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Abstract: We carried out a local comparison between two ninth convergence order schemes for
solving nonlinear equations, relying on first-order Fréchet derivatives. Earlier investigations require
the existence as well as the boundedness of derivatives of a high order to prove the convergence of
these schemes. However, these derivatives are not in the schemes. These assumptions restrict the
applicability of the schemes, which may converge. Numerical results along with a boundary value
problem are given to examine the theoretical results. Both schemes are symmetrical not only in the
theoretical results (formation and convergence order), but the numerical and dynamical results are
also similar. We calculated the convergence radii of the nonlinear schemes. Moreover, we obtained
the extraneous fixed points for the proposed schemes, which are repulsive and are not part of the
solution space. Lastly, the theoretical and numerical results are supported by the dynamic results,
where we plotted basins of attraction for a selected test function.

Keywords: Banach space; Newton’s scheme; local convergence; order of convergence; efficiency
index

1. Introduction

Let F : Ω ⊂ E1 → E2 be an operator, where E1 and E2 are Banach spaces and Ω 6= φ is
an open convex subset of E1. F is a Fréchet differentiable operator at each point of Ω. We
use this scheme to find a solution x∗ of the nonlinear operator equation in the form

F(x) = 0. (1)

Newton’s scheme is most commonly used for solving such equations. However, it is
only of order two under some conditions ([1–3]). It is defined as follows

xn+1 = xn − F′(xn)
−1F(xn), n = 0, 1, 2, · · · . (2)

There are several papers on the variation or modification of Newton’s scheme in
real ([1,4]) and in Banach space ([5,6]) to achieve a higher order.

A plethora of iterative scheme of convergence orders three or higher [7–14] have been
developed in the literature provided that E1 = E2 = RJ . Third convergence order schemes,
each involving two linear mapping inversions, are given by Cordero and Torregrosa [15],
Homeier [9], Grau- Sanchez et al. [16] and Noor and Waseem [17].

Cordero et al. [18] developed a fourth-order converging scheme involving the compu-
tation of two operators, two derivatives (first) and one linear mapping inversion. Sharma
and Gupta provided in [19] a fifth convergence order scheme requiring the evaluation
of two operators, two derivative (first) and two linear operator inversions. Other such
schemes can be found in [20] and the references therein. The convergence orders can be
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extended further if multistep schemes are introduced involving more than two or three
steps. Let us revisit two such schemes as follows:

Let k be a natural number; H1 and H2 denote the iteration function of order q. Define
the k step schemes for each n = 0, 1, 2, · · · ,

x0 ∈ Ω,
yn = xn − F′(xn)−1F(xn),
zn = H1(xn, yn),
z(1)n = zn − ψ1(xn, yn)F(zn),
. . . . . . . . . .
z(k−1)

n = z(k−2)
n − ψ1(xn, yn)F(z(k−2)

n ),
xn+1 = z(k)n = z(k−1)

n − ψ1(xn, yn)F(z(k−1)
n ),

(3)

and 

x0 ∈ Ω,
yn = xn − F′(xn)−1F(xn),
zn = H2(xn, yn),
z(1)n = zn − ψ2(xn, yn)F(zn),
. . . . . . . . . .
z(k−1)

n = z(k−2)
n − ψ2(xn, yn)F(zn)(k−2),

xn+1 = z(k)n = z(k−1)
n − ψ2(xn, yn)F(zn)(k−1),

(4)

where we define An = 3F′(yn) − F′(xn), Bn = F′(yn)−1F′(xn)F′(yn)−1 + F′(xn)−1,
ψ1(xn, yn) =

1
3 (4A−1

n + F′(xn)−1) and ψ2(xn, yn) =
1
2 Bn.

Notice that both the schemes require k function evaluations and two inverses per
complete step. The convergence order q + 3k is established by Xiao and Yin in [21,22], re-
spectively. However, there exist limitations restricting the utilizations of the aforementioned
schemes. Below is a list.

[l1]—The boundedness and existence of at least F′, F(2), F(3), F(4) and even higher
orders is assumed although only F′ is on these schemes. There even exist equations on the
real line, such as the results in the previous references, which cannot assure the convergence
of the schemes to a solution x∗ ∈ Ω of the equation F(x) = 0. Let Ω = [−0.45, 1.45].

Define the function F : Ω→ < as

F(t) =
{
−t4 + t5 + 2t3lnt, f or t 6= 0,
0, f or t = 0

The definition of the function F gives that F′′′(t) = 22− 24t + 60t2 + 12lnt. The function
F′′′(t) is not continuous at t = 0 and t∗ = 1 ∈ Ω solves the equation F(t) = 0. Thus, all
the results requiring the existence of at least the third derivative of F cannot assure the
convergence of the afforementioned scheme to t∗, although they may converge.

[l2]—A priori estimates of || (xn − x∗) || are not provided. Thus, it is not known in
advance the number of iterations to be performed to satisfy a certain predecided error tol-
erance.

[l3]—There is no information about if there are solutions other than x∗ ∈ Ω.
[l4]—The results are restricted in <j.
Notice, however, that the schemes (1) and (2) are extended in the setting of Banach

space. Limitations (l1)–(l4) constitute the motivation for writing this article. Moreover,
the novelty of this article is that the items (l1)–(l4) are addressed positively as follows:

[l1]′—The convergence is established using only F′, which is in these schemes, and the
idea of generalized continuity [5,18,20].

[l2]′—The number of iterations to reach a predecided error tolerance is calculated.
[l3]′—The isolation of x∗ is addressed.
[l4]′ —The results are valid in Banach space.
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The techniques to achieve the aforementioned objectives are demonstrated for some
specializations of schemes (1) and (2). However, the technique can be analogously used on
the rest of the schemes.

Let k = 2;
H1(xn, yn) = xn − 2

3 (A−1
n + F(xn)−1)F(xn); and

H2(xn, yn) = xn − 1
2 (F′(yn)−1 + F′(xn)−1)F(xn).

These iteration functions are of convergence order three. Therefore, (1) and (2) spe-
cialize to schemes of convergence order 3 + 3× 2 = 9, since q = 3 and k = 2. In particular,
these specializations are of schemes (1) and (2), respectively.

The convergence order can be found using the following formula

µ (COC) =
ln
(
|| (xn+1 − x∗) || / || (xn − x∗) ||

)
ln
(
|| (xn − x∗) || / || (xn−1 − x∗) ||

) , (5)

or

µ1 (ACOC) =
ln
(
|| (xn+1 − xn) || / || (xn − xn−1) ||

)
ln
(
|| (xn − xn−1) || / || (xn−1 − xn−2) ||

) . (6)

These computations do not require the F′′′ or x∗ (in the case of Formula (6)).
We study the ball convergence comparison of the two ninth-order iterative schemes

x0 ∈ Ω
yn = xn − F′(xn)−1F(xn),
zn = xn − 2/3(A−1

n + F′(xn)−1)F(xn),
wn = zn − 1/3(4A−1

n + F′(xn)−1)F(zn),
xn+1 = wn − 1/3(4A−1

n + F′(xn)−1)F(wn),

(7)

and 
x0 ∈ Ω
yn = xn − F′(xn)−1F(xn),
zn = xn − 1

2 (F′(yn)−1 + F′(xn)−1)F(xn),
wn = zn − 1

2 BnF(zn),
xn+1 = wn − 1

2 BnF(wn),

(8)

where F′(x) is the Fréchet derivative of operator F at the point x ∈ Ω.
Numerical results consist of the comparative study of the proposed schemes along

with Newton’s scheme by using the some test functions for nonlinear equations, systems of
equations and a boundary value problem. One important characteristic of this work is the
comparability of the dynamics of the proposed schemes along with Newton’s scheme for
the solution of nonlinear equations.

2. Convergence: Scheme 1

We describe the ball convergence of proposed schemes (3) and (4), which are based on
some real functions and positive parameters. Let T = [0, ∞).

Suppose:
(a) There exists a nondecreasing and continuous function (NDCF) h0 from T → T such

that equation
h0(t)− 1 = 0 (9)

has a minimal positive (MP) zero R0. Set T0 = [0, R0). Consider (NDCF) function h from
T0 → T.

(b) Equation
v1(t)− 1 = 0
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has an MP zero r1 ∈ (0, R0), where

v1(t) =

∫ 1
0 h((1− τ)t)dτ

1− h0(t)
.

(c) Equation
p(t)− 1 = 0, (10)

has an MP zero denoted by rp, where

p(t) =
1
2
(3h0(v1(t)t) + h0(t)).

Set R1 = min{R0, Rp} and T1 = [0, R1). Consider (NDCF) h1 from T1 → T nondecreasing
and continuous.

(d) Equation
v2(t)− 1 = 0, (11)

has an MP zero denoted by r2 ∈ (0, R1), where

v2(t) = v1(t) +

(
h0(t) + h0(v1(t)t)

) ∫ 1
0 h1(τt)dτ

2(1− h0(t))(1− p(t))
.

(e) Equation
h0(v2(t)t)− 1 = 0 (12)

has an MP zero denoted by R2. Set R3 = min{R1, R2} and T2 = [0, R3).
(f) Equation

v3(t)− 1 = 0 (13)

has an MP zero denoted by r3 ∈ (0, R3), where

v3(t) =
[
v1(v2(t)t) +

(
h0(t) + h0(v2(t)t)

) ∫ 1
0 h1(τv2(t)t)dτ

(1− h0(t))(1− h0(v2(t)t))

+

(
h0(t) + h0(v1(t)t)

) ∫ 1
0 h1(τv2(t)t)dτ

(1− h0(t))(1− p(t))

]
v2(t).

(g) Equation
h0(v3(t)t)− 1 = 0 (14)

has an MP zero denoted by R4. Set R5 = min{R3, R4} and T3 = [0, R5).
(h) Equation

v4(t)− 1 = 0 (15)

has a minimal positive zero denoted by r4 ∈ (0, R5), where

v4(t) = [v1(v3(t)t) +

(
h0(t) + h0(v3(t)t)

) ∫ 1
0 h1(τv3(t)t)dτ

(1− h0(t))(1− h0(v3(t)t))

+

(
h0(t) + h0(v1(t)t)

) ∫ 1
0 h1(τv3(t)t)dτ

(1− h0(t))(1− p(t))
]v3(t).

We shall show that parameter ρ, given by

r = min{rk}, k = 1, 2, 3, 4, (16)

is a convergence radius for scheme (3). By this definition, it follows for all t ∈ [0, r) that

0 ≤ h0(t) < 1, (17)
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0 ≤ h0(v2(t)t) < 1, (18)

0 ≤ h0(v3(t)t) < 1, (19)

0 ≤ p(t) < 1 (20)

and
0 ≤ vk(t) < 1, i = 1, 2, 3, 4. (21)

Let S(x∗, r) and S̄(x∗, r) denote the open and closed balls in B1, respectively, of center
x∗ and radius r > 0.

Next, we list the hypotheses in hypothesis (A) used in our convergence analysis. They
relate to the functions as described previously.

Suppose:
(a1) F : Ω→ B2 is continuously differentiable and there exists a simple solution x∗

of equation F(x) = 0.
(a2) For all x ∈ Ω,

|| F′(x∗)−1(F′(x)− F′(x∗) ||≤ h0(|| x− x∗ ||).

Set Ω0 = Ω ∩ S(x∗, ρ0).
(a3) For all x, y ∈ Ω0,

|| F′(x∗)−1(F′(y)− F′(x∗) ||≤ h(|| y− x∗ ||).

|| F′(x∗)−1F′(x) ||≤ h1(|| x− x∗ ||).

(a4) S̄(x∗, r̃) ⊂ Ω, where r̃ > 0 is to be determined.
(a5) There exists r∗ ≥ r̃ such that∫ 1

0
h0(τr∗)dτ < 1.

Set
Ω1 = Ω ∩ S̄(x∗, r∗).

Based on hypothesis (A) and the developed notation, we show the local convergence
result for scheme (3).

Theorem 1. Under the hypotheses in (A) for r̃ = r, further suppose x0 ∈ S(x∗, r)− {x∗}. Then,
the sequence generated by scheme (3) starting at x0 is well defined, remains in S(x∗, r)− {x∗} and
converges at x∗. Moreover, the following estimates hold true

|| yn − x∗ ||≤ v1(|| xn − x∗ ||) || xn − x∗ ||≤|| xn − x∗ ||< r, (22)

|| zn − x∗ ||≤ v2(|| xn − x∗ ||) || xn − x∗ ||≤|| xn − x∗ ||, (23)

|| wn − x∗ ||≤ v3(|| xn − x∗ ||) || xn − x∗ ||≤|| xn − x∗ ||, (24)

|| xn+1 − x∗ ||≤ v4(|| xn − x∗ ||) || xn − x∗ ||≤|| xn − x∗ ||, (25)

where functions vk are defined earlier and r is given by (16). Furthermore, x∗ is unique as a solution
of equation F(x) = 0 in the domain Ω1, given in (a5).
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Proof. We shall prove items (22)–(25) using Induction. Consider x ∈ S(x∗, r)− x∗. Then,
using (a1) and (a2), we have

|| F′(x∗)−1(F′(x)− F′(x∗)) ||≤ h0 || x− x∗ ||≤ h0(r) < 1.

Using the Banach lemma on invertible operators [12] and the preceding inequality, F′(x)−1

exists so that
|| F′(x)−1F′(x∗) ||≤

1
1− h0(|| x− x∗ ||)

. (26)

In particular, if x = x0, F′(x0)
−1 exists, since x0 ∈ S(x∗, r). Then, the iterate y0 exists by the

first substep of scheme (3). We can write

|| y0 − x∗ || =|| x0 − x∗ − F′(x0)
−1F(x0) ||

≤|| F′(x0)
−1F′(x∗) ||

× ||
∫ 1

0
F′(x∗)−1(F′(x∗ + τ(x0 − x∗))− F′(x0)

)
(x0 − x∗)dτ ||

So, by conditions (a1), (a3) and (16) and (26),

|| y0 − x∗ || ≤
∫ 1

0 h((1− τ)) || x0 − x∗ || dτ || x0 − x∗ ||
1− h0(|| x0 − x∗ ||)

≤ v1(|| x0 − x∗ ||) || x0 − x∗ ||
≤ || x0 − x∗ ||
< r. (27)

Hence, the iterate y0 ∈ S(x∗, r) and (22) is valid for n = 0. We should show A0 is invertible,
so z0, v0 and x1 exist by scheme (3) for n = 0. Indeed, we have by (a2), (17), (26) and (27)

|| (2F′(x∗))−1(A0 − 2F′(x∗)) ||
≤ || (2F′(x∗))−1(3(F′(y0)− F′(x∗)) + (F′(x∗)− F′(x0)) ||

≤ 1
2
[3 || F′(x∗))−1(F′(y0)− F′(x∗)) || + || F′(x∗))−1(F′(x0)− F′(x∗)) ||]

≤ 1
2
(h0(|| x0 − x∗ ||) + 3h0(|| y0 − x∗ ||))

≤ 1
2
(h0(|| x0 − x∗ ||) + 3h0(v1(|| x0 − x∗ ||) || x0 − x∗ ||))

≤ p(|| x0 − x∗ ||) ≤ p(r) < 1.

Thus, the linear operator A0 is invertible and

|| A−1
0 F′(x∗) ||≤

1
2(1− p(|| x0 − x∗ ||))

. (28)

Then, using the second substep of schemes (3), (11), (21) (for i = 2), (23) (for x = x0), (26)
and (28), we first have

z0 − x∗ = x0 − x∗ − F′(x0)
−1F(x0) + (F′(x0)

−1 − 2
3

A−1
0 −

2
3

F′(x0)
−1)F(x0)

= x0 − x∗ − F′(x0)
−1F(x0) +

1
3

F′(x0)
−1(3F′(y0)− F′(x0)− 2F′(x0))A−1

0 F(x0)

= (x0 − x∗ − F′(x0)
−1F(x0)) + (F′(x0)

−1(F′(y0)− F′(x0))A−1
0 F(x0).

So, we obtain, by using also the triangle inequality,
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|| z0 − x∗ || ≤
[
v1(|| x0 − x∗ ||)

+
(h0(|| y0 − x∗ ||) + h0(|| x0 − x∗ ||))

∫ 1
0 h1(τ || x0 − x∗ ||)dτ

2(1− h0(|| x0 − x∗ ||))(1− p(|| x0 − x∗ ||))

]
|| x0 − x∗ ||

≤ v2(|| x0 − x∗ ||) || x0 − x∗ ||
≤|| x0 − x∗ || . (29)

Hence, the iterate z0 ∈ S(x∗, r) and (23) is valid for n = 0. By the third substep of scheme (3)
for n = 0, we write

w0 − x∗ = z0 − x∗ − F′(z0)
−1F(z0) + (F′(z0)

−1 − 4
3

A−1
0 −

1
3

F′(x0)
−1)F(z0)

= (z0 − x∗ − F′(z0)
−1F(z0))

+ F′(z0)
−1(F′(x0)− F′(z0))F′(x0)

−1F(z0) + 2F′(x0)
−1

× (F′(y0)− F′(x0))A−1
0 F(z0). (30)

Then, using (12), (13), (16) (for m = 3), (21) (for x = z0) and (24)–(30), we have

|| w0 − x∗ ||

≤
[
v1(|| z0 − x∗ ||) +

(h0(|| z0 − x∗ ||) + h0(|| x0 − x∗ ||))
∫ 1

0 h1(τ || z0 − x∗ ||)dτ

(1− h0(|| z0 − x∗ ||))(1− h0(|| x0 − x∗ ||))

+
(h0(|| y0 − x∗ ||) + h0(|| x0 − x∗ ||))

∫ 1
0 h1(τ || z0 − x∗ ||)dτ

(1− h0(|| x0 − x∗ ||))(1− p(|| x0 − x∗ ||))

]
|| (z0 − x∗) ||

≤ v3(|| x0 − x∗ ||) || x0 − x∗ ||
≤ || x0 − x∗ ||< r. (31)

So, the iterate w0 ∈ S(x∗, r) and (24) holds true for n = 0. Similarly, if we exchange the role
of z0 with w0 we first obtain

x1 − x∗ = w0 − x∗ − F′(w0)
−1F(w0)

+
(

F′(w0)
−1(F′(x0)− F′(w0))F′(x0)

−1 + 2F′(x0)
−1(F′y0)− F′(x0)A−1

0

)
F(w0).

Hence, we see that

|| x1 − x∗ ||

≤
[
v1(|| w0 − x∗ ||) +

(h0(|| w0 − x∗ ||) + h0((|| x0 − x∗ ||))
∫ 1

0 h1 | τ | || w0 − x∗ ||)dτ

(1− h0(|| x0 − x∗ ||))(1− h0(|| w0 − x∗ ||))

+
(h0(|| y0 − x∗ ||) + h0((x0 − x∗)

∫ 1
0 h1(τ || w0 − x∗ ||)dτ

(1− h0(|| x0 − x∗ ||))(1− p0(|| (x0 − x∗) ||))

]
|| w0 − x∗ ||

≤ v4(|| x0 − x∗ ||) || x0 − x∗ ||
≤|| x0 − x∗ ||< r. (32)

Replace x0, y0, z0, v0 and x1 with xm, ym, zm, wm and xm+1 in the previous calculations to
complete the induction for items (22)–(25). It then follows by the estimation

|| xm+1 − x∗ ||≤ q(|| xm − x∗ ||) < r̃ (33)
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with q = v4(|| x0 − x∗ ||) ∈ [0, 1), that limm→∞ xm = x∗ and xm+1 ∈ S(x∗, r̃). Set
M =

∫ 1
0 F′(x∗ + τ(x∗∗ − x∗))dτ for some x∗∗ ∈ Ω1 with F(x∗∗) = 0. Then, by (a1), (a2)

and (a5), we see in turn that, in view of (a2) and (a6),

|| F′(x∗)−1(M− F′(x∗)) ||≤
∫ 1

0
h0((1− τ) || x∗ − x∗∗ ||)dτ ≤

∫ 1

0
h0(τr∗)dτ < 1.

Therefore, from the invertability of M and the estimate 0 = F(x∗∗)− F(x∗) = M(x∗∗ − x∗),
we conclude that x∗∗ = x∗.

3. Convergence: Scheme 2

In a similar way, we provide the local convergence analysis for scheme (4). In this case,
the functions v̄1, v̄2, v̄3 and v̄4 are defined as follows

v̄1 = v1,

v̄2(t) = v̄1(t) +

(
h0(t) + h0(v̄1(t)t)

) ∫ 1
0 h1(τt)dτ

2(1− h0(t))(1− h0(v̄1(t)t))
,

v̄3(t) =
[
v̄1(v̄2(t)t) +

(
h0(v̄2(t)t) + h0(v̄1(t)t)

) ∫ 1
0 h1(τv̄2(t)t)dτ

(1− h0(v̄2(t)t))(1− h0(v̄1(t)t))

+
1
2

(
h0(v̄1(t)t) + h0(t)

) ∫ 1
0 h1

(
τv̄2(t)t

)
dτ

(1− h0(v̄1(t)t))(1− h0(t))

+
1
2

(
h0(v̄1(t)t) + h0(t)

) ∫ 1
0 h1

(
τv̄2(t)t

)
dτ

(1− h0(v̄1(t)t))2

]
v̄2(t),

v̄4(t) =
[
v̄1(v̄3(t)t) +

(h0(v̄1(t)t) + h0(v̄3(t)t))
∫ 1

0 h1(τv̄3(t)t)dτ

(1− h0(v̄3(t)t))(1− h0(v̄1(t)t))

+
1
2
(h0(t) + h0(v̄1(t)t))

∫ 1
0 h1(τv̄3(t)t)dτ

(1− h0(t))(1− h0(v̄1(t)t))

+
1
2
(h0(t) + h0(v̄1(t)t))

∫ 1
0 h1(τv̄3(t)t)dτ

(1− h0(v̄1(t)t))2

]
v̄3(t).

Define r̄ by
r̄ = min{r̄k}, (34)

where we suppose that the MP zero r̄k exits for equations

v̄k(t)− 1 = 0 (35)

Then, we have, as in scheme (4),

zn − x∗ = xn − x∗ − F′(xn)
−1F(xn)−

1
2
(F′(yn)

−1 − F′(xn)
−1)F(xn)

= xn − x∗ − F′(xn)
−1F(xn)−

1
2

F′(yn)
−1(F′(xn)− F′(yn))F′(xn)

−1F(xn).

Therefore, we have
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|| zn − x∗ || ≤
[
v̄1(|| xn − x∗ ||)

+
(h0(|| yn − x∗ ||) + h0(|| xn − x∗ ||))

∫ 1
0 h1(τ(|| xn − x∗ ||))dτ

2(1− h0(|| xn − x∗ ||))(1− h0(|| yn − x∗ ||))

]
|| xn − x∗ ||

≤ v̄2(|| xn − x∗ ||) || xn − x∗ ||
≤|| xn − x∗ ||
< r̄.

Moreover, we can write

wn − x∗

= zn − x∗ − F′(zn)
−1F(zn) +

(
F′(zn)

−1 − 1
2

F′(yn)
−1F′(xn)F′(yn)

−1 − 1
2

F′(xn)
−1)F(zn)

= zn − x∗ − F′(zn)
−1F(zn) +

[
(F′(zn)

−1 + F′(yn)
−1) +

1
2
(F′(yn)

−1 − F′(xn)
−1)

+
1
2

F′(yn)
−1(F′(yn)− F′(xn))F′(yn)

−1
]

F′(zn),

leading to

|| wn − x∗ || ≤
[
v̄1(|| zn − x∗ ||)

+
(h0(|| zn − x∗ ||) + h0(|| yn − x∗ ||))

∫ 1
0 w1(τ(|| zn − x∗ ||))dτ

(1− h0(|| zn − x∗ ||))(1− h0(|| yn − x∗ ||))

+
1
2
(h0(|| yn − x∗ ||) + h0(|| xn − x∗ ||))

∫ 1
0 w1(τ(|| zn − x∗ ||))dτ

(1− h0(|| yn − x∗ ||))(1− h0(|| xn − x∗ ||))

+
1
2
(h0(|| yn − x∗ ||) + h0(|| xn − x∗ ||))

∫ 1
0 h1(τ(|| zn − x∗ ||))dτ

(1− h0(|| yn − x∗ ||))2

]
|| zn − x∗ ||

≤ v̄3(|| xn − x∗ ||) || xn − x∗ ||
≤|| xn − x∗ ||
< r̄.

Next, by the third substep of scheme (4),

xn+1 − x∗

= wn − x∗ − F′(wn)
−1F(wn) +

(
F′(wn)

−1 − 1
2

F′(yn)
−1F′(xn)F′(yn)

−1 − 1
2

F′(xn)
−1)F(wn)

= wn − x∗ − F′(wn)
−1F(wn) +

[
(F′(wn)

−1 − F′(yn)
−1) +

1
2
(F′(yn)

−1 − F′(xn)
−1)

+
1
2

F′(yn)
−1(F′(yn)− F′(xn))F′(yn)

−1
]

F′(wn).

Hence, we have

|| xn+1 − x∗ || ≤
[
v̄1(|| wn − x∗ ||)

+
(h0(|| wn − x∗ ||) + h0(|| yn − x∗ ||))

∫ 1
0 h1(τ(|| wn − x∗ ||))dτ

(1− h0(|| wn − x∗ ||))(1− h0(|| yn − x∗ ||))

+
1
2
(h0(|| yn − x∗ ||) + h0(|| xn − x∗ ||))

∫ 1
0 h1(τ(|| wn − x∗ ||))dτ

(1− h0(|| yn − x∗ ||))(1− h0(|| xn − x∗ ||))

+
1
2
(h0(|| yn − x∗ ||) + h0(|| xn − x∗ ||))

∫ 1
0 h1(τ(|| wn − x∗ ||))dτ

(1− h0(|| yn − x∗ ||))2

]
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× (|| wn − x∗ ||)
≤ v̄4(|| xn − x∗ ||) || xn − x∗ ||
≤|| xn − x∗ ||
< r̄.

Hence, we arrive at the local convergence result for scheme (4) corresponding to scheme (3).

Theorem 2. Under hypotheses A with r̃ = r̄, choose x0 ∈ S(x∗, r̄)− x∗. Then, the conclusions of
Theorem 1 hold for scheme (4) but with v̄k and r̄ replacing vk and r, respectively.

4. Numerical Results

In this section, we study the efficiency of iterative proposed schemes (3) and (4).
We performed a comparative study of schemes (3) and (4) along with the classical New-
ton’s scheme.

Example 1. Let E1, E2 = R, Ω = (−1, 1) and F : Ω→ < be a function defined by

F(x) = ex − 1, ∀x ∈ Ω.

Then, F is Fréchet differentiable and its Fréchet derivative F
′
(x) at any point x ∈ Ω is given by

F
′
(x) = ex.

We computed the numerical results with the help of MATLAB 2007 and the stopping criterion used
for the computation is |xn+1 − x∗|+ | f (xn+1)| < 10−14. The initial approximation is 1.0 and
approximate solution is 0. The numerical solutions for example 1 using the second-order Newton
scheme and the proposed ninth-order scheme are given in Table 1. The numerical results in Table 1
reveal that the proposed schemes (3) and (4) perform with the same number of iterations with a little
advantage to proposed scheme (3).

Table 1. Comparison of different schemes for example 1.

Scheme N x f (x)

1 1.00000000 1.71828182845905
2 0.36787944117144 0.44466786100977
3 0.06008006872679 0.06192156984951

Newton scheme 4 0.00176919944264 0.00177076539934
5 1.564110789898428× 10−6 1.564112013019425 × 10−6

6 1.223321565989411 × 10−12 1.223243728531998 × 10−12

7 7.783745890945912 × 10−17 0.00000000

1 1.00000000 1.71828182845905
Proposed scheme (3) 2 −8.566001524658931 × 10−4 -8.562333752899498 × 10−4

3 8.017605522905244 × 10−18 0.00000000

1 1.00000000 1.71828182845905
Proposed scheme (4) 2 0.00180663140457 0.00180826434631

3 3.652768952695270 × 10−17 0.00000000

Example 2. Let E1 = E2 = <, Ω = (−2, 2) and F : Ω→ < be an operator defined by

F(x) = x3 − 1, ∀x ∈ Ω.

Then, F is Fréchet differentiable and its Fréchet derivative F
′
(x) at any point x ∈ Ω is given by

F′(x) = 3x2.
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We computed the numerical results with the help of MATLAB 2007 and the stopping criterion is
|xn+1 − x∗|+ | f (xn+1)| < 10−14. The initial approximation is 3.5 and the approximate solution
is 1.0. The numerical solutions for example 2 using different schemes are given in Table 2. The
numerical results in Table 2 reveal that the proposed schemes (3) and (4) perform with the same
number of iterations with a little advantage to proposed scheme (4).

Table 2. Comparison of different schemes for example 2.

Scheme N x f (x)

1 3.50000000 41.87500000000000
2 2.36054421768707 12.15335132155504
3 1.63351725484243 3.35884252127395
4 1.21393130681298 0.78888464195259

Newton scheme 5 1.03548645503746 0.11028191827017
6 1.00120223985296 0.00361105743855
7 1.00000144306722 4.329207893061238 × 10−6

8 1.00000000000208 6.247669048775606 × 10−12

9 1.0000000000 0.00000000

1 3.50000000 41.87500000000000
3 0.80025523102213 −0.48750980007799

Proposed scheme (3) 3 1.00000382289483 1.146872833501789 × 10−5

4 1.0000000000 0.00000000

1 3.50000000 41.87500000000000
3 1.25206208985764 0.96280700078081

Proposed scheme (4) 3 1.00000264945961 7.948399889379232 × 10−6

4 1.0000000000 0.00000000

Example 3. Let Ω = E1 = E2 = <2. Consider an operator F : <2 → <2 defined by

F(x) =
(
x2 − y− 0.2, −x + y2 − 0.3

)
, ∀x = (x, y) ∈ <2.

The starting vector is [0.1, 0.1] and the approximate solution is [−0.2860321636288604,
−0.11818560136979284]. The numerical solutions for example 3 using different methods are
given in Table 3. The numerical results show that the proposed scheme (3) converges at the solution
in fewer iterations in comparison with scheme (4).

Table 3. Comparison of different schemes for example 3.

Scheme N x y f (x, y) g(x, y)

Newton scheme

1 0.15000 0.15000 −0.3275 −0.4275
2 −0.427747 −0.350824 0.333792 0.250825
3 −0.38617 −0.0526016 0.00172869 0.0889367
4 −0.289566 −0.125484 0.00933237 0.00531187
5 −0.286091 −0.118164 0.0000120741 0.0000535827
6 −0.286032 −0.118186 3.44119× 10−9 4.61865× 10−10

7 −0.286032 −0.118186 0.000 0.000

Proposed scheme (3)

1 0.15000 0.15000 −0.3275 −0.4275
2 −0.182026 −0.240876 0.0740096 −0.0599525
3 −0.285858 −0.119056 0.000770476 0.0000322954
4 −0.286032 −0.118186 0.000 0.000

Proposed scheme (4)

1 0.15000 0.15000 −0.3275 −0.4275
2 −3.35161 3.60474 7.42857 16.0457
3 −0.692548 −0.017514 0.297137 0.39285
4 −0.283154 −0.117859 −0.00196551 −0.00295
5 −0.286032 −0.118186 0.000 0.000
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Example 4. Consider the following boundary problem

x′′ + 3xx′ = 0, x(0) = 0, x(2) = 1.

We take t0 = 0 < t1 < t2 < t3 < · · · ,< tn−1 < tn = 2, ti+1 = ti + h, and h = 2
n . Here,

x0 = x(t0) = 0, x1 = x(t1), x2 = x(t2), x3 = x(t3), · · · , xn−1 = x(tn−1) and xn = x(tn) = 1.
We discretize the above problem by using the central difference schemes for the first and second-order
derivatives, i.e.,

x′′i =
xi−1 − 2xi + xi+1

h2 , i = 1, 2, 3, · · · , n− 1,

x′i =
xi+1 − xi−1

2h
, i = 1, 2, 3, · · · , n− 1,

xi =
xi+1 + xi−1

2
, i = 1, 2, 3, · · · , n− 1.

Thus, we have an (n− 1)× (n− 1) nonlinear system:

4(xi−1 − 2xi + xi+1) + 3h(x2
i+1 − x2

i−1) = 0, i = 1, 2, 3, · · · , n− 1. (36)

Next, we solve the above problem for n = 3 with the proposed scheme along with Newton’s
scheme using the initial approximations x0 = [0.1, 0.1]. The solution [0.7321436796857499,
0.9820632479169275] of the problem is shown in Table 4 with x = [x1, x2] and F = [ f , g].
From Table 4, it is confirmed that scheme (4) converges at the root in fewer iterations and, hence,
scheme (4) is better than (3). Notice that accelerated methods are vital for multivariable problems
(see, e.g., [23]).

Table 4. Solution for example 4 (B V P) using the proposed scheme.

Scheme N x y f (x, y) g(x, y)

N S

1 0.100000 0.100000 0.3800000 5.580000
2 0.546677740863787 0.998504983388704 1.614622410348670 −0.3990420083663530
3 0.743165400858219 0.993160847303442 0.0000571195809957458 −0.077214801060175
4 0.732143079420105 0.982093540416835 0.0002449705634444132 −0.0002429831397698922
5 0.732143679421334 0.982063247881604 1.835275931227897 × 10−9 −7.20090653771876 × 10−13

6 0.732143679685749 0.982063247916927 −2.22044604925031 × 10−16 0.000000

P S (3)

1 0.100000 0.100000 0.380000 5.580000
2 0.722765263946543 0.978781853059981 0.0490331324266399 0.01602697777088990
3 0.732143693471214 0.982063269995640 6.47619073923522 × 10−8 −1.618596074948186 × 10−7

4 0.732143679685749 0.982063247916927 −2.22044604925031 × 10−16 0.000000

P S (4)
1 0.100000 0.100000 0.380000 5.580000
2 0.732171811623760 0.982089790124268 0.0000146207603477499 −0.0001821979719456301
3 0.732143679685749 0.982063247916927 −2.22044604925031 × 10−16 0.000000

5. Extraneous Fixed Points

The Newton-like iterative schemes described in earlier sections may be viewed as
fixed-point iteration:

xn+1 = xn − E f (xn)
f (xn)

f ′(xn)
, n = 0, 1, 2, · · · . (37)

Clearly, the root x∗ of f (x) = 0 is a fixed point in the scheme. If the right side of (37) also
vanishes at some points ξ 6= x∗ for E f (ξ) = 0, then ξ is also a fixed point in the scheme.
These fixed points are known as extraneous fixed points (see [2]). Now, we describe the
extraneous fixed points of some Newton-like scheme for z3 − 1.
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Remark 1. Newton’s scheme does not have any extraneous fixed points as for Newton’s scheme,
E f (xn) = 1.

Theorem 3. The proposed scheme given by Equation (3) has 106 extraneous fixed points.

Proof. For proposed scheme (3), E f (xn) is given by the following equation 1/(−1
+z3)z2(6z+(2+ 6z3− 8z9)/(3(z2 + 4z5 + z8))− ((−1+ z3)3(1+ 4z3 + 13z6)(−8− 204z3−
1641z6 − 5438z9 − 6672z12− 618z15 + z18))/(2187z8(1 + 4z3 + z6)4)− ((1 + 2z3)2(−1 +
(−8− 212z3 − 419z6 + 20,760z9 + 218,580z12 + 1,011,516z15 + 2,454,006z18 + 2,937,180z21
+1,389,756z24 + 428,120z27 + 43,061z30 + 716z33)3/(282,429,536,481z24(1 + 4z3 + z6)12)))
/(3z2(1 + 4z3 + z6)). In this equation, the numerator is of degree 106 and, hence, proposed
scheme (3) has 106 extraneous fixed points.

z = −2.0563466004961662355811893− 0.3095651829791553623908596I,
z = −2.0563466004961662355811893 + 0.3095651829791553623908596I,
z = −1.983769642614411418048416− 0.116719374008501542977146I,
z = −1.983769642614411418048416 + 0.116719374008501542977146I,
z = −1.908911702325388970327643,
...
...
...
z = 1.2324703408496331888011102 + 1.1027252320147195003269012I,
z = 1.2962646128352097743260829− 1.6260658035258724274991578I,
z = 1.2962646128352097743260829 + 1.6260658035258724274991578I.

These fixed points are repulsive since the magnitude of the derivative at these points
is > 1.

Theorem 4. The proposed scheme given by Equation (4) has 129 extraneous fixed points.

Proof. For proposed scheme (4), E f (xn) given by the following equation. (1/(2(−1 +

z3)))3z2(4z + (1+ 3z3 + 9z6− 13z9)/(3(z + 2z4)2)− (1/(3z2) + (27z10)/(1+ 2z3)4)(−1+
(1 + 9z3 + 33z6 + 11z9)3/(216(z + 2z4)6)) + (1/(3z2) + (27z10)/(1 + 2z3)4)(−1 + (z +
(1+ 3z3 + 9z6− 13z9)/(6(z + 2z4)2)− 1/2(1/(3z2) + (27z10)/(1+ 2z3)4)(−1+ (1+ 9z3 +
33z6 + 11z9)3/(216(z + 2z4)6)))3)). In this equation, the numerator is of degree 129 and,
hence, proposed scheme (4) has 129 extraneous fixed points.

z = −1.3906494250828819032610349,
z = −1.3089391963407268999831171− 0.3564555150226694666922243I,
z = −1.3089391963407268999831171 + 0.3564555150226694666922243I,
z = −1.11019566319196274717,
z = −1.09582782332284367467− 0.00666195819164429163I,
z = −1.09582782332284367467 + 0.00666195819164429163I,
...
...
...
z = 0.7824279535043961805671− 0.6482932690512660338217I,
z = 0.7824279535043961805671 + 0.6482932690512660338217I,
z = 0.9631691294990608108553360− 0.9553468385289218973982227I,
z = 0.9631691294990608108553360 + 0.9553468385289218973982227I.

Since the magnitude of the derivative at these points is > 1, these fixed points are
repulsive.
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Remark 2. As the magnitude of the derivative at these points is > 1, these fixed points are repulsive.
These fixed points can be seen in the basins of attraction plot for example 3 (z3 − 1), Figure 2 (see
Dynamics of Scheme Section 2).

6. Dynamics of Scheme

We studied the dynamics and fractal patterns of the functions in example 1 (F(z) =
exp(z)− 1) and example 2 (F(z) = z3 − 1 ) by using proposed iterative schemes (3) and (4)
along with Newton’s scheme. The dynamical analysis help us to study the convergence
and stability of the schemes (see [6]).

6.1. For Example 1

We considered a square R× R = [−4.0, 4.0]× [−4.0, 4.0] of 500× 500 points with a
tolerance- | f (zn)| < 5× 10−2 and a maximum of 11 iterations to study the dynamics of the
function F(z) = exp(z)− 1. We described the basins of attraction with a fixed color for the
second-order Newton scheme, the ninth-order proposed scheme (3) and the ninth-order
proposed scheme (4) for finding complex roots of the above-mentioned functions (Figure 1).
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(a) Newton’s scheme
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(c) Proposed scheme (4)

Figure 1. Basin of attraction for exp(z)− 1 with different schemes.

1. The basins for all the iterative schemes contain a fractal Julia set and the basins of all
the schemes look almost similar.

2. The basins of attraction of the second-order Newton scheme contain a higher number
of orbits and are less dark in comparison with the ninth-order schemes.

3. Again, the Fatou set with blue color shows the basins of the schemes. The blue-colored
area shows that the proposed scheme (4) contains the Fatou set with bigger and darker
orbits.

6.2. For Example 2

We plotted the fractal pattern graph of example 2 (F(z) = z3 − 1 ) for the different
iterative schemes under the same previous conditions with a different color fixed to each
root of the basins of attraction.

The basins of attraction for schemes to find the complex roots of example 2
(F(z) = z3 − 1) are shown in Figure 2. We can see that there are no extraneous fixed
points for the second-order Newton scheme, which is in agreement with the findings
of the section Extraneous Fixed Points. Again, there are 106 extraneous fixed points for
the proposed ninth-order scheme (3) and 129 extraneous fixed points for the proposed
ninth-order scheme (4). Since, the magnitude of the derivative at these points is >1, these
fixed points are repulsive. Thus, we see that scheme (3) is better in terms of extraneous
fixed points.
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Figure 2. Basin of attraction for f2 = z3 − 1 with different schemes.

7. Convergence Radii

In the next two examples, we compute the convergence radii for proposed schemes (3)
and (4).

Example 5. By the example in the Section 1, conditions (A) are satisfied if we choose
h0(t) = h(t) = 97t and h1(t) = 2. Then, by solving the convergence radii, we have

r1 = 0.010256678622334536

r2 = 0.36382236284223446, 0.0103087361577125

r3 = 0.10153752845355392, 0.22527857007361768, 1.3993484775051468

r4 = 0.11929997098554257, 0.21910981171003618

and
r̄1 = 0.010256678622334536

r̄2 = 0.08299300112444563

r̄3 = 0.5291548166116622

r̄4 = 0.5420088529012402

Example 6. Let B1 and B2 be the space of continuous functions on the interval [0, 1] with the
max-norm and Ω = S̄(0, 1). Define F : Ω→ B2 by

F(ψ)(x) = ψ(x)−
∫ 1

0
xτψ(τ)3dτ.

Then, the Fréchet derivative is given as

F(ψ(µ))(x) = µ(x)− 3
∫ 1

0
xτψ(τ)2µdτ

for all µ ∈ Ω. Then, conditions (A) are satisfied if we choose h0(t) = 1.5t, h(t) = 3t and h1(t) = 2.
Then, we have

r1 = 0.4574271077563381

r2 = 0.7496405298576232, 0.46028836028846015

r3 = 0.7444569229567777, 0.5894382155567577, 0.501131729398928

r4 = −0.6180132678614112

and
r̄1 = 0.4574271077563381
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r̄2 = 0.8074036383761246,−0.7071105546988605, 0.5879931572730634, 0.486927560161037

r̄3 = 0.5291548166116622

r̄4 = 0.5420088529012402

8. Conclusions

We developed two ninth-order Newton-like schemes for solving nonlinear equations in
Banach space and discussed the ball convergence analysis for both of them. We performed
a local convergence comparison with the use of only the first-order derivative. The study
is used to prove the convergence for scheme (3) and scheme (4) under weak conditions,
extending the usage of these schemes. Earlier work relies on the existence and boundedness
of F4, which is not in these schemes. Thus, these results are not applicable in cases
where these hypothesis are violated. However, these schemes may converge. We checked
the theoretical results by using the numerical examples along with the boundary value
problem. We also examined the numerical results with the basins of attraction for some
selected examples. All the results (theoretical, numerical, dynamical) are generative for the
advanced study of higher-order Newton-like schemes. The new approach is applicable in
other schemes. This is revealing for our future research.
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