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While pure chemistry aims to enhance knowledge within the chemical sciences, applied
chemistry exploits the principles and theories of chemistry to answer specific questions
or solve real-world challenges. Researchers in applied chemistry require a breadth of
knowledge that allows them to make use of fundamental chemistry principles in a diversity
of related (or potentially unrelated) areas and also to engage in collaborations in physical,
life, and social sciences along with industry and beyond. The economic and societal
impact gained from research in applied chemistry can be significant, and this new journal,
AppliedChem (ISSN 2673-9623) [1], aims to be a portal for disseminating new and exciting
research in this area.

My own research lends itself well to the applied chemistry theme and exemplifies
the area. Having trained in fundamental organometallic, coordination, supramolecular,
and catalytic chemistries, my group is now applying their chemistry knowledge to the
topics of metal separations and recycling. This area is a significant challenge for chemists
that impacts on general themes such as chemical sustainability, critical metal resources
and materials balances, and environmental remediation [2–4]. In particular, we have
studied the solvent extraction of gold by simple primary amides from mixed-metal acidic
solutions derived from electronic waste [5,6]. Inherent to these studies is the production
of quantitative analytical data, understanding interfacial chemical transport mechanisms,
and the characterisation of metal complexes in aqueous and organic solutions using a
range of techniques such as NMR spectroscopy, mass spectrometry, and computational
molecular dynamics. By assimilating data from this range of techniques, we have found
that gold compounds are extracted selectively as dynamically exchanging supramolecular
assemblies, and this insight has informed us of the next chemical steps to take to improve
selectivity [7].

Others in this area have studied how different acids and oxidants can leach metals from
electronic waste in a sustainable manner, in this case through the application and analysis
of solid–liquid interfacial chemistry [8,9]. Furthermore, the use of selective adsorption
and precipitation techniques is providing new routes to metal separation and has, for
example, been applied to gold and rare-earth separations [10–13]. These studies also exploit
fundamental chemical understanding, in particular those associated with supramolecular
assembly processes and the analysis of the subtle changes in coordination chemistry across
the rare-earth series. The discovery that α-cyclodextrin precipitates gold from acidic
solutions has led to its commercialisation as a sustainable alternative to cyanidation for
gold extraction [14].

Important to all of these research advances is the recognition that chemistry solutions
on their own are not always enough to solve a particular challenge. In the metal recycling
arena, thought must also be given to the metal material balances and supply chains, the
business cases for ultimately providing circularity in resource supply and use, engineered
process solutions, and environmental issues surrounding metal extraction, waste, and its
processing [15–17]. It is clear that multifaceted collaborations are required, which makes
this challenge both demanding and exciting.

Strong overlaps also abound between the chemical sciences and, for example, biology
(drug development and delivery, food science), physics (magnetic materials, solar cells,
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supercapacitors), geosciences (carbon capture, storage, and utilisation), and engineering
(process design and sustainable energy generation and use), which result in environments
into which the applied chemist can provide new insight and deliver innovative solutions.
It is evident that this breadth of application requires a forward-looking, high-quality, and
informative journal that represents all that is new and exciting in the applied chemistry
field. As such, the new journal AppliedChem covers all applied themes and challenges
associated with modern chemistry. It is international, peer-reviewed, and open access, and
aims to encourage scientists to publish their new results in as much detail as possible with
no restriction on manuscript length. It has a very wide scope, from the firm foundation
of the organic, inorganic, and physical chemistry pillars to encompassing cross- and
interdisciplinary topics. I hope that this new journal will provide a suitable springboard
for reporting research innovation and advances that exploit pure chemical knowledge in
a wide range of modern technologies and that it will generate a broad readership that
acknowledges the interest, excitement, and importance of applied chemistry research.
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