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Abstract: The mining industry is diligent about reporting on safety incidents. However, these reports
are not necessarily analyzed holistically to gain deep insights. Previously, it was demonstrated
that mine accident narratives at a partner mine site could be automatically classified using natural
language processing (NLP)-based random forest (RF) models developed, using narratives from the
United States Mine Safety and Health Administration (MSHA) database. Classification of narratives is
important from a holistic perspective as it affects safety intervention strategies. This paper continued
the work to improve the RF classification performance in the category “caught in”. In this context,
three approaches were presented in the paper. At first, two new methods were developed, named,
the similarity score (SS) method and the accident-specific expert choice vocabulary (ASECV) method.
The SS method focused on words or phrases that occurred most frequently, while the ASECV, a
heuristic approach, focused on a narrow set of phrases. The two methods were tested with a series of
experiments (iterations) on the MSHA narratives of accident category “caught in”. The SS method was
not very successful due to its high false positive rates. The ASECV method, on the other hand, had low
false positive rates. As a third approach (the “stacking” method), when a highly successful incidence
(iteration) from ASECV method was applied in combination with the previously developed RF model
(by stacking), the overall predictability of the combined model improved from 71% to 73.28%. Thus,
the research showed that some phrases are key to describing particular (“caught in” in this case)
types of accidents.

Keywords: mine safety and health; accidents; narratives; machine learning; natural language pro-
cessing; random forest classification; heuristic approach; expert analysis; vocabulary lists

1. Introduction

Natural language processing (NLP) is a powerful tool in processing text and has been
an area of intense focus in terms of research and application since the 1990s [1–3]. However,
its application is relatively new to the mining industry and mine safety. The NLP tools are
capable of processing huge amounts of text in relatively quicker times when compared to
human subjects. This is a huge advantage, as insights can be gained quickly and without
using much human resources. The reason accident narratives are not analyzed at mine sites
is because most lack the human resources necessary for the task. The insights can then be
used to deploy intervention strategies. At the start of the 21st century, an application of NLP
to safety data was demonstrated by the Pacific Northwest National Laboratory (PNNL).
The laboratory’s team has successfully analyzed huge amounts of safety reports from the
National Aeronautics and Space Administration’s (NASA) aviation safety program to gain
valuable insights [4].

Mine sites in the US are required to report details of certain types of accidents to
Mine Safety and Health Administration (MSHA). In turn, MSHA maintains an accident
database with concise descriptions of such reported accidents (narratives) along with

Knowledge 2022, 2, 365–387. https://doi.org/10.3390/knowledge2030021 https://www.mdpi.com/journal/knowledge

https://doi.org/10.3390/knowledge2030021
https://doi.org/10.3390/knowledge2030021
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/knowledge
https://www.mdpi.com
https://orcid.org/0000-0003-0614-9626
https://doi.org/10.3390/knowledge2030021
https://www.mdpi.com/journal/knowledge
https://www.mdpi.com/article/10.3390/knowledge2030021?type=check_update&version=1


Knowledge 2022, 2 366

other metadata [5]. The database is a valuable resource for mine safety professionals in
creating the text “corpus”, which can help in “training” the machine learning (ML) models.
Classification of narratives into their respective accident types is an important step in
accident analysis. In their past research, authors have demonstrated how NLP-based ML
models (random forests) developed using the MSHA corpus can be used effectively on
non-MSHA narratives [6]. This was an important accomplishment, as developing NLP
models on site-specific narratives are expected to be difficult for two reasons. First, a site
may not have the variety in narratives that would be necessary to develop good NLP
models. Second (and more importantly), however, unless a mine categorizes accidents,
NLP modeling would require a human tagging of historical narratives. Tagging is when
a narrative is concisely summarized in a few words. The tags essentially serve as the
“meaning” of the narrative. Tagging is an expensive and limiting part of NLP. All narratives
in the MSHA database are tagged on entry, thereby making the database a convenient
corpus for NLP. However, until the previous work was published [6], it was unclear if
models developed on the MSHA corpus would be applicable on a non-MSHA corpus.
Thus, the previous work will encourage researchers and mine sites to develop NLP models
exploiting the tagged MSHA corpus, knowing that the resultant models would apply to
their sites. This paper continues the work to improve the performance of the NLP models.
To start with, a “caught in” accident category was chosen.

There are certain limitations that prevent the NLP-based models from achieving
their full potential in terms of high prediction success. The diversity in industry-specific
safety language and narrators’ individual writing styles are some examples. Moreover, the
source and circumstances of an injury differ from industry to industry [7,8], resulting in
differences in vocabulary. In this context, it can be anticipated that accident classification
models developed for one industry may have varied success rates in other industries. In
the same context, expert or domain-specific knowledge can be helpful in gaining a deep
understanding of accident circumstances and underlying mechanisms, which in turn can
help improve classification success rates. For instance, according to the US Occupational
Health and Safety Administration (OSHA), “caught in between” type accidents are those
that involve, typically, a person or a body part being squeezed, caught, crushed, pinched,
or compressed between two or more objects [9]. From the NLP standpoint, the actions that
describe the “crushing” effect are what define a “caught in between” accident. Hence, the
list of words or verbs that describe such actions (vocabulary lists) are necessary in training
the NLP-based classification models. Key to success in NLP is thus finding the words that
are essential to describing a particular class of narratives.

Domain-specific knowledge is highly valued and regarded as an essential tool for
safety professionals working in the mining industry [10] as well as in any other industry [11].
This is the reason exploitation of domain-specific words and phrases, or in short form,
domain knowledge elements (DKE), is common [12]. For instance, using a semantic
rule-based NLP approach, Xu et al., 2021 [12] found DKEs that can provide valuable
insights in analyzing the text in a Chinese construction safety management system. The
process involves finding specific compound parts, parts-of-speech (pos) tagging, and
dependency of words (DOW) that are important to understand the topic (construction
safety)-specific language. The models developed in this paper leveraged such domain-
specific knowledge elements.

Data preparation for ML models pose certain challenges when text handling is in-
volved. Since the models can only operate on numbers, vectorization of words is necessary.
At first, the text (or narratives) are split into unique words (unigram ‘tokens’) and then
into representative “word vectors” of real numbers. The numbers signify an occurrence (1),
no occurrence (0), or a number of occurrences (n) of tokens. Bag of words (BOW) models
are popular in this context. They can reduce each accident narrative into a simple vector
of words and their corresponding frequency of occurrences [13]. Due to their simplicity,
these vectors take much less computer memory compared to other models. However,
BOW models fail to account for the similarity or rarity of words in a narrative, which is an
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important aspect of classification problems. The mere list or bag of words from processing
a narrative cannot convey the true meaning of a narrative. Semantic relationship of words,
such as their occurrences in close proximity, context, and order, matters. For instance, the
phrases “caught between rollers and fell” and “fell and caught between rollers” have the
same vocabulary from a BOW model perspective, but the connotations are different. This
poses a problem for classification algorithms.

The “word embedding” concept compensates for the BOW model’s shortcomings by
vectorizing similar words (“features”) with similar scores [14]. The underlying concept
is that linguistic items with similar distributions or words that occur in similar contexts
have similar meanings [15]. For instance, the terms “injury”, “accident”, and “pain” are
represented as being closer in vector space when compared to words such as “surface”,
“path”, and “pavement”. The models can also vectorize the word frequencies in a narrative
in comparison to other narratives. For instance, based on how frequently a particular word
occurs in a narrative, it can be set to carry more “weight” in terms of score representation
in the vector. There are several types of word embedding methods and models that are
available with slightly different vectorization strategies. For instance, in order to find the
relevance of a word to a particular document or block of text, a term frequency–inverse
document frequency (tf-idf) method is used. Depending on how frequent (term frequency)
a word occurs and how commonly (score: 0) or rarely (score: 1) the word is found in a
document, tf-idf method scores the words. This is a very important tool in “text mining”
and is used in search engines. Several researchers used tf-idf-based models in analyzing
OSHA accident data [16,17]. Some models developed were generalized and even deployed
to analyze mining and metal industry accident data [17].

Word embedding models are to some extent limited by a meaning conflation defi-
ciency. The problem stems from the representation of words that have multiple meanings
in a single vector [18]. For instance, the word “pin” as a noun represents a pin. As
a verb in the phrase “pinned between two objects”, it conveys a different meaning. A
“pinner” in the underground mining context, however, implies “a roof bolter”. A word
represented in its true sense (“sense representation”) may be the solution for the problem.
Collados et al., 2018 [18] presented a comprehensive overview on the two major types of
sense representation models in the area, that are, unsupervised and knowledge-based. The
former model depends on automatic word processing by algorithms looking for different
senses of a word in the given context of words. The latter depends on expert-made resources
such as WordNet, Wikipedia, and so on. In this context, expert-knowledge-based word
clusters are used for training the algorithms in this paper in order to classify accident types.

“Pretraining” compensates for a shortage of training data, which is one of the biggest
challenges for the NLP community currently [19]. In pretraining, models are trained on
very large datasets, such as millions and billions of annotated text examples. For instance,
Google’s Word2Vec is a “pretrained word embedding” technique that is trained on the
Google News dataset (which consists of about 100 billion words) [20]. Once pretrained,
the models can be fine-tuned on smaller datasets [19] to provide enhanced performance.
Popular embedding techniques such as Word2Vec and GloVe perform “context-free” vector
representation of words; for instance, the word “bank” in “bank account” and in “river
bank” would have the same representation [19]. To compensate for the problem, bidi-
rectional encoder representations from transformers (BERT) was invented [21] and has
been widely popular among NLP researchers in the recent past [22]. BERT contextually
represents words and can perform the sentence processing bidirectionally (left to right,
and vice versa) [19]. Unfortunately, many advances in NLP do not apply to mine safety
narratives, as the language of safety is relatively unique. Mine safety is a niche topic with
nuances in the language, and therefore blanket application of generic language models
can be quite misleading. Therefore, this research focused on nuances of the language of
mine safety.

Ensemble learning methods use multiple algorithms to improve on their individual
predictive performances. The random forest (RF) method is an example where results
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from multiple decision trees are used to obtain the final result [23]. The “stacking” style
approach in ensemble methods takes advantage of diverse sets of algorithms to achieve the
best result for a given problem. An individual model can have better predictive strength in
one area of the dataset but fare poorly on certain other areas. A separate model (stacked
model) can be developed for such areas to improve overall predictive performance. Several
researchers have applied the stacking methods to traffic-related problems, such as analysis
of incidents, accidents, congestion, and so on [24–26].

Random forest (RF) methods are popular among the other classification methods due
to their robustness and accuracy [23]. Several researchers have used the methods in a wide
variety of areas and industrial contexts, such as construction injury prediction and narrative
classification [27,28], flood hazard risk assessment [29], building energy optimization and
predictive climate control [30], predicting one-day mortality rate in hospitals [31], and
crime count forecasting using Twitter and taxi data [32]. The accuracy and performance
of RF methods has been found to be superior when compared to other ML methods by
several researchers [28,33]. For instance, in classifying unstructured construction data, Goh
and Ubeynarayana, 2017 [28], used and compared the performance of various ML methods
such as logistic regression (LR), k-nearest neighbors (k-NN), support vector machines
(SVM), naïve Bayes (NB), decision tree (DT), and RF. In finding the factors affecting unsafe
behaviors, Goh et al., 2018 [33] used and compared the performance of various ML methods
such as k-NN, DT, NB, SVM, LR, and RF. In both the cases, RF showed superior performance.
Due to this reason, it was the method of choice for the accident narrative classification done
in previous research by the authors in Ganguli et al., 2021 [6]. In the current work, novel
models were developed to be “stacked” with RF models (to improve the performance)
previously developed in Ganguli et al., 2021 [6].

From the literature review, it can be observed that although the NLP-based ML models
are swift in auto-processing huge amounts of text, they have limitations in achieving high
success rates. This is due to the diversity in industry-specific safety-related vocabulary. A
certain level of human (expert) intervention is required in fine tuning or better training these
algorithms. Due to this reason, in the PNNL case, linguistic rules developed by human
experts were used for modeling. The linguistic rules developed considered specific phrases
and sentence structures common in aviation reports. When used in modeling, these rules
were able to automatically identify causes of safety incidents at a level comparable to human
experts. The PNNL team, however, noted the reliance of the algorithms on human experts
with domain-specific knowledge [4]. When classification challenges occur where traditional
or learned approaches fail, application of heuristic methods is not uncommon [34,35]. For
instance, in identifying the accident causes in aviation safety reports, Abedin et al., 2010 [34]
used a simple heuristic approach in labeling the reports. The approach looks for certain
words and phrases that are acquired during the semantic lexicon learning process in the
reports. Using ontology as a key component, Sanchez-Pi et al., 2014 [35] developed a
heuristic algorithm for automatic detection of accidents from unstructured texts (accident
reports) in the oil industry. ASECV draws inspiration from such heuristic approaches.

Hence, the novelty of the research presented in this paper lies in developing models
to: (i) resolve the ambiguity in the classification problem, that is, one narrative classified
into multiple accident categories (addressed by the SS model); (ii) save process time and
memory, and reduce the large size of the training set vocabulary by utilizing industry
(mining)-specific expert knowledge and heuristics (addressed by ASECV model); and (iii)
improve RF method performance from past research by “stacking” with the best of SS and
ASECV models (stacking approach).

2. Previous Research and Importance of This Paper

An important practical application of this research would be in the development of
automated safety dashboards at mine sites. In this context, a dashboard is a collection of
visual displays of important safety metrics and key performance indicators (KPI) in real
time. Currently, the safety dashboards used by mine management simply report on injuries,
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rather than the causes. This is because of the fact that narratives are not analyzed in a
holistic manner, as most mine sites lack manpower that is skilled in analytics. Automatic
classification of safety narratives would allow causation (accident type or category “tag”)
to be included in the dashboards. For example, in addition to listing the number of back
sprains, if the dashboard also includes causation tagging, such as “overexertion due to
lifting” or “overexertion due to pulling”, mine management could deploy more meaningful
interventions to improve overall workers’ safety. Thus, in the context of mine safety
research, the work presented in the paper is novel and very helpful to academic researchers
in the area as well.

In the previous research, nine separate RF-based classification models were developed
for nine corresponding accident categories; which are explained in detail in Section 3.2.
The models were trained (50:50 train-to-test split) based on the narratives in the MSHA
database [6]. The trained models were first tested on narratives in the MSHA database, then
on narratives in a non-MSHA (partner mine’s) database. After the testing, it was found
that the MSHA-based RF models were extremely successful in classifying the non-MSHA
narratives (96% accuracy across the board). While this is a welcome development, several
challenges were encountered. Since nine RF models were deployed separately (standalone),
it resulted in certain narratives being classified into multiple accident categories instead
of one narrative into one category (which is desirable). According to MSHA criteria, a
narrative is generally classified into one category that best describes it. In addition, certain
narrow categories, being special cases of (or closely related to) other categories, posed
multiple classification problem. For instance, a narrative can be classified as “caught in,
under or between a moving and a stationary object” or CIMS, as well as “caught in”, since
the former is a special case of the latter. Due to their shared vocabulary, certain narratives
were also classified into two very different categories, such as “caught in” and “stuck by”.
To resolve such classification overlaps and tag a narrative with only one accident category,
a “similarity score” (SS) approach was used in past research. This method is explained in
detail in Section 3.3, in the description of methodology.

In this context, the aim of the current work presented in this paper is to resolve the
challenges present in the past research. This is accomplished by turning the SS approach in
the previous work into an “SS model” and devising new models to experiment to improve
upon the previous success rates of RF models. For the current work, however, non-MSHA
narratives were not used; only MSHA narratives were used. Due to the complexity of the
problem and the presence of multiple classes in RF-based classification in previous work,
the authors aimed to start the experimentation with a sizable portion (with a subcategory
such as “caught in”). If it achieved success in this category, the intent was to extend the
scope of strategies and methodology to all other categories in future work. Hence, the goal
of the current research is to improve the classification performance in the category “caught
in”, while other categories are considered out of scope.

The concept behind the SS model can be described briefly as follows. Words in each
narrative in the modeling or training set were weighted (scored) based on the frequency of
their occurrence within an accident category. Thus, the same word is “weighted” differently
by different accident categories. From the training set narratives, the SS model builds
vocabulary lists for each accident category. Each word or token in a vocabulary list has a set
of “weights” corresponding to an accident type. During the application of the model to the
test set, each narrative is scored based on the word weights obtained from the training set
(accident specific vocabulary weights). This means that a narrative has a score specific to
each accident type. Ultimately, a narrative will be assigned to the accident category where
it scored the highest when compared to other categories [6]. In this way, the SS method is a
unique tool in predicting and assigning a narrative to its most relevant category. Hence,
the concept was used in building a new classification model (“SS model”) in an attempt to
improve the overall success rates of RF models on the MSHA dataset. As opposed to SS
approach used in past research—as an additional tool on RF results—the current work uses
the SS model as a standalone classification tool.
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One challenge for the SS model is that, in order to assign weight scores to words
in a given narrative, thousands of narratives need to be processed to form the training
set. For instance, there are 4563 narratives that belong to the “caught in” category in the
MSHA training set of 40,649 narratives. After text processing and lemmatization, there are
4894 unique words derived out of the 4563 narratives in the category. This paper explores
whether a smaller group of words or phrases selected using expert knowledge can be used
to detect the “caught in” category or if all of 4894 words need to be used. In this context, a
“word-clusters”-based model was developed. It is a heuristic model, using certain expert
choice (authors being experts in the mining discipline) vocabulary clusters, and is named
as “accident specific expert choice vocabulary” (ASECV). A goal for the model was to
keep the false positive rate under 5% to improve its robustness. Finally, as a third (and
important) approach, the models (ASECV or SS) were “stacked” on the previous RF models
to improve upon the overall success rates. Stacking can be performed in variety of ways.
The stacking option chosen for this paper is explained in detail in the methodology outlined
in Section 3.5.

Although the RF method alone is not the focus of the current work, it is included in
the methodology described in Section 3.2. in order to provide proper background on the
past research. As part of the SS and ASECV methods, several experiments (iterations) were
conducted to progressively minimize the false positive rates of the models, thus improving
the prediction performance. The experimental (iteration) parameters with low false positive
rates are ultimately selected for use in stacking method. Thus, it should be understood that
the aim of the research is to improve the performance of the RF model (from past research)
by the novel approaches, but not solely to compare and contrast the novel models with the
RF method.

3. Research Methodology
3.1. MSHA Accident Database

In order to accomplish the research problem, 81,298 narratives from the MSHA ac-
cident database, collected for the years 2011 through early 2021, were analyzed [5]. A
narrative is typically one to five sentences in length and concisely describes a “reportable”
injury that occurred at any of the mines located in the USA (Table 1). The database
has 57 fields to describe various attributes of an accident, such as place of accident, mine lo-
cation, employee age, equipment involved, and so on. There are 45 different accident types
in the database that are consistently represented in short sentences or phrases. The sen-
tences “Caught in, under or between a moving and a stationary object” and “Over-exertion
in wielding or throwing objects” are some examples.

Table 1. Typical MSHA narrative and its lemmatized form.

MSHA Narrative Text

Original

“Employee was assisting 3 other miners move Grizzly component in place.
While maintaining a vertical position on the component to rehook, the
component became unstable and shifted. The employee’s effort to maintain
it upright failed and it leaned, pinned his elbow against the rib, bending
back and breaking left wrist”.

Lemmatized form
Assist 3 miner move grizzly component place maintain vertical position
component rehook component become unstable shift’s effort maintain
upright fail lean pin elbow rib bend back break left wrist

Accident type Caught in, under or between a moving and a stationary object (CIMS)

3.2. Random Forest Classifier

Random forest (RF) methods are popular among the other classification methods due
to their robustness and accuracy [23], hence their choice for the past research presented
in Ganguli et al., 2021 [6]. It is an ensemble method that uses a set of decision trees in
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order to classify narratives into their appropriate accident categories. During the “training”
process, the RF method learns from the training set (50% of 40,649 narratives total used in
this paper) and builds decision trees based on each column (“feature”) of the data set. Then,
the fitted decision tree model is applied to the narratives in the “test set” (the other 50%
of narratives) to predict their respective accident categories. The method is described
more in Ganguli et al., 2021 [6] and Mitchell, 1997 [36]. The 50:50 split used in the paper is
consistent with the past research.

In order to train the RF model, the following steps are performed in advance. Each nar-
rative is at first converted to lower case and tokenized (split into unique words or unigram
tokens). In the next step, certain common words that do not add much value to modeling,
called “stop words” (in, the, between, employee, EE, etc.), along with certain symbols
(“, &, /, etc.) and spaces are removed. Subsequently, the words are lemmatized or reduced
to their root forms, for example, “pinched” and “pinching” will become “pinch”. Word
vectorization is the next step to represent the words in number forms. After processing
the narratives in the above steps, the accident classification model was implemented using
RandomForestClassifier () in the scikit-learn [37] toolkit. Table 2 shows the major (in terms
of counts) accident groups that were used in the RF analysis. Some narrow group accident
categories are abbreviated as given below. It should also be noted that the acronym “NEC”
stands for “not elsewhere classified”. The reason for undertaking the narrow groups (as
opposed to major) is to study how the RF model performs on such small groups. Narrow
groups are much harder to classify due to the small amount of narratives available for
training purpose and the common vocabulary they share with the major groups.

• Over-exertion in lifting objects (OEL).
• Over-exertion in pulling or pushing objects (OEP).
• Fall to the walkway or working surface (FWW).
• Caught in, under or between a moving and a stationary object (CIMS), and
• Struck by flying object (SFO).

Table 2. The four “accident type” groups modeled in the previous paper (Ganguli et al., 2021 [6]).

Type Group: Caught in Type Group: Fall Type Group: Over-Exertion Type Group: Struck

Caught in, under, or between a
moving and a stationary object Fall down raise, shaft or manway Over-exertion in lifting objects Struck by concussion

Caught in, under, or between
collapsing material or buildings Fall down stairs Over-exertion in pulling or

pushing objects Struck by falling object

Caught in, under, or between
NEC Fall from headframe, derrick, or tower Over-exertion in wielding or

throwing objects Struck by flying object

Caught in, under, or between
running or meshing objects Fall from ladders Over-exertion NEC Struck by powered moving

object
Caught in, under, or between two

or more moving objects Fall from machine - Struck by rolling or sliding
object

- Fall from piled material - Struck by... NEC
- Fall from scaffolds, walkways, platforms - -
- Fall on same level, NEC - -
- Fall onto or against objects - -
- Fall to lower level, NEC - -
- Fall to the walkway or working surface - -

Table 3 shows how the training and test sets have been split among different accident
categories for RF-based analysis in the past research.
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Table 3. Various accident categories in the training and testing subsets. Each subset has 40,649
samples (Ganguli et al., 2021 [6]).

Subset Type Group:
OE

Type Group:
Caught in

Type Group:
Struck by

Type Group:
Fall OEP OEL FWW CIMS SFO

Training 8909 4563 10,216 4802 1290 2838 2130 3337 1586

Testing 8979 4524 10,226 4926 1275 2961 2130 3310 1590

Table 4 provides a summary of the modeling results within the MSHA test set. In order
to understand the table, the over-excretion (OE) type group is presented as an example.
The following formulae are used to arrive at the various results in the table.

• Total samples (n_samples): 40,649;
• Total samples in target category (n_target): 8979;
• Total samples in other categories (n_other): n_samples − n_target = 31,670;
• Samples from target category predicted accurately (n_target_accurate): 7248;
• Samples from “other category” predicted wrongly as target (false_predicts): 1331;
• Samples from “other category” predicted correctly as other (other_accurate):

31,670 − 1331 = 30,339;
• Percentage of targets accurately predicted: 100 × n_target_accurate/n_target = 100 ×

7248/8979 = 81%;
• False positive rate: false_predicts/n_other = 1331/31,670 = 4%;
• Total correct predictions (total_correct): n_target_accurate + other_accurate = 7248 +

30,339 = 37,587;
• Overall success rate (%) = 100 × total_correct/_samples = 100 × 37,587/40,649 = 92%.

Table 4. Results from RF model-based analysis on the MSHA test set (Ganguli et al., 2021 [6]).

Metrics Type Group:
OE

Type Group:
Caught in

Type Group:
Struck by

Type Group:
Fall OEP OEL FWW CIMS SFO

Records from
Category 8979 4524 10,226 4926 1275 2961 2130 3310 1590

Overall Success 92% 96% 90% 95% 98% 96% 96% 95% 97%
% from Category

Accurately Predicted 81% 71% 75% 71% 37% 59% 34% 55% 25%

False Positive 4% 1% 5% 2% <1% <1% <1% 2% <1%

3.3. Similarity Score (SS) Model

As stated earlier, the main aim of the SS model is to improve upon the success rates
and false positive rates achieved by the RF method on the MSHA database, shown as “%
from Category Accurately Predicted” and “False Positives”, respectively, in highlighted
text (Table 4). Hence, the SS model uses the same set of narratives collected for the RF
model. The model flowchart in Figure 1 shows the steps involved in processing the training
set of narratives. Like the RF model, the SS model uses a 50:50 split between training and
test sets. As a first step (Step 1 in Figure 1), the algorithm selects narratives from the chosen
accident type (such as “fall”) from the total set of narratives (81,298). In Step 2, it separates
narratives that do not belong to the chosen accident type into the “notFall” category. Note
that the first two steps can be repeated when several accident categories are involved. In
Step 3, narratives from the “fall” and “notFall” categories are lemmatized. At this stage,
each accident category is left with a unique set of words or tokens (vocabulary sets) with
their corresponding frequency (number of occurrences) scores. Thus, a vocabulary list
created for each accident category (in this case, Fall and notFall) is unique in its length and
constituent words. In a similar manner, the training set can be divided into several accident
types, such as “caught in”, “struck by”, CIMS, and so on, and ultimately can be reduced to
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their respective unique “vocabulary sets”. The whole process can be described as “word
vectorization”.

In Step 4, each unique word in a vocabulary set will be given a weight, calculated
by dividing the number of times that word occurred in the set (frequency) by the sum of
all words’ occurrences. In this manner, each word in a vocabulary list belonging to an
accident category has its own unique “weight”, depending on its frequency in that list. For
instance, the word “fall” can occur in different accident type vocabulary lists. However, it
will most likely carry additional weight in the “fall” type accident list, since its frequency of
occurrence can be high in such a list. The numbers (word frequencies, weights, etc.) used
in Step 4 of the flowchart are for demonstration purposes only.
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Figure 1. Flowchart for “training” the similarity score (SS) model.

The accident-specific vocabulary sets and their word weights created in the training
stage thus far will be used to calculate the similarity score for each test set narrative
(Figure 2). The narratives (40,649) from the test set will be processed through the rest of the
algorithm shown in the Figure 2 flowchart. In Step 5, each test set narrative is reduced to
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its lemmatized word list. For example, the narrative “Employee slipped on floor and fell”
is reduced to the words “fall”, “slip”, and “floor”. Then, from the “Fall” accident category
vocabulary list created during training process, weights are assigned to each of these three
words. Likewise, the process is repeated for the “notFall” category.
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Based on the algorithms (Figures 1 and 2), Table 5 demonstrates how an accident
category is assigned to a test narrative from the MSHA database. For instance, the test
narrative number 1 is scored according to different accident-specific vocabulary lists (ac-
cident categories OE through SFO). The narrative’s category is assigned as CIMS, since
the category scored maximum among the others (highlighted text under accident class).
On the other hand, the narrative’s actual category from the MSHA database is “Stuck by”,
making the assignment a false positive. The “SS” model performance can be found in the
results section.

Table 5. Similarity scores criteria to classify “accident category” of a narrative (lemmatized) from the
test set.

Accident Category and Similarity Scores

OE OEP OEL Struck
by

Caught
in

Fall FWW notFWW CIMS SFO Max
Value

Accident
Class

Actual
Class

False
Positive?

1 Narrative: use mill bar clean chute bring bar back strike’s hand cross member bar cause laceration’s right hand receive six suture close wound
0.067 0.076 0.064 0.120 0.127 0.081 0.078 0.090 0.130 0.088 0.130 CIMS Struck by Yes (1)

2 Narrative: work unit # 1238 air conditioner step cab foot slip off step catch right hand later day say pain shoulder work 7/12/13
0.127 0.110 0.103 0.066 0.083 0.127 0.128 0.069 0.081 0.049 0.128 FWW

3 Narrative: drill last bolt hole cut undetected slick sided rock slip hit top canopy break one piece rock strike left side back result contusion 1.5”
long laceration stitch require
0.067 0.068 0.069 0.165 0.099 0.101 0.096 0.108 0.101 0.126 0.165 Struck by
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3.4. Accident Specific Expert Choice Vocabulary (ASECV) Model

The ASECV model is essentially a heuristic approach that compensates for some of
the challenges encountered by SS model. For instance, SS approach suffers from high
false positive rates (which will be further discussed in Section 4.1). This is due to the
fact that its accident specific vocabulary lists have too many common words, raising
ambiguity in classification. Unfortunately, the false positive rates did not improve even
when vocabulary lists were repopulated with words exclusive to a particular accident type.
When such classification challenges occur where traditional or learned approaches fail,
application of heuristic methods is not uncommon [34,35]. ASECV draws inspiration from
such heuristic approaches.

In the same context, use of experts familiar with safety vocabulary, specific to an indus-
try, in selecting certain phrases for the purpose of training the accident classification tools
is not uncommon [4,12]. ASECV also uses such a strategy in identifying key phrases that
are important for the classification of “caught in” type accidents. For the purpose, authors,
being the experts in the mining industry, will identify such key phrases. For instance, when
a “caught in” type accident occurs, the majority of the time, the narrative contains the words
“between” or “under” or “in”, followed by some object names. In other words, looking
for such prepositions after the word “catch” can help identify “caught in” type narratives.
Likewise, depending on the narrator’s style—which can be observed through random
examination of narratives from the training set—verbs that best describe key actions in
an accident type can be deduced. This apparently saves lot of computer memory, since a
typical training vocabulary set involves thousands of frequently occurring words.

At first, the ASECV model processes narratives from the training set to form the word
clusters; then, the clusters will be utilized to score and classify test set narratives into
the targeted (“caught in”) category. In conformance with the previous models, a 50:50
training-to-test-set data split is used.

3.4.1. Training the Model

One important aspect of the ASECV model that differs from the rest of the models is
that, unlike in the RF and SS models, the stop words are not removed when lemmatization
of a narratives is performed. In order to form the word clusters, the algorithm follows
certain heuristic rules (or steps) set forth by the industry experts as given below.

(i). Tokenization and sorting: At first, the training set narratives from the “caught in”
category are lemmatized and converted into tokens, and then sorted based on their
frequency of occurrence.

(ii). Expert choice words: From the first 100–200 tokens of the sorted list, certain key words
are selected by experts. This is done heuristically by observing the link between the
word’s occurrence in a narrative and the chance (probability) that the narrative is
categorized into the “caught in” category.

(iii). Word clusters: Then, the words are arranged into clusters of importance. For instance,
when words such as squeeze, crush, pinch occurred, it was observed that there is
a high probability (95–100%) that the narrative belongs to the “caught in” category.
Hence, these words are sorted into a high-importance cluster (1). Likewise, there is a
medium-importance word cluster (2) and a low or complementary-importance word
cluster (3). All the words that do not belong to word clusters will be given a default
score of zero.

(iv). Word weights in clusters (high importance): Each word in a cluster is given a “score
weight”. A score weight of 100 is given to high-importance words. Although the scor-
ing choice is arbitrary, it roughly corresponds to the chance (95–100%) that a narrative
will be classified into the “caught in” category when such high-importance words
occur. For the same reason, the qualifying score is set at 100 for test set narratives.

(v). Word weights in clusters (medium and low or complementary importance): Since the
high-importance words are set at score 100, others are scaled down to 80, 60, and 20, ap-
proximately reflecting the probability that the narrative fits into the intended category.
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(vi). Word weights in clusters (other rules): The prepositions, such as “between”, “under”,
and so on, played an important role in identifying the “caught in” category. For
instance, the word “catch” (score: 80) followed by “between” (score 20) within 5 word
spaces can qualify (total score: 100) for the “caught in” category.

3.4.2. Testing the Model

During the testing process of the algorithm, the following steps take place, which are
depicted in the flowchart in Figure 3.

(i). A narrative from a test set is broken into its token list (Step 1).
(ii). Then, the algorithm looks for words matching tokens from the clusters and assigns

corresponding weights to tokens (Step 2). As part of Step 2, duplicate tokens will be
eliminated to avoid scoring the same token multiple times.

(iii). Heuristic rules are applied at this stage to calculate the score of a narrative (Step 3).
The sum of individual token weights in a narrative is the score of the narrative.

(iv). Qualifying score of narrative: As a rule, if the score of a narrative exceeds or equals
to a qualifying score (100), the narrative can be classified into the intended accident
category (Step 4).

Once the word clusters are compiled from the training process, they were tested to find
the impact of the presence (or absence) of each word in a cluster on the overall performance
of the model. By heuristically (and systematically) adding and dropping words to the
clusters, the performance of the ASECV algorithm was monitored on test sets in terms
of accuracy and false positive rates. Word clusters with the best model performance are
retained for the purpose of the “stacking approach.” These experiments (iterations) are
presented in detail in Section 4.
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3.5. Stacking Approach

The stacking option chosen for the paper can be explained as follows (Figure 4). If
the RF model from past research classifies a test narrative in to “caught in” category, the
narrative is assigned with a value of “1”. If any of the new models (such as “SS” or
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“ASECV”) have comparable performance with RF (1% false positive rate), we can stack the
model to RF. This means, as shown in the flowchart (Figure 4), that after processing test set
narratives (Step 1) with RF, all the narratives that are not classified by RF (0 s) will be tried
as a test set by the new model (Step 2). Any success achieved in “accurate” classification
of the narratives by the new model will be added to the overall success of the RF model
(Step 3). Thus, the stacked performance of the RF and the new model together can be
superior to RF performance alone.
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4. Results

The results from each of the three approaches and their corresponding experiments
are described in the following sections. The aim of the experiments was to find high-
performance model parameters between the SS and ASECV methods so that the parameters
can be used when the stacking approach is deployed.

4.1. Results: SS Model

The “vocabulary strategy” column of Table 6 shows the type of strategy followed for
SS model training exercises to create the accident-specific “vocabulary sets”. As stated
in the previous sections, these vocabulary sets will be used to score and classify test set
narratives. The “SS Criteria” column provides targeted accident categories for narrative
classification. In order to compare with RF results from past work, the CIMS accident
category was chosen. The aim is to find the combination of vocabulary strategy and criteria
at which the SS model provides the best performance in terms of high “Success within
(accident) category” with low “false positive rates”. The aspiration is that if the results from
SS modeling for the CIMS category outperform the RF model, the criteria can be extended
(and applied) to other accident categories to get the similar results. It should be noted that
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all the results presented in this section are obtained by applying the strategies on test set
narratives. The following are some dataset parameters used.

• Total “test set” samples (n_samples) used = 40,649;
• Total samples in target category (n_target) = 3310;
• Total samples in other categories (n_other) =37,339.

Table 6. RF vs. SS: Classification performance for CIMS type accidents.

Target Category Predicted
Accurately (n_target_accurate)

Success within Category:
n_target_accurate/n_target

False Positive Rate:
false_predicts/n_other

Vocabulary Strategy SS Criteria RF SS RF SS RF SS

1 All words Multiple Catg. (9) Splitting 1815 290 55% 8.8% 2% 15%
2 All words Few Catg.

(FWW/CIMS/SFO/Other)
Splitting

1815 170 55% 5.1% 2% 12%

3 Excl. words (100) Few Catg.
(FWW/CIMS/SFO) Splitting

1815 3005 55% 90.8% 2% 24%

4 Excl. words + 25freq.
Words

CIMS, notCIMS, Neither
Class

1815 3305 55% 99.8% 2% 96%

5 Excl. words + 25freq.+
Adj. Wts.

CIMS, notCIMS, Neither
Class

1815 3208 55% 96.9% 2% 58%

6 Excl. words + Diff. qualify
strategy

CIMS, notCIMS, Neither
Class

1815 159 55% 4.8% 2% 58%

At first, all words in their respective vocabulary sets for nine accident categories were
tried in narrative classification (Strategy 1). The success rate was poor (8.8%) compared
to RF (55%), and the false positive rate was high, at 15%, when compared to RF’s 2%.
In strategy 2, the number of accident categories was minimized (FWW, CIMS, SFO, and
other) to observe if it can help improve the performance. The “other” category includes all
narratives in the training set outside of the three categories noted. FWW, CIMS, and SFO
are very narrow categories, as opposed to the rest of the categories such as “caught in” or
“struck by” demonstrated in the RF model (Table 2). The success and false positive rates for
Strategy 2 went slightly down to 5.1% and 12%, respectively, when compared to Strategy 1.

Even though common words such as “employee” and “EE” were eliminated as part of
the stop words, it was observed that all accident categories share vocabulary to a certain
extent. For instance, the tokens “pain”, “hurt”, and “fall” are common in each accident type.
This could be one reason that Strategies 1 and 2 registered such low success rates to begin
with. This prompted a change of strategy to eliminate such common vocabulary among all
accident categories. Therefore, Strategies 3–7 include only “exclusive” vocabulary sets for
each accident category. With the new strategy, it was hoped that the SS score of a narrative
would be high for a particular accident type when its exclusive vocabulary was present
in the narrative. As an experiment, for Strategy 3, the top 100 most frequent words of the
vocabulary list were used. The success rates for CIMS improved significantly (90.8%), but
with increased false positive rates (24%), which is not desirable.

At this stage, it can also be noticed that the CIMS category performance depended
upon how well the narratives are split between several other categories. Similar to the RF
models developed in the past research, one model to classify one category avoids such
dependencies. Moreover, there will only be two major vocabulary sets at any given point
of time, which is less complex for modeling. A CIMS category classification model, for
instance, will have two vocabulary sets from training, that is, all vocabulary that belongs
to CIMS and the rest of the vocabulary (“notCIMS”). In the testing process, when the SS
scores of a narrative for CIMS and notCIMS become equal, it sometimes creates ambiguity
for the algorithm. In such cases, the narrative will be classified into “Neither Class”, which
is counted in the notCIMS category for calculation purposes. For Strategies 4 and 5, all
exclusive words along with the 25 most frequent “common” words were used. Although
the success rates were high (>95%), the false positive rates were high as well (96% and 58%,
respectively), which is not desirable. The high false positive rates are due to the presence of
words, patterns, or certain elements from multiple accident categories in one narrative. For
instance, the narrative “employee fell and caught his hand between the moving conveyor
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belt and stationary guard” can be classified by MSHA as a “Fall” accident. However,
models or algorithms can interpret and classify the same narrative in a few different ways.
For instance, due to the presence of words “caught” and “in between”, it can be classified in
the “caught in” category or the “caught in between moving or stationary objects” category
due to the presence of objects such as “conveyor belt”, a moving object, and a “guard”, a
stationary object.

Contrary to other strategies, it should be noted that for Strategy 5, the weights of
words in vocabulary lists are adjusted proportionately to the 25 most frequent words. For
Strategy 6, all exclusive words were used along with a “difference” strategy. The strategy
can be explained as follows. For the training set, it is possible that the difference between
the CIMS and notCIMS scores for the narratives can have a correlation with accurate
prediction (CIMS) rates. In particular, a score above the 95th percentile of the “difference”
was observed to be highly correlated with correct prediction of the accident type. This
is used as a “qualifying criteria” for Strategy 6. In the test set, whenever the difference
between the scores for a narrative “qualifies”, it will be automatically categorized as CIMS.
The strategy, however, has limited success (4.8%), with high false positive rates (58%).

Overall, the strategies yielded mixed results, with success rates varying between 4.8%
to 96.9%, and false positive rates between 12% to 96%. Since the false positive rates are
higher than the desired levels (<5%), the SS model is not considered suitable for stacking
over the RF model.

From the SS model results, it is observed that improving the success rates and false
positive rates for the CIMS category in comparison to RF is difficult. This is because CIMS
is a very narrow category of the broad “Caught in” group of accidents, and it shares lot of
vocabulary with the group. Hence, for the experiments (iterations) in the ASECV model,
the “Caught in” category was chosen. The aspiration is to build a successful model with
strategies that can be applied to other models at later stage.

4.2. Results: ASECV Model

Table 7 shows the results for various ASECV vocabulary criteria in the “caught in”
accident category. The clusters of vocabulary lists created from the training set are provided
in Table 7 as well. The clusters are classified according to the importance of the words they
contain with respect to narrative classification. For instance, high, medium, and low or
complementary type clusters have word weights of 100, 80, and 20, respectively, except for
“entrap”, which has been given a weight score of 60.
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Table 7. RF vs. ASECV: “caught in” category performance for various criteria.

Vocabulary Sets by Importance Target Category Predicted Accurately
(n_target_accurate)

Success within Category:
n_target_accurate/n_target

False Positive Rate:
false_predicts/n_other

High
Score: “100”

Medium
Score: “80”, Except

‘entrap’: “60”

Complementary/Low
Score: “20”

Accident Category Cluster 1 Cluster 2 Cluster 3 RF ASECV RF ASECV RF ASECV

1 Caught in squeeze, crush, pinch,
compress, catch in,
cave in, entrap in

clip, ram, smash, mash between, under,
intersection

3212 2941 71% 65% 1% 1.76%

2 Caught in squeeze, crush, pinch,
compress, catch in,
cave in, entrap in

clip, ram, smash, mash,
entrap

between, under,
intersection

3212 2036 71% 45% 1% 1.19%

3 Caught in squeeze, crush, pinch,
compress

clip, ram, smash, mash 3212 1629 71% 36% 1% 0.85%

4 Caught in squeeze, crush, pinch,
compress, clip, ram,
smash, mash, catch,

entrap

3212 1699 71% 38% 1% 1.02%

5 Caught in squeeze, crush, pinch,
compress, clip, ram,
smash, mash, catch,

entrap, catch in, cave
in, entrap in.

3212 3480 71% 77% 1% 6.21%

6 Caught in squeeze, crush, pinch,
compress

clip, ram, smash, mash 3212 1614 71% 36% 1% 0.80%

7 Caught in squeeze, crush, pinch,
compress, clip, ram,

smash, mash

3212 2294 71% 49% 1% 1.84%

8 Caught in squeeze, crush, pinch,
compress

3212 1606 71% 35% 1% 0.79%

9 Caught in squeeze, crush, pinch 3212 1602 71% 35% 1% 0.76%

10 Caught in squeeze, crush 3212 166 71% 0.04% 1% 0.31%

11 Caught in (ASECV *
performance when

stacked on RF)

squeeze, crush, pinch 3212 103 71% 8% 1% 0.42%

* The model in the iteration uses 36,953 narratives that were not classified by RF model as test set, as opposed to the regular 40,649 narratives test set used by all other iterations. Hence,
the calculations are proportional to the test set length.
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The experiments or iterations (1–11) involve the adding and dropping of words to the
clusters. This is to observe how different word combinations affect the success rates, as
well as false positive rates, when applied to test set narratives. When new words are added
to the clusters for an iteration, they were highlighted in the text (Table 7). The process
of adding or dropping words is first done systematically, by sorting the words according
to their importance (using scores), and then by dropping one word at a time from the
bottom of the list. Later, several combinations of words from each cluster are performed
both systematically and heuristically based on the expert knowledge. The 11 iterations
presented are the result of exploring many permutations and combinations. The success
and false positive rates of the ASECV model are compared to the RF model side by side in
the table.

For iteration 1, the full extent of the words list for each cluster was used. The success
rate was 65%, with a false positive rate of 1.76%, which are low numbers when compared to
the RF model rates of 71% and 1%, respectively. The overall focus is to reduce the ASECV
model’s false positive rates to below 1%, which is comparable to RF performance in the
same area (1%). This way, when ASECV is stacked over RF, there is minimal compromise in
accuracy. In this context, the ASECV model outperforming the RF model is desirable. For
iteration 2, the word “entrap” was added to cluster 2. The success rate dramatically reduced
to 45%, while the false positive rate was slightly reduced to 1.19%. Removing the words
(or prepositions) from cluster 3 (“between”, “under” and “intersection”) altogether in
iteration 3 resulted in a lowering of the success rate to 36%. However, the false positive rate
was brought down to 0.85%. It is interesting to see in iteration 4 that moving cluster 2 (clip,
ram, smash, mash) and the word “entrap” to cluster 1 improved the success rate to 38%.
The false positive rate, however, was only slightly increased (1.02%) from iteration 3. In
iteration 5, certain phrases such as “catch in”, “cave in”, “entrap in” are added. The
resulting success rates improved to 77%, which is better than the RF model, but the
false positive rates stayed higher, at 6.21%, when compared to RF’s 1%. Iterations 6–9
demonstrated that the false positive rates can be reduced below 1% by gradually eliminating
words to ultimately keep the words “squeeze”, “crush”, and “pinch” in cluster 1. The
success rate at this point was 35%, but the false positive rate was reduced to 0.76%, which
is highly desirable for the stacking approach. Dropping the word “pinch” in iteration 10
drastically reduced the success rate to 0.04%. This shows how important the word is to
the model. In this context, the vocabulary set in iteration 9 is selected for stacking the RF
model due to its low false positive rate.

Ultimately, in iteration 11, the narratives that the RF model failed to classify (assigned
as “0”) into the “caught in” category (36,953 out of 40,649) were analyzed by the ASECV
model. Hence, as a stacked model on the RF model, ASECV alone achieved an 8% success
rate, with only 0.42% false positive rate, which is highly desirable (see highlighted text in
iteration 11). The following are some dataset parameters used.

• Total “test set” samples (n_samples) used = 40,649;
• Total samples in target category (n_target) = 4524 (Caught in);
• Total samples in other categories (n_other) = 37,339 (Caught in).

4.3. Results: Stacking Approach

Out of all the experimentations performed for the SS and ASECV models, iteration 11
of the ASECV model looked promising. Hence, it was used in stacking with the RF model
from past research. The “stacking” approach has resulted in improving the overall success
rate of the RF model from 71% to 73.28%, with only 1.41% false positive rate (Table 8).
Hence, it can be noticed that the “stacked model” has resulted in improving the existing
success rates of the RF model.
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Table 8. Overall performance of the stacked model (RF when stacked with ASECV).

Vocabulary Sets by Importance Target Category
Predicted Accurately
(n_target_accurate)

Success within Category:
n_target_accurate/n_target

False Positive Rate:
false_predicts/n_other

High
Score: “100”

Medium
Score: “80”, Except

‘entrap’: “60”

Complementary/Low
Score: “20”

Accident
Category

Cluster 1 Cluster 2 Cluster 3 RF Stacked RF Stacked RF Stacked

Caught in squeeze,
crush, pinch

3212 3315
(3212 RF +

103 ASECV)

71% 73.28%
(71% RF +

8% ASECV)

1% 1.41%

5. Discussion

When RF model performance is compared with that of the SS model (Table 6), certain
interesting results can be observed. The success (5.1–99.8%) and false positive rates (1–96%)
were poor in general and fluctuated in a wide range. In addition, high success rates were
not always accompanied by low false positive rates. When narratives were classified into
all nine (9) categories using all the vocabulary of each accident-related set (iterations 1 and 2
of Table 5), the success rates were still poor (<10%). In iteration 3, when few categories
were tried with exclusive words criteria, success rates improved (91%), while the false
positive rates did not (stayed high at 24%). Through iterations 3–5, several combinations of
exclusive (top 100) and frequent (top 25) words with a qualifying strategy that implements
a limit on SS score “difference” between CIMS and notCIMS (rest of narratives) was tried.
The 95-percentile limit on the difference should reduce the false positive rates. However,
the false positive rates were still high (58%), despite the high success rates. The experiments
prove that when it comes to narrow accident categories such as CIMS, the lack of exclusive
vocabulary, specific to the category, seems to be a problem with the SS model—as it shares
a lot of vocabulary with the broader “caught in” category and to some extent with other
accident categories. Therefore, it is apparent that it becomes difficult to achieve high success
rates while keeping the false positive rates below 5%.

When it comes to the ASECV model, from Table 7, it can be observed that the false
positive performance for the “caught in” category steadily improved up to iteration 9
(1.76 to 0.76%, which is on par with the RF rate of 1%). It can also be observed that when
vocabulary lists (clusters) are reduced, they remained critical to classification until iteration
10. During the process of reducing the false positive rates (iterations 1–9), the success rates
were also reduced (from 65% to 35%). Since it is important to keep false positive rates
below 1%, compromise in success rates can be justifiable. Moreover, it can help improve
the success rates of RF, if “stacking” of the ASECV model is performed. With stacking, the
narratives that the RF model failed to categorize as “caught in” were sent to the ASECV
model, anticipating that it can reclassify some of the narratives into the correct category. At
iteration 11, when stacking was performed in such a fashion, the ASECV model improved
its false positive rate performance (0.42%). Even though the success rate achieved was not
a high number (8%), the very low false positive rates are highly desirable for stacking. For
this reason, in the “stacked model” (Table 7), the RF success rate was improved by 2.28%
(from 71% to 73.28%). It can also be observed that at the 0.42% false positive rate, the ASECV
vocabulary set only included three words, that are, “squeeze”, “crush”, and “pinch”. This
demonstrates how important these words are to the model prediction accuracy on the test
set. Even elimination of one word (“pinch”) can result in dramatic reduction in success
rates to 0.04% (iteration 10). This again shows how important the above-noted three words
are to the success rates in the classification process, as demonstrated in iterations 9 and 11.
For this reason, the three-word set in cluster 1 is used in the stacking process (iteration 11).
This shows how the field-specific expert knowledge can be leveraged in terms of using
the proper set of words that can describe the key mechanisms of the accident occurrences.
Accident-related vocabulary changes from industry to industry and often depends on the
narrator’s style. If the vocabulary sets used can reflect these aspects, the classification
success could be improved.



Knowledge 2022, 2 385

It can be understood that given the scope of this paper, to reduce the overall time
expended and complexity in past modelling (RF and SS), the ASECV method is proposed.
The ASECV algorithm operates on heuristics (linguistic rules) that are based on expert
knowledge in mine safety. This approach dramatically reduced the size of the vocabulary
sets used by past methods. In addition, as found by the authors, stacking the RF method
with ASECV is an optimal method in terms of model performance compared to previous
standalone RF approach.

6. Conclusions

NLP tools, if used strategically, can help process vast amounts of text into meaningful
information. Accident narratives are concise descriptions of accidents that can help mines,
as well as federal agencies, in analyzing accident data. Accident classification is the first
and foremost of the steps involved in finding root causes for accidents. However, the
process is manually intensive due to the sheer volume of text to deal with. In their previous
application of NLP techniques and RF methods, the authors were able to successfully
classify MSHA and non-MSHA (a surface metal mine) narratives. It was found that multiple
RF classification models—one for each accident category—were effective in classification
when compared to one model that can perform all classification tasks. The prediction
success achieved was 75% and 96% (across the board) for MSHA and non-MSHA narratives,
respectively. Minimizing the false positive rates to within 5% is of great importance for
the accuracy of the model, and the RF models previously developed were able to achieve
such rates. The insights provided (from previous work in Ganguli et al., 2021 [6]) related to
how often certain accidents occur at the partnering mine site (non-MSHA) helped the mine
operator in taking preventive measures.

Furthering the research in the area, and in an attempt to improve upon the previous
success rates (from RF), three approaches were presented in this paper. Two were novel
approaches named, the similarity scores (SS) model and accident-specific expert choice
vocabulary (ASECV) model, respectively. The third one is a “stacking approach”, where one
of the successful novel methods is applied in combination with the RF approach. In the SS
model, test narratives are scored based on the word weights they carry in accident-specific
vocabulary lists developed during the training process. Word weights in the vocabulary
lists are proportionate to their frequency of occurrence in narratives that belong to the
related accident category. Narratives that scored highest among the vocabulary lists are
assigned with the appropriate category. Since the model depends on the word frequen-
cies, classification strategies were devised based on how rare or common a word is for
an accident type. The model produced mixed success rates, but the false positive rates
were very high, which is not desirable. This could be due to the fact most of the accident
type narratives shared a certain amount of common (frequent) vocabulary. To compen-
sate for this problem, the ASECV model was developed. The heuristically developed
model’s predictions are based on vocabulary sets (clusters) that best describe the accident’s
mechanism(s). Industry-specific expert knowledge was used in this context. By experi-
menting with the combination of key words—arranged in clusters of high, medium, and
low importance—in predicting the targeted category, different success rates were achieved.
With the ASECV model, the false positive rates were successfully reduced to below 1%,
which is highly desirable. Even though the success rates of classification are moderate (39%
across the board), such high accuracy rates helped the overall success of the ASECV model
in “stacking” with RF model.

The ASECV classification model, when applied to the narratives (as a stacked option)
—where the RF method failed to classify for “caught in” category—yielded an 8% success
rate with less than 1% false positive rate. The combined stacked model (RF-ASECV) thus
improved the previous RF model success rates from 71% to 73.28%. This, in turn, proves
that when industry-specific knowledge is used in developing models along with powerful
text-processing tools such as NLP, the accuracy of prediction can be improved. This
paper demonstrates that use of domain-specific (mining industry) knowledge can improve
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accident classification success beyond what was achieved by RF, a popular machine learning
technique. The models developed in the paper are focused on the “caught in” category due
to limitations of scope. However, widening the application of the models to more accident
categories, the exploration of semantic rules, and alternate performance measuring metrics
will be considered for future research. Application of models developed to non-MSHA
data is out of scope for the research presented in this paper; however, it can be considered
for future research as well.
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