold is
high and it is not preferred as a reagent material for the product.

Then, gas detector tubes for PH3 and H2S detection made without mercury and gold
were developed. Silver was chosen as an indicator for PH3 and H2S detection because
silver is a well-described reagent and good for environmental load reduction [36,38].

Figure 10 shows a PH3 gas detector tube with silver sulfate as an example. The
measurement range of the detector tube is 10–700 ppm. The sampling time is one minute
and the sampling volume is 100 mL. The chemical reaction is shown in Equation (5).

2PH3 + 3Ag2SO4 → 2Ag3PO4+ 3H2SO4
White Brown

(5)
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sampling; (b) after gas sampling. Adapted with permission from ref. [36]. Copyright 2019 Kawamura,
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Gas detector tubes for VOC detection without Cr(VI) have been developed [15].
Potassium manganate (VII) (KMnO4) was chosen as an indicator because it is a well-
described VOC oxidizer and its environmental impact potential is relatively low. The white
discolored layer on the purple detector tube with KMnO4 increased as vapor concentrations
of alcohols (ethanol, methanol and 2-propanol) increased in a range of 0–300 ppm. Figure 11
shows a gas detector tube for alcohols as an example. The sampling time is three minutes
and the sampling volume is 100 mL. This method is based on the principle that alcohols
react with KMnO4 to produce a colorless product (Equation (6)).
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Mercury and Cr(IV) continue to be used in some gas detector tubes for the detection
of certain other gases such as HCN or VOCs even today. Moreover, lead oxide has also
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been used as an oxidizer in detector tubes. Novel principles without requiring these toxic
materials for gas detector tubes should be developed to reduce the environmental load.

Alcohols + KMnO4 → K++MnO2+Oxidation product
Purple White

(6)

Possible oxidation products: carboxylic acid.
Kubota et al. developed the inorganic qualitative gas detector using five types of dis-

coloration reagents together in a single tube for one-time measurement (Figure 12) [39,40].
The color of the reagents changes upon reaction with various inorganic gases. Inorganic
gas can be qualitatively detected based on the combination of color changes in the tube
(Figure 13). Organic gases also can be detected with chemical reagents for organic gases
using a similar principle [40].
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Figure 13. Detection chart of the inorganic gas qualitative detector tube. Adapted with permission
from ref. [40]. Copyright 2021 Komyo Rikagaku Kogyo K.K.

Most gas detector tubes are made with a glass tube filled with a chemical reagent
particle. The length of the tube depends on the manufacturer; however, it is often about
80–120 mm. Small detector tube systems have been required, and the splintering of
detector tube glass might cause an injury. Therefore, a gas detector tube in a small chip was
developed. The chip (50 mm× 10.5 mm× 5 mm) contains 10 measurement capillaries filled
with a chemical reagent for gas detection (Figure 14a) [41,42]. When the chip (Figure 14b)
is inserted into the analyzer, all information required for the measurement is transferred
to the handy size analyzer by means of a bar code on the chip. Gas concentration is
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measured from the discoloration time of the tube with the photometer in the analyzer.
The measurement results are interpreted and corrected under the operating temperature
specification automatically. This system can be used to measure 35 different gases and
vapors.

SECTION CHEMICAL REACTION PRINCIPLES
A By reacting with Phosphoric acid, PH indicator is discoloured.

2NH3 + H3PO4 → (NH4)2HPO4
B By reacting with an Alkaline, PH indicator is discoloured.

SO2 + 2NaOH → Na2SO3 + H2O
C By reacting with o−Toluidine, Nitro−o−Toluidine(Dyestuff) is liberated.
D By reacting with Lead Acetate(II), Lead sulphide is produced.

H2S + Pd(CH3COO)2 → PdS + 2CH3COOH
E Potasium disulphide palladate (II) is reduced and Palladium is liberated.

CO + K2Pd(SO3)2 K2(SO3)2PdCO
K2(SO3)2PdCO → CO2 + SO2 + K2SO3

(7)
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3. Gas Sensing Paper and Color Intensity Reader for a Gas Monitoring System

Gas detector tubes have a great advantage in terms of selectivity and rapidity for
practical analysis compared to other types of gas detectors such as semiconductor, com-
bustible and electrochemical gas sensors because they use a selective chemical detection
principle [23]. However, detector tubes are spot testers and not adequate for continuous
detection.

The tape monitor method was developed for continuous gas detection method using
a colorimetric principle that has gas selectivity [5,43,44]. The gases in the sample react with
the chemical reagent in the tape to produce the chemical reaction product, and hence the
color of the tape changes much like it does in a detector tube. The sample gas is drawn
through the sampling chamber at a constant flow rate (e.g., 400 mL/min) using an air
pump in the detector. The degree of color change is recorded by measuring the relative
light reflected off of the tape. The length of tape exposed to the sample is renewed by
moving the tape every measurement interval (Figure 15). Measurement interval depends
on the gas detector design (e.g., 5 min, 30 min).
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Nakano et al. developed the HCHO gas detector using the tape monitor method [45,46].
The dried tape contained silica gel and was impregnated with a processing solution
containing hydroxylamine sulfate. Methyl Yellow (pH indicator) was used as the detection
reagent. When an air sample including HCHO was exposed to the cellulose tape, the color
of the tape changed from yellow to red. The degree of color change was proportional to the
concentration of HCHO, and it was recorded by measuring the intensity of reflected light
at 555 nm. The tape could detect down to 0.08 ppm of HCHO (WHO standards for indoor
air quality control [28]) with a sampling time of 30 min.

The chemical reaction of this method is shown in Equation (8).

2HCHO + (NH2OH)2·H2SO4 → 2H2C = NOH + H2SO4+H2O (8)

The Methyl Yellow pH indicator on the tape changed color by reacting with the
sulfuric acid that was produced by the reaction of hydroxylamine sulfate reagent with the
HCHO. The response of the tape was interpreted using the following equation:

Response (% of voltage drop) = (V0 −V1) / V0 × 100 (9)

where V0 is the voltage before gas sampling and V1 is the voltage after gas sampling.
The tape used above does not respond to CO, NOx, CO2 and VOCs such as toluene

and xylene. HCl and aldehydes give a response; however, the interference of these gases is
not a serious problem for monitoring ambient air.

Various tapes for gases such as HCN [47], Cl2 [6], NH3 [48], HCl [49], H2S [50],
silane [51], PH3 and AsH3 [52] have been developed. This method is simple, specific and
recommended for continuous gas detection in the field.

A circle detection paper tablet and the measurement of the relative light reflected
has been developed as spot sample and detection method. However, this method is
not adequate for continuous detection, although it is suitable for portable gas detection
applications due to its small size. Figure 16 shows an example of a detection paper tablet.
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The detection paper on the tablet is exposed to sample gas using an air pump in the
photometer. The degree of color change ias recorded by measuring the reflected light with
a photodiode and LED (Figure 17).
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A portable HCHO gas detector was developed using a reagent “KD-XA01”(4-amino-
4-phenylbut-2-en-2-on) in a dried state on the detection paper tablet. HCHO reacted with
KD-XA01, and the color of the detection paper changed to yellow. The degree of the color
change was recorded by measuring the relative intensity of reflected light at 400 nm with a
gas detection device called an FP-30 (photometer and sampling pump). The flow rate of the
sample gas was 250 mL/min [53–55]. The reaction of HCHO and KD-XA01 is presented in
Figure 18. The KD-XA01-based method showed no significant response towards various
VOCs or aldehydes other than HCHO, assuring high reliability. The limit of detection was
0.05 ppm after a 5-min test.
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A NO2 detector was also developed using the FP-30 [56]. N-1-Naphthylethylenediamine
dihydrochloride on the detection paper reacted with NO2 to give a color change to yellow.
The degree of color change of paper from white to yellow was monitored as a function
of the intensity of the reflected light (λ = 475 nm) of an LED. The limit of the detection
was 0.01 ppm when the sampling time was 30 min, and the flow rate of sample gas was
250 mL/min. This device is useful for the detection of NO2 in a room using an exhaust
room discharge type heater.

Another type of HCHO gas detector for SBS was developed with a significantly short
sampling time. 4-Amino hydrazine-5-mercapto-1,2,4-triazole (AHMT) reagent was chosen
as an indicator for HCHO detection because AHMT is a well-described reagent with a high
sensitivity and selectivity towards HCHO [57]. A disposable circular glass paper on a chip
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and hanging drop kit were developed for simple and routine use. The glass paper was
impregnated with AHMT and detected HCHO concentrations in air at less than 0.08 ppm
in 3 min. The limit of detection was 0.04 ppm.

Before detection, 50 µL of AHMT solution and 50 µL of KOH solution (1:1) were
dropped on the glass paper. Then, the reagents on the glass paper were exposed to HCHO
gas in a photometer (Figure 19a). An air pump was installed in this photometer. The degree
of the color change was recorded by measuring the relative intensity of reflected light at
550 nm. The flow rate of sample gas was 200 mL/min. HCHO reacted with AHMT and
KOH, and the color of the reagent solutions changed to purple in 3 min (Figure 19b).
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Figure 19. Photograph of sensor for HCHO gas detection: (a) photometer; Adapted with permission
from ref. [57]. Copyright 2005 Elsevier. (b) glass paper with AHMT/KOH solution after HCHO gas
exposure. Adapted with permission from ref. [8] (p. 40). Copyright 2004 Kawamura.

This AHMT-based method exhibits high sensitivity and a short measurement time
since the liquid reagent and HCHO gas react on the glass paper. In Figure 20, the AHMT-
based method was compared with a conventionally used hydroxylamine-based one.
The AHMT-based method is more sensitive and has a shorter sampling time than the
hydroxylamine-based method.
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Moreover, the AHMT-based method was not affected by the presence of various
aldehydes other than HCHO, VOCs, acidic or alkaline gases.

A toluene gas detector was also developed with the photometer in Figure 19a [58]. This
detector is based on the principle that toluene reacts with iodine pentoxide (I2O5) to produce
a brown-colored product, iodine (Figure 22). I2O5 solution (50 µL) was pipetted onto the
glass paper filter, which was subsequently placed into the photometer. Immediately after,
the reagent solution was exposed to toluene gas for a duration of 30 min at a flow rate
of 480 mL/min. The product is detected by measuring the intensity of reflected light at
460 nm. The degree of color change is proportional to the concentration of toluene gas.
This detector is able to detect down to 0.05 ppm toluene, a lower concentration than the
WHO guideline value (0.07 ppm) for indoor air. The chemical reaction of this method is
shown in Equation (10).

C6H5CH3 + I2O5 → I2+Oxidation products (10)
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Figure 22. Photograph of glass paper with I2O5 solution after exposing it to toluene gas. Adapted
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Possible oxidation products: C6H5CHO, C6H5COOH.
The measurement results using a photometer in this section are interpreted and

corrected under the operating temperature range specification automatically.

4. Passive Sampling Detection Paper Method

Generally, a passive sampling detection paper method is not sensitive compared to an
active sampling method that uses an air pump. Passive sampling is better for qualitative
detection and not quantitative measurement. However, the detection paper method is
extremely easy to use, does not need electronic devices and is maintenance-free. The
detector paper in the chemical agent analyzer kit “M10” was used for the detection of most
chemical warfare agents except for nerve agents in 1945 [1] (p. 11).

A test strip capable of detecting low concentrations of chlorine gas in air was devel-
oped for use in detecting chlorine gas leaks in 1946. This strip was used for industrial
hygiene [59]. Orthotoluidine was used as a detecting reagent for chlorine detection. It can
detect chlorine gas at less than 4 ppm and preferably less than 2 ppm, and it retains its
sensitivity for relatively long periods of time, on the order of months, when properly stored.
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Early methods for the detection of phosgene utilized absorption into a solution that
changes color (4-(4′-nitrobenzyl)-pyridine) and stabilizes the color (N-phenyl benzene).
The absorbance was then read on a spectrophotometer [60]. Badges that change color
upon exposure to phosgene are commercially available for industrial hygiene. The badge
for phosgene determination was developed with a paper strip impregnated with 4-(4′-
nitrobenzyl)-pyridine and N-phenyl benzylamine. Wernaer et al. developed a badge that
has three indicators for rapid recognition of the dose of reactive gas. The surface of each
window is covered with a film with different permeability. Each of the three indicators
is designed to discolor with low (<5ppm min−1), medium (50–80 ppm min−1) and high
(100–150 ppm min−1) concentrations of gases. Since checking the discoloration of the three
windows is easier than reading the density from a color standard chart, the amount of
phosgene can be checked immediately [61].

A test strip for HCHO was developed for indoor air quality control with KD-XA01 [56].
The color of the test strip changed to yellow upon exposing it to HCHO gas (Figure 23).
Most of the passive sampling methods such as the test strip need several hours to detect
gas concentrations of less than 1 ppm due to their low sensitivity. However, low sensitivity
has advantages for long-term measurements, such as in the detection of threshold limit
values—time-weighted average (TLVs-TWA) of a typical work shift of 8 h [62].
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Figure 23. Photograph of test strips with KD-XA01 after exposure to 0.1 ppm HCHO gas for 8 h.
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The test strip methods can be prone to analyst error, as it is not easy to read the
measured value from the paper or interpret a color change. Kawamura et al. developed
a method to obtain quantified results using passive detection paper and a photometer as
shown in Figure 19a [8] (p. 59–83). The method was based on the principle that HCHO
reacts with KD-XA01 to produce a yellow color (Figure 24a).
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The discoloration is recorded by measuring the intensity of reflected light at 460 nm
using a photodiode after 8 h exposure of the paper to atmospheric air.

The calibration graph of HCHO was linear between 0.04 and 0.57 ppm HCHO after
8 h sampling. Thus, this method can be used to detect HCHO at the TLV-TWA exposure
value of 0.1 ppm set by ACGIH in the work environment for 8 h.

The passive detection paper sampler was designed like a badge and clips to a worker’s
collar for personal sampling (Figure 25). It could also be placed in an appropriate location
in the area to be sampled. After 8 h, the sampler was simply detached from the worker’s
collar, and the paper was transferred to a photometer for detection of HCHO gas.

AppliedChem 2021, 1, FOR PEER REVIEW  16 
 

 

The test strip methods can be prone to analyst error, as it is not easy to read the 
measured value from the paper or interpret a color change. Kawamura et al. developed a 
method to obtain quantified results using passive detection paper and a photometer as 
shown in Figure 19a [8] (p. 59–83). The method was based on the principle that HCHO 
reacts with KD-XA01 to produce a yellow color (Figure 24a). 

 
Figure 24. Photograph of sensors for KD-XA01-based method and HCHO gas detector paper 
method: (a) detector paper containing KD-XA01 before and after reaction with HCHO gas; (b) 
absorption spectra of 124 mM of KD-XA01 before and after reaction with 1000 mg/L of HCHO at 
room temperature. Adapted with permission from ref. [8] (pp. 59–83). Copyright 2004 Kawamura.  

The discoloration is recorded by measuring the intensity of reflected light at 460 nm 
using a photodiode after 8 h exposure of the paper to atmospheric air.  

The calibration graph of HCHO was linear between 0.04 and 0.57 ppm HCHO after 
8 h sampling. Thus, this method can be used to detect HCHO at the TLV-TWA exposure 
value of 0.1 ppm set by ACGIH in the work environment for 8 h. 

The passive detection paper sampler was designed like a badge and clips to a 
worker’s collar for personal sampling (Figure 25). It could also be placed in an appropriate 
location in the area to be sampled. After 8 h, the sampler was simply detached from the 
worker’s collar, and the paper was transferred to a photometer for detection of HCHO 
gas. 

 
Figure 25. A passive sampling badge shown attached to a worker’s collar for personal sampling and 
clipped in an appropriate location for use in a workplace. Adapted with permission from ref. [8] 
(pp. 59–83). Copyright 2004 Kawamura.  

Maruo et al. also developed a HCHO detector with a colorimetric passive detection 
element in a portable photometer for indoor air monitoring [63]. The rutidine derivative 
that was formed as a yellow product of the reaction between β-diketone and HCHO was 
stable in the porous glass block (sensor element, 8 mm × 8 mm × 1 mm). The detection 
limit was 5 ppb per hour, and it was estimated it took about 1 h to detect a HCHO 
concentration of 94%. The sensor device was small and easy to use and it successfully 
carried out hourly HCHO monitoring. 

The sensitivity of many detection papers is low. However, fast-response paper-based 
visual color change film for efficient ammonia detection was developed [7]. Inexpensive 
and disposable rapid detection film was made using perovskite halide CH3NH3PbI3 
(MAPI) to detect the presence of NH3 by color change, where the black-colored MAPI film 
(on the paper) changes to yellow color in the presence of a very low concentration of NH3 

gas (Figure 26). The mechanism by which the color changes is based on the complete 
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clipped in an appropriate location for use in a workplace. Adapted with permission from ref. [8]
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Maruo et al. also developed a HCHO detector with a colorimetric passive detection
element in a portable photometer for indoor air monitoring [63]. The rutidine derivative
that was formed as a yellow product of the reaction between β-diketone and HCHO was
stable in the porous glass block (sensor element, 8 mm× 8 mm× 1 mm). The detection limit
was 5 ppb per hour, and it was estimated it took about 1 h to detect a HCHO concentration
of 94%. The sensor device was small and easy to use and it successfully carried out hourly
HCHO monitoring.

The sensitivity of many detection papers is low. However, fast-response paper-based
visual color change film for efficient ammonia detection was developed [7]. Inexpensive
and disposable rapid detection film was made using perovskite halide CH3NH3PbI3
(MAPI) to detect the presence of NH3 by color change, where the black-colored MAPI
film (on the paper) changes to yellow color in the presence of a very low concentration of
NH3 gas (Figure 26). The mechanism by which the color changes is based on the complete
degradation of MAPI to PbI2, a solid with distinct yellow color, upon exposure to NH3.
The color change to yellow-colored PbI2 is a structural phase transition that occurs due to
the interaction of MAPI with NH3.
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rGo 1 108 10 

PANI 2 800 50 
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1 Reduced graphene oxide. 2 Polyaniline. 

They used paper with a high porosity as a substrate. As a result, the morphologies 
are different, and in their case, the nanorod-like structure is responsible for the fast 
response towards NH3 (Figure 28). The MAPI film was easy to fabricate via a wet 
chemistry route, and being a visual color change detection film, it does not need any other 
extra equipment for its operation. This film has a long shelf-life (180 days at room 
temperature) and almost constant performance for detection. 
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According to the experimental observations, the film could detect gas concentrations
of 10 ppm with a visual color change within a response time of around 12 s (Figure 27).
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The response time of the film is very fast compared to reported NH3 sensors using
other materials. The film works at room temperature and shows a rapid response that
is faster than the response of electrical sensors available commercially for the same gas
(Table 2).

Table 2. Different ammonia sensors based on other materials and their response time to detect the
ammonia gas concentration [7].

NH3Sensors Response Time (in s) NH3 Gas Concentration (in ppm)

rGo 1 108 10
PANI 2 800 50
SnO2 3000 10

CNT–TiO2 600 Not mentioned
1 Reduced graphene oxide. 2 Polyaniline.

They used paper with a high porosity as a substrate. As a result, the morphologies are
different, and in their case, the nanorod-like structure is responsible for the fast response
towards NH3 (Figure 28). The MAPI film was easy to fabricate via a wet chemistry route,
and being a visual color change detection film, it does not need any other extra equipment
for its operation. This film has a long shelf-life (180 days at room temperature) and almost
constant performance for detection.
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5. Colorimetric Sensor Arrays

The development of optoelectronic nose sensors using colorimetric array chips has
also been reported. Since the judgment is made using many reagents (for instance, Fe2+

redox, several types of pH indicators, Schiff test, nitro-sensitive, solvatochromic, metal–dye
chromogens), the gas selectivity can be improved for toxic and explosive gases.VOCs
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such as ammonium nitrate, 2,4-dinitrotoluene and H2O2 can be qualitatively determined
from the patterning of the sensor array (Figure 29). It has also been reported that discol-
oration can be determined by reading with a charge-coupled device (CCD) camera [64,65].
Sensors have also been reported that can identify the ppm levels of vapors of 20 toxic
industrial gases, including PH3, HCN and fluorine, using a colorimetric 36-component
sensor array [66,67].
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In the future, the use of these sensors will improve the performance of even commer-
cially available gas detectors.

6. Colorimetric Gas Detector with Biomaterial

The biosensor method is useful to improve the selectivity of the detector because
biomaterials such as enzymes and antibodies have high substrate specificity.

Mitsubayashi et al. developed bio-sniffers for gaseous chemicals (trimethylamine,
methyl mercaptan, HCHO, ethanol, etc.) with metabolizing enzymes as chemical recogni-
tion proteins. The sniff devices monitor the concentration change of the gas-phase chemical
with high selectivity because of enzyme specificity. An optical approach (Sniff-cam) allows
one to visualize the spatiotemporal concentration change of chemical vapor such as body
odor or wine ethanol. These gas sensors possessed high selectivity for analyte vapor in
the presence of other gas-phase chemicals and gave a negligible response to these other
chemicals [9,68]. Enzymatic reaction of these detectors was as follows:

Monoamine oxidases
R−CH2−NH3

+ + H2O → O2R−CHO−NH4
+ + H2O2

(11)

A ruthenium organic complex was immobilized on the tip of an oxygen-sensitive
optical fiber. The oxygen concentration can be quantified by the quenching phenomenon
of the fluorescence reaction (excited light wavelength: 470 nm, fluorescence wavelength:
600 nm) due to the formation of an electrified transfer complex with oxygen molecules.

HCHO dehydrogenase (FALDH)
HCHO + NAD++H2O → HCOOH + NADH + H+ (12)

In the presence of HCHO, FALDH uses oxidized nicotinamide adenine dinucleotide
(NAD+) as an electron acceptor to produce formic acid and reduced NADH. Since NADH
has fluorescence characteristics (ex.: 340 nm, fl.: 491 nm), HCHO could be detected by
fluorescence measurement using UV-LED.

Alcohol oxidases
R−CH2OH + O2 → R−CHO + H2O2

(13)
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Using a mesh in which alcohol oxidase and horseradish peroxidase were immobilized
and an electron-multiplying CCD camera was used, luminol luminescence associated with
the enzyme reaction was imaged. The enzyme mesh was moistened with a luminol solution
and reacted with ethanol gas in a dark room. Ethanol could be detected by photographing
the luminescence by the enzyme with the electron-multiplying CCD.

Yanagisawa et al. developed a HCHO gas detector with HCHO dehydrogenase using
the principle of a passive emission colorimetric sensor (PECS) to measure the emission
rates of HCHO from various surfaces in residential houses [10]. PECS is a very small device
(diameter: 23 mm, thickness: 3.2 mm). PECS consists of a PET body and a test paper,
which turns red by enzyme reaction (HCHO dehydrogenase, NAD+, NADPH oxidase
diaphorase, 4-iodonitrotetrazolium violet) in the presence of HCHO. At the beginning of
the measurement, one drop of pure water is put into the PECS. The PECS is placed on
indoor materials, and 30 min later the coloration can be measured by visual observation or
absorption photometry.

Gas detector tubes using cholinesterase have been developed for the detection of nerve
agents such as phosphate esters. Acetic acid is produced by the reaction of choline oxidase
and acetylcholine. A pH indicator, cholinesterase, acetylcholine and a capsule containing
water are loaded into the gas detector tube. The capsule is broken during measurement to
allow the enzyme to react with acetylcholine. In the absence of a nerve agent that inhibits
cholinesterase, the acetic acid produced reacts with the pH indicator and the detector tube
is discolored. In the presence of nerve agents, the enzymatic activity of cholinesterase is
inhibited, acetic acid is not produced and the detector tube is not discolored [69].

A kit for sensing phosphoric ester has also been developed (Figure 30). This sensing
method uses dried cholinesterase or acetylcholinesterase, choline oxidase, peroxidase and
water. The dry enzyme pad is brought into contact with the sample gas, and then water is
added to the dry enzyme pad. After that, when the enzyme pad and the drying reagent pad
are brought into contact with each other, the enzyme reacts with acetylcholine (substrate),
and choline oxidase generates hydrogen peroxide. The color of the pad changes from white
to blue by enzymatic reaction [70]. In the presence of nerve agents, the enzymatic activity
of acetylcholinesterase or cholinesterase is inhibited, H2O2 is not produced and the reagent
pad is not discolored.
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The enzymatic reaction of discoloration is as shown in Figure 31.
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7. Colorimetric Gas Detector and ICT Technology

Recently, smartphone colorimetric gas detectors have been developed. Rachel et al.
proposed a thread sensor with a fabrication method for the stable entrapment of optically
responsive dyes on a thread substrate. It is proposed to develop a detection system that
can be integrated into clothing [71]. The dyes 5,10,15,20-tetraphenyl-21H,23H-porphine
manganese(III) chloride (MnTPP), methyl red (MR) and bromothymol blue (BTB) were
used for the detection of NH3 and HCl. Their optical approach utilizes a smartphone to
extract and track changes in the RGB signal of the acquired images of the thread to detect
the presence of an analyte. These threads could detect 50–1000 ppm of NH3 and HCl gases
(Figure 32).

The threads were shown to be stable over time, even with agitation in a centrifuge.
This is attributed to the dual-step fabrication process that entraps the dye with poly-
dimethylsiloxane (PDMS) coating in a stable manner. The facile fabrication of colorimetric
gas-sensing washable threads is ideal for the next generation of smart textiles and intelli-
gent clothing.

Colorimetric gas indicators for toxic gas scrubbers have been used in many facto-
ries [72,73]. The color of the indicator changes upon reaction with the toxic gas that has
passed through the scrubber. Monitoring of the relative depletion of the scrubbing medium
in a scrubber can be carried out with endpoint detection using a colorimetric indicator and
reader (Figure 33).

Figure 34 shows the color detection of the PH3 indicator for a scrubber using a smart-
phone camera (RGB information). Copper nitrate was used as the indicator reagent to
detect the PH3. The color of the indicator changes from blue to grey upon reaction with PH3.
Discoloration of the indicator provided RGB color information using the smartphone cam-
era.

Optical detection offers advantages over other sensing techniques, as scanners and
smartphones can image and analyze the color difference with a color sensor. In particular,
the utilization of a smartphone is useful in terms of promoting the Internet of Things (IoT)
in the field of gas detection. This is because the data can easily be sent to the internet
through the smartphone.

Recently, many researchers have tried to develop gas detectors with IoT technology [12,13].
Kawamura et al. developed an O2 monitoring system using a galvanic oxygen sensor and
gateway (Silent system SB-1) for IoT sensing. Oxygen sensors are connected with LAN
cable to the gateway (Figure 35a). Monitoring results are sent to the data server through
the Internet gateway. They utilized open-source software and platforms (Amazon Web
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Service, AWS and ZABBIX) for the data server and monitoring software to reduce the cost
of the monitoring system (Figure 35b). However, this is not a colorimetric gas detector.
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João et al. proposed an IoT system with a multigas smart sensor for various industrial
fields (Figure 36) [74]. The devices used in these studies utilize semiconductor, electrochem-
ical and optical sensors, not colorimetric sensors. The development of colorimetric gas
detectors for IoT has been delayed. This is because many colorimetric gas detectors utilize
chemical reactions (usually irreversible reactions), so the sensor part is often disposable
and not suitable for continuous measurement [74,75].
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However, many types of gas sensors are needed to promote IoT. The gas detectors
of the tape monitor method are suitable for continuous measurement. Chenwen et al.
developed a gradient-based colorimetric array sensor (GCS) for O3 with indigo carmine,
citric acid and silica gel pieces (13 mm × 30 mm). The sensing reagents were printed on the
substrate as straight lines, each with a length of 8 mm and a width of 0.3 mm. The lateral
transport of analytes across a colorimetric sensor surface creates a color gradient that shifts
along the transport direction over time. GCS tracks the gradient shift and converts it into
analyte concentration. Differing from conventional colorimetric sensors that expose the
whole sensing surface to analytes, GCS has a greatly extended lifetime. The sensor was
able to continuously monitor the O3 concentration in the atmosphere for 24 h [75].

These devices will be used as gas detectors in IoT in the future.

8. Comparison of Various Gas Detector Technologies

The sensitivity and selectivity of the colorimetric gas detectors are relatively high com-
pared to other types of gas detectors such as semiconductor, combustible, electrochemical
and photon ionization (Table 3).

Table 3. Comparison of various gas detector technologies.

Semiconductor
[76–80]

Catalytic
Combustible

[76,81,82]
Electrochemical

[76,83,84]
Photoionization

[85–87]
Colorimetric

[88–90]

Sensitivity O
(sub-ppm)

×
(sub-%)

4
(ppm)

o©
(ppb)

o©
(ppb)

Selectivity × × 4 4 o©
Continuous monitoring/

data transfer O O O O 4 1

Oxygen requirement
during measurement Required Required Required Not required Not required

Number of measurable gases
for commercial products

×
For reducing

gas/oxidizing gas

×
For combustible gas

4
(less than 100)

o©
(more than 300)

o©
(more than 300)

1 Continuous gas detector with a colorimetric method such as the tape monitor method. o©: very good, O: good, 4: not so good,
×: not good.

Gas detectors with semiconductor sensors can measure reducing/oxidizing gases
because the conductivity of semiconductor materials changes in accordance with changes
in gas concentration. This is caused by the adsorption and desorption of oxygen and the
reaction between surface oxygen and gases. Gas detectors with combustible gas sensors can
only measure combustible gases because the reaction principle is combustion. Moreover,
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since the detection is based on combustion, the gas selectivity is low. The sensitivity of
the combustible sensor is low, and it is not suitable for low concentration measurement.
Gas detectors with electrochemical sensors can have a certain degree of gas selectivity
by adjusting the electrical potential. However, there are fewer than 100 types of gas that
can be measured using electrochemical sensors. They cannot measure nearly as many
types of gases as colorimetric gas detectors can measure. Moreover, oxygen is required for
gas measurements on semiconductor, combustible and electrochemical gas sensors. Most
colorimetric gas detectors do not require oxygen.

A gas detector with a photon ionization detector can have a certain degree of gas
selectivity by changing the UV lamp type (voltage). There are three types of commonly used
lamp voltages (9.8, 10.6 and 11.7 eV), but they are not sufficient to improve selectivity by
much. There are more than 300 types of gases that can be measured with photon ionization.

The colorimetric gas detector is highly sensitive, and some products can measure the
concentration down to part-per-billion levels. The gas selectivity depends on the chemical
reagents used. It is possible to improve gas selectivity by using chemical reagents with
high selectivity. In principle, more than 30 types of reagent reaction principles are used.
This is significantly more than other types of gas detectors and can easily be applied if new
reagents become available in the future. This feature is an advantage when developing a
new gas detector. In addition, colorimetric gas detectors currently commercially available
can measure more than 300 types of gases [80–90].

The disadvantage of colorimetric gas detectors is that the detection component is often
a disposable product, so many products are not suitable for continuous measurement or
data transfer. However, tape monitor products [43–52] and continuously usable colori-
metric gas sensors [75] are capable of continuous measurement and data transfer and do
not have such drawbacks. Moreover, single-use disposable products have an impact on
the environment. In the future, we should develop a colorimetric gas detector that can be
recycled and has a low environmental impact.

9. Conclusions

A review of various colorimetric gas detectors was presented. The history of devices
such as detector tubes, tape monitor methods, photometer-type gas detectors and detector
paper was discussed, as was the current situation and the direction to be taken in the future.

In the future, to reduce the environmental load, products that do not use harmful
substances such as heavy metals (Cr, mercury) will be desired. In order to improve the
sensitivity, it is effective to use a material with a large surface area, and further research is
needed. Gas detectors should be promoted in IoT. Some colorimetric gas detectors, such as
tape monitoring, can perform continuous measurements. It is necessary to promote the IoT
of these products and further promote their utilization in the ubiquitous sensor network.

The colorimetric gas detector is highly sensitive and selective and has a large number
of measurable gas species. No other gas detector with such characteristics can be found.

More research utilizing these advantages of the colorimetric gas detector should be
conducted in order to improve the field of gas detection.
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