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Abstract: Our purpose is to advance a reasoned perspective on the scientific validity of computer
simulation, using an example—integrated assessment modeling of climate change and its projected
impacts—that is itself of great and urgent interest to policy in the real world. The spirited and
continuing debate on the scientific status of integrated assessment models (IAMs) of global climate
change has been conducted mostly among climate change modelers and users seeking guidance for
climate policy. However, it raises a number and variety of issues that have been addressed, with
various degrees of success, in other literature. The literature on methodology of simulation was
mostly skeptical at the outset but has become more nuanced, casting light on some key issues relating
to the validity and evidentiary standing of climate change IAMs (CC-IAMs). We argue that the goal
of validation is credence, i.e., confidence or justified belief in model projections, and that validation
is a matter of degree: (perfect) validity is best viewed as aspirational and, other things equal, it
makes sense to seek more rather than less validation. We offer several conclusions. The literature
on computer simulation has become less skeptical and more inclined to recognize that simulations
are capable of providing evidence, albeit a different kind of evidence than, say, observation and
experiments. CC-IAMs model an enormously complex system of systems and must respond to
several challenges that include building more transparent models and addressing deep uncertainty
credibly. Drawing on the contributions of philosophers of science and introspective practitioners, we
offer guidance for enhancing the credibility of CC-IAMs and computer simulation more generally.

Keywords: methodology; deep uncertainty; computer simulation; integrated assessment modeling;
climate change integrated assessment models

1. Introduction

The debate on the scientific status of integrated assessment models (IAMs) of global
climate change is spirited. For example, the Review of Environmental Economics and Policy
2017 symposium on IAMs focusing on climate change [1–3] may leave the reader at a loss
as to what should be believed. Metcalf and Stock [1] argue that complicated IAMs, while
in need of continuing improvement, are essential to informed policy making concerning
climate change; Pindyck [2] sees CC-IAMs as crucially flawed, fundamentally misleading,
and in essence mere rhetorical devices; and [3] Weyant sees value in CC-IAMs especially
for “if . . . , then . . . ” analysis to explore the implications of alternative model structures,
parameterizations, and driver settings (see also [4]).

To this point, the debate has been conducted mostly among climate change modelers
and users seeking guidance for climate policy. However, there is a considerable literature
on the methodology of computer simulation—where methodology is used in its original
meaning: the study of research methods and their associated background assumptions
–engaging philosophers of science as well as introspective simulation modelers and users of
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model output. With this as background, we ask whether and how computer simulations
contribute to knowledge, how well IAMs serve as methods of knowing, and how they
might be improved from that perspective. Here we address what we consider the key
issues in methodology of CC-IAM, drawing judiciously from the simulation modeling
and methodology literature. We begin by recognizing that the complexity of integrated
assessment modeling calls for a reconsideration of the idea of validity, and we suggest
a plausible and and workable concept of validity, credence. The core of our argument
comes in two parts: Sections 2 and 3, which elaborate on the uncertainties encountered in
CC-IAM, for example, and strategies for addressing deep uncertainty; and Sections 4 and 5,
which engage with the methodological literature on simulation and its implications for
enhancing credence. Section 6.1 provides conclusions regarding integrated assessment
modeling, and Section 6.2 addresses conclusions about the prospects for validation of
computer simulations.

In the end, we endorse the optimistic view—that CC-IAMs are potentially key con-
tributors to informed climate policy—and conclude that there is scope for improving the
validation of CC-IAMs, the transparency of these models, and the way in which the whole
modeling exercise and its real-world implications are communicated. In a very uncertain
world, improved modeling and communication of uncertainty is a key component of a
comprehensive strategy to increase the validity of CC-IAM.

1.1. Validity, Confidence, and Credence

CC-IAMs can be enormously complex but their complexity is dwarfed by the com-
plexity of the real world. Because abstraction is essential to building tractable models,
validity is not so much about realistic depiction of the system at hand: it makes more
sense when applied to the propositions (e.g., projections) yielded by such models. The key
question is: under what conditions might a human evaluator justifiably have confidence
in the accuracy, reliability, etc., of propositions emerging from IAM simulations? This is a
question of credence (noun, of people and their state of mind): mental conviction of the
truth of a proposition or reality of a phenomenon; justified belief. A CC-IAM is valid to the
extent that belief in the propositions it generates is justified.

Several implications follow. Rather than a single decisive test (e.g. of logic for a
deductive model, or of empirical outcomes against a prior null hypothesis), the process
of judging credence often involves weighing evidence of various kinds and qualities.
Credence is in practice an ordinal, rather than absolute, concept. While a model that merits
absolute credence is aspirational but unattainable, the practicable aspiration should be to
build models that merit more rather than less credence. The ordinality of credence implies
that validation is not binary (valid/not), but a matter of degree. A model may be more
or less valid and, other things equal, it makes sense to seek more rather than less validity.
In the case of CC-IAMs, the direct objects of justified belief are the projections obtained
using the model. Projections from IAMs are conditional on model structure and parameter
values, but also on the settings of drivers that include exogenous influences on the system
and policies that might be applied to the system. IAMs often are constructed for the explicit
purpose of exploring the impacts of alternative driver settings. It follows that credence
in IAMs is inherently conditional: justified belief that the suite of model projections is
conditionally valid.

Given that validity is conditional, at least three kinds of conditions are relevant: (i) the
epistemological integrity of the model, the validity of its parameter values, and its faithful
representation in programing and computation meet reasonable expectations given the
state of the art and the knowledge of the day; (ii) the suite of driver settings examined
represents adequately the exogenous influences likely to be encountered and the policies
likely to be considered, insofar as they can be foreseen; and (iii) the inevitable uncertainties
in modeled relationships, parameter values, the values of exogenous drivers, and future
policy settings have been considered carefully and addressed to the extent feasible given
the state of the art and the knowledge of the day.
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In a highly uncertain world, the credence framework explicitly incorporates the
treatment of uncertainty: credence requires validation, and validation criteria include
adequate treatment of uncertainty. We may be inclined to think of adequacy as judged in
terms of some external benchmark(s), but some methodologists propose a “fit for purpose”
criterion [5].

1.2. Challenges to Credence

Challenges to credence may arise from complexity, incomplete knowledge and weak-
nesses in modeling. The possibility of ordinary human error in modeling and parame-
terization suggests the need for verification: the process of making sure that the modelers’
intentions are implemented accurately, precisely, and completely. The likelihoods that the
system under study is indeterminate and/or the modelers possess incomplete knowledge
of the system suggest the need for validation. Furthermore there is always the possibility
that the uncertainties impinging on the system have received inadequate consideration,
often due to real difficulties in modeling cascading and interacting uncertainties.

The complexity and relative non-transparency of many CC-IAMs place a substantial
burden on the modelers to provide adequate verification and validation—users of modeling
output are at a considerable disadvantage in assessing model quality. Credence may also
be impaired by implausible driver settings, and/or a suite of driver settings that fails to
span the range of plausible future values of exogenous and policy drivers. Users are better
equipped to identify these weaknesses because driver settings are more transparent than
embedded model structure and parameterization, features that may also be influenced by
modelers’ worldviews and habits of thought.

2. Chance and Uncertainty in IAM
2.1. The Distinction between Epistemic and Aleatory Uncertainty

Epistemic uncertainty. In a deterministic, non-chaotic system, there is by definition
no role for chance, but there is the possibility of human ignorance. The perception of chance
may arise from the incompleteness and imperfection of our knowledge—uncertainty is
epistemic; we are unsure of how the system works. With no good model of the system,
we may perceive arbitrariness or randomness in the data despite the determinism of the
system that produced it. There are two kinds of epistemic uncertainty: structural and
parametric. Structural uncertainty arises from imperfect mental models of the mechanisms
involved. In IAMs, structural uncertainty may pertain to the complex interrelationships
in the system under study (a concern arguably unique to complex systems modeling),
and to matters familiar in other kinds of empirical/numerical work (e.g., functional forms
of key relationships). As we learn more about the structure of the system, epistemic
uncertainty is reduced. Parametric uncertainty in deterministic systems arises from our
inadequate empirical knowledge to fully and accurately parameterize the system we are
modeling. More knowledge and observations of the system tend to reduce this kind of
epistemic uncertainty.

Aleatory uncertainty. In a well-understood but stochastic system, there is, by defini-
tion, no epistemic uncertainty. Uncertainty is entirely aleatory: we face chance because we
are not prescient, e.g., despite knowing the relevant probability distribution(s), we cannot
know the next draw. Ordinary risk analysis is designed to address exactly this kind of
chance, i.e., aleatory uncertainty; and it is taught routinely via examples drawn from games
of chance in which the system is well-understood and the odds can be calculated precisely.

A system may exhibit both kinds of uncertainty. If the system is buffeted by chance
and not well understood, our statistical methods typically have difficulty isolating the
contributions of epistemic and aleatory uncertainty to this unsatisfactory state of affairs. If
the system is non-stationary, the drivers of regime shifts may have systematic properties but
are likely also to be influenced by chance. Approaching such a system, there is no a priori
reason to believe that the chance we encounter is entirely aleatory. Applying convenient
stochastic specifications in this situation conflates more complex kinds of chance with
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ordinary risk. The crucial assumption, seldom given the attention it deserves, is that the
system is fully understood or (equivalently) that the game is fully specified. Frequentist
statistical logic, being addressed to the interpretation of data about the occurrence or not of
specific events as the outcome of a stochastic process, is entirely about aleatory uncertainty.
Probability is, to a frequentist, the frequency of a particular outcome if the experiment is
repeated many times. Because so many statistical applications are aimed at learning about
parameters and so reducing epistemic uncertainty, it is common in frequentist practice that
some (reducible) epistemic uncertainty is analyzed, purists would say inappropriately, as
aleatory [6].

Statisticians have long understood this dilemma. Carnap distinguished probability1
(credence, i.e., degree of belief) in contrast to probability2 (chance, which is mind indepen-
dent, objective, and defined in terms of frequency) [7]. Bayesian reasoning, being addressed
to statements about the degree of belief in propositions, allows adjustment of probabilities
in response to improved theories of how things work, better interpretations of empirical
observations (e.g., better statistical models), and more observations. Decision theorists
use probability to address our imperfect knowledge, as well as the indeterminism of the
systems we study. Not surprisingly, many decision theorists are attracted to Bayesian
approaches where less prominence is accorded to the distinction between aleatory and
epistemic uncertainty. Probability is interpreted in terms of degree of belief in a proposition.
For each proposition, there is a prior belief, perhaps well-informed by theory and/or previ-
ous observation but perhaps no more than a hunch. The prior belief is just the beginning:
probabilities are adjusted repeatedly to reflect new evidence. The process by which we
interpret what we are learning—especially whether we attribute patterns in the data to
properties of the system or merely of the data at hand—typically combines pragmatism
with more formal procedures.

2.2. Uncertainty Involves More Than Stochasticity

Uncertain circumstances include:

• Risk—in classical risk, the decision maker (DM) faces stochastic harm. The relevant
pdf is known and stationary, but the outcome of the next draw is not. The uncertainty
is all aleatory.

• Ambiguity—the relevant probability distribution function is not known. Ambiguity
piles epistemic uncertainty on top of ordinary aleatory uncertainty.

• Deep uncertainty, gross ignorance, unawareness, etc.—the DM may not be able to
enumerate possible outcomes, let alone assign probabilities. Inability to enumerate
possible outcomes suggests a rather serious case of epistemic uncertainty, but aleatory
uncertainty is likely also to be part of the picture.

• Surprises—in technical terms, the eventual outcome was not a member of the ex ante
outcome set. The uncertainty that generates the possibility of a surprise is entirely
epistemic—we failed to understand that the eventual outcome was possible. However,
there likely are aleatory elements to its actual occurrence in a particular instance.

In IAM, we deal typically with complex systems. It follows that we would expect
to encounter the above sources of epistemic and aleatory uncertainty, and two additional
kinds of uncertainty: regime shifts and policy uncertainty. Regime shifts are imperfectly
anticipated discrete changes in the systems under study. The uncertainty likely includes
epistemic and aleatory components. The epistemic component includes failure to com-
prehend the properties of the particular complex system, but it likely also that aleatory
uncertainty adds noise to the signals in the data that, properly interpreted, might warn of
impending regime shifts. A policy is a suite of driver settings intended to achieve desired
outcomes, and decentralized agents experience policy uncertainty as epistemic—the “policy
generator” works in ways not fully understood—but perhaps also aleatory if there are
random influences on driver settings. Incomplete transparency muddies the perception of
uncertainty and its attribution to epistemic and aleatory causes.
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All of the above kinds of uncertainty may exist in the real world that we are modeling
and affect the performance of the system. There is recognition in the IAM literature that
probabilities fail to represent uncertainty when ignorance is deep enough [8,9].

3. Getting Serious about Uncertainty in IAM
3.1. Uncertainty as a Challenge to Credence

Uncertainty in the future values of system drivers is a serious concern, but uncertainty
within the real-world system itself is an even greater concern. If the task of the model is to
make accurate projections about real-world outcomes in response to various driver settings,
that task is much harder to accomplish when there is epistemic uncertainty about how the
system works and real world outcomes are subject also to aleatory uncertainty. Validation
also becomes much more difficult; for example, how do we interpret history matching if
history is itself the outcome of uncertain processes such that the fact of a particular outcome
does not mean it had to happen that way?

Uncertainty within the system is often epistemic, because (i) complex systems struc-
tures are often opaque, (ii) even if we knew the skeletal structure of the system, we likely
would not know the functional form of the probability distributions for key variables
(which implies that there is little we can say with confidence about the magnitude of
worst-case outcomes), (iii) parameter uncertainty is endemic, and (iv) there is always the
prospect of cascading uncertainties.

If we have not made every effort to ensure that the treatment of uncertainty in our
models is conceptually correct and empirically well-informed, and that our characterization
of the uncertainty that exists is plausible and consistent with the evidence, we are poorly
placed to ask for credence in our projections. Pindyck takes these concerns seriously
enough to suggest that formal modeling is unhelpful and perhaps misleading, and we
would do better to simply sit with decision makers and discuss the issues and the attendant
uncertainties frankly [2].

3.2. Scenario Analysis to Address Uncertainty

Scenario analysis frequently is offered by IAM modelers, to facilitate policy analysis
by projecting system outcomes under a range of hypothetical policy settings. To address
uncertainty in future values of exogenous drivers, several scenarios are constructed rep-
resenting a range of driver settings, and each is modeled as deterministic. To explore the
potential impacts of policy options, policy settings are chosen purposefully to create a range
of scenarios that permits projections of system futures under alternative policies of ex ante
interest. Scenario analysis also enables a crude response to uncertainty regarding model
structure and parameters, by exploring the implications of a range of possible specifications
and parameter values.

Example: The Australian National Outlook study is attentive to climate and climate
policy in the broader context of Australian futures [10]. It used deterministic models with
constructed scenarios around a set of global drivers considered exogenous to Australia
(global economic demand, climate, and greenhouse gas abatement effort), and a set of
Australian drivers (Australian resource efficiency, hours worked annually, proportion of
“experience goods” in the consumption mix, agricultural productivity, and increases in
land use for bioenergy production, conservation, carbon sequestration). Each of these
drivers could be set at any of four (in a few cases, six) levels. The levels could result from
different combinations of ground-up trends and purposeful policies—note that ground-
up trends are adjusted by tweaking model parameters, while policy drivers are adjusted
directly. With this many global and Australian drivers, and four to six settings of each,
thousands of scenarios (combinations of driver settings) are mathematically possible. Given
that some combinations of driver settings are internally inconsistent, the remaining menu
includes hundreds of plausible scenarios. The modelers elaborated 20 scenarios, and then
identified four that stake-out a plausible spectrum of options for Australia through 2050:
resource-intensive, business as usual, a middle-way response to climate and conservation
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concerns, and full-bore lean and green. For these four scenarios, projections are reported
and discussed in detail. Fruition for any of these scenarios would require a complex
interaction of purposeful Australian policies, ground-up trends in Australia, and global
driver settings over which Australia would have relatively little influence.

We have labeled scenario analysis a crude response to uncertainty because the models
are deterministic—which means we are comparing projections of alternative certainties—and
the scenarios are relatively few in number and chosen in thoughtful but ultimately ad hoc
fashion; notions of the relative likelihood of the various scenarios are informal and ad
hoc; and validation of projected outcomes relies heavily on their intuitive plausibility. If
scenario analysis is our only attempt to address uncertainty, it does not amount to an
adequate response.

3.3. The Challenge of Better Capturing the Real-World Uncertainties within the Deterministic,
Multiple Scenarios Framework

A more complete set of scenarios would help to characterize the uncertainties in the
system, as would a more systematic sampling of the possibilities space. A systematic
sampling of possible outcomes would require attention to model structure, key parameters,
and policy drivers, all of which are susceptible to uncertainty.

Uncertainty is not something that strikes after we have committed ourselves to a
course of action, shocking us out of our complacent assumption of a certain world. Rather,
we live with uncertainty all of the time, and it influences our behavior in many ways, e.g.,
inducing purposeful strategies to manage uncertainty, but also more passive responses
such as procrastination and indecisiveness [11,12]. It follows that the baseline conditions,
the “hard data” component upon which projections of future outcomes are based, were
generated by decision makers who faced uncertainty in real time. If future uncertainties
are expected to be much like those in the recent past, experienced performance may serve
as a good starting point for projecting future performance. However, it is possible, and in
some cases expected, that future uncertainties might be quite different in kind and degree
from those experienced recently.

It seems that the ambition to achieve a more realistic representation of uncertainties
in CC-IAM calls also for a more realistic representation of how people behave under
uncertainty, how they manage uncertainties and how they adapt to new uncertainties.
Ideally, these representations should be fine-grained enough to distinguish the behavioral
consequences of alternative driver settings.

3.4. Introducing Stochasticity in a Few Variables Thought Ex Ante to Be Sensitive

Recent IAM work has achieved some notable successes in introducing stochasticity
in a few key variables thought ex ante to be influential on outcomes and susceptible to
uncertainty. Cai and various colleagues consider uncertain technological growth and the ex-
istence of stochastic tipping points for global climate, regional water quality [13,14], or both
by accounting for interactions [15]. Advances in computational methods to support these
stochastic model specifications include a nonlinear certainty equivalent approximation
method [16] and parallel dynamic programming [17].

It is important to give credit where credit is due: these approaches make significant
advances in modeling, and do in fact capture some of the major, or perhaps most obvi-
ous, uncertainties in the systems under study. However, the converse is also true: all
but the major uncertainties are ignored, or perhaps captured only in scenario analysis.
Uncertainties that are not among the most obvious today may turn out to be crucial in
the future; and modeling just a few key uncertainties precludes consideration of the full
extent of uncertainty propagation, i.e., the combined effect of several uncertain variables
on a function and, then, of several uncertain functions on a model. Furthermore, even
when particular uncertainties are captured in the model, we capture only the impacts of
those uncertainties on computed outcomes, thereby ignoring the possibility that these
uncertainties may change human behavior and decision making.
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3.5. How Might IAMs Be Restructured to Better Address the Range of Real-World Uncertainties?

State-of-the-art CC-IAMs fall far short of capturing the uncertainties in real-world
systems. However, IAM modelers face real constraints imposed by the mathematics of
complex systems and limits to computational resources. The uncertainty propagation
that is to be expected when many variables and functions are uncertain compounds the
challenge: uncertainty propagation can be modeled [18], but so doing adds to the computa-
tional burden.

Computational burden is one of the motivations for possibility-based modeling ap-
proaches [19,20] including imprecise probabilities, binary or interval specifications [20],
and ranking schemes [21]. Possibility-based modeling approaches are, in principle, less
demanding of computational resources. These approaches demand less information than is
implicit in frequentist probabilities and reduce the temptation to substitute structure for
information. However, they address uncertainties in binary or interval (i.e., lumpy) fashion.
Viewed this way, possibility-based approaches offer a clear trade-off: we could address a
much broader set of real-world uncertainties but address each less precisely. The trade-off
may tilt in favor of possibility-based approaches if one concedes, as do Pindyck [2,22] and
Heal [23], that the CC damage function is understood very poorly, especially toward the
extremes of the distribution. There is perhaps too much scope for modeler discretion in sub-
stituting structure for information when specifying the damage function and choosing the
relative weights to place on most-likely versus extreme cases. Possibility-based (or robust)
approaches have the advantage of consistency with threat-avoidance strategies [15,17],
including precautionary approaches.

Given that the default approach to risk among economists—and many others, too—is
to invoke stochastic methods, it is important to point out the common logical foundations of
possibility and probability approaches: there are convergence theorems relating possibility
theory and probability theory [24]. More pragmatically, one might ask whether decision
makers seek, or even demand, probability-based formulations. Perhaps, for some kinds
of issues, outcome propositions expressed in binary or interval fashion are more credible,
especially to decision makers.

3.6. What Can Be Gained in Validity by Improving Our Characterization of Uncertainty in IAM?

Suppose modelers were able to improve substantially our expression of the uncer-
tainties and their likely consequences. What would be gained? Modeling more of the
uncertainties likely to be encountered would produce, most likely, a broader spread and a
finer-grained mapping of potential system outcomes; and perhaps more fully articulated
notions of the likelihoods of alternative scenarios and projected outcomes. It is possible
also that improved modeling of decision maker response to uncertainty would improve
CC-IAMs, resulting in more realistic model structures, more reliable model parameters,
and perhaps greater capacity to model the effects of new uncertainties likely to emerge
along with the new most-likely outcomes.

4. Validation and Credence in IAM Output

How can the claim that outputs of a simulation merit justified belief be evaluated?
First, we attend briefly to a few rather sweeping assertions that claims of validation for
CC-IAMs (or simulations in general) are inherently misleading.

4.1. Arguments That Validation Claims Re IAM Are Inherently Misleading

Oreskes et al. argued in 1994 that the idea of validation is misplaced in simulation
and claims of validation [25] are misleading: (paraphrasing) to claim validation is to risk
misleading the reader, who might place unwarranted trust in the model and its projections as
they pertain to the real world. In a similar vein, Konikow and Bredehoeft argue that (again,
paraphrasing) emphasizing validation deceives society with the impression that, by expending
sufficient effort, uncertainty can be eliminated, and absolute knowledge be attained [26]. Since
these sweeping claims are founded on a binary concept of validity (valid/not), we have
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already rejected them (Section 1.1). Validation makes sense only as an ordinal, rather than
absolute, concept and validation in practice is a matter of degree. While a model that merits
absolute credence is aspirational but unattainable, the practicable aspiration should be to
build models that merit more rather than less credence.

This defense of the idea of validation does not let IAM modelers off the hook. With
respect to information and expertise, there remains a massive asymmetry between modelers
and their audience, presumably policy makers and the informed public. Informed critics
can help narrow that gap, as they have in fact been doing rather well in recent years in the
CC case. The risk of being interpreted as knowing more than we do surely is present in
simulation, but that risk is always present in research, and the scientific community has
well-established ways—the ethic of modesty in researchers’ claims and the tradition of
robust review and critique—of moderating it. Nevertheless, a burden of transparency rests
heavily on the shoulders of CC-IAM modelers. For example, the justification of CC-IAMs
as “if . . . , then . . . ” analyses that facilitate exploring the implications of alternative model
structures, parameterizations, and driver settings entails an obligation of transparency
about the nature of the exercise.

Pindyck leveled an additional charge: CC-IAMs are little more than rhetorical de-
vices because they can be manipulated so readily to achieve results congenial to the
researchers [2]. The heft of this charge depends on the meaning attached to “rhetoric”. As
McCloskey insisted, to call CC-IAMs devices that advance the art of reasoned argumenta-
tion [27] is very different from calling them devices for inflated and bombastic oratory, as
suggested by the Word dictionary.

It is unsurprising that, within limits, dueling modelers might be able to get results they
each find congenial by tweaking the assumptions. For example, in modeling the potential
benefits of climate change mitigation, modelers have some discretion over assumptions
about the discount rate and the weight placed on unlikely but high-damage projected
outcomes. The challenge is to place that fact in context. The “if . . . , then . . . ” (or scenario)
analysis perspective helps clarify what is at stake. Pindyck’s particular concerns, the
discount rate and the weight placed on unlikely but high-damage outcomes [2], are exactly
the kinds of issues that should be debated vigorously when assessing the benefits of
mitigating climate change. That debate began in earnest with Stern and Nordhaus as
protagonists in 2007 [28–30] and is in full swing now; among others, Millner et al. [31],
Traeger [32] and Dietz et al. [33] have shown that the DICE model can be re-worked with
lower discount rates, greater sensitivity to uncertainty, and ambiguity rather than pure
risk, in each case obtaining conclusions more favorable to aggressive CC mitigation. One
may wonder why it took so long. We speculate that the DICE structure—it maximizes
intergenerational welfare—impeded transparency by embedding the discount rate and the
treatment of uncertainty within the model. Millner, Traeger, Dietz and their co-authors
had to work hard to obtain their results. This raises a dilemma for economists engaged in
CC-IAM. The appeal of maximizing intergenerational welfare is obvious, since it conforms
so well with the notion of weak sustainability. Alternatives are available, though: models
can be closed by market-clearing constraints, which would generate projected outcomes in
terms of prices and quantities. Welfare assessment then would proceed, more transparently,
by imposing explicit discount rates and weights on avoiding worst-case outcomes.

We find the “if . . . , then . . . ” defense of CC-IAMs convincing but, again, transparency
really matters. “If . . . , then . . . ” conveys a very different message than “our model projects
. . . ”, and conclusions about the welfare implications of CC mitigation convey a yet more
amped-up sense of authority.

4.2. Does Simulation Per Se, as Compared to Other Established Ways of Doing Science, Pose
Special Problems for Validation?

Rodney Brooks, a recognized pioneer in artificial intelligence, has been credited with
the aphorism “The problem with simulations is that they are doomed to succeed” [34]. That
is, there is something really different about simulation that masks failure and undermines
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quality control. Winsberg attempted to provide a methodological foundation for the
contention that simulation really is different in some important way(s), compared to
scientific methods that are more venerable and perhaps better accepted [35]. He argued that
inferences from simulations have the following three properties. They are downward, i.e.,
originating in theory. In simulation, our inferences about particular features of phenomena
are commonly drawn (at least in part) from high theory. This contrasts with the standard
(but contentious, we would interject) claim of empiricism—still the consensus methodology
among practicing scientists—that theory is developed by generalizing from observed
particulars. Simulations are motley. In addition to theory, simulation results typically
depend on many other model ingredients and resources, including parameterizations
(data driven or not, as the case may be), ad hoc assumptions, numerical solution methods,
function libraries, mathematical approximations and idealizations, compilers and computer
hardware, and a lot of trial and error. Finally, simulations are autonomous. Much of the
knowledge produced by simulation, e.g., projections of future outcomes, is autonomous
in the sense that there is no observable counterpart that provides a clear standard for
validation [36].

None of these three conditions is original to computer simulation [37]—they apply
also to pen-and-paper modeling—but Winsberg argued in 2013 that it is the simultaneous
confluence of all three features that is new and daunting in simulation [38]. An applied
environmental economist must disagree: nonmarket valuation, for example, is theory-
driven, autonomous (why do it, if valid values were readily observable?), and collection of
data and its econometric analysis are quite motley, as anyone attempting a meta-analysis is
sure to notice [39]. It should be noted also that by 2022, Winsberg seemed less sure that
simulation is uniquely challenged in this respect [38].

Nevertheless, relative to more standard ways of doing science, the difficulty of validat-
ing CC-IAM simulations is, if not strictly different in kind, surely different in degree. The
most basic intuitive criteria for model validation are “is it built right?” and “does it predict
well?” Winsberg’s first two properties of simulations—reliance on theoretical propositions,
often in lieu of evidence, and input from a variety of sources that vary widely in terms
of their epistemological status—raise substantial impediments to “is it built right?” tests,
increasing the burden on prediction tests. However, autonomy restricts the applicability of
prediction tests.

4.3. Is it Built Right? The Emergence of Regional and Local CC-IAMs

There has emerged a proliferation of regional and local CC-IAMs, some down to the
watershed level, encouraged by government initiatives (e.g., the Food, Energy, and Water
Systems program of the National Science Foundation in the US, andsimilar initiatives in
China and, more recently, Europe). While the regions studied are in fact embedded in the
global economy and atmospheric carbon-greenhouse-gases regime, it is unreasonable to
expect builders of regional and local CC-IAMs to construct global models from scratch.

The IPCC, seeking to anticipate how future developments in global economy and
society might impact climate forcing, has produced sets of shared socio-economic pathways
(SSPs) and representative concentration pathways (RCPs) using a process that leans heavily
on large panels of experts [40]. Early commentators, e.g. [41], cautioned that the SSPs were
not intended for direct use as scenarios in CC-IAM policy modeling, but such uses began to
proliferate. The O’Neill et al. review in 2020 [40] tacitly accepted the trend toward treating
the SSPs as scenarios, and focused on developing recommendations to better coordinate
SSPs and RCPs, and distinguish between appropriate and inappropriate uses in IAM.

SSPs and RCPs are both free-standing but incomplete: RCP-generated climate projec-
tions are not matched to specific societal pathways, while the SSPs are alternative societal
futures independent of climate change policies and impacts. It is left to the builders of
regional and local CC-IAMs to select and combine particular SSPs and RCPs for assess-
ing climate risks and adaptation or mitigation strategies. This process is not without its
challenges. O’Neill et al., while mostly supportive of SSP and RCP efforts thus far, offer a
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series of recommendations for developing and using this framework [40]: improve integra-
tion of societal and climate conditions; improve applicability to regional and local scales;
extend the range of reference scenarios that include impacts and policy; capture relevant
uncertainties; keep scenarios up to date; and improve relevance of climate change scenario
applications for users (e.g., policy makers).

In particular, the recommendation to focus on scenarios that include impacts and
policy seems crucial. The independence of SSPs and RCPs from each other and their
agnosticism regarding climate change policies and impacts is not quite credible: surely the
SSPs and RCPs carry policy and impact baggage that is not transparent but is nevertheless
built into the baseline for policy simulations.

4.4. Critiques of Validation as Practiced

Having argued that validation is not an inherently misleading concept in the context
of CC-IAM, we turn to questions concerning the nature of validation for simulation models.
What is claimed when we say that a model has been validated? The following list provides a
succinct summary of the norm for validation of simulation models, i.e., an agreed standard
that, while perhaps less stringent than the ideal, is aspirational for practitioners. (i) The
model structure and parameterization represent in a computationally tractable way the
essence of what is known, understood, and plausibly conjectured about the system under
study and the conditions under which it might be expected to operate during the time
period under consideration. (ii) Model implementation has been verified to ensure the
absence of mistakes in programing and data entry, and failures in computation. (iii) The
model has been refined in an iterative process involving calibration, i.e., testing and
adjustment in response to test outcomes. (iv) The resulting model has been subjected
to a suite of validation tests and has performed reasonably well. (v) All of the above has
been reported in a manner that informs independent evaluation and critique.

Taking this list as a norm for validation of simulation models, we now consider two
serious challenges to common practice.

In validation, often a matter of tracking and matching exercises, the bar frequently has been set
too low. So, how is the IAM community doing, when it comes to prediction tests? Parker
claimed that too much of what passes for validation of simulation models lacks rigor and
structure because it consists of little more than side-by-side comparisons of simulation
output and observational data, with little or no explicit argumentation concerning what, if
anything, these comparisons indicate about the capacity of the model to provide evidence
for specific hypotheses of interest [42].

First, note Parker’s Popperian stacking of the deck. A Popperian might assume with-
out hesitation that hypothesis testing is the sine qua non of science, but IAM is commonly
undertaken in order to explore likely and alternative futures, and future-oriented hypothe-
ses that are testable now are hard to come by (Winsberg’s autonomy issue). Furthermore, it
should be noted that Popper’s strict falsificationism is itself a methodology that Popper
eventually abandoned, and many philosophers of science find problematic and ultimately
unconvincing [43]. However, Parker’s challenge nevertheless has some heft. Surely tracking
and matching exercises should accompany numerical displays with explicit argumentation
as what they portend for validation. Setting a low bar for empirical/numerical validation
does little to enhance credence in IAM.

The criterion for validation should be survival of severe testing. Parker [42], following
Mayo [44], defines severe tests as those that have a high probability of rejecting H iff H is
false, a definition very much in the “bold hypotheses, severe tests” tradition of Popper in his
middle years when he was skeptical of “confirmationism”. Parenthetically, in his later years,
Popper was more inclined to attach some credence to well-corroborated hypotheses [43].
Parker recognizes that severe tests are aspirational (e.g., there are few chances to test
climate projections for decades into the future against the reality), but she clearly regards
the aspiration as virtuous. She offers a list of potential errors in IAMs, including errors that
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would be exposed by verification as well as those requiring validation, and follows it with
several pages of detailed discussion of severe tests that should be applied.

More recently, Parker has been open to exploring the possibility that computer sim-
ulation is capable of providing evidence for hypotheses about real-world systems and
phenomena, a kind of symbiosis between data from the real world and output from simula-
tion models [45], while maintaining that evidence from simulation is of a different kind
than that typically obtained from observation and experiment [46].

Katzav et al. [47] critique the IPCC-style confidence-building approach to validating
CC-IAMs [48] from a severe testing perspective. They recognize problems with severe
testing, but find confidence building—which leans heavily upon corroboration, tracking,
history matching, etc.—even more problematic. They worry specifically that climate models
share too much structure and data—and hence many of the same imperfections [49]—to
provide convincing convergence tests. Furthermore, they charge, models are typically
“tuned”, i.e., calibrated in extended test/revise/re-test routines, thereby invalidating many
of the correspondence tests that are offered as evidence of validity. Grim et al., however,
defend calibration as essential to debugging the model [34]. This discussion of tuning
exhibits analogies to the debate about specification search in econometrics [50].

Lloyd argues for a relatively rigorous confirmation process [51]. For example, more
independent corroborations should carry greater weight than fewer, different kinds of
confirmations should count more than just one kind, etc.—here again we see parallels with
the nonmarket valuation literature [38]. Lloyd, while offering substantive suggestions for
improving validation practice in CC-IAM, concludes that climate models have been tested
more rigorously than critics have recognized [51].

All of this suggests a two-stage process: calibration to improve the model, followed
by testing that is independent of the preceding calibration—again, the analogy to the
specification search debate in econometrics springs to mind.

Grim et al., seeking to undermine the Brooks aphorism that simulations are doomed
to succeed, catalog a multitude of ways simulations can not only fail but can be seen to
fail [34]. In the end, they see mutual obligations between modelers and critics: modelers
should attempt to make claims of correspondence as explicit as possible. At the same
time, however, critics of a simulation must specify how lapses in correspondence constitute
relevant failures. Current procedure often leaves it to the reader to simply ‘see’ the relevant
correspondences.

5. Validation Criteria for IAMs

The literature offers many checklists of validation tests. Examples mentioned already
include Parker’s list of potential errors that should be submitted to severe testing [42], the
Grim et al. list of possible simulation failures, along with suggestions, or at least broad
hints as to the kinds of tests that might be appropriate [34]. Several additional authors
offer lists. Sargeant’s is perhaps typical: a lengthy checklist [52]. Roy and Oberkampf
offer “a complete framework to assess the predictive uncertainty of scientific computing
applications”, addressing indeterminism and incomplete knowledge [18]:

• Address aleatory (or random) uncertainties in model inputs using cumulative distri-
bution functions.

• Treat epistemic uncertainties as intervals.
• Propagate both types of uncertainties through the model to the system response

quantities of interest.
• Estimate numerical approximation errors using verification techniques.
• Quantify model structure uncertainties using model validation procedures.

◦ Compare experimental data, calibrate.
◦ Extrapolate the uncertainty structure beyond experimental data.

• Communicate the total predictive uncertainty to decision makers.
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Roy and Oberkampf are aerospace engineers for whom an obvious reference case
is simulation models for space flights. Such simulations are simpler than many IAMs,
with fewer but clearer objectives, and the need for accuracy of projections is more crucial.
Importantly, these simulations are less autonomous than many others in the sense of Wins-
berg [38], because theory and measurement in astronomy and astrophysics are sufficiently
well developed to provide a rather precise set of expectations with which to compare
simulation results. In contrast, many IAMS are exploratory—aiming to provide a relatively
big-picture sense of the metaphorical terrain, e.g., of global wellbeing under various climate
change scenarios, while achieving lesser standards of accuracy in projections—and au-
tonomous. Impressed as we are with the work of Roy and Oberkampf [18]—and we agree
with them concerning the need to take epistemic uncertainties and uncertainty propagation
seriously—calculating and communicating the total predictive uncertainty would be asking
too much of IAMs.

Criteria for credence in IAMs should be established in the context of the complexity
that is common among IAMs, the provisional nature of the models and the resulting
projections, and the mutual understanding among modelers and users that “if . . . , then . . .
” analysis ranks high among the services that the models are intended to provide.

6. Conclusions
6.1. Conclusions Re Validation Criteria for IAMs

We conclude that, while perfection in validation is aspirational, credence in model
results may be enhanced by:

• Constructing models that capture the relevant features of the real world, including its
uncertainties, in convincing fashion.

• Addressing uncertainty in structural equations and parameter values in the model
and its estimation.

• Verifying that the modelers’ intentions are implemented accurately, precisely, and
completely.

• Confirming the representations of variation in parameters by applying appropriate
statistical measures and tests.

• Testing and calibrating model performance using history matching, tracking, and
prediction tests, given near-median and extreme values of key variables. If real-world
experience does not yield observable responses to extreme driver values, test whether
the model response to extreme driver values accords with expectations informed
by theory.

• Sequential updating of model structure and parameterization to reflect what is learned
in the calibration process, thereby improving model structure and parameterization.

• Exposing the resulting model to validation tests that are independent of prior calibration.
• To the extent that the model has evolved through sequential learning and updating,

communicating this process to end users.
• Communicating results in a manner that conveys the nature of the exercise—in many

cases, “if . . . , then . . . ” analysis of how alternative settings for exogenous and policy
drivers may affect future outcomes—and fully reflects the remaining epistemic and
aleatory uncertainties.

This list of validation criteria is consistent with the agreed norm summarized at the
beginning of Section 4.3, but it is more complete and more detailed. Given the trend toward
regional and local IAMs, we support the O’Neill et al. [40] agenda of better integrating SSPs,
RCPs and policy simulations, and a more transparent interface between models/modelers
and policy makers. Where our list immediately above departs from the earlier list, it
provides greater specificity as to how credence may be enhanced. It is informed by the
literature on severe testing but, consistent with our review and critique of that literature,
the tests we endorse are more feasible and perhaps a little less severe. Many of the items
on our list endorse practices that are being adopted by leading modelers. The exceptions
involve epistemic uncertainty—uncertainty re model structure and uncertainty in structural
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equations and parameter values—and uncertainty propagation, which reflects the difficulty
of addressing these kinds of uncertainty within the familiar modeling conventions.

Addressing the current CC-IAM controversies, we endorse the optimistic view that
CC-IAMs are potentially key contributors to informed climate policy and argue that the
methodological literature, properly understood, offers grounds for that kind of optimism.
Nevertheless, there is substantial scope for improving the validation of CC-IAMs, the
transparency of these models—which has been challenged anew by the emergence and
widespread use of the SSPs and RCPs—and the way in which the whole modeling exercise
and its real-world implications are communicated. In a very uncertain world, improved
modeling and communication of uncertainty is a key component of a comprehensive
strategy to enhance the validity of CC-IAM.

6.2. Conclusions Re Computer Simulation

The methodological literature on computer simulation was mostly skeptical at the
outset: see, e.g., the critique that validation claims are inherently misleading since validation
is impossible [25,26]. Pindyck’s appraisal of CC-IAMs echoes these earlier complaints
about simulations generally: they are inherently flawed, fundamentally misleading, and
in essence mere rhetorical devices because they can be manipulated so readily to achieve
results congenial to the researchers [2]. Given the framework we have proposed, these
critiques are no longer credible: validity is best viewed as aspirational and, other things
equal, it makes sense to seek more rather than less validation. The critics fail to recognize
the extent to which calibration serves to discipline simulations when future outcomes are
unobservable, and to understand that exploring the implications of a range of assumptions
is an essential component of “if . . . , then . . . ” analysis.

Mayo in the 1990s [44] and Parker a decade later [42] took simulation more seriously
than, say Oreskes et al. [25], but argued for harsh tests in the style of mid-career Popper.
More recently, Parker’s view has become much more nuanced: she has been open to explor-
ing the possibility that computer simulation is capable of providing evidence for evaluating
hypotheses about real-world systems and phenomena, and in that sense shares a symbiotic
relationship with real-world data [45], while maintaining that evidence from simulation is
of a different kind than typically is obtained from observation and experiment [46].

Drawing on several strands of literature, and understanding that perfection in val-
idation is aspirational, we have suggested steps toward validation that would enhance
credence in results from CC-IAMs and, by extension, computer simulations more generally.
Progress is being made in most of the directions we recommend, but the stubborn outlier is
addressing epistemic uncertainty in model structure and specification and parameterization
of structural equations, and the potential for uncertainty propagation in complex systems.
The ultimate goal must be to incorporate deep uncertainty in credible ways.
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