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Abstract: Plants are constantly interacting with the diverse microbial community as well as insect
pests throughout their life cycle. Due to their sessile nature, plants rely solely on the intracellular
signaling and reprogramming of cellular events to resist against pathogens. Insect pests are usually
dependent on the nutrient-rich fluid obtained from plants or directly consume plant parts to sustain
their life cycle. Plants possess a plethora of microbial communities; these microbiomes constantly
influence the physiology, growth, development, and immunity in plants. Hence, the phyllosphere and
rhizosphere are believed to play a major role in plant-insect interaction. The phyllosphere, rhizosphere,
and endosymbiotic microbiome are currently under extensive scientific investigation. Recently, the
advancement of metagenomic next-generation sequencing (mNGS) platforms revolutionized plant-
associated microbiome analysis and has unveiled many beneficial microbial communities protecting
against diverse pathogenic microorganisms and insect pests. Mycorrhiza is also an important
component of the rhizosphere, as it may play a role in soil microbiota, thus indirectly influencing
the interaction of insects with plants. In this regard, the present review tries to focus on some major
insect pests of plants, the molecular mechanism of plant–insect interaction, and the probable role of
phyllosphere and rhizosphere microbiome in this plant–insect encounter. This review is believed to
open up a new dimension in developing resistance in plants against insect pests.
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1. Introduction

Plants are the primary producers of the ecosystem. They can entrap solar energy into
starch molecules through photosynthesis. Heterotrophic organisms primarily depend on
plants for food. There are a variety of microorganisms that thrive on the leaves and roots of
plants, either benefitting from or harming their hosts. With the massive increase in human
population, it is imperative to increase plant production. This is dependent on plant health,
and thus understanding the network associated with the plant is essential. The United
Nations declared the year 2020 as the International Year of Plant Health (IYPH) [https:
//www.fao.org/3/cb7056en/cb7056en.pdf, accessed on 29 November 2022]. Because
plants do not exist as individual units, they should be considered complex communities
associated with a microbial population [1]. Co-existence between plants and insects is not a
new phenomenon; it is almost 400 million years old [2]. Around two-thirds of herbivorous
insects are mainly leaf-eating beetles or caterpillars. Beetles can exhibit a positive role
through nutrient recycling and/or as pollinators [3]. Most insects have been linked to
crop plant loss, either directly or indirectly, by facilitating pathogen entry. Chewing
insects like the Colorado potato beetle, the European corn borer, and the cotton boll weevil
can consume plant tissue, resulting in crop damage. Sap-sucking insects like aphids,
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whiteflies, and leafhoppers use phloem contents as food when they insert specialized
mouthparts (stylets) into the phloem of the host plant. In addition, some insects serve
as vectors, transmitting viruses from one host to another. If a virus is introduced into
the phloem, it can spread rapidly. The wounds created by insects play a pivotal role in
the entry of pathogens like bacteria, fungi, or viruses into the plant [4]. The outcome of
the plant–insect bidirectional interaction may be affected by plant-associated microbes
like epiphytic, endophytic, pathogenic, and mycorrhizal fungi [5], creating a tri-trophic
interaction. Microbes may modulate insect behaviour, such as attracting more insects
due to increased pheromone production, feeding behaviour, or perception of odour or
taste [6]. Microbes have the ability to alter insect metabolism and behaviour. The primary
or secondary metabolism of plants may be modulated by microbes. Microbes can alter
plant defence mechanisms against insects, which may be beneficial to either plants or
insects [2]. Endophytes associated with the plant may serve as insecticides or fungicides [7].
Feeding of Pseudomonas syringae pv. Tomato DC3000-infected tomato leaves were able
to reduce the growth of leaf-chewing caterpillars [8]. Generally, microbial communities
in plants are grouped into two major categories based on their locations: rhizospheres
(microbial populations present in below-ground tissues) and phyllospheres (microbial
communities present in above-ground tissues) [2]. Around 106–107 bacterial cells/cm2
can be observed in the leaf area [9], whereas g-1 of rhizospheric tissue contains 106–109

bacterial cells [10]. Microbes may be epiphytic, living on leaves, or endophytic, living
within leaves [9]. Together, these organisms play a critical role in plant health. We need to
understand these tripartite interactions between plants, pests, and microorganisms. The
current review focuses on major plant insect pests, the microbial population associated with
the phyllosphere and rhizosphere, and how said population affects plant–insect interaction.

2. Major Insect Pests to the Crop Plants

Insects are the major cause of global agricultural loss annually. According to FAO,
insect pests cause 40% of global yield loss which accounts for about USD 220 billion
(https://www.fao.org, accessed on 5 December 2022). It has been reported that crop plants
are attacked by more than 10,000 species of insects and 1000 species of nematodes among
them, although 10% are considered major insect pests. The situation has been gradually
aggravated due to rapid climate change. The massive mixing of pests and the introduction
of invasive insects into newer locations have also multiplied due to international travel
and exports. Climate change further alters the route of many migratory pests, and may
also alter the nature of pests. For example, in the cotton ecosystem, American and spotted
bollworms are now secondary pests, whereas caterpillars, pink bollworms, mirids, and
mealy bugs are now considered to be the emerging major pests [11]. Additionally, global
warming has developed conducive environments for many pests to infect in agricultural
and forest ecosystems of cooler Arctic, boreal, temperate, and subtropical regions. Fall
armyworms and desert locusts are gradually approaching these colder regions and impose
massive crop loss [12].

The insects infect the plants mainly for food, nutrition, and shelter for reproduction.
The majority of invertebrate Arthropods are characterized by joint legs, external skeletons,
and one pair of antennae. The majority of insects have four distinct developmental stages
called complete metamorphosis, e.g., egg, larva, pupa, and adult. In some sap-sucking
and chewing insects, the developmental stages are restricted to three distinct phases
e.g., egg, nymph, and adult [13,14]. In general, insects can thus be classified into the
following groups, (i) consume foliage for food, (ii) suck sap from leaves and stems for
nutrition, (iii) consume or tunnel roots and stems for shelter, laying eggs or food, and
(iv) feed on flowers and/or seeds [15]. Despite direct devastating roles, many insect
pests also harbour diverse secondary infections e.g., bacterial or viral infections inhabiting
particularly mouth parts and salivary glands of the infecting primary insects. Some insects
rely on internal tissues of different plant parts for their food, e.g., western flower thrips,
Frankliniella occidentalis (Pergande), is known to be an invasive pest for different food, fiber,
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and ornamental crops globally. These insects also act as a vector for the tospoviruses,
which acts as secondary infector [16]. Recently the draft genome of Frankliniella occidentalis
has been reported as being used to decode infection biology, control strategy, and vector
biology associated with thrips [17]. The other major group of plant insects belong to the sap-
sucking category (e.g., scales, leafhoppers, aphids). Scale insects are the Hemipteran group
of insects belonging to the Coccoidea, and have many unusual characteristics like sexual
dimorphism and sometimes sexual dichronism [18]. The mealybug (e.g., Planococcus ficus,
Planococcus citri, etc.), soft scale insect (Saissetia oleae), and armoured scale (Parlatoria ziziphi)
are some examples of devastating pests in this category for plants [19]. The mealy bugs
for cotton plants include, Phenacoccus solenopsis, Ferrisa virgata, Maconellicoccus hirsutus,
etc., among which P. solenopsis is the dominant species for cotton plants in the Indian
subcontinent [20]. It has been reported that the mango tree is also infected with the two
types of mealy bugs, Planococcus citri and Icerya seychellarum [21]. Leaf-hoppers are also
members of the Hemipteran group but belong to Cicadellidae which also causes massive
crop damage in the Indian subcontinent [22]. The leaf-hoppers generally attack woody
plants and damage plants in four major ways: destruction of leaf chlorophyll, sucking off
nutrients from plants, laying eggs on plants (particularly leaf lower surface), and acting as
a vector for many plant viruses [23]. Tea production is dramatically curtailed by green tea
leaf-hoppers [Empoasca (Matsumurasca) onukii Matsuda] in the tea-growing hilly regions [24].
On the other hand, the brown leaf-hopper (BPH) Nilaparvata lugens is considered the major
insect pest for rice (Oryza sativa). Next-generation sequencing-based analysis has revealed
that the internal genetic map, oxidative properties, and starvation stress response are the
major determinative factors in BPH and rice interactions [25]. The green leaf-hoppers
(Nephotettix cincticeps (Uhler)) can also infect rice plants. Recently some resistant varieties of
Oryza longistaminata (A. Chev. & Roehrich) against the green leaf-hoppers are reported [26].
Aphids are another group of sap-sucking insects causing huge damage to crop plants. They
are very small, pear-shaped, and have extraordinary reproductive ability. These insects
readily infect the soft tissue organs of plants, such as leaves and flowers. Excessive numbers
together weaken the plants by leaching excessive nutrients and the plants exhibit stunted
growth, yellowing, and curling of leaves, etc. [27,28]. Aphids (Aphis craccivora) are known to
damage chickpea plants across the Indian subcontinent (http://dalhangyanmanch.res.in).
Many works have been carried out to resist aphids and to understand the mechanism of
aphid interaction with plants. Unlike other insects, aphids also harbour different deleterious
plant viruses. Recently many novel viruses have been identified in aphids which could
be potential plant viruses e.g., chickpea chlorotic stunt virus (CpCSV), bean leafroll virus
(BLRV), beet western yellows virus (BWYV), soybean dwarf virus (SbDV), cotton leafroll
dwarf virus (CLRDV), cucurbit aphid-borne yellows virus (CABYV), and phaseolus bean
mild yellows virus (PhBMYV). Similarly, the Geminiviridae family includes chickpea
chlorotic dwarf virus (CpCDV), chickpea chlorosis virus (CpCV), chickpea red leaf virus
(CpRLV), chickpea yellows virus (CpYV), mastrevirus. Additionally, faba bean necrotic
yellows virus (FBNYV) (Nanoviridae), cucumber mosaic virus (CMV), and alfalfa mosaic
virus (AMV) (Bromoviridae) were also reported [29]. In rice, aphids are more likely to infect
the roots than shoot. Rhopalosiphum rufiabdominale (Sasaki) and Tetraneura nigriabdominalis
(Sasaki) were the two potent root-invading aphids for rice [30]. In the soil, the root infecting
aphid Rhopalosiphum rufiabdominale (Sasaki) shares other hosts. Roots of grasses and sedges
show a common association, but Cannabis sativa L has also been reported to be the host for
this aphid recently [31].

3. Molecular Mechanism of Plant–Insect Interplay

The primary requirement for any host-insect interaction is the successful establish-
ment and recognition of the insect on the respective plant host. Plants possess myriads
of receptors for the recognition of pathogens and pests. Insect recognition differs from
microbial pathogen recognition by plants. The insect pest resides on the plant surface and
causes mechanical damage simultaneously. The recognition of insects has been carried out
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by chemicals, especially the small polypeptides and fatty acid conjugates (FACs) predomi-
nantly present in the saliva and ovipositional fluid secreted by the insects [32]. Inceptins,
caeliferins, systemins are also recognition molecules of insects [33–35]. Systemin receptors
were first identified in tomato plants. Systemin is derived from the larger precursor peptide
and activated by the leucine-rich repeat receptor kinase (LRR-RK), SR 160, which in turn
homologous to Brassinosteroid Insensitive 1 (BRI1). The plants bear two distinct systemin
receptors SYR1 and SYR2 for herbivory [36]. In cowpea (Vigna unguiculata) an inceptin
receptor (INR), also in the class of leucine-rich repeats, was identified against armyworms
(Spodoptera exigua) [37]. There are some small precursor proteins (PROPEPs) that act as
an elicitor in insect herbivory. In Arabidopsis it has been shown that PEP receptors (PEPR1,
PEPR2, and PROPEP3) are strongly activated during insect herbivory [38]. Lectin-like recep-
tor kinase (LecRK) is also involved in insect herbivory. It was reported that oviposition fluid
or insect eggs of Pieris brassicae were recognised by LecRK 1.8 of Arabidopsis thaliana [39].
These receptors then transduce the signal in the intracellular milieu through different
signalling intermediates. Insect-derived elicitors e.g., FACs, β glucanase, and glucose
oxidase (GOX) are responsible for separate downstream signalling [40]. Insects usually
induce jasmonic acid (JA) mediated pathways; in some other cases salicylic acid-mediated
pathways were also documented [32]. The JA-dependent insect resistance was observed
in Arabidopsis thaliana against Egyptian cotton worms (Spodoptera littoralis Boisd.). The
coi1 mutant, with a deficiency in the JA synthesis, was insect-susceptible; contrarily, npr1
mutant with deficiency of SA production showed greater insect resistance [41]. On the
other hand, SA-mediated induction of TGA transcription factor and NPR1-dependent
pathogenesis-related protein (PR) formation in some cases restricts insect infection [32].
Precisely, insect eggs induced systemic response by SA and showed cross-tolerance to
several microbial as well as fungal pathogens [42]. Interestingly, it has been found recently
that Dorsal switch protein 1 (DSP1), an insect homologous protein of human high mobility
group box 1 (HMGB1), is responsible for immune response. SA interacts with this DSP1 and
hampers immune response in insects [43]. The induction of wound-induced protein kinase
(WIPK), SA-induced protein kinase (SIPK), and further activation of mitogen-activated
protein kinase (MAPK) cascade are operated to induce resistance response against insect
pests [44]. In a separate pathway, WRKY transcription factors (TF) are activated. WRKY
TFs are also involved in post-transcriptional and epigenetic regulation of insect herbivory
resistance response [45]. Reactive oxygen species (ROS) also play crucial roles in herbivory
signal transduction. It was observed that herbivore-associated elicitors (HAEs) can directly
induce NADPH oxidase-mediated ROS induction, which in turn activates calcium channels
and Ca+2 accumulation in the cytosol [35]. A chlorophyll fluorescence imaging-based
study confirmed increased levels of ROS and photosystem II (PSII) activity in potatoes in
response to sap-sucking insect Halyomorpha halys [46]. Such ROS production is intricately
associated with calcium-dependent signalling in response to insect pests [47]. This Ca+2
influx induces calcium-dependent protein kinase (CDPKs), calmodulin proteins, and cal-
cineurin to regulate defence response against herbivory [48]. Inversely, calcium sensor
proteins are also known to negatively regulate stress response by modulating hormonal
crosstalk [49] (Figure 1).
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4. Plant-Associated Microbiome
4.1. Microbiome of Phyllosphere

The aerial part of the plant, mainly the leaf surface where microbes are present, is
known as the phyllosphere [50]. In 1955, the term “phyllosphere” was introduced by plant
pathologist F.T. Last [51]. Microbiologist J. Ruinen described the phyllosphere as “the
external surface of the leaf as an environment for microorganisms” [52]. Morris stated that
“the phyllosphere is the microenvironment extended from the leaf surface outward to the
outer edge of the boundary layer surrounding the leaf and inward into the leaf tissues” [53].
According to Doan and Leveau [54], the phyllosphere consists of two interconnected but
distinct environments: “phylloplane” (leaf surface landscape) and “phyllotelma” (leaf
surface waterscape). The phyllosphere indicates the above-ground aerial part of the plant
composed of stem and leaf, which is the habitat for various microbes [55]. The phyllosphere
could cover one billion square kilometres [56]. Various microbes, including bacteria,
filamentous fungi, yeast, and viruses have been found in the zone of the phyllosphere [57]
(Table 1).

The average number of bacteria may be 106–107 cells/cm2 of leaf (http://eagri.org/
eagri50/AMBE101/pdf/lec19.pdf accessed on 2 March 2023). Bacteria may have a pos-
itive, negative, or neutral impact on the host plant. Proteobacteria (Alphaproteobacteria,
Betaproteobacteria, and Gammaproteobacteria), Actinobacteria, Firmicutes, and Bacteroidetes
are among them. Bacillus and Pseudomonas may be dominant genera [55]; in addition to
other genera of nitrogen-fixing bacteria, Phytomonas, Erwinia, Sarcina, Xantomonas, and
Gluconobacter have been observed on the surface of the plant [55,58]. Plant pathogens can
enter the inner leaf through stomata or wounds [4]. Bacteria in the phyllosphere have
a wide range of functions. Plant cell walls contain the methyl ester of pectin. Pectin
methylesterase naturally produces methanol from the hydrolysis of pectin methyl ester.
Methanol is produced by stomata and used as a carbon source by microbes in the phyllo-
sphere. The concentration of methanol in the phyllosphere varies during the light-dark
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cycle. The concentration of methanol was lower in the light period and higher in the dark
period. Plant leaf surfaces may be dominantly colonised by methanol-utilizing bacteria
known as pink-pigmented facultative methanotrophs (PPFMs). Some of them have the
ability to enhance plant growth as well as elevate crop yield [59]. Methylobacterium, a
methanol-using bacterium, may be present in the phyllosphere [60]. The phyllosphere
is also a habitat for methane-producing bacteria [61]. Isoprene-degrading bacteria were
discovered in the phyllosphere of the willow, Salix fragilis, a high-isoprene emitting plant
in the northern hemisphere, according to a DNA stable isotope probing (SIP) experiment.
The relative abundance of the bacterial taxa was obtained from 13C-labelled willow leaf
samples after a DNA-SIP experiment. They were Acidovorax, Mycolicibacterium, Variovo-
rax, Mycobacterium, Polaromonas, Hydrogenophaga, Ramlibacter, Rhodoferax, Streptomyces,
Bradyrhizobium, Pseudomonas, Methylobacterium, Mesorhizobium, Diaphorobacter, Comamonas,
etc. [62]. Isoprene-degrading bacteria like Rhodococcus and Variovorax were isolated from
the phyllosphere of a temperate, isoprene-emitting poplar tree [63]. According to the
report, Acinetobacter genera dominated the phyllosphere of the oil palm tree, followed
by Clostridium and Enterobacter [64]. Hence, microbes in the phyllosphere have a role
in reducing methanol as well as degrading isoprene. The phyllosphere bacteria may be
associated with the nitrogen cycle. A good number of chemolithoautotrophic ammonia
oxidizers (CAO) and chemolithoautotrophic nitrite oxidizers (CNO) were observed in the
phyllosphere of spruce trees in a forest ecosystem receiving high atmospheric nitrogen.
They were most likely present in the stomatal cavity [65]. When plants from Costa Rica’s
lowland tropical rainforest were studied, nitrogen fixation was found to occur primarily
in the leaves by microbes associated with epiphytes. Fixation took place primarily on
the surface of the leaves rather than the interior. It was likely mediated by cyanobacteria
associated with epiphytes. Along with cyanobacteria, diazotrophic proteobacteria may
be involved in nitrogen fixation [66]. Microbes in the phyllosphere can also use vitamins
by consuming pantothenic acid, -alanine, and other host plant precursors, Pantothenic
auxotrophic Methylobacterium sp. OR01 can grow in leaves [59]. Yeast is another member
of the phyllosphere, and can colonize the surface as well as internal tissues of the phyl-
losphere [57]. The study showed that the densities of the yeast, filamentous fungi, and
bacteria of the phyllosphere of sugar beet were 1010, 107, and 1011 CFU per gram of dry leaf,
respectively. Senescing leaves contain more yeast than mature and immature leaves [67],
and the abundance of yeast may vary with seasonal fluctuation in mature and immature
leaves. Fluctuating temperature, secretion of specific nutrients, and leakage of the plant
during various seasons and developmental stages contribute to the seasonal dynamics
of yeast. Competition for space, nutrients, degradation of mycotoxins and fungicides,
and interaction with host plants and microbes like bacteria and fungi may influence the
diversity and abundance of yeast [57]. Leaf epiphytic bacteria have the ability to cross the
cuticle and superficial tissue layer, and endophytic bacteria can migrate from root form
epiphytic, surface living bacteria [68]. Various factors are responsible for the microbial
community of the phyllosphere. Microbes of the phyllosphere face various stress conditions
like limited resources, heat stress, osmotic stress, exposure to UV light, and fluctuating
water availability [69]. Global warming also has an impact on the microbial community;
extreme temperatures may be responsible for lowering the relative humidity. As many
microbes cannot survive in a dry environment, plant surface microbes are influenced by
extreme temperatures and low humidity [70]. In the warming effect, Alphaproteobacteria
and Bacteroidetes were relatively less abundant, whereas Gammaproteobacteria, Actinobacteria,
and Firmicutes were most abundant. In addition, warming also caused a reduction in the
abundance of beneficial bacteria and enhanced pathogenic bacteria in leaf samples [71]. Air
pollution contributes to the number of living microbes in the phyllosphere. The number
and species composition of yeast and bacteria were observed to be altered in the microflora
of the phyllosphere of Tiladansia plants in a tropical urban environment compared with an
unpolluted plant. Nitrogen-fixing bacteria and fungi were found to be less affected [72].
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Leaf physiology also plays a pivotal role in the abundance and diversity of the microbial
population. Bacteria may develop larger-sized colonial associations on leaf surfaces [73].

Table 1. Major phyllosphere microbes.

Phyllosphere Microbes Examples Reference

Bacteria (considered to be the most
abundant microbes in phyllosphere)

Proteobacteria (Alphaproteobacteria, Betaproteobacteria, and
Gammaproteobacteria), Actinobacteria, Firmicutes, and
Bacteroidetes are common in phyllosphere

Thapa et al. [55]

Bacillus and Pseudomonas may be prevalent genera Thapa et al. [55]
Methylotrophic bacteria are prevalent in phyllosphere Sivakumar et al. [73]
Methane-producing bacteria are also present Iguchi et al. [61]
Bacteria involved in nitrogen cycle may be present in
phyllosphere including diazotrophic bacteria

Papen et al. [65],
Furnkranz et al. [66]

Bacterial pathogen may be present like Pseudomonas syringae Sivakumar et al. [73]
Biosurfactant producing bacteria may be present Sivakumar et al. [73]
Actinomycetes is also present in phyllosphere Sivakumar et al. [73]

Fungi

Epiphytic and endophytic fungi may be involved in
decomposition of litter, recycling of carbon and nitrogen.
Endophytic fungi may be involved in resistance against
biotic and abiotic stress

Sivakumar et al. [73]

Yeast like fungi and filamentous fungi are present Sivakumar et al. [73]
Genus of Aspergillus, Penicillium, Alternaria, Trichoderma,
Fusarium are observed Sivakumar et al. [73]

4.2. Microbiome of Rhizosphere

The rhizosphere is the narrow, dynamic region of the soil where microbial interac-
tion is prevalent under the influence of plant roots. [74,75]. The term “rhizosphere” is
derived from the Greek words “rhiza” and “sphere,” meaning root and field of influence,
respectively [76]. German scientist Hiltner defined the rhizosphere as “the zone of soil
immediately adjacent to legume roots that support the high bacterial activity.” [77]. The
rhizosphere is divided into three regions: endo rhizosphere, consisting of root tissue in-
cluding the endodermis and cortical layers; rhizoplane, consisting of the root–soil interface
where soil particles and microbes get adhered to the surface of the roots; and ectorhizo-
sphere, consisting of soil immediately adjacent to the roots. Various organic compounds
are released from the roots by secretion, exudation, and deposition, which makes the
rhizosphere a nutrient-enriched region of the soil. Root cap cells, root tissue, sloughed root
hairs, epidermal tissues, simple carbohydrates, amino acids, vitamins, plant hormones,
organic acids, sugar phosphate ester, phenolics, carbon-containing secondary metabolites,
proteins, enzymes, and polysaccharides are key ingredients of exudate by rhizodeposi-
tion. In addition, this enrichment obviously promotes the growth of various microbial
populations. Hence, the rhizosphere becomes a unique region in the soil and a separate
region from the bulk of the soil [76]. In addition to bacteria and fungi, the rhizosphere
contains oomycetes, nematodes, protozoa, algae, viruses, and archaea. The rhizosphere
microbiome becomes part of the complex food web. Some microbes from the rhizosphere
exert beneficial effects on plants. They are mainly plant growth-promoting rhizobacteria
(PGPR), nitrogen-fixing bacteria, mycorrhizal fungi, and protozoa (Table 2). In contrast to
pathogenic bacteria, oomycetes, and nematodes, pathogenic fungi can exhibit a negative
effect on plant growth. Rhizosphere microbes are responsible for the uptake of nutrients
like trace elements (iron). Low concentrations of phenolic compounds in exudates may
promote the conidial germination of pathogenic fungi [78]. Bacteria are more prevalent
microbes in this rhizosphere region [76]. The root tip zone, which has the highest sucrose
or tryptophan exudation, has a higher number of bacteria than the mature root zone, which
has a lower number of bacteria [74]. The more common genera found in the rhizosphere are
Pseudomonas, Bacillus, Azotobacter, Arthobacter, Rhizobium, Agrobacterium, Flavobacter, and
Micrococcus. Gram-negative, rod-shaped, non-sporulating bacteria belonging to Proteobac-
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teria and Actinobacteria are more commonly found in the rhizosphere, due to the utilisation
of root exudates. Aerobic bacteria become less abundant in the rhizosphere as oxygen
levels fall. Various strains of Bacillus are predominant among the Gram-positive bacteria
in the rhizosphere. It may be the result of the Bacillus’ ability to form endospores and the
inhibition of competitors by its production of antimicrobial substances [76]. Plant growth-
promoting rhizobacteria (PGPR) are bacteria that promote plant growth, also known as
plant health-promoting rhizobacteria (PHPR) and yield-increasing bacteria (YIB). Genera
of Azospirillium, Arthobacter, Acinetobacter, Bradyrhizobium, Pseudomonas, Bacillus, Erwinia,
Flavobacterium, and Rhizobium have been associated with the rhizosphere and exhibit a
positive effect on plants. They carry out various functions for improving plant health, like
nitrogen fixation, phosphate solubilization, and the production of phytohormones. They
also serve as biocontrol agents through competition, inducing resistance, cell wall lysis,
and antibacterial mechanisms [79]. Rhizosphere bacteria can synthesise volatile organic
compounds, which have an inhibitory effect on pathogens [80]. The bacterial population
in the rhizosphere is determined by the plant itself due to exudate secretion, age, and
developmental stage. These factors, in addition to soil pH, salinity, nutrient concentra-
tion, organic matter, cropping, and fertiliser and pesticide application, all contribute to
the composition of the bacterial population in the rhizosphere [76]. In addition to PGPR,
plant growth-promoting fungi (PGPF) are also present in the rhizosphere [81]. PGPFs are
non-pathogenic, soil-dwelling microbes; they can colonise the root and are involved in
improving plant growth. Many PGPFs may be involved in inducing resistance against
pathogens. Important PGPFs in the rhizosphere are Penicillum, Trichoderma, Fusarium, and
Phoma [82]. PGPFs may help in root development, promote flowering, stimulate photo-
synthetic ability, and increase crop yield [83]. Some rhizosphere fungi are responsible for
producing antimicrobial compounds (ex., Tricoderma sp.) [78]. Arbuscular mycorrhizae
fungi (AMF), an endotrophic mycorrhiza mostly associated with terrestrial plants, play
an important role in the rhizosphere region [84]. AMF can obtain carbohydrates from
plants and provide minerals like phosphorus and nitrogen to plants [85]. Exudates from
mycorrhizal roots also contribute to the proliferation of soil bacteria [83].

Table 2. Main rhizosphere microbes.

Rhizosphere Microbes Examples Reference

Bacteria

More common genera found in the rhizosphere are Pseudomonas, Bacillus,
Azotobacter, Arthobacter, Rhizobium, Agrobacterium, Flavobacter,
and Micrococcus

Prashar et al. [76]

Plant growth-promoting rhizobacteria (PGPR) are bacteria that promote
plant growth. Nitrogen fixing bacteria are present.

Shaikh et al. [79]
Mendes et al. [78]

Fungi Plant growth-promoting fungi (PGPF) are also present in the rhizosphere Rashid et al. [81]
Mycorrhizal fungi are present in rhizosphere Cui et al. [84]

4.3. The Effect of Phyllosphere and Rhizosphere Microbiome on Plant–Insect Interaction

Plants are also habitats for various microbes. Soil bacteria are more diverse than
phyllosphere bacteria, and the highest richness is observed in soil bacteria. A mutualistic
relationship exists between plants and the bacterial population. Although some bacteria
may be pathogenic [86]. Root exudate and host genome-dependent factors are key compo-
nents for the composition of the bacterial population in the rhizosphere. In contrast, the
phyllosphere microbial population is characterised by the immediate leaf surface. Plants
can also interact with insects. Interactions between insects and plants have been accounted
for since more than 400 million years ago. Microbes can either alter the primary or sec-
ondary metabolism of plants, and the defence system of plants, or directly or indirectly
affect insects [2]. Instead of bidirectional interactions made by microbes with the host plant
or microbes with insects, three-way interactions among microbes, plants, and insects have
been observed. Induction of phytohormones like jasmonic acid (JA), salicylic acid (SA),
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ethylene (ET), plant defensive proteins, and the biosynthesis of secondary metabolites are
main players in providing defence against leaf-chewing and phloem-feeding insects [81].

4.3.1. Phyllosphere Interaction

Beetles are important plant pathogen vectors. Phyllosphere microorganisms also play
a significant role in the interaction of beetles with plants. The presence of the rust fungus
Melamposora allii-fragilis in the willow hybrid Salix x Cuspidata influenced the feeding and
oviposition behaviour of the willow leaf beetle Plagiodera versicolora. Rust-infected leaves
were free of adult willow beetles because adult willow leaves were kept away from feeding
and ovipositing on rust-infected leaves [87].

Leaf fungi can also affect the performance of the insect. The effect of birch rust
fungi Melampsoridium betilunum on autumnal moth larvae on mountain birch trees was
investigated to know the performance of autumnal moth larvae. The number of rust
fungi on the leaves of birch trees was a key determinant of the performance of moth
larvae. One tree had no visible fungal infection, while another had low infection and
still another had high infection. The highest and lowest pupal weights were found in
an asymptomatic tree and a high-infection tree, respectively [5]. It was reported that
Ostrinia nubilalis, the European corn borer, was prevented from ovipositing on the maize
leaf surface if Sporobolomyces roseus, a leaf-colonising epiphytic yeast, was sprayed over the
leaf surface [88]. Infection of Fusarium verticillioides, a maize pathogen, is accelerated by the
European corn borer [89].

4.3.2. Effect of Plant Growth Promoting Rhizobacteria (PGPR,)/Rhizosphere Bacteria
on Plant–Insect Interaction

The effect of rhizobacteria on insects may differ, depending on the specific insect.
Different outcomes may be obtained when the same rhizobacteria treatment takes place
on different insects. The insects may be negatively affected, positively affected, or not
affected at all. Plant–insect interaction may be affected by inducing systemic resistance
(ISR) triggered by PGPR. PGPR, Pseudomonas fluorescens could induce systemic resistance
against chewing insects in Arabidopsis thaliana. While Pseudomonas fluorescens exerted a
positive effect on the performance including weight gain of generalist aphid Myzus persicae,
no effect was observed on the crucifer specialist aphid Brevicoryne brassicae in Arabidopsis
model. This data clearly shows that rhizobacteria could induce not only resistance but also
systemic susceptibility to insects [90].

PGPR mediates resistance against insect herbivores through (ISR). Priming is a key
event for ISR [91]. Rhizobacterium, Pseudomonas fluorescens strain SS101 was observed
to exhibit resistance against the leaf-chewing insect pest Spodptera exigua in Arabidopsis
thaliana. This resistance was mediated through indolic glucosinolate [92]. The presence
of PGPR Pseudomonas putida and Rothia sp reduced the negative impact of an inoculated
Spodoptera litura tomato plant. Plant biomass was increased by 60% and yield was en-
hanced by 40% in insect-inoculated plants in the presence of PGPR. In PGPR-treated plants,
increased proline production, antioxidant enzyme activation, phenolic content, and chloro-
phyll content were observed [93]. Higher weight, a significantly lower mortality rate,
and a high pupation rate of beet armyworm, Spodptera exigua larvae, were observed in
untreated cotton plants more frequently than in PGPR-treated plants. Plants treated with
PGPR also produced more JA and expressed more JA-responsive genes. An enhanced
level of the insecticidal compound gossypol and higher expression of genes involved in its
biosynthesis was also observed in plants by rhizobacteria [94]. Application of both PGPR,
Bacillus sp. strain 6 and Pseudomonas sp. strain 6K, was able to generate good productivity
in wheat with the lowest aphid population, the highest plant height, and the highest grain
yield [95]. Whitefly (Bemicia tabaci) is an important pest for many plants and can infect
around 600 plant species. It can form chlorosis in infested leaves [96]. The report also
showed that the development of whitefly (Bemicia tabaci) was retarded in tomato plants in
the presence of PGPR Bacillus subtilis [97]. In contrast to this result, pre-inoculated PGPR,
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Pseudomonas fluorescens WCS417r promoted the performance of whitefly (Bemicia tabaci), a
phloem-feeding insect, in the tomato plant. It might be due to the lower ability of bacteria
to activate plant defence mechanisms [96]. A significant decrease in the population of
the striped cucumber beetle Acalyma vittatum and the spotted cucumber beetle Diabrotica
undecimpunctata howrdi was observed when systemic resistance was promoted by PGPR
strains such as P. putida strain 89B-27, S. marcescens strain 90–166, Flavomonas oryzihabitans
strain INR-5, and Bacillus pumilus strain INR-5 in cucumbers. Moreover, the efficacy of
S. marcescens strain 90-166 was better than the others and more effective than the insecticide
esfenvalerate [98]. Another report showed that the rhizobacterium Pseudomonas simiae
WCS417r elevated ISR against the leaf-chewing insect, Mamestra brassicae, in Arabidopsis
thaliana. The JA and ET pathways were activated to promote resistance. In addition, ca-
malexin and aliphatic glucosinolates (GLS) were synthesised by rhizobacteria, and they
had the ability to inhibit the herbivore-mediated level of indole GLS. After rhizobacteria
colonised Arabidopsis thaliana roots, the signalling pathway was altered by prioritising
expression of genes in the JA/ET-dependent ORA59 branch over the JA-dependent MYC2
branch. Hence, the interaction between plant and insect was modified due to the colonisa-
tion of rhizobacterium at the level of transcription and the performance of the insect and
plant chemistry. Hence, it is clear that the bidirectional interaction of plants and rhizosphere
bacteria determines the outcome of the plant–insect interaction, leading to the conversion
of bidirectional interaction to tripartite interaction [99]. The weight of Mamestra brassicae
caterpillar larvae was reduced after rhizobacteria were inoculated into Arabidopsis roots.
Treatment with rhizobacteria exerted a negative effect on Mamestra brassicae in soil and sand
mixtures, whereas the result was variable only in soil. It is proposed that rhizobacteria–
plant–insect interaction is also dependent on soil composition [100]. A significant reduction
in tomato production has been associated with Spodoptera litura. Tomato rhizosphere bac-
teria exhibited resistance against the tobacco cutworm, Spodoptera litura, by inducing a
JA-dependent pathway in tomato plants. Four defence-related genes, allene oxide cyclase
(AOC), allene oxide synthase (AOS), lipoxygenase D (LOXD), and proteinase inhibitor II
(PI-II), were found to be induced by bacterial isolates after six hours of inoculation with
insects. The expression levels of the JA biosynthesis genes AOC, AOS, and LOXD were 2.2,
1.7, and 2.7-fold, respectively [101]. AMF are members of the Phylum Glomeromycota and
can interact symbiotically with more than 80% of terrestrial plants. Inoculation of AMF
(Glomus intraradices) enhanced tolerance against Spodoptera litura in black gram [102]. AMF
exerted resistance against gypsy moth larvae by reducing larval growth and survival. The
body weight, length, and head capsule width of the 4th and 5th instar gypsy moth larvae
were significantly reduced by AMF-inoculated poplar plants. In this way, AMF protected
poplar seedlings. Metabolites with insecticidal activity like coumarin, stachydrine, vanillic
acid, and abietic acid were found to be increased in AMF-infested poplar plants [103].
Inoculation of AMF into plants may affect the interaction between aboveground plants
and pollinators. The report showed that visitation of all pollinators did not depend on
AMF treatment, but there was a taxon-specific response. The behaviour of bumblebees,
honeybees, and Lepidoptera varied with AMF treatment [104].

In summary, microbes associated with the phyllosphere and rhizosphere have positive
and negative effects on insects. This may lead to the development of resistance to insects in
plants. Several mechanisms are regulated by microbes for resistance (Figure 2).
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5. Plant–Microbe Interaction Shaping the Ecological Dynamics

In plant immunity, adaptive reactions are paramount due to the large absence of hu-
moral reactions. In the ecological niche distinction between pathogenic and non-pathogenic
microbes by plants is very interesting. The microbes possess structural components specific
to the entire group (e.g., chitin for the fungi) called pathogen-associated molecular patterns
(PAMP) or microbe-associated molecular patterns (MAMP). These PAMPs/MAMPs are
recognized by cognate receptors found on the host cell surface of plants, called pattern
recognition receptors (PRRs). The PAMP–PRR interaction determines successful plant–
microbe interaction. Now, pathogenic microbes possess effector molecules that lead to
toxicity due to particular diseases [105]. The arms race between plants and microbes either
beneficial or harmful instigates several metabolite syntheses in plants. The induction of
secondary metabolites due to plant–microbe interaction is highly evident in different stud-
ies [106]. The functional characterization of bacteriomes and associated metabolites have
been studied in relation to plant–insect interaction [107]. The secreted metabolites from
the root have changed the rhizosphere microbiota [108]. These findings would bridge a
huge knowledge gap in communication between plants and microbes. This will not only
provide novel information on plant–microbe interplay but have immense application in
human welfare and animal sciences too in the future.

6. Conclusions and Future Remarks

There are two types of tri-trophic interactions between plants, insects, and microbes.
Microbe-mediated plant–insect interactions and insect-mediated plant–microbe interactions.
In this review, we discussed the effects of plant microbes on plant–insect interactions. Plant-
associated microbes have positive and negative effects on insect–plant interactions. The
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development of susceptibility to insects may occur as a result of the positive effect. In
contrast, plants show resistance to insects under the influence of microbes. This result
has another implication for the agricultural field. Microbes from the phyllosphere and
rhizosphere have been studied for their ability to control insects in plants. They can be used
as bioprotectants for plants against insects. Since insects are plant pests, they cause major
crop losses worldwide. This eco-friendly, natural system based on microbes offers several
advantages over conventional insecticides. The development of insecticide resistance is
eliminated. The environment is not polluted by the use of microbes. Therefore, knowledge
of the interaction between plants, insects, and microbes is crucial for maintaining plant
health and developing bioinsecticides using microbes associated with plants. Furthermore,
because specific pollinators may visit AMF-treated plants on a regular basis, they receive
much more attention in the field of pollination. This field can be explored to enrich plant
pollination chemistry. Hence, tri-trophic interaction among plants, insects, and microbes is
essential for maintaining plant health as well as pollination chemistry.
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