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Abstract: We are faced with an unprecedented production in scholarly publications worldwide.
Stakeholders in the digital libraries posit that the document-based publishing paradigm has reached
the limits of adequacy. Instead, structured, machine-interpretable, fine-grained scholarly knowledge
publishing as Knowledge Graphs (KG) is strongly advocated. In this work, we develop and analyze
a large-scale structured dataset of STEM articles across 10 different disciplines, viz. Agriculture,
Astronomy, Biology, Chemistry, Computer Science, Earth Science, Engineering, Material Science, Mathematics,
and Medicine. Our analysis is defined over a large-scale corpus comprising 60K abstracts structured as
four scientific entities process, method, material, and data. Thus, our study presents, for the first time,
an analysis of a large-scale multidisciplinary corpus under the construct of four named entity labels
that are specifically defined and selected to be domain-independent as opposed to domain-specific.
The work is then inadvertently a feasibility test of characterizing multidisciplinary science with
domain-independent concepts. Further, to summarize the distinct facets of scientific knowledge per
concept per discipline, a set of word cloud visualizations are offered. The STEM-NER-60k corpus,
created in this work, comprises over 1 M extracted entities from 60k STEM articles obtained from a
major publishing platform and is publicly released.

Keywords: named entity recognition; information extraction; scholarly knowledge graphs; STEM
science; open research knowledge graph

1. Introduction

In the quest for knowledge [1], significant progress has been made toward the auto-
mated understanding of the meaning of text in the commonsense domain. Some state-
of-the-art systems that power commonsense machine interpretability or readability are
Babelfy [2], DBpedia Spotlight [3], NELL [4], and FRED [5], to name a few. In contrast, schol-
arly literature remains relatively understudied for its intelligible machine interpretability.
Consequently, fine-grained scholarly knowledge remains largely inaccessible for machine
reading. In terms of data standards, particularly the FAIR guiding principles for scientific
data creation [6], this implies a wider unexplored scope for obtaining scientific resources
that are findable, accessible, interpretable, and reusable.

There are a multitude of recent emerging large-scale initiatives to build specialised
Scholarly Knowledge Graphs (SKGs) capable of serving specific user needs. Consider
Google Scholar, Web of Science [7], Microsoft Academic Graph [8], Open Research Knowl-
edge Graph [9,10], Semantic Scholar [11], etc. These initiatives already create a practical
systems need for automated graph encoding methods (e.g., to associate IRIs as URIs or
URLs with graph nodes for their RDFization—a W3C labeled graph standard).

We position this paper within the broader aim of supporting the machine reading of
scientific terms multidisciplinarily as dereferencable Web resources. Specifically, in this
work, we release a large-scale, multidisciplinary, structured dataset of scientific named enti-
ties called STEM-NER-60k comprising over a 1M extracted entities from 60k articles across
the 10 most prolific STEM disciplines on Elsevier, viz. Agriculture (agr), Astronomy (ast),
Biology (bio), Chemistry (chem), Computer Science (cs), Earth Science (es), Engineering (eng),
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Materials Science (ms), and Mathematics (mat). The NER extraction objective was based on
the STEM-ECR corpus in our prior work [12,13] which consisted of 110 abstracts from open
access publications with each of the aforementioned 10 domains equally represented with 11
abstracts per domain. Each abstract was structured in terms of the scientific entities, where
the entities were classified within a four-class formalism (viz. process, method, material,
and data) and were resolved to Wikipedia and Wiktionary respectively. The 4-class formal-
ism had the following objective: to be restricted within the single broad domain of Science, while
still bridging terms multidisciplinarily, thus, in a sense, facilitating the validation of semantic
adaptability of the concepts. To this end, while our prior gold-standard STEM-ECR cor-
pus [13] initiated the development of semantically adaptable systems, the silver-standard
STEM-NER-60k corpus of this work (https://github.com/jd-coderepos/stem-ner-60k,
accessed on 16-12-2022) fosters the development of not just semantically adaptable, but
also scalable solutions.

2. Background

Scholarly domain NER is not entirely new: the flagship Semantic Evaluation (SemEval)
series has so far seen five related tasks organized [14–18]—however, none of this work has
been done so far in the broad multidisciplinary setting of Science. Extending our prior work on
this theme [12,13], we explore scholarly NER on a large-scale, silver-standard corpus of
structured STEM articles which has a wide-ranging application scope in the emerging field of the
creation and discovery of SKGs that strive toward representing knowledge from scholarly articles
in machine-interpretable form. The characteristics of our corpus are unique and noteworthy.
(1) The linguistic phenomenon of interdisciplinary word-sense switching is pervasive. For
example, consider the term “the Cloud” which in cs takes on the meaning of a technological
solution for hosting software, versus in ast where it takes the common interpretation of
the mass of water vapor we see in the sky. (2) There is a seemingly evident shift of the
sense interpretation of terms to take on our corpus domain-specific scientific word senses
as opposed to their common sense interpretations which may be more widely known. For
example, “power” in mat refers to exponentiation, which, otherwise in a common sense,
takes on a human social interpretation. Thus, our work on multidisciplinary NER with
semantically bridging concepts with regard to both our prior gold-standard STEM-ECR
corpus (https://data.uni-hannover.de/dataset/stem-ecr-v1-0, accessed on 16-12-2022) and
the STEM-NER-60k corpus, discussed in this paper, facilitates designing novel solutions
attempting multidisciplinary NER within a generic four-class formalism capable of bridging
semantic concepts multidisciplinarily.

The paper is structured in two main parts. First, related work in terms of existing class
formalisms for annotating scientific entities is discussed. Second, insights into the STEM-
NER-60k corpus released in this work (https://github.com/jd-coderepos/stem-ner-60k,
accessed on 16-12-2022) are given.

3. Related Work: Scientific Named Entity Recognition (NER) Formalisms

The structuring of unstructured articles as an NER task has been taken up at a wide-
scale in three scientific disciplines: Computer Science (CS), Biomedicine (Bio), and Chem-
istry (Chem).

In this section, we discuss the different NER conceptual formalisms defined in the
three domains.

3.1. Computer Science NER (CS NER)

CS NER corpora can be compared along five dimensions: (1) domain, (2) annotation
coverage, (3) semantic concepts, (4) size, and (5) annotation method. Most of the corpora
consist of relatively short documents. The shortest is the CL-Titles corpus [19] with only
paper titles. The longer ones have sentences from full-text articles, viz. ScienceIE [16],
NLP-TDMS [20], SciREX [21], and ORKG-TDM [22]. We see that the corpora have had
from one [18] to atmost seven NER concepts [23]. Each corpora’ concepts purposefully

https://github.com/jd-coderepos/stem-ner-60k
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informs an overarching knowledge extraction objective. For example, the concepts focus,
technique, and domain in the FTD corpus [24] helped examine the influence between
research communities; ACL-RD-TEC [23] made possible a broader trends analysis with
seven concepts. Eventually, corpora began to shed light on a novel scientific community
research direction toward representing the entities as knowledge graphs [9] with hierar-
chical relation annotations such as synonymy [16] or semantic relations such ‘Method
Used-for a Task’ [25]; otherwise, concepts were combined within full-fledged semantic
constructs as Leaderboards with between three and four concepts [20–22,26], viz. research
problem, dataset, method, metric, and score; or were in extraction objectives with solely
contributions-focused entities of a paper [19,27,28].

3.2. Biomedical NER (BioNER)

BioNER predates CS NER. It was one of the earliest domains taken up for text mining
of fine-grained entities from scholarly publications to enhance search engine performance
in health applications. It aims to recognize concepts in bioscience and medicine. For
example, protein, gene, disease, drug, tissue, body part and location of activity such as cell
or organism. The most frequently used corpora are GENETAG (full-text articles annotated
with protein/gene entities) [29], JNLPBA (~2400 abstracts annotated with DNA, RNA,
protein, cell type and cell line concepts) [30], GENIA (~200 Medline abstracts annotated
with 36 different concepts from the Genia ontology and several levels of linguistic/semantic
features) [31], NCBI disease corpus (793 abstracts annotated with diseases in the MeSH
taxonomy) [32], CRAFT (the second largest corpus with 97 full-text papers annotated with
over 4000 corpus) [33] linking to the NCBI Taxonomy, the Protein, Gene, Cell, Sequence
ontologies etc. Finally, the MedMentions corpus [34] as the largest dataset with ~4000
abstracts with ~34,724 concepts from the UMLS ontology. By leveraging ontologies such as
the Gene Ontology [35], UMLS [36], MESH, or the NCBI Taxonomy [37], for the semantic
concepts, these corpora build on years of careful knowledge representation work and are
semantically consistent with a wide variety of other efforts that exploit these community
resources. This differs from CS NER which is evolving toward standardized concepts.

Structured knowledge as knowledge bases (KB) was initially seen as necessary in
organizing biomedical scientific findings. Biomedical NER was applied to build such KBs.
For example, protein–protein interaction (PPI) databases as MINT [38] and IntAct [39] or
the more detailed KBs as pathway [40] or Gene Ontology Annotation [41]. Community
challenges help curate these KBs via text mining at a large-scale. For example, BioCreative
for PPI [42,43], protein-mutation associations [44], and gene–disease relations [45]; or
BioNLP [46] for complex n-ary bio events. CS NER is also been addressed in equivalent
series such as SemEval [16–18] which is promising to foster rapid task progress.

3.3. Chemistry NER (ChemNER)

BioNER in part fosters Chemistry NER. Text mining for drug and chemical compound
entities [47,48] is indispensable to mining chemical disease relations [49], and drug and
chemical–protein interactions [50]. Obtaining this structured knowledge has implications
in precision medicine, drug discovery as well as basic biomedical research. Corpora for
ChemNER are Corbett et al’s [51] dataset (42 full-text papers with ~7000 chemical entities),
ChemDNER (10,000 PubMed abstracts with 84,355 chemical entities) [48], and NLM-Chem
(150 full-text papers with 38,342 chemical entities normalized to 2064 MeSH identifiers)
[52].

The high-level identification of entities in text is a staple of most modern NLP pipelines
over commonsense knowledge. This, in the context of the scientific entities formalisms
presented above is pertinent to scholarly knowledge as well. While being structurally
domain-wise related, our work has a unique objective: to extract entities across STEM Science
which follow a generic four-entity conceptual formalism. Thus apart from having an impact
in the emerging field of the discovery of science graphs, the STEM-NER-60k corpus can
have specific applications in higher-level NLP tasks including information extraction [53],
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factuality ascertainment of statements in knowledge base population [54], and question
answering over linked data [55].

4. Materials and Methods
4.1. Our STEM-NER-60k Corpus

We now describe our corpus in the following terms: (1) definitions of the four scientific
concepts [13], viz. process, method, material, and data, are given; (2) the process by
which the silver-standard STEM-NER-60k corpus is created is explained; and (3) corpus
insights are offered specifically in terms of the multidisciplinary entities annotated under
the formalism of four concepts bridging the 10 domains.

4.1.1. Concept Definitions

Following an iterative process of concept refinement [13] via a process that involved
expert adjudication of which scientific concepts were multidisciplinarily semantically
meaningful, the following four concepts were agreed upon to be relevant for entities across
STEM, specifically across the following 10 domains, viz. agri, ast, bio, chem, cs, es, eng, ms,
and math.

• Process. Natural phenomenon, or independent/dependent activities. For example,
growing (bio), cured (ms), flooding (es).

• Method. A commonly used procedure that acts on entities. For example, powder
X-ray (chem), the PRAM analysis (cs), magnetoencephalography (med).

• Material. A physical or digital entity used for scientific experiments. For example, soil
(agri), the moon (ast), the set (math).

• Data. The data themselves, or quantitative or qualitative characteristics of entities. For
example, rotational energy (eng), tensile strength (ms), vascular risk (med).

4.1.2. Corpus Creation

The silver-standard STEM-NER-60k corpus was created as follows. Roughly 60,000
articles in text format and restricted only to the articles with the CC-BY redistributable
license on Elsevier were first downloaded https://tinyurl.com/60k-raw-dataset, accessed
on 16-12-2022. Next, our aim was to obtain the four-concept entity annotations for the
Abstracts in this corpus of publications. We leveraged our prior-developed state-of-the-art
NER system for this purpose [12]. The Brack et al. [12] system was based on Beltagy et al.’s
[56] SciBERT which in turn for the specific NER configuration makes use of the original
BERT NER [57,58] prediction architecture. The Brack et al. [12] system, however, was
pretrained on a smaller gold-standard STEM corpus [13] expert-annotated with the four
generic scientific entities described in Section 4.1.1. Applying this system on the Abstracts
on the newly downloaded 60 k articles produced the silver-standard STEM-NER-60k corpus
of this work. The resulting silver-standard corpus statistics are shown in Table 1.

Table 1. STEM-NER-60k corpus statistics comprising 59,984 articles structured in terms of process,
method, material, and data concepts.

Articles Process Method Material Data

agriculture (agri) 4944 20,532 3252 62,043 33,608
astronomy (ast) 15,003 31,104 10,423 55,753 97,011
biology (bio) 9038 54,029 6777 100,454 43,418
chemistry (chem) 5232 18,185 6044 48,779 30,596
computer science (cs) 5389 17,014 13,650 35,554 33,575
earth science (es) 4363 28,432 5129 56,571 50,211
engineering (eng) 2441 12,705 3293 24,633 24,238
material science (ms) 2144 10,102 2437 23,054 16,981
mathematics (math) 1765 8002 1941 11,381 15,631
medicine (med) 15,054 89,637 19,580 148,059 134,249

https://tinyurl.com/60k-raw-dataset
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Our corpus is publicly released (https://github.com/jd-coderepos/stem-ner-60k,
accessed on 16-12-2022) to support related R&D endeavors and for other researchers
interested in further investigating the task of scholarly NER.

4.1.3. Corpus Insights

Here, details of the STEM-NER-60k corpus are offered.
First, given our large-scale multidisciplinary scientific corpus, we take the opportunity

to briefly examine the difference between scientific writing and non-scientific writing, if any,
with the help of entropy formulations for each of our data domains. The entropies obtained
for our corpus per domain is as follows: med (4.58) > chem (4.58) > bio (4.56) > ast (4.53) >
agri (4.5) > ms (4.5) > es (4.48) > eng (4.42) > math (4.4). Intriguingly, these numbers are close
to non-scientific English (4.11 bits [59]). Thus, given our corpus scientific English, one can
rule out any atypical English usage syntax other than domain-specific jargon vocabulary.

Next, briefly, we address which general scientific entity annotation patterns can one an-
ticipate in our silver-standard corpus? (1) Entity annotations can be expected as definite
noun phrases whenever found. (2) Coreferring lexical units for scientific entities in the
context of a single Abstract can be expected to be annotated with the same concept type.
(3) Quantifiable lexical units such as numbers (e.g., years 1999, measurements 4 km) or
even phrases (e.g., vascular risk) should be data. (4) Where found, the most precise text
reference (i.e., including qualifiers) regarding materials used in the experiment should be
annotated. For example, the term “carbon atoms in graphene” was annotated as a single
material entity and not separately as “carbon atoms”, “graphene”. (5) The precedence
of annotation of the scientific concepts in the original corpus in case of any confusion in
classifying the four classes of scientific entities was resolved as follows: method > process >
data > material, where the concept appearing earlier in the list was selected as the preferred
class.

STEM scientific terms as process

Verbs (e.g., measured), verb phrases (e.g., integrating results), or noun phrases (e.g.,
an assessment, future changes, this transport process, the transfer) can be expected to be
scientific entity candidates for process. Generally, it can be one of two things: an occurrence
natural to the state/properties of the entity or an action performed by the investigators. In
the latter case, however, it is better aptly expected as a method entity when the action is a
named instance.

Some examples are offered for scientific entities as process candidates. (1) In the
sentence, “The transfer of a laboratory process into a manufacturing facility is one of the
most critical steps required for the large scale production of cell-based therapy products”,
the terms “The transfer”, “a laboratory process”, and “the large scale production” all are of
type process. (2) In “The transterminator ion flow in the Venusian ionosphere is observed
at solar minimum for the first time.”, the terms “The transterminator ion flow” and “solar
minimum” process entities. The verb “observed”, however, is not considered a process
since it doesn’t act upon another object. (3) On the other hand, in “It is suggested that this
ion flow contributes to maintaining the nightside ionosphere.”, the terms “this ion flow”
and “maintaining” are both considered valid process candidates. Finally, (4) in the sentence
“Cellular morphology, pluripotency gene expression and differentiation into the three germ
layers have been used compare the outcomes of manual and automated processes” the
terms “pluripotency gene expression”, “differentiation”, “compare”, and “manual and
automated processes” are each annotated as process.

STEM scientific terms as method

Phrases which can be expected to be annotated as a method entity are those which
contain the following trigger words: simulation, method, algorithm, scheme, technique,
system, function, derivative, proportion, strategy, solver, experiment, test, computation,
program. As an example, consider the sentence “Here finite-element modelling has demon-

https://github.com/jd-coderepos/stem-ner-60k


Knowledge 2022, 2 740

strated that once one silica nanoparticle debonds then its nearest neighbours are shielded
from the applied stress field, and hence may not debond.” In this sentence, the term
“finite-element modelling” is annotated as a method.

STEM scientific terms as material

This concept is expounded merely with the following three examples. (1) In “Based
on the results of the LUCAS topsoil survey we performed an assessment of plant available
P status of European croplands.” the term “European croplands” should be material.
(2) In “The transfer of a laboratory process into a manufacturing facility is one of the
most critical steps required for the large scale production of cell-based therapy products.”
there are two material terms, viz. “a manufacturing facility” and “cell-based therapy
products”. Finally, (3) in the sentence “Cellular morphology, pluripotency gene expression
and differentiation into the three germ layers have been used to compare the outcomes of
manual and automated processes.” the phrase “the three germ layers” is a material.

STEM scientific terms as data

Phrases satisfying the patterns in the following examples can be expected to be data.
(1) In “Based on the results of the LUCAS topsoil survey we performed an assessment
of plant available P status of European croplands.”, the phrases “the results” and “plant
available P status” are considered as data in the original annotation scheme. (2) In “Our
analysis shows a status of a baseline period of the years 2009 and 2012, while a repeated
LUCAS topsoil survey can be a useful tool to monitor future changes of nutrient levels,
including P in soils of the EU.” the phrases: “a status of a baseline period”, “nutrient levels”,
and “P” are data items. (3) Further, in “Observations near the terminator of the energies
of ions of ionospheric origin showed asymmetry between the noon and midnight sectors,
which indicated an antisunward ion flow with a velocity of (2.5 ± 1.5) kms−1.” the terms
“asymmetry between the noon and midnight sectors”, “a velocity”, and “(2.5 ± 1.5) kms−1”
are data. Finally, (4) in “We established a P fertilizer need map based on integrating results
from the two systems.” the phrase “a P fertilizer need map” is data which should override
the selection of “a P fertilizer” as material by the concept precedence stated earlier.

Discovered STEM scientific research trends based on the terminology of our corpus

A distinct characteristic of our corpus is that it enables uncovering the predominant
research trends of the 10 considered research domains with respect to our four annotated
concepts, i.e., process, method, material, and data. Answers to questions such as which
are the frequently applied processes, methods, materials, and data entities in any given research
domain? can be automatically discovered. Thus our four-concept information extraction
task applied over 60,000 scholarly abstracts presents a new perspective on analyzing the
dynamics of a research community [24] in terms of the most common research trends found
across the descriptions in scholarly papers. The methodology to uncovering research trends
that we adopt is straightforward. The STEM-NER-60k corpus is organized, for each of the
10 domains, as four lists of the extracted entities per concept and then sorted in descending
order of their frequency of occurrence. Our claim is that the most common entities that
surface to the top of the list reflect the predominant process, method, material, and data
entities for the underlying domain. To our knowledge, thus far such insights have not
been discussed in any other research endeavor. This subsection is devoted to a detailed
discussion offering for the first time insights about the predominant research trends across
10 STEM disciplines with the help of the visual device of word clouds. Specifically, in
Figures 1–10, word clouds of the top 100 entities for the 10 STEM disciplines are shown
which form the subject of the subsequent discussions. Note, however, our annotations
of the abstracts included original as well as coreferential entities as generic terms. The
subsequent discussion is focused only on the original noun phrase mentions of the entities.
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Agriculture Domain

Starting with Agriculture (Figure 1), some highly researched process entities are
seed germination, climate change, antimicrobial activity, or drought stress. TWINSPAN
classification, ames test, phylogenetic analysis, or gas chromatography are commonly
applied methods. Plant species, plant communities, leaves, or medicinal plants are common
materials. data seems to be expressed in terms of percentages, species richness, time period,
or size.

(a) process (b) method (c) material (d) data

Figure 1. Agriculture domain word clouds.

Astronomy Domain

For Astronomy (Figure 2), some highly researched processes are proton collisions,
string theory, neutrino oscillations, or first order phrase transition. Commonly applied
methods are clinical perturbation theory, Lagrangian approach, quantum field theory,
or LHCb experiment. Dark matter, Higgs boson, scalar field, or black hole are highly
researched or used materials. data is commonly expressed as neutrino masses, cosmological
constant, dark energy, or sensitivity.

(a) process (b) method (c) material (d) data

Figure 2. Astronomy domain word clouds.

Biology Domain

In the Biology research domain (Figure 3), molecular mechanisms, oxidative stress,
DNA replication, or cell death appear as highly researched processes. Commonly ap-
plied methods are in vitro, in vivo, flow cytometry, or mass spectrometry. Nucleus, stem
cells, plasma membrane, or cancer cells are the highly researched or used materials. Fre-
quent expressions of data are as increased risk, genome stability, therapeutic potential, or
phenotype.
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(a) process (b) method (c) material (d) data

Figure 3. Biology domain word clouds.

Chemistry Domain

For the fourth Chemistry research domain (Figure 4), there appears some overlap
with the Biology domain in terms of the entities. Some of the highly researched processes
are oxidative stress, gene expression, “expression” generally, or relationship. Commonly
applied methods are scanning electron microscopy, gas chromatography, cross-sectional
study, or regression analysis. Frequently researched or used materials are proteins, drinking
water, catalyst, or aqueous solution. Common data entities are temperature, concentrations,
room temperature, or parameters.

(a) process (b) method (c) material (d) data

Figure 4. Chemistry domain word clouds.

Computer Science Domain

Now the words clouds for the fifth STEM domain considered viz. Computer Science
(Figure 5) are examined. Here we see notably different research trends for Computer Science
versus the previous four STEM domains discussed viz. Astronomy, Agriculture, Biology,
and Chemistry. In this domain, deep learning, fine-tuning, machine translation, or named
entity recognition (ner) are some of the highly researched processes. Commonly applied
methods are attention mechanism, neural architecture search (nas), loss function, or self-
attention mechanism. Frequently researched or used materials are code, neural networks,
sentence, or deep learning models. Common data entities are structure, information,
classification accuracy, or translation quality.
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(a) process (b) method (c) material (d) data

Figure 5. Computer Science domain word clouds.

Earth Science Domain

In our sixth STEM research domain, i.e., Earth Science (Figure 6), some of the highly
researched processes are transition, evolution, formation, or reduction. Commonly applied
methods are Paris agreement, survey, sensitivity analysis, or semi-structured interviews.
Common researched or used materials are atmosphere, field, marine environment, or
CO2 emissions. Common data entities are expressed as environmental impacts, spatial
distribution, water quality, or energy efficiency.

(a) process (b) method (c) material (d) data

Figure 6. Earth Science domain word clouds.

Engineering Domain

In our seventh STEM research domain, i.e., Engineering (Figure 7), research trends
show power generation, control strategies, design processes, or manufacturing process as
predominant investigated processes. The frequently applied methods are finite element
method, genetic algorithm, finite volume method, or finite element analysis. The highly
researched or used materials are sensor, CO2 emissions, numerical simulations, or plate.
Common data entities are expressed as good agreement, simulation results, uncertainty, or
Nusselt number.
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(a) process (b) method (c) material (d) data

Figure 7. Engineering domain word clouds.

Material Science Domain

For the eighth STEM research domain, i.e., Material Science (Figure 8), research trends
show fabrication, plastic deformation, thermal treatment, or heat treatment as predominant
investigated processes. The frequently applied methods are Raman spectroscopy, in-situ,
X-ray photoelectron spectroscopy, or atomic force microscopy. The highly researched
or used materials are alloys, films, membranes, or particles. Common data entities are
expressed as mechanical properties, material properties, electrochemical performance, or
crystal structure.

(a) process (b) method (c) material (d) data

Figure 8. Material Science domain word clouds.

Mathematics Domain

In the ninth STEM research domain, i.e., Mathematics (Figure 9), economic growth,
flow, open innovation, or poverty reduction are among the highly researched processes. The
frequently applied methods are in-depth interviews, instrumental variable approach, Monte
Carlo study, or full Bayesian analysis. Among the highly researched or used materials
are mineral resources, social networks, firms, or energy sector. Common data entities are
expressed as probability, complexity, estimates, or number.



Knowledge 2022, 2 745

(a) process (b) method (c) material (d) data

Figure 9. Mathematics domain word clouds.

Medicine Domain

Finally, for the tenth STEM research domain considered in this work, i.e., Medicine,
predominantly researched process entities are Alzheimer’s disease, Parkinson’s disease,
disease progression, or cardiovascular disease. Common method entities included cross-
sectional study, functional magnetic resonance imaging, vitro, or vivo. Frequent material
entities that were either used or researched included patients, control group, brain, or
general population. Common data entities are expressed as primary outcome, incidence,
positively associated, or quality of life.

(a) process (b) method (c) material (d) data

Figure 10. Medicine domain word clouds.

5. Results

In this section, we offer some directions for practical applications developed based on
STEM-ECR NER. With this we hope to offer inspiration for similar or related usages of the
STEM-NER-60k corpus developed in this work.

STEM Entities Recommendation Service in the Open Research Knowledge Graph

The STEM-ECR annotation project (https://data.uni-hannover.de/dataset/stem-ecr-
v1-0, accessed on 16-12-2022) was initiated to support the population of structured scientific
concepts in the Open Research Knowledge Graph (ORKG). Figure 11 demonstrates the
integration of our prior developed machine learning model of STEM entities [12] in the
ORKG frontend. The model takes as input the Abstract of a new incoming publication and
structures the Abstract per the four concepts. The user can then flexibly select and deselect
annotations based on their prediction confidences or the user preference to automatically
structure the contribution data of the work.

https://data.uni-hannover.de/dataset/stem-ecr-v1-0
https://data.uni-hannover.de/dataset/stem-ecr-v1-0
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Figure 11. STEM Entities-based Abstract Annotator Recommendation Service for process, method,
material, and data entities in the Add-paper wizard of the next-generation Open Research Knowledge
Graph (ORKG) digital library front-end service.

6. Discussion

In this section, we discuss the potential of our entities corpus to be extended as a
knowledge graph.

Knowledge Graph Construction for Fine-Grained Structured Search

Knowledge Graphs (KG) play a crucial role in many modern applications (https:
//developers.google.com/knowledge-graph, accessed on 16-12-2022) as solutions to the
information access and search problem. There have been several initiatives in the NLP [18,
25,60,61], and the Semantic Web [62,63], communities suggesting an increasing trend
toward adoption of KGs for scientific articles. The automatic construction of KGs from
text is a challenging problem, more so owing to the multidisciplinary nature of Science
at large. While machines can better handle the volume of scientific literature, they need
supervisory signals to determine which elements of the text have value. The STEM-NER-
60k corpus can be leveraged to construct knowledge graphs underlying fine-grained search
over publications. Figure ?? demonstrates an example KG that was manually annotated
with relations between the entities. In the figure, the entity nodes are color-coded by their
concept type: orange corresponds to process, purple for method, green corresponds to
material, and blue for data.

As a practical illustration of the relation triples studied in this work, we build a
knowledge graph from the annotations in the Combined corpus. This is depicted in
Figure 12. Looking at the corpus-level graph (the right graph), we observe that generic
scientific terms such as “method,” “approach,” and “system” are the most densely con-
nected nodes, as expected since generic terms are found across research areas. In the
zoomed-in ego-network of the term “machine_translation” (the left graph), Hyponym-

https://developers.google.com/knowledge-graph
https://developers.google.com/knowledge-graph
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Of is meaningfully highlighted by its role linking “machine_translation” and its sibling
nodes as the research tasks “speech_recognition,” and “natural_language_generation”
to the parent node “NLP_problems.” The term “lexicon” is related by Usage to “ma-
chine_translation” and “operational_foreign_language.” The Conjunction link joins the
term “machine_translation” and “speech_recognization”, both of which aim at translating
information from one source to the other one. In summary, this knowledge graph can
represent the relationships between scientific terms either at macro-level in terms of the
whole corpus or at micro-level with respect to the ego-network of a specific concept.

Figure 12. Structured Knowledge Graph (KG) representation of a Material Science domain publication
Abstract [64] as process, method, material, and data typed entities. For KGs in the remaining 9 STEM
domains we consider, see Appendix A.

7. Conclusions

In this paper, we have systematically introduced a large-scale multidisciplinary STEM
corpus spanning 10 disciplines with structured abstracts in terms of generic process,
method, material, and data entities. The corpus called STEM-NER-60k is publicly released
for facilitating future research https://github.com/jd-coderepos/stem-ner-60k, accessed
on 16-12-2022. Based on the application presented in Section 5 and the proposed knowledge
graph extension in Section 6, we envision two main future research directions: (1) extending
the set of generic concepts beyond the four proposed in this work. For example, our prior
work [12,13] proposed concepts such as task, objective, and result. Additionally, (2) for
automatic KG construction multidisciplinarily, annotating semantic relations between the
entities.
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Appendix A

Supplementary to the Knowledge Graph in the Material Science domain presented in
Section 6, in Figures A1–A9, we demonstrate nine examples of knowledge graphs for the
respective nine remaining STEM domains we consider. In all graphs, nodes are color-coded
by their concept type: orange corresponds to process, purple for method, green corresponds
to material, and blue for data.

Figure A1. Structured KG representation of a Biology domain publication Abstract [65] as process,
method, material, and data entities.

Figure A2. Structured KG representation of a Mathematics domain publication Abstract [66] as
process, method, material, and data entities.
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Figure A3. Structured KG representation of a Earth Science domain publication Abstract [67] as
process, method, material, and data typed entities.

Figure A4. Structured KG representation of an Astronomy domain publication Abstract [68] as
process, method, material, and data typed entities.
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Figure A5. Structured KG representation of an Agriculture domain publication Abstract [69] as
process, method, material, and data typed entities.

Figure A6. Structured KG representation of a Chemistry domain publication Abstract [70] as process,
method, material, and data typed entities.

Figure A7. Structured KG representation of a Computer Science domain publication Abstract [71] as
process, method, material, and data typed entities.
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Figure A8. Structured KG representation of an Engineering domain publication Abstract [72] as
process, method, material, and data typed entities.

Figure A9. Structured KG representation of a Medical domain publication Abstract [73] as process,
method, material, and data typed entities.
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