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Abstract: The nonlocality (superdiffusion) of turbulence is expressed in the empiric Richardson
t3 scaling law for the mean square of the mutual separation of a pair of particles in a fluid or
gaseous medium. The development of the theory of nonlocality of various processes in physics and
other sciences based on the concept of Lévy flights resulted in Shlesinger and colleagues’ about the
possibility of describing the nonlocality of turbulence using a linear integro-differential equation with
a slowly falling kernel. The approach developed by us made it possible to establish the closeness of
the superdiffusion parameter of plasma density fluctuations moving across a strong magnetic field in
a tokamak to the Richardson law. In this paper, we show the possibility of a universal description of
the characteristics of nonlocality of transfer in a stochastic medium (including turbulence of gases and
fluids) using the Biberman–Holstein approach to examine the transfer of excitation of a medium by
photons, generalized in order to take into account the finiteness of the velocity of excitation carriers.
This approach enables us to propose a scaling that generalizes Richardson’s t3 scaling law to the
combined regime of Lévy flights and Lévy walks in fluids and gases.

Keywords: superdiffusion; Lévy walk; turbulence; nonlocality; Biberman–Holstein equation; cross-
correlation reflectometry; Richardson t3 scaling law

1. Introduction: Superdiffusion in the Biberman–Holstein Model

The nonlocality (superdiffusion) of turbulence is expressed in the empirical Richardson
t3 scaling law for turbulent relative dispersion, i.e., for the mean square of the mutual
separation of a pair of particles, rpair(t), in a fluid or gaseous medium,

r2
pair(t) ∝ t3. (1)

This scaling was obtained within the framework of the diffusion model proposed
by Richardson [1] (with the diffusion coefficient K depending on distance r, K ∝ r4/3),
suggested by the experimental data for atmospheric turbulence. Subsequently, the diffusion
approach was developed in the direction of complicating the dependence of the diffusion
coefficient. Along with this, the awareness of the phenomena of superdiffusion of turbulent
dispersion came onto the scene, although Bachelor’s scaling [2], r2

pair(t) ∝ t2, for ballistic
motions is discussed only in connection with the initial stage of the separation of a pair of
test particles. As a result, Richardson’s empirical scaling for pair correlations was derived
in various models (see, for example, review [3]); however, at present, a nonlocal approach
based on superdiffusion models is considered to be more adequate, in which, by the
definition of superdiffusion, r2

pair(t) ∝ tβ, β > 1. Within this framework, the concept of
turbulence nonlocality is further developed, including attempts to reassess the Richardson
scaling (1) itself (see [3]).
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The key step in the development of the theory of nonlocality of various processes in
physics and other sciences based on the concept of “Lévy flights”, introduced in [4] by
Mandelbrot [5] (see [4,6–8]); moreover, “Levy walks” [9–11], which generalize Lévy flights
to the case of taking into account the finite velocity of carriers, were the idea of Shlesinger
and colleagues [10] for the possibility of describing the nonlocality of turbulence using a
linear integro-differential equation with a kernel, slowly decreasing with distance. This
approach suggests that the essentially non-linear dynamics of what we call turbulence
can be reduced to the evolution of a statistical ensemble of carriers that have a large free
path and, in fluid mechanics, can be associated with stable objects such as vortices/eddies.
With this approach, the severity of complex nonlinear dynamics is transferred to the axiom
of the existence of long-lived long-range motions in the medium, which are carriers of
perturbations relative to some stable macroscopic state of the medium. The nonlocal
transport of perturbations of the medium is assumed to be described by linear kinetic
equations with the kernel of the integral operator, slowly decreasing with distance and
belonging to the class of Lévy distributions.

In [12], an approach similar in spirit to [10] was proposed. The formalism of the type
of the Biberman–Holstein equation [13,14] for the transfer of excitation by photons in gases
and plasmas (for details, see, for example, [15,16]), generalized to consider the finiteness of
the velocity of excitation carriers, was taken as a basis. Before formulating the model [12],
it is appropriate to briefly describe the ideology of the Biberman–Holstein approach.

The basic equation for the excitation density of a medium in the problem of reso-
nant radiation transfer is formulated for the density of excited atoms or ions f (r, t). The
Biberman–Holstein approach uses the approximation of complete redistribution (CRD) in
a photon’s frequency in the elementary act of absorption of a photon by an atom or ion
and re-emission of a photon in the same spectral line for the model of a two-level atom or
ion, which is acceptable for the transfer of resonant radiation (generalization to the case of
interdependent transfer of radiation in many spectral lines is easily feasible). The kinetic
equation for the excitation density of the medium, in the case of stationary motionless
unexcited medium, has the form:

∂ f (r, t)
∂t

=
1
τ

∫
V

W(|r − r1|) f (r1, t)dV1 −
(

1
τ
+ σ

)
f (r, t) + q(r, t), (2)

where τ is the lifetime of an excited atomic state with respect to spontaneous radiative
decay; σ is the rate of collisional excitation quenching; q is the source of excitation of atoms,
which is different from the excitation due to the absorption of a resonant photon (i.e., the
source of collisional excitation). The kernel W is determined by the (normalized) spectral
distribution of line emission source, εν, and the absorption coefficient kν, which is the
inverse free path length (for the theory of spectral line shapes see [17–23]). Here, εν is
specified as a function depending only on the parameters of the emitted photon (frequency
and direction) and independent of the parameters of the absorbed photon, if the excited
state was formed as a result of the absorption of the photon (i.e., there is the loss of memory
by the excited atom about the prehistory of excitation). This feature of εν is a consequence
of the CRD approximation mentioned above. In a homogeneous medium, W depends on
the distance between the points of emission and absorption of a photon:

W(ρ) = − 1
4πρ2

dT(ρ)
dρ

≡ 1
4πρ2 Wstep(ρ), T(ρ) =

∞∫
0

ενexp(−kνρ)dν. (3)

where the function T(ρ), called the Holstein function (see [16] for an example), is the proba-
bility that a photon will freely travel a distance not less than ρ without absorption. Thus,
this function defines the distribution function for the carrier free path length, Wstep (step-
length PDF). Accordingly, the kernel W, Equation (3), of the integral transport Equation (2)
in three-dimensional coordinate space specifies the probability that the emitted photon
will be absorbed at a distance ρ from the point of photon’s birth. For practically inter-
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esting spectral-line-broadening mechanisms, including the Doppler effect and various
mechanisms that give the Lorentzian form of the spectral line shape (spontaneous radiative
decay, collisional perturbation of the excited state, including the dynamic Stark effect), the
Holstein function at distances corresponding to large optical thicknesses, defined by the
value of the absorption coefficient at the center of the spectral line κ0, has a slow, power-law
decay. For the Lorentzian (4) and Gaussian (i.e., Maxwellian Doppler) (5) shapes of the
spectral line, one has [14]:

T(ρ) ∼ 1
√

πκ0ρ
, (4)

T(ρ) ∼ 1
κ0ρ

√
π ln(κ0ρ)

,

κ0ρ ≫ 1.
(5)

Nonlocality (superdiffusion) of radiation transfer, described by the Biberman–Holstein
Equation (2), requires a special definition of the average time t(r), required for a photon
to pass the distance r from an instantaneous point source q(r, t) = δ(r − r0)δ(t − t0). The
commonly used concept of the average distance traveled by a photon in a given time
turns out to be inapplicable in the case of superdiffusion, because the function f (r, t) falls
too slowly with increasing distance from the primary source, and therefore the integral
that determines the mean square of the displacement r2 diverges. The definition of t(r)
corresponding to the case of superdiffusion was given in [24] and takes the following form:

t =
∞∫

0

dt
r∫

0

dr14πr2
1 f (r1, t). (6)

In [24], analytical expressions for the asymptotic behavior of t(r) (6) were obtained for
two forms of the spectral line shape. For the dispersion (Lorentzian) form of the spectral line
shape, we have the motion of the effective excitation front of the medium corresponding to
the acceleration (r ∝ t2),

t = 3τ
√

κ0r/π = 1.7τ
√

κ0r, t ≫ τ, κ0r ≫ 1, (7)

And, for the Doppler form of the spectral line shape, the corresponding motion is almost
free (r ∝ t ln(t/τ)):

t = 1.4τκ0r
√

ln(κ0r), t ≫ τ, κ0r ≫ 1. (8)

Subsequently, in [25], it was indicated that both cases (7) and (8) are covered by a
single formula,

t(ρ) ≈ τ/Tas(ρ), (9)

where Tas(ρ) is given by (4) and (5).
When analyzing the transport for various mechanisms of spectral line broadening, it

was shown [26] that the Biberman approximation [27], which makes it possible to reduce
the equation integral with respect to coordinates to an algebraic one, is applicable the
better, the slower the Holstein function decreases with increasing distance. The use of the
approximation [27] in the theory of radiative transfer in one or many spectral lines is called
the τe f f method [28] or the escape probability method [29,30].

Equation (2) is integral over spatial coordinates and is not reducible to a differential
equation: the term “diffusion” in the titles of some articles, including [24], is explained only
as a tribute to the then existing terminology and does not correspond to the mathematical
apparatus of diffusion. When the sought-for function f (r1, t) is expanded under the space
integral in a Taylor series, in the case of an infinite volume of the medium, the diffusion
coefficient turns out to be infinite, and in the case of a finite volume, it depends on the
size of the medium (see, for example, [16]), which in principle contradicts the concept of
diffusion. Despite the fact that the term Lévy flights had not yet penetrated into the theory
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of radiative transfer at the time of publications [15,16,29,30], the main transfer mechanism
investigated in these theoretical approaches, in fact, refers specifically to Lévy flights.

An alternative to the Biberman–Holstein equation, which is widely used to describe
laboratory plasma, is an approach often used in astrophysics, in which the pair of differ-
ential kinetic equations for photons and excited atoms/ions is reduced to an integral, in
spatial variables, equation for the radiation intensity (see, e.g., [31–35]). Here, the dominant
role of long free travels (i.e., Lévy flights) is also recognized, although usually without
a proper name. The role of Lévy flights for light in the traditional radiative transfer in
spectral lines was studied, for example, in [36]. Here, multiple scattering of near-resonant
light in hot atomic vapors, characterized by Doppler broadening of the spectral line, experi-
mentally confirmed theoretical studies [37], where it was shown that photon trajectories in
the Biberman–Holstein model for the transfer of resonant radiation in spectral lines with
Doppler, Lorentz, and Voigt broadening mechanisms contain Lévy flights.

The current state of the concept of Lévy flights and walks can be found in an extensive
review [11], covering various fields of science. The latest results for Green’s function of the
problem of nonstationary transfer of resonant radiation in the Biberman–Holstein model are
presented in [38], including a generalization of the interpolated self-similarity method [39]
to the case of a finite speed of light or other medium excitation carriers in [40–42]. Further
progress in this direction led in [43] to the derivation of a unified approximate analytical
description of the front of the nonstationary Green’s function for transfers in the Lévy
flights and Lévy walks modes.

The results of these works served as an impetus to the application of the Biberman–
Holstein model in two directions. In Section 2, we discuss the application to the interpre-
tation of experiments on diagnosing plasma density fluctuations moving across a strong
magnetic field in a tokamak [12] (as it turned out, tokamak plasma is a really turbulent
medium in agreement with Richardson’s t3 law for hydrodynamic turbulence). In Section 3,
a scaling is proposed, which generalizes Richardson’s law to the combined mode of Lévy
flights and Lévy walks for hydrodynamic turbulence. One of the arguments in favor of the
Biberman–Holstein approach is that it is another way to derive Richardson’s t3 law (1).

2. Superdiffusion in Plasma Turbulence

The study of superdiffusion processes in plasmas is of great practical interest. Thus, in
studies of magnetically confined plasma for controlled thermonuclear fusion (primarily
in the most successful direction, namely, in tokamaks), it has long been recognized that
the process of heat transfer across a strong magnetic field is anomalous in the sense that
the heat diffusion coefficients reconstructed from experimental data by solving inverse
problems in the framework of diffusion models of transfer significantly (by one and a
half to two orders of magnitude) exceed the predictions of theories from first principles.
Therefore, in the interpretation of experiments and predictive modeling of plasma behavior,
phenomenological models suggested by the results of experiments are used. These models
are, as a rule, diffusion models, based on differential equations of the Fokker–Planck type in
space variables. Attempts to construct models of nonlocal transfer from first principles have
not yet given the desired agreement with the experiment. Let us point out, for example,
the theory of non-stationary non-local heat transfer by longitudinal waves in plasma [44],
brought to its final result for electron Bernstein waves (this method generalized the model
of non-local transfer by electron and ion Bernstein waves [45] to the case of non-stationarity).
Significantly greater success was achieved in the application of the above-mentioned escape
probability method for the calculation of a separate component of the energy balance in
tokamaks, namely, energy losses caused by the electron cyclotron radiation [46,47]. This
approach extended and modified the approach [48–50] to heat transfer by electron cyclotron
waves in thermonuclear plasmas (the current state of this issue can be found in [51]).

One way or another, the issue of diagnostics and predictive modeling of non-local
transport remains essentially relevant. Therefore, of particular interest was an attempt [12]
to prove the superdiffusion nature of the transfer of plasma density fluctuations across a
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strong magnetic field in tokamaks. Spectral and spatial characteristics of plasma density
cross-correlations measured by probing the density fluctuations of a magnetized plasma
with EM waves in the electron cyclotron frequency range were chosen as experimental data.
The interest in the results of this diagnostics is due to the fact that in [52] (see also [53]) on the
T-10 tokamak, almost symmetrical satellites of the main peak at the frequency of the probing
radiation were discovered, which were called the quasi-coherent mode (QCM, see Figure 4a
in [54]) and were then observed at other facilities, including tokamaks TEXTOR [55,56],
Tore Supra [56], ASDEX Upgrade [57,58], KSTAR [59], HL-2A, and J-TEXT [60]. A feature
of many experiments was that in order to measure the spectral and spatial characteristics
of the cross-correlation (pair-correlation) function of the scattering of the probing EM wave,
as was carried out in [52–54], the probing geometry (i.e., the direction of injection and of
detection of the reflected EM wave) was such that the scattering vector (the difference
between the wave vectors of the incident and reflected radiation) was directed across the
strong magnetic field. This, as shown in [12], made it possible to diagnose the distribution
function of fluctuations over the velocities of motion in this direction, obtaining a universal
description of the relationship between the observed quasi-coherent mode in the spectrum
of scattered EM waves and the process of the Mandelstam–Brillouin scattering type. It was
also shown in [12] that the nonlocality of spatial correlations in a turbulent medium, which
corresponds to the deviation of the pair correlation function of plasma density fluctuations
from the Gaussian one, is due to long-range carriers of medium’s density fluctuations,
for which the free path distribution function is described by the Lévy distribution. It was
shown that the observed density fluctuations may be of turbulent origin, since the decay
rate in the Levy distribution for the density fluctuation free path probability turned out to
be close to its analogue, which gives Richardson’s empirical t3 law (1) for the hydrodynamic
turbulence of fluids and gases. Below, we will dwell on the physical model [12] in more
detail, since the success of its application to plasma turbulence will allow us to propose a
generalization of Richardson’s law for fluids and gases in Section 3.

Let us consider a model of the microscopic dynamics of localized excitations of a
medium (e.g., density perturbations) in a macroscopically quasi-homogeneous quasi-
stationary medium. This model is an application of the Lévy walk concept to this class
of problems. Similarly to the Biberman–Holstein model, we will consider two types of
excitation of the medium, which can be transformed into each other. These two types can
also be considered as different states (rest and motion) of the same object. This approach
is applicable, for example, to biological migration, for which the applicability of the Lévy
walk concept is well known (see, for example, review [11], section VI). In [61], a method
was proposed and tested on synthetic experimental data for obtaining Green’s function of
two-dimensional biological migration based on kinetic equations similar to those described
below. The dominance of long-range movements (i.e., Lévy flights) corresponds to the fact
that, for example, in search of food, animals try to escape from the place of the last stop
as far as possible. Therefore, the trajectory of such motion topologically coincides with
the trajectory of the excitation of the medium in the Biberman–Holstein model (compare,
for example, Figure 1 in [43], Figure 1 in [61] and Figure 4 in [6]). This motion was called
“Lévy walk with rests” (Figure 1 in [11]). In the model we are considering, it is precisely
such motions that are meant; however, the common name is shortened to “Lévy walks”.

Let us consider a system of nonlocal transport equations for the intensity Iω̃(r, n, t)
(i.e., the energy flux density) of medium’s excitation carriers (e.g., running fluctuations of
density) and standing excitations of the medium (e.g., standing fluctuations of density)
f (r, t):

∂ f (r, t)
∂t

= −
(

1
τ
+ σ

)
f (r, t) +

∫
dω̃

κω̃(v)
ℏω̃

∫
dΩ(n)Iω̃(r, v, t) + q(r, t), (10)

∂ f (r, t)
∂t

= −
(

1
τ
+ σ

)
f (r, t) +

∫
dω̃

κω̃(v)
ℏω̃

∫
dΩ(n)Iω̃(r, v, t) + q(r, t), (11)



Foundations 2023, 3 607

Let us describe the phenomenological functions and parameters included here, which
should be restored by comparing the predictions of this model with experimental data.

Here, v is the velocity of carriers of excitation, v = nv, which is assumed to be constant
all the way between the point of birth and disappearance due to the transformation into a
standing excitation of the medium. This means that we assume the existence of localized
long-lived motions in a medium with a long free path, which are usually called solitons.
An example of such motion in the two-dimensional case in plasmas and other media is
the stable solutions of the nonlinear Kadomtsev–Petviashvili equation [62] (in the one-
dimensional case, such an example is the Korteweg–de Vries equation). A discussion of
general problems in the theory of solitons can be found, for example, in [63].

The source of standing excitations of the medium is given by the function q(r, t), which
is the power density of the source of production of such excitation of the medium.

The spectral distribution of the probability of carrier’s emission with frequency ω̃,
normalized to the integral over frequency, is given by the function Pω̃(v). The frequency
(energy) and velocity of carriers are determined by the law of motion of the carrier (for linear
waves in a homogeneous stationary medium, this relation is the law of wave dispersion).

The reciprocal length of the free path of the carrier from the point of birth to the stop
in the medium and transformation into a standing excitation of the medium is given by the
“absorption coefficient” of the carriers with the frequency ω̃, κω̃(v).

The average lifetime of standing excitation is given by the parameter τ, and the
average reciprocal time of the disappearance of standing fluctuations without the creation
of a carrier of excitation (the so-called “quenching” of the excitation of the medium) is
given by the parameter σ.

The processes of generation of standing and running excitations of the medium are
elementary mechanical processes in the sense that they exist as mutually inverse mechanical
(i.e., reversible in time) processes. The proposed model assumes that standing excitation
forgets the history of its occurrence. Equations (10) and (11) are written for carriers with
a certain velocity, and it is assumed that there is some velocity distribution, which, like
all other parameters and functions introduced above, can be restored by comparing the
predictions of this model with experimental data.

Note that in the case of an infinite velocity of carriers (i.e., in the case of transfer in the
Lévy flights mode), the system of Equations (10) and (11) reduces to the Biberman–Holstein
Equation (2), and when this velocity is finite (i.e., in the case of transfer in the Lévy walk
mode) instead of the function f (r1, t) in (2) there is a function

θ

(
t − |r − r1|

c

)
f
(

r1, t − |r − r1|
c

)
(12)

(here, θ(x)—the Heaviside step function), which takes into account the retardation. The
derivation of such a generalization of the Biberman–Holstein equation from the system of
Equations (10) and (11) can be found, for example, in Section 2 in [41].

An essential feature of the system of Equations (10) and (11) is that it is possible to
reduce dependence of general solution, including practically interesting integral charac-
teristics, only on the Holstein function. This means that such differential characteristics as
the normalized spectrum of the source function, Pω̃(v), and the reciprocal free path, κω̃(v),
enter the final result only as part of the Holstein function T(x), defined in Equation (3). This
feature of the system of Equations (10) and (11) is illustrated below by the following analytic
results: general solution for Green’s function of excitation transfer in a three dimensional
medium; effective front of Green’s function; pair correlation function (cross-correlation
function) for the reflectometry of density fluctuations of the medium.

Firstly, in [42], the Fourier–Laplace transformation of (10) and (11) made it possible to
obtain a solution for

q ∝ δ(r)δ(t) (13)
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and a wide class of distribution functions over the free path of carriers (3) (step-length
distribution function),

Wstep(ρ) =
γκ0

(1 + κ0ρ)γ+1 , 0 < γ < 2, (14)

where κ0 is a characteristic inverse length, which, in the case of excitation transfer by
resonant photons, corresponds to the value of the absorption coefficient at the center of the
spectral line. The choice of Wstep(ρ) in the form (14) makes it possible to cover a wide class
of spectral line shapes including the Doppler and dispersion cases (see (7)–(9)). Indeed,
the asymptotic behavior of (14) for κ0ρ ≫ 1 exactly coincides with that for the dispersion
case and differs by a weak function

√
ln(κ0r) for the Doppler case (cf. [24]). In the case of a

variable velocity of carriers, the dependence κ0(v) makes Wstep(ρ, v) (and T(ρ, v) according
to (3)) a function of two arguments (see (23) in [12]). The obtained solution of Equations (10)
and (11) as a function of dimensionless variables

rd = rκ0, td = t/τ (15)

explicitly depends only on the Holstein function (cf. Equation (2.20) in [42]):

f3D(r, t, Rc) =
1

4π3rd i

+∞∫
0

dp p sin(prd)

+0+i∞∫
+0−i∞

estd ds

s + 1 + στ + 1
p
∫ +∞

0
dT(u)

du du e−su/Rc sin(pu)
u

, (16)

where Rc is the retardation parameter,

Rc = vτκ0, (17)

which is the ratio of the lifetime of the excitation of the medium at rest and in motion. Here,
v is the fixed velocity of the carriers which in the case of radiative transfer equals to the
speed of light.

Secondly, the dominant role of the Holstein function concerns the law of motion of the
excitation front from a point instantaneous source, i.e., effective front of Green’s function.
For Lévy flights the universal law was found in [25] (see (9)). For Lévy walks, i.e., in the
case of a finite velocity of carriers, the respective results are presented in [43]. In contrast to
the case of Lévy flights, where one has to work with the definition of the front in the form
(6), for standing (and similarly for running) excitations of the medium, this front can be
specified by a simple standard relation (cf. (3.1) in [43]):

(rrest(t))
2 =

(∫
r2 frest(r, t)dr

)
/
(∫

frest(r, t)dr
)

, (18)

since the numerator in (18) no longer diverges due to the limitation of distances by the
ballistic motion front:

rball = vt. (19)

For the front (18), as well as for the front of excitation carriers, in [43] for the distri-
bution function over the free path of carriers (14) analytical expressions were obtained for
practically interesting times and distances in transfer problems, namely for κ0ρ ≫ 1 and
t ≫ τ . The derivation of analytic results for Green’s function front for running excitation
(i.e., excitation carriers) demanded derivation of a simple analytic description of the rela-
tionship between Green’s functions of the standing, frest, and running, fmov, excitations
of the medium. This possibility is suggested by the following general relation between
these functions:

fmov(r, t, v) =
1

4πτv

∫ d3r1

|r − r1|2
T(|r − r1|) θ

(
t − |r − r1|

v

)
frest

(
r1, t − |r − r1|

v

)
. (20)
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The possibility of simplifying this relation can be easily shown in the one-dimensional
case, in which (20) takes the form

fmov(x, t, v) =
1

2τv

+∞∫
−∞

dx1T(|x1|) θ

(
t − |x1|

v

)
frest

(
x1 + x, t − |x1|

v

)
. (21)

If we assume that the function frest changes slightly at distances that contribute to the
integral over the coordinate, then we can neglect x1 in the first argument. For the excitation
density of the medium, it was shown in [43] that the propagation front defined as (18) does
not depend on the spatial dimension of the problem. Therefore, to estimate such an integral
characteristic as the propagation front of the medium’s excitation density, one can use the
following approximate relation in the case of any space dimension:

fmov(r, t) =
1
τ

t∫
0

dt′ frest
(
r, t′

)
T(v(t − t′)) (22)

This approximation is close to the well-known Biberman approximation [27], in which
a weak spatial dependence of the density of excited atoms on coordinates compared with
the kernel of the integral operator in the Biberman–Holstein equation is assumed. This
made it possible to remove the sought-for density from under the integral sign (recall that
this approximation was later called the Escape Probability method [29,30]).

The validity of approximation (22) was proved in [43] by comparing the analytical
formulas for the coordinate-integrated characteristics of Green’s function with the results
of numerical calculations carried out in two different ways: (i) numerical integration of the
general solutions for Green’s function and (ii) Monte Carlo numerical simulation of the
solution of the same initial system of kinetic Equations (10) and (11). The results of such a
comparison are shown in Figures 3–5 in [43].

Thirdly, in the problem of cross-correlation reflectometry of nonlocal characteristics
of the transport of plasma density fluctuations in [12] a result was obtained, based on the
system of Equations (10) and (11), for the spectrum of the cross-correlation function Ĉ,
defined as a convolution (in fast time) of the electric fields E scattered from two points r1
and r2 in the coordinate space:

C(τ̃, r1, r2) =

∫ +∞
−∞ dtE∗(r1, t, K1)E(r2, t + τ̃, K2)[∫ +∞

−∞ dt|E(r1, t, K1)|2
∫ +∞
−∞ dt|E(r2, t, K2)|2

]1/2 . (23)

where K = ks − ki is the scattering wave vector, ki and ks are wave vectors of incident
and scattered electromagnetic waves. Equation (23) is a standard definition of the cross-
correlation function, which, for the problems of diagnosing a medium by probing with EM
radiation, practically excludes the dependence of this function on the characteristics of the
elementary act of interaction of probing radiation with those density fluctuations on which
scattering occurs (for more details on the scattering of EM waves in plasma, see [64]).

The Fourier image of the function (23) is the outcome of the experimental data pro-
cessing. In a more general form than in [12], it can be represented as follows (cf. (66), (67)
in [12] for a homogeneous isotropic medium):

Ĉ(ω, r2 → r1) = ei(K,r) ⟨T(|v12|∆t12, v12)exp[i(ω − Kv12)∆t12]|g(r2, K, ω, v2)|⟩
{⟨|g(r1, K, ω, v1)|⟩⟨|g(r2, K, ω, v2)|⟩}1/2 (24)

where ω = ωs − ωi, ωi and ωs are the frequencies of the of incident and scattered elec-
tromagnetic waves, g(r1, K, ω, v1) is the Fourier–Laplace image of the density of running
fluctuation of the medium traveling with a velocity v1 at the point r1 (the Fourier transform
with respect to the coordinate assumes the quasi-homogeneity of the medium at the point
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r1 on scales that allow an acceptable accuracy of calculating the Fourier transform so that a
weak dependence on the spatial coordinate r is present in all parameters in (10), (11), (14)
such as σ, τ, κ0):

ǧ(K, ω, v) =
Q(K, iω, v)

4πστ

+∞∫
0

dt e−i(ω−(v,K))tT(vt, v) (25)

where Q(K, iω, v) is the Fourier–Laplace image of the source function q in (10), and we use
an approximate expression for the effective source of standing excitations of the medium
under the condition στ ≫ ωτ ≫ 1 (cf. (40) and (41) in [12]).

The operator ⟨. . .⟩ in (24) means averaging over a given distribution in the velocities
of running fluctuations. The delay time ∆t12 of the correlation between different points
takes into account the finite velocity of the fluctuations, and in the case of a weak plasma
inhomogeneity at a distance between the points under study, it is equal to

∆t12 = |r1 − r2|/|vpl + v12|, (26)

where v12 is the velocity of density fluctuations between points 2 and 1 relative to the
plasma (i.e., relative to the quasi-homogeneous hydrodynamic motion of the plasma in this
region with the velocity vpl).

This result (24) is also applicable to a homogeneous non-isotropic medium (such as, in
particular, a homogeneous plasma in a uniform magnetic field).

The center of gravity of the cross-correlation function (24) is in the Holstein function (3),
which determines the distribution function of running density fluctuations over their free
path and depends—through the dependence κ0(v) in (14)—also on the fluctuation’s velocity.
Function (24) is a spectrum of cross-correlations caused by the contribution of fluctuations
that were ever at point r2 to fluctuations of the same type found at point r1 (the procedure
for calculating the Fourier transform of the cross-correlation function is described in detail
in [12]).

Formula (24), as shown in [65], retains its general structure for other types of cross-
correlation diagnostics of plasmas, in which the measured medium characteristic (like the
electric field of a scattered EM wave in reflectometry) is proportional to fluctuations of
the plasma density. In this case, the frequency shift and the scattering wave vector in the
problem of reflectometry are replaced by similar spectral-wave characteristics of signals
measured by other diagnostics.

One of the main results of [12] is that for the first time the inverse problem of restoring
the parameters of density fluctuations, on which probing radiation is scattered, was solved
both for the spectral and radial dependence of the cross-correlation function Ĉ(ω, ∆r),
where ∆r is the distance along the minor radius direction in the toroidal plasma column,
i.e., across a strong toroidal magnetic field. The inverse problem was solved for the entire
set of experimental data, including:

• The spectrum of scattered radiation (Figure 4a in [54]).
• The phase and the modulus of the complex function Ĉ(ω, ∆r) at fixed values of the

distance between two points along the minor radius of the plasma column (Figure 4b,c
in [54]).

• The coordinate dependence of Ĉ(ω, ∆r) at different frequencies.

An essential circumstance was that, for the first time, instead of the normal distribution
usually used in the literature for the radial dependence of the cross-correlation function of
reflectometry (see, for example, [54,66]), an analytical representation of the type (24) was
used, which made it feasible to solve numerically the inverse problem of determining the
parameters of plasma density fluctuations.

Finally, the most important consequence of the obtained solutions in [12] was that
for the first time a characteristic was found for the degree of nonlocality of the motion
of plasma density fluctuations across a strong magnetic field, which is described by the
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parameter γ in (14). It turned out that the value of the parameter γ ≈ 0.55 (see Figure 4
in [12]), found as a result of solving the inverse problem for the degree of nonlocality of
the transfer of radially traveling plasma density fluctuations in the T-10 tokamak, is quite
close to the value of the analogous parameter γ ≈ 2/3 in Richardson’s empirical law (1)
for hydrodynamic turbulence. This was suggested by formulas (7.7) and (7.8) in [42] and
is considered below in Section 3. The indicated closeness of the nonlocality parameter in
plasma and fluid dynamics is an argument in favor of the fact that the observed dynamics
of plasma density fluctuations can be of turbulent origin.

One might recall that it is much more difficult to measure Green’s function or the pair
correlation function in plasma than in gases and fluids. Therefore, the results of plasma
cross-correlation reflectometry are, apparently, the most powerful tool for analyzing the
processes of transport of density fluctuations and, in particular, the extent to which these
processes can be called turbulence.

In addition to the results of [12], we present below the results of calculations of the
fluctuation energy density spectrum and its comparison with the key result of Kolmogorov’s
theory [67] for stationary homogeneous hydrodynamic turbulence.

The spectral distribution of the density of the kinetic energy of the fluctuating com-
ponent of the velocity of the medium is defined as the Fourier transform of the square of
the vector of this velocity (i.e., of the specific kinetic energy, defined as energy per unit
mass). The calculation of this characteristic is one of the main results of the theory of
hydrodynamic turbulence. Usually, this value is differential either in the modulus of the
wave vector k (wavelength), or in the oscillation frequency ω. In fact, this means that we
are talking about the Fourier–Laplace image of the specific kinetic energy of fluctuations,
in which either the frequency ω or the modulus of the wave vector k is fixed and the
differentiality in one of these parameters is somehow removed.

In the model referenced in [12], the analogue of this quantity is the product of the
Fourier–Laplace image ǧ(K, ω, v) (25) of the density of fluctuations and the square of their
velocity. In the problem of reflectometry considered in [12], the wave vector is fixed by the
experimental conditions, so it is appropriate for us to calculate the spectral distribution
of the specific kinetic energy as a function of frequency at a given K. Since the results
obtained in experiments with hydrodynamic turbulence do not depend on the primary
source of disturbances in the medium, it is also appropriate for us to search for the spectrum
regardless of the spectral characteristics of the primary source. Then, after averaging over
the velocities, the final formula for the specific kinetic energy Ẽ in the one-dimensional
case of interest to us (the radial motion of fluctuations, distinguished by the measurement
conditions in the experimental geometry in [54]) has the form:

dẼ
dω

=
∫ +∞

−∞
v2

r F(vr)dvr

∣∣∣∣∣∣
+∞∫
0

dt e−i(ω−vrKr)tT(|vr|t, |vr|)

∣∣∣∣∣∣, (27)

where T(r, v) is the Holstein function that specifies the distribution function over the free
path (3) of plasma density fluctuations moving with velocity vr along the direction under
study, Kr = |K| is the radial component of the scattering vector, F(vr) is the distribution
function of velocity fluctuations along the minor radius of the toroidal plasma column,
specified by (51) in [12] and corresponding to the motion of density fluctuations with
velocities near a characteristic velocity along and against the direction of observation in
experiments [54]. It is this distribution over the radial velocity that can give the spectrum
of the scattered EM field in these experiments (see Figures 1 and 5 in [12]).

In the case of weak broadening of the spectrum due to the finiteness of the mean free
path of running fluctuations, the time integral in (17) is close to the Dirac delta-function
(compare Figures 1 and 2 in [12]). Therefore, frequency distribution (17) of the specific
kinetic energy—similar to the spectrum of scattered radiation during reflectometric probing
of plasma—approximately coincides with the velocity distribution of fluctuating motions of
the medium in the regime of hydrodynamic turbulence. In hydrodynamics, this spectrum
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has a wide range of power-law decay in the so-called inertial interval, Kolmogorov’s 5/3
law, confirmed by experimental data for the spectral distribution (see, for example, Figure 3
in [68]). In the inertial interval, the influence of the turbulence source (pumping) and sink
on the spectrum can be neglected. The upper limit of this interval corresponds to the
minimum distances at which viscous losses can still be neglected. The role of viscosity, as
suggested in [67], is reduced to maintaining a stationary flow in the space of wave numbers
due to the transformation of hydrodynamic vortices into smaller ones (a unidirectional,
“direct” cascade of vortices).

Based on the solution [12] of the inverse problem of reconstructing the turbulence
nonlocality parameters, using (24), from the experimental data for the cross-correlation
reflectometry of the tokamak T-10 plasma, it is possible to calculate the spectral distribution
of the specific kinetic energy for the set of parameters listed in [12], Section 6.1, before
Figure 1 (see also Figures 1–4 in [12]). Note that the optimal value of the nonlocality
parameter is γ = 0.55, and the dependence on this parameter is shown in Figure 4 in [12].
Figure 1 shows a comparison of the spectrum (27) with Kolmogorov’s 5/3 scaling law
in logarithmic coordinates. We note that the high-frequency asymptotic behavior of the
spectrum coincides with Kolmogorov’s law, and the general form of the spectrum is close,
for example, to the results in Figure 18 in [69].
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Figure 1. Comparison of the spectrum (27) of the specific kinetic energy of plasma density fluctuations
according to the model [12] for experiments [54] (radial motion of fluctuations) (black curve) with
Kolmogorov scaling (orange dashed line).

Thus, not only the proximity of the nonlocality parameter γ, obtained in [12], to
the corresponding parameter for the Richardson t3 law (1), but also the similarity of the
spectrum of the specific kinetic energy of density fluctuations in the tokamak plasma to
the spectrum of the fluctuation velocity component in hydrodynamic turbulence make it
possible to qualify the transport of density fluctuations in a tokamak plasma across a strong
magnetic field as turbulence. Note that studies of the nonlocal properties of turbulence,
including the deviation of statistics from the Gaussian one in various plasma turbulence
phenomena, are reflected in the collective monograph [70].

The phenomenological model [12] of turbulence nonlocality, based on the system of
kinetic Equations (10) and (11) and going beyond the diffusion Fokker–Planck models,
can be considered, when applied to plasma, as a phenomenological generalization of the
quasilinear theory of weak plasma turbulence, which goes back to [71], in the wave part
of this kinetics (a review of the status of the quasilinear approach to plasma turbulence is
presented in [72]). Going beyond the diffusion Fokker–Planck models has already been
made, and for specific physical models in the case of a stationary flow in the space of wave
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numbers (not the thermodynamic limit), examples of the Kolmogorov spectrum in various
problems of physics have been found [73]. In the problem considered in [12] and here, it is
important that it was possible to establish the closeness of the kinetics of plasma density
fluctuations to what we call turbulence within the general framework of interpreting the
results of experiments, without specifying the physical model of elementary excitations of
the medium.

A successful attempt to numerically simulate from first principles (within the frame-
work of the gyrokinetic approach) the dynamics of fluctuations of plasma parameters and
the corresponding spectrum of scattered radiation during reflectometry in the Tore Supra
tokamak was undertaken in [74]: the coincidence of the results of numerical simulation of
the spectrum with the measured strongly pronounced structure of the quasi-coherent mode
made it possible to assume the origin of turbulence due to the dominance of certain plasma
wave modes. However, we do not yet know examples of measurements and corresponding
numerical simulations of the cross-correlation function Ĉ(ω, ∆r) in full, similar to the full
set of the results in Figures 4, 5 and 13 in [54] or Figures 1–4 in [12].

3. Extension of Richardson’s t3 Law to the Combined Lévy Flight and Lévy Walk
Regime for Turbulence in Fluids and Gases

The hypothesis of the locality of elementary processes in the existing quasi-linear the-
ory of weak plasma turbulence seems to be quite justified, since for elementary processes
it is possible to propose mechanical (i.e., reversible in time) models from first principles.
For hydrodynamic turbulence, this aspect inevitably requires additional axiomatics, which
obviously are the well-known hypotheses of Kolmogorov and Obukhov for homogeneous
stationary turbulence. Lack of rigorous justification, i.e., the lack of a derivation from
the Navier–Stokes equations sometimes allows researchers to qualify this approach as
dimensional reasoning. Therefore, in the existing rather free field in the theory of hydrody-
namic turbulence, it is quite legitimate to propose other models with their own axiomatics.
Such an attempt is the generalization of Richardson’s t3 law (1) given below to the com-
bined regime of Lévy flights and Lévy walks. Such a generalization is suggested, as noted
above, by the idea of Schlesinger and colleagues [10] and the success of the model [12] in
interpreting experiments on cross-correlation reflectometry of tokamak plasma.

Let us turn to the model (10), (11) with the intention of establishing a connection
between the phenomenological parameters introduced in it and the key parameters of the
existing theory of hydrodynamic turbulence. It is important to note that although model
(10), (11) did not discuss the possible physical mechanisms of elementary acts in the kinetic
model, such possibilities in the theory of linear waves are well known and form the basis
of the already mentioned quasilinear theory of weak plasma turbulence. The problem,
however, lies in the fact that models of superdiffusion transfer of energy by linear plasma
waves have not yet been created, which would provide explanations for the observed
nonlocality phenomena, for example, in thermonuclear plasma (for example, we repeat the
reference to [44,45], but this list can be continued up to the present moment). Therefore, the
problem of identifying adequate elementary acts responsible for the observed phenomena
of superdiffusion transfer is to a comparable extent faced by both the theory of turbulent
plasma and the theory of non-plasma hydrodynamic turbulence.

In this section, we will not solve the latter problem, but will only draw a bridge
between the phenomenology of plasma and non-plasma hydrodynamic turbulence.

For hydrodynamic turbulence of fluids and gases, the key parameters are the Kol-
mogorov length η and velocity vη, as well as the corresponding time tη:

η = (ν3/ε0)
1/4, vη = (νε0)

1/4, tη = (ν/ε0)
1/2, (28)

where ν is the kinematic viscosity in units of m2/s, ε0 characterizes the specific energy
dissipation rate in units of m2/s3.

Let us propose analogs of the Kolmogorov parameters in a kinetic transport model
of the Biberman–Holstein type with allowance for retardation. An analogue of the Kol-
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mogorov length is the path length at the center of the spectral line, κ0, since, as in the
Kolmogorov model, is the minimum characteristic length:

1
(κ 0)turb

∼ η. (29)

Of course, relations (29)–(31) have the meaning of equality in order of magnitude.
An analogue of the Kolmogorov velocity is the characteristic velocity of running

excitations of the medium (carriers). Batchelor’s scaling for the initial stage of mutual
separation of closely spaced test particles works in favor of the analogy for velocities:(

rpair(t)
)2 ∼ (vηt)2 ∼ (vt)2. (30)

In the plasma turbulent motions along the minor radius of a toroidal plasma in a
tokamak, this corresponds to a characteristic velocity restored [12] from the observed peaks
in the spectrum of the quasi-coherent mode. Since tη has a simple relationship with η and
vη , we can put

τ ∼ tη . (31)

To estimate the pair correlation function (turbulent relative dispersion) in order of
magnitude, which is acceptable considering the status of such an integral estimate of the
distribution function in kinetic problems, we will use the analytical approximation results
for Green’s function of the nonlocal transfer in the combined mode of Lévy flights and
Lévy walks, according to (7.10) in [43], for step-length PDF in the form (14):( rpair(t, Rc, γ)

η

)2

∼ 1(
tη

t

)2/γ
+

(
tη

t

)2 1
Rc

2

(
1+γ
1−γ

) , (32)

where Rc is the retardation parameter,

Rc = cτκ0, (33)

which is the ratio of the lifetime of the excitation of the medium at rest and in motion (here
c is the characteristic velocity of the carriers). With the specified correspondence to the
Kolmogorov turbulence parameters (28), Rc can be determined to be a certain number
in the range determined by the accuracy of estimates (29)–(31), i.e., some free parameter.
Preservation of the last factor in the second term in the denominator in (32) ensures that
the front velocity (turbulent pair dispersion) is less than the ballistic limit (19).

Note that the proposed scaling (32) covers only the transition between transfers in the
Lévy flight and Lévy walk modes. To construct a more general scaling, it is necessary to
take into account the Batchelor ballistic regime at the initial stage and the diffusion regime
at the final stage; see Figures 5–7 in [75].

For γ = 2/3, we obtain from (32):

( rpair(t, Rc, γ)

η

)2

∼

(
t
tη

)3

1 + 5
(

t
tη

)
1

Rc
2

, (34)

If the retardation effect is neglected (i.e., Rc → ∞ ), Richardson’s law (1) is obtained from
(34). Calculations of (34) are shown in Figure 2 for various values of the retardation parameter.
Comparison with the results of numerical simulations in [75], where Richardson scaling (1)
works up to time t ∼ 102tη, shows that a possible niche exists for taking into account the
retardation and the respective appearance of ballistic scaling of Lévy walks with a value of the
retardation parameter Rc equal to few–several tens. This niche is in the intermediate region
between Richardson scaling (1) and diffusion scaling

(
rpair

)2 ∝ t at very large values of t/tη.
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values of the retardation parameter Rc: (a) 10, (b) 30, (c) 100. The results are shown for Lévy flights
(black line), Lévy walks (pink dashed line), combined Lévy flights and walks (34) (yellow curve);
ballistic front (19) (red dotted line).
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The faster growth of the pair correlation with time, obtained in simulations [75] in the
regions where the Richardson law (1) was expected (i.e., between the Batchelor ballistic
regime and the diffusion regime, see Figure 7 in [75]), suggests that the case of smaller
values of the nonlocality parameter γ may also be considered, for example, γ = 1/2. This
choice is also interesting in that the spectral probability density shape Pω̃ corresponding
to this case in model (10), (11) has a Lorentzian form, which often occurs in various
physical models, where the broadening of the spectral distribution compared with the
monochromatic one is due to the finiteness of the lifetime of the excited state, the relaxation
of which leads to the birth of a carrier (running excitation of the medium). In the case of
γ = 1/2, from (32), we obtain:

( rpair(t, Rc, γ)

η

)2

∼

(
t
tη

)4

1 + 3
(

t
tη

)2 1
Rc

2

. (35)

Calculations by Formula (35) for various values of the retardation parameter are
shown in Figure 3. Comparison with the results of numerical simulations in [75], where
Richardson scaling (1) works up to time t ∼ 102tη, shows that a possible niche for taking
into account the retardation and the respective appearance of the ballistic scaling of Lévy
walks exists for the retardation parameter Rc of the order of 102. In this case, the scaling(

rpair
)2 ∝ t4 works up to t/tη ∼ 102 where the transition to

(
rpair

)2 ∝ t2 occurs with a
possible transition to diffusion scaling at larger values of t/tη (cf. Figure 7 in [75]).

Thus, the kinetic model (10), (11) allows us to qualitatively consider the problem
of expanding the range of applicability of the Richardson law (1) and the problem of its
possible generalization and reassessment, which, in particular, was actively discussed in [3].
Although Richardson’s t3 law (1) is supported by an extensive database, including, for
example, recent experimental and theoretical studies in [76], the behavior of turbulent pair
correlation (turbulent pair dispersion) at large times and the change of regimes (scalings)
with time is of undoubted interest.
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4. Conclusions

In this paper, we show the possibility of a universal description of the characteristics
of nonlocality of transfer in a stochastic medium (including turbulence of gases and fluids)
using a formalism like the Biberman–Holstein model for the transfer of excitation of a
medium by photons, generalized to take into account the finiteness of the velocity of
excitation carriers. Universality lies primarily in the fact that the main results are explicitly
expressed in terms of the distribution function of medium excitation carriers in their free
path, which has the form of a Lévy distribution, and such a function is directly related to the
Holstein function in the Biberman–Holstein model. The approach we developed earlier [12]
made it possible to establish the closeness of the nonlocality (superdiffusion) parameter
of plasma density fluctuations moving across a strong magnetic field in a tokamak to the
Richardson t3 law for the mean square separation of a pair of particles in a fluid or gaseous
medium. It is shown here that not only this fact, but also the similarity of the spectrum of
the specific kinetic energy of density fluctuations in the tokamak plasma to the spectrum
of the fluctuating velocity component in hydrodynamic turbulence, makes it possible to
quantify the transfer of density fluctuations in the tokamak plasma across a strong magnetic
field as turbulence. The key feature of the developed approach is that it was possible to
establish the proximity of the kinetics of plasma density fluctuations to hydrodynamic
turbulence within the general framework of interpreting the results of experiments using
the phenomenological model of density fluctuations transfer in the Lévy walk mode, which
does not require specifying the physical model of elementary excitations of the medium.

The developed kinetic model made it possible to suggest at a qualitative level a
generalization of Richardson’s t3 law for the combined regime of Lévy flights and Lévy
walks in fluids and gases. Although Richardson’s t3 law is supported by an extensive
database, the behavior of turbulent pair correlation (turbulent pair dispersion) over long
periods of time and the change in regimes (scalings) with time is of undoubted interest.
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