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Abstract: Deep learning is widely used in many real-life applications. Despite their remarkable
performance accuracies, deep learning networks are often poorly calibrated, which could be harmful
in risk-sensitive scenarios. Uncertainty quantification offers a way to evaluate the reliability and
trustworthiness of deep-learning-based model predictions. In this work, we introduced uncertainty
quantification to our virtual research assistant recommender platform through both Monte Carlo
dropout ensemble techniques. We also proposed a new formula to incorporate the uncertainty
estimates into our recommendation models. The experiments were carried out on two different com-
ponents of the recommender platform (i.e., a BERT-based grant recommender and a temporal graph
network (TGN)-based collaborator recommender) using real-life datasets. The recommendation
results were compared in terms of both recommender metrics (AUC, AP, etc.) and the calibra-
tion/reliability metric (ECE). With uncertainty quantification, we were able to better understand the
behavior of our regular recommender outputs; while our BERT-based grant recommender tends to be
overconfident with its outputs, our TGN-based collaborator recommender tends to be underconfident
in producing matching probabilities. Initial case studies also showed that our proposed model with
uncertainty quantification adjustment from ensemble gave the best-calibrated results together with
the desirable recommender performance.

Keywords: uncertainty quantification; Monte Carlo dropout; ensemble; recommender systems; BERT;
temporal graph networks

1. Introduction

With deep learning (DL) being widely applied in many areas of decision-making,
such as investment opportunities, medical diagnosis, and recommendations, it is therefore
of critical importance to evaluate the efficacy of these methods before their real-world
application [1], especially when the cost/risk is high.

Uncertainty quantification (UQ) is a measure for evaluating the reliability and trust-
worthiness of model predictions. Uncertainty usually depends on the quantity, quality,
and relevance of data and on the relevance and reliability of models and inferences used
to fill the gaps [2]. In other words, uncertainty comes from two sources: data (aleatoric)
uncertainty and model (epistemic) uncertainty [3–6]. While the former is an inherent
property of data distribution and therefore irreducible, the latter occurs due to inadequate
knowledge and is hence reducible.

Despite the notable accuracies of DL models in supervised learning benchmarks, DL
tends to produce poorly calibrated results, which are either overconfident or undercon-
fident [3,4,7]. Poorly calibrated results can be harmful in real-world applications; thus,
it is essential to monitor UQ in a proper manner so that uncertain results can be either
ignored or passed onto human experts for further handling. Unfortunately, characterizing
uncertainty over parameters of deep learning networks is challenging due to the high
dimensionality of the weight space and, potentially, the complex dependencies among
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them [8]. Efforts have been made in the UQ of deep learning models: some through
(the tractable approximation) of Bayesian neural networks and inferences [5,9–14]; among
them, Monte Carlo (MC) dropout [10] is one of the most popular approximations which
works by considering all possible outcomes from the distribution of decision boundaries.
On the other hand, ensemble methods [15–17] are another commonly used technique by
constructing multiple deterministic neural networks and averaging the results.

Most of these UQ studies have focused on computer vision and image processing
tasks using benchmark datasets such as ImageNet, MNIST, etc., instead of real-life applica-
tions. Kennamer et al. [18] empirically studied MC dropout in an astronomical observing
condition using simulated images and found that UQ resulted in improved accuracy and
better calibrated results. Ng et al. [19] evaluated Bayes by backdrop, MC dropout, deep
ensembles, and stochastic segmentation networks for MRI segmentation tasks in terms of
accuracy, calibration, uncertainty on out-of-distribution datasets, and quality control on
two benchmark datasets. Lakshminarayanan et al. [15] demonstrated that deep learning
ensembles produced reliable uncertainty estimates via both regression and classification
experiments on ImageNet. Ovadia et al. [20] presented a large-scale benchmark comparison
of different UQ estimates under dataset shift. Additionally, we also found one study [21]
that utilized the UQ technique on a deep learning model and further proposed methods to
reduce uncertainties for the failure rate prediction of water distribution networks. However,
there are few studies that have centered around natural language processing (NLP), and
there are even fewer studies in recommender systems; the only studies that we found were
in [22–25]. Zeldes et al. [22] proposed a mixture density network model to estimate the
uncertainty of their online recommender platform. Shelmanov et al. [23] compared various
MC dropout approaches to quantify uncertainties of a natural language understanding
model on the General Language Understanding Evaluation benchmark dataset [26]. Penha
and Huaff [24] proposed BERT-based stochastic rankers and showed that uncertainty esti-
mation was beneficial for both risk-aware neural ranking and for predicting unanswerable
conversational contexts. Siddhant and Lipton [25] empirically showed that the uncertainty
estimates provided by MC dropout or Bayes by backdrop proved effective for active learn-
ing tasks on several standardized NLP datasets. Furthermore, it is unclear how they would
utilize this UQ information to aid or improve current decision-making processes.

In this study, we built on previous experiments of our virtual research assistant
(VRA) platform, a web-based recommender with different deep-learning components, and
introduced methods to quantify the uncertainty associated with our model’s predictions.
We aimed to understand our model’s behavior and use UQ to improve the results for our
DL-based recommendation system. Specifically, our main contributions are as below:

• First, we carried out UQ experiments on different deep learning components of our
virtual research assistant (VRA) platform, a web-based recommender for population
health professionals that recommends datasets, grants, and collaborators. (The service
platform is available at http://genestudy.org/recommends/#/ (accessed on 6 April
2023). We utilized two widely accepted UQ methods: MC dropout and ensemble.
Using UQ, we were able to better understand the behaviors of our recommender
outputs, while our grant recommender (BERT-based) tends to be overconfident with its
outputs, and our collaborator recommender (TGN-based) tends to be underconfident
in producing matching probabilities.

• Secondly, we introduced a new metric to incorporate the UQ information into our
ranking scores. With this information, we were able to down-rank recommendations
that the models were less sure about, thus reducing the risks associated with uncertain
recommendations for better user experience. Moreover, the evaluations revealed that
our proposed method with ensemble was able to produce consistently better results in
a variety of metrics including calibration.

The rest of the article is organized as follows: an overview of the data used in the
experiments is summarized in Section 2. It includes the collected grant and publications for
the grant recommender, as well as the publication dataset for the collaborator recommender.

http://genestudy.org/recommends/#/


Knowledge 2023, 3 295

Section 3 shows the methods used for developing the different components of the VRA,
uncertainty quantification, utilization of UQ information in the recommendation ranking,
and evaluation, and they are described in the Methods section. Section 4 reports the
experimental results and the detailed analysis. Finally, the conclusions, discussion, and
future directions are discussed in Section 5.

2. Data

Depending on different recommendation tasks, for the grants and datasets (since the
grants and datasets followed the same structures, we only presented the results of the
grants recommender for conciseness of the content) vs. collaborators, we utilized different
sets of data, similar to the previous experiments detailed in [27–30].

For the grants recommender, both grant metadata and the users’ profiles built on
publications for which grants will be recommended were needed. Metadata of grants
(or research funding announcements (RFAs)), i.e., titles and descriptions, were collected
from the NIH grants website (https://grants.nih.gov/funding/searchguide/index.html#/
(accessed on 6 April 2023)) (Figure 1), and researcher publications, i.e., titles and abstracts,
were collected from the MEDLINE databases using PubMed (Figure 2).
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The recommendation was then formulated as a classification task where the true pairs
were created based on existing grant citations within the publications. More specifically, the
relationships between the MEDLINE articles and the RFAs were established via the NIH’s
ExPORTER (https://exporter.nih.gov/ (accessed on 6 April 2023)). It archives relationships
between publications and project numbers of funded grants, as well as relationships
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between project numbers and corresponding RFAs. Using these two relationships, we
established the relationships between the publications and NIH grants for evaluation.
This relationship was then processed into a citation dictionary with each entry recorded as
{‘1287764’: [PAR-17-095, PAR-12-298]}, where ‘1287764’ is the PubMed Identifier (PMID) and
‘PAR-17-095’ and ‘PAR-12-298’ are the two RFAs that are associated with this publication.
False pairs were then created using negative combinations. (For further details, see our
previous paper [28]). We used random splits of 7:1:2 for training, validation, and testing
(Table 1).
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Table 1. Grant recommender: training, validation, and testing data.

Splits # of Unique Publications # of Records

Training (7) 135,766 216,766
Validation (1) 17,456 28,056

Testing (2) 40,730 65,104

For the collaborator recommender, MEDLINE articles were crawled from PubMed. In
consideration of computational costs, we sampled only the years of 2019–2020 for the UQ
experiments. Collaborations were defined as ‘two or more authors sharing a publication’.
Thus, temporal links were created using pairs of authors from each paper in the crawled
data in chronological order. We defined the nodes as authors, and links as collaborations,
with the timestamp of the links explicitly represented using the publication date, and raw
node features using term frequency inverse document frequency (TF-IDF) calculated from
titles of publications (For further details, see our previous paper [29]). Based on feedbacks
from external evaluations in the previous paper, we used improved data processing to limit
the influences of papers with long author lists in constructing our temporal graph: we only
took the first three authors and the last corresponding author for creating collaboration
links. We used chronological splits of 7-1.5-1.5 for training, validation, and testing, the
same practice as seen in [31,32]; negative sampling of links was created during training.
The basic summary statistics can be seen in Table 2.
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Table 2. Collaborator recommender: training, validation, and testing data.

Splits # of Links # of Nodes

Training (7) 9589 9358
Validation (1.5) 1754 1796

Testing (1.5) 1559 1574

3. Methods

All implementation details can be found at https://github.com/ashraf-yaseen/VRA/
tree/master/uncertainty_rec/ (accessed on 6 April 2023).

3.1. Our Virtual Research Assistant (VRA) Architecture

The experiments were carried out on our current version of VRA [27–30] where it
has different components for recommendations. Specifically, the underlying modelling
component for the datasets and grant recommendations is a BERT-based model, and the
one for collaborators is a temporal graph network (TGN), see Figure 3. The detailed model
architecture can be found in [27–30].
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Figure 3. Our VRA architecture. The bottom part is the offline training stage, where the crawled
database is used to train different deep learning components of our VRA: datasets, grants, and
collaborators. The top part is the service stage, where the trained VRA takes in users’ CV, feeds the
information to the trained VRA, and provides recommendations based on the CV content.

3.1.1. Grant Recommender: BERT-Based

We used sentence-pair classification formulation to calculate the probability of a
PubMed article and a grant/RFA being a pair, see Figure 4. The output logits were then
converted to probability and then used for aggregating and ranking the results for a
particular article. For more details, see [28].

3.1.2. Collaborator Recommender: TGN-Based

We represented authors as nodes, and collaborations (defined earlier in the Data
section) as temporal links with publication years explicitly expressed as the time stamps
of these links. Using TGN for producing node embeddings, we then calculated the edge
probability at each time stamp for collaboration recommendation probabilities using a
small neural network; see Figure 5. For more details, see [29].

https://github.com/ashraf-yaseen/VRA/tree/master/uncertainty_rec/
https://github.com/ashraf-yaseen/VRA/tree/master/uncertainty_rec/
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Figure 5. TGN architecture in our collaborator recommender, modified from [31]. Nodes A, B, C,
D, and E are the authors, first constructed by using either (1) mesh terms or (2) the titles of the
publications. Temporal links are defined by the ‘sharing of publications’ at time t. During training,
each temporal collaboration is computed within a message between the involved nodes (e.g., at time
t2, the collaboration between D and E is calculated in both message mD(t 2) and in message mE(t 2)).
Then, the memory state of each author is updated using those temporal messages. The updated
memories, together with embeddings constructed similar to GraphSAGE (concatenation of neighbor
embeddings and its own embeddings) are then aggregated as the final embedding for each node.
Then, the question of collaboration predictions becomes: given the embeddings of two nodes at time
t, how likely will there be a link between them?

3.2. Uncertainty Quantification Methods

We experimented with both Monte Carlo (MC) dropout and ensemble methods for
quantifying uncertainty.

3.2.1. Monte Carlo (MC) Dropout

Monte Carlo [33] sampling is an effective method for approximation when the exact
posterior inference is intractable. In deep neural networks, dropout samples binary vari-
ables for each input data for every unit in the hidden layer with a probability to prevent
overfitting [34]. It has been shown that enabling MC dropout during inference works
approximately as Bayesian variational inferences for deep neural network models [10]. For
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graph neural networks, however, dropout between the dense layers only is not enough,
and therefore, we need to further introduce drop edges in the graph message passing in
addition to regular dropout [11–13].

For each recommender component (grant vs. collaborator), we trained the model with
the parameter θ and made T = 100 forward passes during the test time while keeping
the dropout probability p = 0.1 for the BERT-based recommender; the dropout and drop
edge probabilities were both p = 0.1 for the GNN-based recommender. Thus, each of the T
forward passes produced a prediction result:

ŷt = f (θ; Xtest)
t;t = 1, . . . .T (1)

Then, the mean of predicted values
−
y = 1

T ∑T
t=1 ŷt is used as the final prediction and

sample standard deviation sy =

√
∑T

t=1

(
ŷt−−y

)2

T−1 of the measure of uncertainty.

3.2.2. Ensemble

Lakshiminarayanan et al. [15] proposed using the ensemble of deep neural networks
to achieve uncertainty quantification. The idea is similar to the bootstrapping aggregation
that is commonly used in the traditional machine learning and statistical learning methods
such as random forest [35]. The ensemble (multiple models) is usually built using different
initialization states and permutation of training data, if applicable. It is widely used due to
its ease of implementation. However, the computational costs involved with deep learning
ensembles are obviously high. The authors in [15] suggested using random initialization
for scalability and that M = 5 ensembles is often good enough in practice.

In our case, for each recommender component, we trained M = 5 models with
different random seeds without changing the actual training, validation, and test data, and
each model thus had a different set of parameters θm, m = 1, . . . M. We used each of the M
models to predict on the same data for the prediction:

ŷm = f (θm; Xtest); m = 1, . . . M (2)

Then, the mean of the predicted values
−
y = 1

M ∑M
m=1 ŷm is used as the final prediction

and the sample standard deviation sy =

√
∑M

m=1

(
ŷm−

−
y
)2

M−1 of the measure of uncertainty.

3.3. Proposed UQ Adjusted Results

For UQ, we have the sample standard deviation from the calculations either from
MC dropout or ensemble. In the statistical domain, standard error is usually used in
constructing confidence intervals to represent how confident we are about certain parameter
estimates [36]. Based on this idea, we propose using the following formula to take into
consideration the UQ information of the final ranking score of the recommended results:

ŷuq =
−
y ∗ exp

(
−c ∗ sy

)
(3)

Here, ŷuq: UQ adjusted results and
−
y: original mean of the predicted values (logits),

either from MC dropout or ensemble. c is some constant, in our case, we choose 3.92, a
commonly used number for constructing confidence intervals for standard normal dis-
tribution (twice the 97.5 percentile of the standard normal distribution). sy indicates the
standard rror.

With the sense that the bigger the standard deviation, the more unsure our results are,
and therefore, the corresponding recommendation scores should be downranked.



Knowledge 2023, 3 300

3.4. Evaluation Metrics

We compiled a list of commonly used metrics in recommenders for evaluation of
the results for both grant and collaborator recommendation. We first supplemented the
confusion matrix as Table 3 to better explain some metrics.

Table 3. Confusion matrix for the recommenders.

Recommended Not Recommended

Relevant True positives (TP) False negatives (FN)
Not relevant False positives (FP) True negatives (TN)

• AUC: A receiver operating characteristic curve, or ROC curve, is a graphical plot
that illustrates the diagnostic ability of a binary classifier system as its discrimination
threshold is varied. The AUC is the area under a ROC curve, which provides an
aggregated measure of performance across all possible classification thresholds [37].

• Average precision (AP): This summarizes precision-recall curve as the weighted mean
of precisions achieved at each threshold, with the increase in recall from the previous
threshold used as the weight.

• Mean reciprocal rank (MRR): The reciprocal rank (RR) measures the reciprocal of
the rank at which the first relevant document was retrieved. RR is 1 if the relevant
document was retrieved at rank 1, RR is 0.5 if the document is retrieved at rank 2, and
so on. When we average the retrieved items across the queries Q, the measure is called
the MRR.

MRR =
1
|Q|

|Q|

∑
i=1

1
ranki

(4)

• Recall@1 (R@1): At the k-th retrieved item, this metric measures the proportion of
relevant items that are retrieved. We evaluated recall@1.

Recall@k =
TP@k

TP@k + FN
(5)

• Precision@1 (P@1): At the k-th retrieved item, this metric measures the proportion of
the retrieved items that are relevant. In our case, we are interested in precision@1.

Precision@k =
TP@k

TP@k + FP@k
(6)

• Expected calibration error (ECE): Calibration measures the discrepancy between long-
run frequencies and subjective forecasts [38,39]. To make use of uncertainty quantifi-
cation methods, we need to make sure the (binary) classifier estimates are as close to
perfect calibration as possible, meaning that if we discretize our model predictions in
L interval bins, then we expect that the fraction of positives and predicted probabilities
of each bin should agree. Mathematically, let Bl be the set of samples whose predicted
probabilities fall into interval Il =

(
l−1

L , l
L

]
; the fraction of positives for Bl is:

pos(Bl) =
1
|Bl | ∑i∈Bl

yi (7)

where yi is the true class label for sample i. The predicted probability within bin Bl is:

predp(Bl) =
1
|Bl | ∑i∈Bl

p̂i (8)

where p̂i is the predicted probability for sample i.



Knowledge 2023, 3 301

ECE [40] is then one commonly used summary statistic that measures the difference
between the expected probability and the fraction of positives:

ECE =
1
n

L

∑
l=1

∣∣∣∣Bl

∣∣∣∣√(pos(Bl)− predp(Bl))
2 (9)

where n is the total number of samples.
In addition to ECE, we also plotted out calibration curves [41] as a visual tool to assess

the agreement of pos(Bl) with predp(B l) for each bin.
For the grant recommender, we calculated all six metrics. For the collaborator, we only

calculated three metrics: AUC, AP, and ECE, since we analyzed the results in a temporal
fashion, and therefore, aggregated results, such as MRR, etc., were not applicable.

4. Results
4.1. Grant Recommender: BERT-Based Results

We present the UQ results of the grant recommender below in Table 4. ‘Regular’ is the
standard, deterministic model that we used in our previous experiments. ‘MC dropout’ and
‘ensembles’ are stochastic models with UQ applied, which output predictive distributions
instead of point estimates. And finally, ‘MC dropout, UQ adjusted’, and ‘Ensemble, UQ
adjusted’ are our proposed models with recommendation rankings further adjusted using
UQ which are calculated through two corresponding methods.

Table 4. Grant recommender: BERT-based results for the regular model vs. the stochastic UQ models
vs. the UQ adjusted proposed models.

Models AUC AP MRR R@1 P@1 ECE

Regular 0.977 0.975 0.933 0.810 0.871 0.073
MC dropout 0.978 0.977 0.947 0.816 0.882 0.067

MC dropout, UQ adjusted 0.979 0.978 0.939 0.816 0.882 0.064
Ensemble 0.981 0.980 0.941 0.818 0.884 0.067

Ensemble, UQ adjusted 0.975 0.967 0.938 0.815 0.879 0.030

For our grant recommender: BERT-based, we could see that in Table 4, almost all
performance metrics for our stochastic models, either through MC dropout (2nd row) or
ensemble (4th row), are better than the regular results. The calibration curve in Figure 6a.
below further confirms the improved calibration by showing that the curves of both
stochastic models are closer to the perfect calibration line than the regular models.

Our proposed method with UQ calculated from MC dropout yielded equally good, if
not better results in terms of AUC, AP, R@1, and P@1 and lower ECE, as also confirmed in
Table 4.

Our proposed method with the UQ calculated from ensemble yielded slightly worse
results in AUC, AP, MRR, R@1, and P@1; the differences, however, were not substantial.
Given that we took UQ into the final ranking decisions, we thus possibly changed the
ordering in metrics that consider only probabilities. On the other hand, we were able to
produce well calibrated results and reduced the ECE by more than 50%.

The regular BERT-based recommender in general produced overly confident predic-
tions, as indicated by much higher mean predicted probabilities at both ends marked by
the dark green curve in Figure 6a. as well as in the histogram in the same color as on the
top row in Figure 6b, an issue that frequently happens in deep learning models [3,4,7]. But
our proposed method with ensemble was able to produce the best calibrated results as
shown by the light green curve (Figure 6a) and the more evenly distributed light green
histogram on the bottom row (Figure 6b) and was able to use that uncertainty to achieve
good recommender performance as well.
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4.2. Collaborator Recommender: TGN-Based Results

We present the results of the grant recommender below in Table 5. For our TGN-based
collaborator recommender, we could see that the behavior is a bit different from the BERT-
based grant recommender. The performance metrics, such as the AUC and AP for the
stochastic models, either through MC dropout (2nd row) or ensemble (4th row), are better
than the regular results, at the expanse of calibration.

Table 5. Collaborator recommender: TGN-based results for the regular model vs. the stochastic UQ
models vs. the UQ adjusted proposed models.

Models AUC AP ECE

Regular 0.792 0.727 0.165
MC dropout 0.796 0.711 0.184

MC dropout, UQ
adjusted 0.817 0.744 0.162

Ensemble 0.938 0.960 0.282
Ensemble, UQ

adjusted 0.960 0.972 0.154

Our proposed method with UQ calculated from MC dropout yielded better results in
AUC and AP and lower ECE, as also confirmed in Table 5.
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Our proposed method with UQ calculated from ensemble yielded much better results
in all metrics with the lowest ECE among all models (reduced by 10%), as also shown in
Table 5.

Unlike our BERT-based grant recommender, our regular, deterministic TGN-based col-
laborator recommender tended to produce under-confident results, as the mean predicted
probabilities center around the middle instead of both extreme ends. The phenomenon
is reflected in the dark green curve (Figure 7a) and the dark green histogram on the top
row (Figure 7b), an issue commonly found in deep-learning-based models [3]. Again,
our proposed method with ensemble was able to produce the best-calibrated results, as
shown both in the light green curve (Figure 7a) and the more evenly distributed light green
histogram on the bottom right (Figure 7b), while at the same time, it was able to produce
the best recommender performance.
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5. Conclusions and Discussion

In summary, we conducted UQ experiments on two separate components of our virtual
research assistant (VRA) recommendation platform: the BERT-based grant recommender
and the TGN-based collaborator recommender. For each component, we compared the
recommendation predictions of (1) a regular, deterministic model, (2) stochastic UQ models
using two techniques: MC dropout and ensemble, and (3) our proposed model that takes
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in UQ calculated through two methods and adjusts the results accordingly, in terms of
both recommendation metrics and calibration/reliability metrics. Using UQ, we were
able to better understand the behavior of our regular recommender outputs: while our
BERT-based grant recommender tends to be overconfident with its outputs, our TGN-based
collaborator recommender tends to be underconfident in producing matching probabilities.
The experimental results also showed that our proposed model with UQ calculated from
ensemble was able to produce the most calibrated results also with the most desirable
recommendation performance.

However, we do want to point out that instead of generalizing our results to other
studies, our aim is to better understand our deep-learning-based recommender behav-
iors through UQ, a simple yet often ignored statistical concept, and to further use that
information to improve the overall reliability of our recommender results for better user
experience. More importantly, we hope to possibly provide a paradigm for those also
working on real-life applications with real-life datasets. Nevertheless, there are courses of
action that we want to work on further in our research group’s continuing studies. One
next step is to implement double blind evaluations on the platform and involve human
judges/evaluators. We hope to acquire a better sense of whether our proposed adjustment
also leads to better human ratings. Secondly, the choice of value c in our proposed method
could be systematically analyzed. We currently only experimented with a limited number
of c values empirically and found out that 3.92, which corresponds to twice the 97.5 per-
centile of the standard normal distribution, worked empirically well. However, it should
be treated as a hyperparameter and tuned more rigorously in future studies.
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