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Abstract: Since 2011, the distribution, abundance, and composition of holopelagic Sargassum spp.
(sargasso) have changed by the emergence of the Great Atlantic Sargasso Belt (GASB) in the northern
tropical Atlantic. We expected that the north of the Cuban coast would receive sargasso from both
the original Sargasso Sea and the GASB. We systematically monitored six beaches on the NW coast of
Cuba to assess changes in sargasso composition from June 2019 to June 2021. During landing months,
mean Sargasso wet biomass was at 1.54 kg/m? (SE: 0.7), which was considerably lower than the
sargasso on the Atlantic coasts directly impacted by GASB. Eleven out of 13 landings occurred in
the autumn-winter seasons 2019-2020 and 2020-2021, with a dominance of S. natans I (accounting
for 41-63% of total biomass), followed by S. fluitans III (25-36%) and S. natans VIII (12-31%). This
composition is similar to those observed on the Sargasso Sea. During this season, dominant winds
(>14 km/h) came from northern (N), eastern (E), and east-northeastern (ENE) directions. In May and
August 2020 (spring-summer season), S. fluitans IIl dominated (52-56%), followed by S. natans VIII
(33—43%) and S. natans I (5-12%). This composition is similar to those observed on GASB-impacted
Atlantic coasts in the spring-summer seasons (April to September). During this season, dominant
winds (>20 km/h) came from eastern (E) and east-northeastern (ENE) directions. Thus, the NW
Cuba’s morphotype composition suggests that landings have different origin sources depending on
season and specific meteorological and oceanographic conditions.
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1. Introduction

Holopelagic Sargassum species (S. fluitans and S. natans; sargasso from hereon) are
free-floating brown macroalgae that populate the open ocean transported by winds and
currents [1,2]. These macroalgae present elongated branching structures adorned with
small bladder-like appendages that promote buoyancy [3,4]. They have existed in the
northern Atlantic for at least centuries, concentrated in the Sargasso Sea, as evidenced by
historical records from early explorations and maritime history [3]. Sargasso has not been
contained absolutely in the Sargasso Sea, as evidenced by the Sargasso Loop System [5],
which has usually caused minor landings on the coasts of NW Caribbean islands and
mainland and the Gulf of Mexico (Figure 1). Pelagic masses of these species support a
biodiverse community by providing sustenance, refuge, and protection to many organisms,
such as fish, sea turtles, and invertebrates [6].

The distribution and abundance of sargasso in the Atlantic Ocean have changed since
2011, with the formation of the Great Atlantic Sargasso Belt (GASB) in the northern tropical
Atlantic [7,8] (Figure 1). The proliferation of these macroalgae in the GASB has presented
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numerous challenges, such as excessive accumulations detrimentally impacting coastal
ecosystems and communities reliant on tourism [9-11].

Sargasso exhibits distinct morphological forms, first defined by Parr in 1939. Present-
day pelagic masses contain a mixture of distinct forms with the dominance of S. fluitans
III, S. natans 1, and S. natans VIII, and their relative abundance varies across regions,
seasons, and years [12,13]. Studies have revealed clear genetic differentiation among the
species and morphotypes [14,15]. They also can differ in resident fauna [13,16], chemical
composition [17-23], and growth rates [24-26].

Various studies have quantified changes in the composition of beached sargasso on
the Atlantic coasts, which is more feasible than studying the pelagic masses in the open
ocean [21,27-30]. We conducted systematic beach monitoring from 2019 to 2021 to quantify
changes in the composition of holopelagic sargasso on six beaches along the NW coast
of Cuba (Figure 1). This coast likely receives sargasso from the Sargasso Sea, the Gulf of
Mexico, and GASB (Figure 1), which may be reflected in the specific composition.

@D and % collection site

GASB

—» current

Sargasso
Loop

90°W

Figure 1. Potential distribution of holopelagic Sargassum spp. in the northern tropical and subtropical
Atlantic (GASB after [31]; Sargasso Sea based on https://oceanfdn.org/sargasso-sea/, accessed on
13 August 2023), with approximate significant currents (A indicating the Antilles current) and the
sargasso loop (after [5]). GASB Great Atlantic Sargasso belt, NERR North Equatorial Recirculation
region.

2. Materials and Methods
2.1. Beach Surveys

The study was conducted on six beaches on the NW coast of Cuba (Table 1), exposed
to prevailing strong winds from the north during the winter and easterlies throughout the
rest of the year [32]. During the study period, no hurricanes passed near the study area. A
50 m measuring tape was positioned parallel to the shoreline in the intertidal zone, and
five points were selected randomly along the tape, replicating the process along the whole
length of each beach (see Table 1). Sargasso was sampled within a 1 m? quadrant at each
point. All identifiable fresh, golden-colored sargasso was collected, taken to the laboratory,
and separated by morphotypes following [3,12]. The wet weight of each morphotype per
sample was measured using an OHAUS spring scale after removing excess water with a
towel. Surveys were conducted monthly from June 2019 to June 2021.
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Table 1. Characteristics of the beaches surveyed along the NW Cuban coastline. N number of samples

collected monthly.
. Length of the Supralittoral Mean (+SD) Biomass
Beach Coordinates Beach (m) Composition N (wet kg m—2)
iy 23°09'47" N,
Cojimar 80°17/38" W ~370 Sandy 25 1124+ 04
23°10'36" N,
Bacuranao 82°14/30" W ~319 Sandy 25 135+ 0.8
. 23°10'50" N,
Tarara 82°12'11" W ~500 Sandy 35 244+ 1.1
. 23°10'45" N
Mégano 82°11/53" W ~500 Sandy 35 225+1.2
. 23°10'41” N
Santa Maria 80°11/42" W ~3000 Sandy 35 245+ 14
e 23°6'49" N
Paseo Maritimo 80°06/24" W ~350 Rocky 25 1.18 £0.75

2.2. Data Analysis

The monthly mean biomass and relative abundance of the sargasso morphotypes
were calculated for each beach. Possible differences in the biomass during the landing
months were tested with a one-way ANOVA. A Pearson Correlation test assessed the
possible relation between biomass and wind speed or wave height. Data on wind speed
and direction, as well as wave height and direction, were collected from the Windguru
website (https://www.windguru/cz/ accessed on 14 August 2023) for the day before
sampling. This information was obtained from the GFS (Global Forecast System) model
with a resolution of 27 km and was measured four times per day (00 UTC, 06 UTC, 12 UTC,
and 18 UTC). A significance level of 0.05 was used for all tests. All analyses were performed
in R [33]. The data complied with the assumptions of homogeneity of variances (Levene
test) and normality (Shapiro-Wilk test).

3. Results

Sargasso landed in NW Cuba in 13 out of the 25 monthly surveys conducted from
June 2019 to June 2021 (Figure 2). No differences in biomass were found during the landing
sampling dates (df = 13, F = 1.34, p = 0.25) (Table 2). The mean sargasso wet biomass during
the landing months was 1.56 kg m? (SE: 0.4) and was composed of the three commonly
occurring morphotypes that have been reported in the Caribbean (Supplementary Table S1).

The morphotype composition of beached sargasso in NW Cuba was relatively consis-
tent during the autumn-winter season of 2019-2020 and 2020-2021, when the dominant
morphotype was S. natans I (% biomass range: 41-63%), followed by S. fluitans III (25-36%)
and S. natans VIII (12-31%). The composition was atypical in the study area in May and
August 2020 (spring-summer season), when S. fluitans Il became dominant (52-56%),
followed by S. natans VIII (33-43%) and S. natans 1 was rare (5-12%) (Figure 2).

The biomass of sargasso in NW Cuba was strongly correlated with wind speed (df = 23,
p < 0.000, R = 0.81) (>14 km/h) and moderately correlated with wave height (df = 23,
p <0.000, R = 0.67) (>0.8 m), coming predominantly from the north, east and east-northeast
directions (Table 2).
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Figure 2. Relative abundance of each holopelagic Sargassum morphotype beached at the northwestern

coast of Cuba. The absence of a bar indicates that no sargasso was found.

Table 2. Means (+SE) of sargasso wet biomass, wind speed (km/h), wave height (m), and direction of
prevailing winds and waves during the sampling period (June 2019 to June 2021) in the northwestern
coast of La Habana, Cuba. Data on meteorological variables was obtained for the day before sampling.
nd: No wind or wave direction was detected due to weak winds.

. Wet Biomass Wind Speed Prevailing Wind . Prevailing Wave
Sampling Date (kg m?) (km/h) b Directiong Wave Height (m) Directiong
20 June 2019 0 9+11 E 04+02 E
22 July 2019 0 122 +£12 SE 07+01 E
25 August 2019 0 926 +15 E 05+0.1 E
21 September 2019  0.50 £ 0.16 185+ 0.5 ENE 1.7+£03 ENE
25 October 2019 0.81 £0.21 18.13 £ 0.4 E 11403 E
22 November 2019 0.90 & 0.35 145 +2.1 ENE 09+02 ENE
22 December 2019 0.99 £+ 0.34 21.5+1.2 ENE 09+03 ENE
22 January 2020 1.70 £ 0.46 18.75 £ 1.1 N 1.7+03 N
23 February 2020 1.69 +£0.25 195+0.3 NNE 1.34+0.2 NNE
21 March 2020 2.39 £0.24 18 £1.12 E 1.5+0.3 E
22 April 2020 0 87+11 nd 0401 w
15 May 2020 0.90 +0.30 21.75+2.3 ENE 240 ENE
22 June 2020 0 95+12 E 0401 E
20 July 2020 0 11+£21 E 0.85+0.1 E
25 August 2020 217 +0.8 255+23 E 25+11 E
22 September 2020 0 525+0.3 nd 0.45+0.1 N
20 October 2020 1.63 £0.34 1825+ 2.1 E 0.8+0.1 ENE
20 November 2020  1.83 & 0.68 2425+ 1.7 ENE 25+02 ENE
18 December 2020 0 625+ 14 NNW 0.43 £0.1 NNW
24 January 2021 0 608 nd 0.1+0.01 nd
17 February 2021 0 7.25+0.7 S 0.6 £05 S
13 March 2021 1.88 £ 0.62 19+11 ENE 14+13 ENE
24 April 2021 2.06 = 0.51 1474 £ 1.6 ENE 04+02 ENE
16 May 2021 0 12+11 ENE 0.8+02 ENE
17 June 2021 0 6.25 £ 0.6 nd 0.23 £0.01 nd
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4. Discussion

The mean wet biomass that landed on the NW Cuban coast was considerably lower
than that reported for other regions affected by massive landings from the Great Atlantic
Sargasso Belt (GSAB). For example, the mean wet biomass accumulation of stranded
sargasso was reported at 98 kg m? at Atalaia Beach, Brazil, in the peak event of 2015 [34], at
42.0 kg m? (SE: 6.7) in the Mexican Caribbean in August 2018 [27], and at 95 kg m? in the
Costa Rica coast in March-April 2019 [29]. The stranded biomass recorded in NW Cuba was
more like that documented on the coast of Florida (4.0 kg m?) in April 2019 [28]. According
to [28], the geographical location of the Floridian and Gulf of Mexico coasts may favor
lower landings of sargasso, which could extend to include the NW Cuba coasts. In addition,
the low landing biomass remained relatively constant throughout the study period, which
suggests that the NW Cuba coast receives low quantities of sargasso independently of the
season and possible distinct origin source.

The dominance of S. natans I documented in NW Cuba (>45%) during most beaching
events is consistent with that reported by [3] and [12-14] for the Sargasso Sea, where this
morphotype is dominant, representing from 43-90% of the biomass. In contrast, it differs
from reports documented in other sites affected by massive sargasso landings from the
GASB, where S. fluitans 111 is usually the dominant morphotype [27,28,30]. For example, in
the Mexican Caribbean, monthly surveys of beach cast sargasso from 2016 to 2020 showed
that ~60% of the biomass in most of the monitoring months was accounted for by S. fluitans
III, whereas S. natans 1 was less common, except for one landing event during March
2019 [27]. S. fluitans III was also dominant in samples from Florida and the Bahamas from
2019 to 2021 (50% and 55%, respectively) and Barbados from 2021 to 2022 (80%) [28]. The
dominance of S. natans I in NW Cuba also differs from the composition found in 2014-2015
in the Tropical Atlantic, the Eastern Caribbean, and the Antilles Current, where S. natans
VIII was more abundant (>85%) [12,13] also found low abundance of S. natans I in the
Tropical Atlantic, the Greater Caribbean, the Gulf of Mexico, and the North Equatorial
Recirculation Region (NERR).

The contrasting morphotype composition of landings in NW Cuba with time could
indicate distinct origin sources, as the proximity to the sargasso source can influence the
morphotype composition and the accumulation level of the landings [28]. Landings of
sargasso in northern Cuba coasts have been historically associated with the Sargasso Sea and
its proximity [35-39]. Various studies have documented low landings (0.73 & 0.54 kg/m?)
in the winter season (October to March; sometimes extended from September to April)
when winds had velocities of >10 km/h and wind and wave directions from the N, E,
and ENE, associated with the presence of cold fronts and the influence of Continental
Anticyclone [35-39]. In addition to currents, windage has been found to be relevant for
sargasso transport [40], and in our study, landings were strongly correlated with wind
speed > 14 km/h and wind and wave directions mainly from N, E, and ENE being
consistent during the 2019-2020 winter season but not as much in the 2020-2021 winter
season. Probably, the occurrence of weak winds < 8 km/h and wind and wave direction
from NNW and S in November 2020, December 2020, and January 2021 did not promote
landings in this winter season.

In both May and August of 2020, the NW Cuba coasts were dominated by S. flui-
tans IIl and S. natans VIII. During the spring-summer season (April to September), when
GASB tends to be more abundant, coasts that commonly do not receive sargasso from
the GASB may receive biomass that did not follow the main trajectories of the Caribbean,
Caiman and Yucatan, Loop Currents, and Gulf Stream (Figure 1). Probably, sargasso
from the GASB may have reached the NW Cuban coast in the summer of 2020 through
similar transport ways. Satellite images did not show important sargasso biomass near
Cuba’s NW coast during the months when S. fluitans III was the dominant landing mor-
photype (https://optics.marine.usf.edu/projects/SaWS.html, accessed on 11 September
2023). However, small isolated and scattered rafts are not detected using satellites, and
according to Ody et al. (2019) [41], small-size rafts (~30 cm) represented 14% of the rafts
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observed in situ surveys in the central Tropical North Atlantic in the summer of 2017, and
that they were more abundant in the northern part of the eastern Caribbean. Alternatively,
sargasso from the GASB may have been transported to the NW coasts via the Antilles
Current and trade winds; further modeling and tracking analysis may discern the possible
routes of transport of sargasso onto the Cuban coasts. Thus, the NW Cuba’s morphotype
composition suggests that landings have different origin sources depending on season
and specific meteorological and oceanographic conditions. In the winter, the NW Cuban
coast likely received sargasso from the Sargasso Sea (S. natans I dominated), whereas in the
summer months, sargasso likely came from the GASB (S. fluitans III dominated).

Landings of sargasso are irregular and unpredictable [42,43]. Climate change is
causing anomalous temperatures, heatwaves, and abnormal meteorological conditions [44],
while species/morphotypes of sargasso exhibit varying thermal tolerances and growth
rates [24-26]. Consequently, the composition and abundance of beached and oceanic
sargasso (in both the Sargasso Sea and GASB) are likely subject to ongoing changes. Before
2011, offshore surveys by [3] indicated that S. fluitans Ill and S. natans I were the dominant
species in the Atlantic Ocean, with S. natans VIII being rare. Post-2011, various studies
have documented a high dominance of S. natans VIII in the Atlantic Ocean, except in
the Sargasso Sea where S. natans I has remained dominant, though its composition is
increasingly mixed [12,13]. Ongoing monitoring of the specific composition of sargasso
throughout the northern tropical Atlantic will aid in understanding the fluxes of sargasso
in the northern tropical Atlantic.
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www.mdpi.com/article/10.3390/phycology3040027/s1, Table S1. Spatial variability of the holopelagic
sargasso morphotypes biomass (Mean + SD) during the landings months (N = 13) for the sur-
veyed beaches.
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