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Abstract: Numerous applications from diverse disciplines are formulated as an equation or system of
equations in abstract spaces such as Euclidean multidimensional, Hilbert, or Banach, to mention a
few. Researchers worldwide are developing methodologies to handle the solutions of such equations.
A plethora of these equations are not differentiable. These methodologies can also be applied to solve
differentiable equations. A particular method is utilized as a sample via which the methodology is
described. The same methodology can be used on other methods utilizing inverses of linear operators.
The problem with existing approaches on the local convergence of iterative methods is the usage
of Taylor expansion series. This way, the convergence is shown but by assuming the existence of
high-order derivatives which do not appear on the iterative methods. Moreover, bounds on the error
distances that can be computed are not available in advance. Furthermore, the isolation of a solution
of the equation is not discussed either. These concerns reduce the applicability of iterative methods
and constitute the motivation for developing this article. The novelty of this article is that it positively
addresses all these concerns under weaker convergence conditions. Finally, the more important and
harder to study semi-local analysis of convergence is presented using majorizing scalar sequences.
Experiments are further performed to demonstrate the theory.

Keywords: Fréchet derivative; Steffensen-type method; convergence; Banach space; ω-continuity;
non differentiable equation

1. Introduction

Suppose H is a Fréchet differentiable operator mapping from a Banach space S into
S , and D is an open convex subset of S . Deriving a solution λ ∈ D of the nonlinear
equation of the form

H(x) = 0 (1)

has innumerable applications in multiple disciplines of science and engineering. These
kinds of problems are formulated as an equation such as (1) using mathematical model-
ing [1–4]. These equations may be defined on the real line, the Euclidean space with finite
dimensions as a result of the discretization of a boundary value problem, and on a Hilbert
or Banach space [2–5]. Such equations can be found in the numerical Section 4. The solution
of (1) is rarely attainable in analytic form. The iterative methods provide a tool by which to
handle non-analytic and complex functions, thereby approximating the solution λ of (1).
To contend with the issues such as slow or no convergence, divergence and inefficiency,
an extensive body of literature can be found on the convergence of iterative methods moti-
vated by algebraic or geometrical considerations [3,4]. As a result, researchers all around
the world are persistently endeavoring to create higher-order iterative methods [5–18].
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In particular, we examine the convergence of the fourth-order method, free from
derivatives, developed by Sharma et al. [19], which is defined for all m = 0, 1, 2, . . . by

um = xm + H(xm), Gm = [xm, um; H],

ym = xm − G −1
m H(xm),

vm = ym + H(ym), Am = G −1
m [ym, vm; H] (2)

and

xm+1 = ym − Am(3I − 2Am)G
−1
m H(ym),

where G −1
m is inverse of first order divided difference of [xm, um; H] of H, and I is identity

operator. The fourth order of the method (2) is shown provided that S = Rk and by
assuming the existence of at least the fifth derivative and utilizing Taylor series expansions.
Hence, the application is limited to solving nonlinear Equation (1), where the operator
is that many times differentiable. However, the method may converge even if H(5) does
not exist.

For instance, consider D to be an interval
[−5

2 , 2
]

and the function H is defined on
D as

H(t) =

{
t3 log(π2t2) + t5 sin

(
1
t

)
, t ̸= 0

0, t = 0.

Clearly, H(3)(t) is not continuous at t = 0. As a result, lthough the method converges,
the convergence of method (2) to the solution t∗ = 1

π cannot be assured using results in [19].
Moreover, notice that the method (2) does not have any derivatives. The aforemen-

tioned limitations and the ones listed below constitute the motivation for developing
this article.
Motivation

(C1) A priori upper bounds on ∥xm − λ∥ are not given, λ ∈ D being a solution of the
Equation (1). The number of iterations to be performed to reach a predecided error
tolerance is not known.

(C2) The initial guess x0 is “shot in dark”, and no information is available on the uniqueness
of the solution.

(C3) There convergence of the method is not assured (although it may converge to λ) if at
least H(5) does not exist.

(C4) The results are limited to the case only when S = Rk.
(C5) The semi-local convergence, more interesting than the local convergence, is not given

in [19].
(C6) The same concerns exist for numerous other methods with no derivatives [17,19].

Novelty
All these limitations are taken up positively in the present article. In particular, the local

convergence relies on the general concept on ω-continuity [2,5,9] and uses only information
from the operators appearing on the method. Moreover, the semi-local convergence not
provided in the studies utilizes majorizing sequences [2,5].

The novelty of the article lies in the fact that the process leading to the aforementioned
benefits does not rely on the particular method (2). However, it can be utilized on other
methods involving inverses of linear operators in a similar manner. Notice that the devel-
opment of efficiency and computational benefits have been discussed in [19]. So, these
aspects of the method do not repeat in the present article.

The article is structured as follows: The local convergence in Section 2 is followed
by the semilocal convergence in Section 3. The numerical applications and concluding
remarks which appear in Section 4 and Section 5, respectively, complete the article.

2. Local Analysis

The assumptions required are listed below provided Q = [0,+∞).
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(E1) There exist functions g1 : Q → Q, φ0 : Q×Q → Q which are continuous as well
as non-decreasing (FCN) such that the equation φ0(t, g1(t))− 1 = 0 has a minimal
positive solution called P. Define the set Q0 = [0, P).

(E2) There exist FCN g2 : Q0 → Q, φ3 : Q0 → Q, φ : Q0 ×Q0 → Q, φ1 : Q0 ×Q0 ×Q0 →Q
and φ2 : Q0 ×Q0 ×Q0 ×Q0 → Q such that the equations hi(t)− 1 = 0, i = 1,2 have
minimal positive solutions in the interval (0, P) denoted by Pi, respectively, where the functions
hi : Q0 →Q are given as

h1(t) =
φ(t, g1(t))

1 − φ0(t, g1(t))
,

a(t) =
φ2(t, h1(t)t, g1(t), g2(t))

1 − φ0(t, g1(t))

and

h2(t) =
[

φ1(t, h1(t)t, g1(t)) + a(t)(1 + 2a(t))(1 + φ3(h1(t)t))
1 − φ0(t, g1(t))

]
h1(t).

Define P∗ = min{Pi}. (3)

(E3) There exist an invertible operator M and a solution λ ∈ D of the Equation (1) such
that for all x ∈ D , u = x + H(x),

∥u − λ∥ ≤ g1(∥x − λ∥)

and

∥M−1([x, u, ; H]− M)∥ ≤ φ0(∥x − λ∥, ∥u − λ∥).

Define the set Q0 = D ∩ B(λ, P).
(E4)

∥M−1([x, u; H]− [x, λ; H])∥ ≤ φ(∥x − λ∥, ∥u − λ∥),
∥M−1([x, u; H]− [y, λ; H])∥ ≤ φ1(∥x − λ∥, ∥y − λ∥, ∥u − λ∥),
∥M−1([x, u; H]− [y, v; H])∥ ≤ φ2(∥x − λ∥, ∥y − λ∥, ∥u − λ∥, ∥v − λ∥),
∥v − λ∥ ≤ g2(∥y − λ∥), v = y + H(y), y = x − [x, u; H]−1H(x),

and

∥M−1([y, λ; H]− M)∥ ≤ φ3(∥y − λ∥).

Notice that by the definition of P, (E1), and (E3),

∥M−1([x, u; H]− M)∥ ≤ φ0(∥x − λ∥, g1(∥x − λ∥)) < 1.

Thus, y is well defined, since [x, u, H]−1 exists by a Lemma due to Banach for inverses
of linear operators [2,4,5], and

(E5) B[λ, P∗
] ⊂ D , where P∗

= max{P∗, g1(P∗), g2(P∗)}.

The developed notation and the assumptions (E1)–(E5) are required in the main local
result of this section for method (2).

Theorem 1. Under the assumptions (E1)–(E5) and provided that x0 ∈ B[λ, P∗)− {λ}, the se-
quence {xm} is convergent to the solution λ of (1).
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Proof. By applying the assumptions (E1)–(E3)

∥M−1(G0 − M)∥ ≤ φ0(∥x0 − λ∥, ∥u0 − λ∥)
≤ φ0(P∗, g1(∥x0 − λ∥)) ≤ φ0(P∗, g1(P∗)) < 1,

thus
∥G −1

0 M∥ ≤ 1
1 − φ0(∥x0 − λ∥, ∥u0 − λ∥) . (4)

The iterate y0 exists by method (2, step one, from which

y0 − λ = x0 − λ − G −1
0 H(x0)

= G −1
0 (G0 − [x0, λ; H])(x0 − λ). (5)

The assumptions (E2) and (E4), the formula (3), and the estimates (4) and (5) lead to

∥y0 − λ∥ ≤ φ(∥x0 − λ∥, ∥u0 − λ∥)∥x0 − λ∥
1 − φ0(∥x0 − λ∥, ∥u0 − λ∥)

≤ h1(∥x0 − λ∥)∥x0 − λ∥ ≤ ∥x0 − λ∥ < P∗. (6)

Hence, the iterate y0 ∈ B(λ, P∗). Notice also that by the invertibility of G0, the iterate
x1 exists by the method (2) step two and

x1 − λ = y0 − λ − A0G
−1
0 H(y0)− 2A0(I − A0)G

−1
0 H(y0)

= y0 − λ − (A0 − I + I)G −1
0 H(y0)− 2A0(I − A0)G

−1
0 H(y0)

= y0 − λ − G −1
0 H(y0) + (I − A0)G

−1
0 H(y0)

− 2(A0 − I + I)(I − A0)G
−1
0 H(y0)

= G −1
0 (G0 − [y0, λ; H])(y0 − λ)

− 2(I − A0)
2G −1

0 H(y0) + 2(I − A0)G
−1
0 H(y0)

= G −1
0 (G0 − [y0, λ; H])(y0 − λ)

− (I − A0)G
−1
0 H(y0) + 2(I − A0)

2G −1
0 H(y0). (7)

Therefore, by (3), (4), (6), and (7), it follows that

∥x1 − λ∥ ≤ 1
1 − φ0(∥x0 − λ∥, ∥u0 − λ∥)
[a0(1 + 2a0)(1 + φ3(∥y0 − λ∥)) + φ1(∥x0 − λ∥, ∥y0 − λ∥, ∥u0 − λ∥)]∥y0 − λ∥

≤h2(∥x0 − λ∥)∥x0 − λ∥ ≤ ∥x0 − λ∥, (8)

where the following calculations are also employed:

H(y0) = H(y0)− H(λ) = [y0, λ; H](y0 − λ),

∥M−1H(y0)∥ ≤ ∥M−1([y0, λ; H]− M + M)∥∥y0 − λ∥
≤ (1 + φ3(∥y0 − λ∥)∥y0 − λ∥
≤ (1 + φ3(h1(∥x0 − λ∥)∥x0 − λ∥)∥y0 − λ∥

and

∥I − A0∥ ≤ ∥G −1
0 M∥∥M−1(G0 − [y0, v0; H])∥

≤ φ2(∥x0 − λ∥, ∥y0 − λ∥, ∥u0 − λ∥, ∥v0 − λ∥)
1 − φ0(∥x0 − λ∥, ∥u0 − λ∥) = a0 ≤ a0,
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where

a0 =
φ2(∥x0 − λ∥, h1(∥x0 − λ∥)∥x0 − λ∥, g1(∥x0 − λ∥), g2(∥x0 − λ∥))

1 − φ0(∥x0 − λ∥, g1(∥x0 − λ∥)) .

From the preceding calculations, if repeated for xm, ym, and xm+1 in place of x0, y0,
and x1, respectively, the induction for the estimates

∥ym − λ∥ ≤ h1(∥xm − λ∥)∥xm − λ∥ ≤ ∥xm − λ∥

and
∥xm+1 − λ∥ ≤ h2(∥xm − λ∥)∥xm − λ∥ ≤ ∥xm − λ∥

is completed. Consequently, there exists

Λ = h2(∥x0 − λ∥) ∈ [0, 1), such that

∥xm+1 − λ∥ ≤ Λ∥xm − λ∥ < P∗ (9)

resulting in xm+1 ∈ B(λ, P∗) as well as limm→+∞ xm = λ.

Remark 1. The selection of the real functions g1 and g2 can be specialized further due to the
calculations:

u − λ = x − λ + H(x) = x − λ + [x, λ; H](x − λ)

= (I + MM−1([x, λ; H]− M + M))(x − λ),

= ((I + M) + MM−1([x, λ; H]− M))(x − λ).

Thus, a possible choice for the function g1 is

g1(t) = (∥I + M∥+ ∥M∥φ3(t))t. (10)

Similarly, we obtain

v − λ = y − λ + H(y)

= ((I + M) + MM−1([y, λ, H]− M))(y − λ),

so

∥v − λ∥ ≤ (∥I + M∥+ ∥M∥φ3(∥y − λ∥))∥y − λ∥

and consequently, a choice for the function g2 can be

g2(t) = (∥I + M∥+ ∥M∥φ3(h1(t)t))h1(t)t, (11)

where h1 is as previously written in (E2).
The functions can be further specified if the linear operator M is precised.
A popular choice is M = H′(λ). However, in this case, although there are no derivatives on the

method (2), it cannot be used to solve non-differentiable equations under previous assumptions, since
we assume λ to be a simple solution (i.e., H′(λ) is invertible). Thus, M should be chosen so that
functions “φ” are as tight as possible but not M = H′(λ) in the case of non-differentiable equations.

The isolation of the solution domain is specified in the next result.
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Proposition 1. Assume:
There exists a solution ζ ∈ B(λ, P) of the equation H(x) = 0 for some P > 0. The

condition (E2) and (E3) are validated on the ball B(λ, P), and there exists P ≥ P such that

φ3(P) < 1.

Then, the equation H(x) = 0 is uniquely solvable by λ in the domain D3 = D ∩ B[λ,P ].

Proof. Define the divided difference [ζ, λ; H]. Then, we obtain

∥M−1([ζ, λ; H]− M)∥ ≤ φ3(∥ζ − λ∥)
≤ φ3(P) < 1,

thus,

ζ − λ = [ζ, λ; H]−1(H(ζ)− H(λ))

= [ζ, λ; H]−1(0) = 0.

Hence, we conclude ζ = λ.

A possible choice for P = P∗.

3. Semi-Local Analysis

The mission of λ, “φ”, g1, and g2 functions is exchanged by the initial point x0 and the
“ψ”, g3, and g4 functions as defined below.

Assume the following:

(T1) There exists FCN g3 : Q → Q, ψ0 : Q×Q → Q such that the equation ψ0(t, g3(t))−
1 = 0 has a minimal positive solution denoted by q. Let Q1 = [0, q). Consider FCN
g4 : Q1 → M, ψ : Q1 ×Q1 → M, ψ1 : Q1 ×Q1 ×Q1 → M and ψ2 : Q1 ×Q1 ×Q1 ×
Q1 → M. Define for α0 = 0, β0 ≥ 0 the sequence {αm} as

bm =
ψ(αm, βm, g3(αm), g4(βm))

1 − ψ0(αm, g3(αm))
,

cm = ψ(αm, βm, g3(αm))(βm − αm), (12)

αm+1 = βm +
(1 + bm + 2b2

m)cm

1 − ψ0(αm, g3(αm))
,

dm+1 = (1 + ψ(αm, αm+1))(αm+1 − αm)

+ (1 + ψ0(αm, g3(αm))(βm − αm)

and

bm+1 = αm+1 +
dm+1

1 − ψ0(αm, g3(αm))
.

(T2) There exists q0 ∈ [0, q) such that for all m = 0, 1, 2, . . .

ψ0(αm, g3(αm) < 1 and αm ≤ q0.

It follows via (12) and (T2) that

0 ≤ αm ≤ βm ≤ αm+1 < q0,

and there exists q∗ ∈ [0, q0] such that limm→+∞ αm = q∗.
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(T3) There exist an invertible linear operator M and x0 ∈ D such that

∥M−1([x, y, ; H]− M)∥ ≤ ψ(∥x − x0∥, ∥y − x0∥),
∥M−1([y, x, ; H]− [x, u; H])∥ ≤ ψ1(∥x − x0∥, ∥y − x0∥, ∥u − x0∥),
∥M−1([x, u, ; H]− [y, v; H])∥ ≤ ψ2(∥x − x0∥, ∥y − x0∥, ∥u − x0∥, ∥v − x0∥)

and

∥v − x0∥ ≤ g4(∥y − x0∥)

for all x ∈ Q1 = D ∩ B(x0, q), with y, u, and v as given before.
It follows via conditions (T1) and (T3) that

∥M−1([x0, u0; H]− M)∥ ≤ ψ0(∥x0 − x0∥, ∥u − x0∥)
≤ ψ0(0, g3(∥x0 − x0∥) = ψ0(0, g3(0)) < 1.

Thus, G −1
0 exists. Set ∥G −1

0 G(x0)∥ ≤ β0.
and

(T4) B[x0, q∗] ⊂ D , where q∗ = max{q∗, g3(q∗), g4(q∗)}.

The semi-local analysis of method (2) follows in the next result.

Theorem 2. Under the Assumptions (T1)–(T4), the sequence {xm} is convergent to some solution
λ ∈ B[x0, q∗] given by method (1) so that

∥λ − xm∥ ≤ q∗ − αm. (13)

Proof. As in the local analysis, we obtain, in turn, the estimates

∥y0 − x0∥ = ∥G −1
0 H(x0)∥ ≤ β0 = β0 − α0 < q∗,

and, by induction,

xm+1 − ym = −AmG −1
m H(ym)

− 2Am(I − Am)G
−1
m H(ym)

= −(Am − I + I)G −1
m H(ym)

− 2(Am − I + I)(I − Am)G
−1
m H(ym)

= (I − Am)G
−1
m H(ym)− G −1

m H(ym)

+ 2(I − Am)
2G −1

m H(ym)− 2(I − Am)G
−1
m H(ym)

= −G −1
m H(ym)− (I − Am)G

−1
m H(ym),

so

∥xm+1 − ym∥ ≤ (1 + bm + 2b2
m)cm

1 − ψ0(αm, g3(αm))
≤ αm+1 − βm

and

∥xm+1 − x0∥ ≤ ∥xm+1 − ym∥+ ∥ym − x0∥ ≤ αm+1 − βm + βm − α0 ≤ q∗,
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where we also used

∥G −1
m M∥∥M−1(Gm − [ym, vm; H])∥

≤ ψ(∥xm − x0∥, ∥ym − x0∥, ∥um − x0∥, ∥vm − x0∥)
1 − ψ0(∥xm − x0∥, ∥um − x0∥)

= bm

≤ ψ(αm, βm, g3(αm), g4(βm))

1 − ψ0(αm, g3(αm))
= bm,

H(ym) = H(ym)− H(xm)− [xm, um; H](ym − xm)

= ([ym, xm; H]− [xm, um; H])(ym − xm),

∥M−1H(ym)∥ ≤ ψ(∥xm − x0∥, ∥ym − x0∥, ∥um − x0∥)∥ym − xm∥
= cm ≤ cm = ψ(αm, βm, g3(αm))(βm − αm).

Moreover, by the first substep,

H(xm+1) = H(xm+1)− H(xm)− Gm(ym − xm),

so

∥M−1H(xm+1)∥ ≤ (1 + ψ(∥xm − x0∥, ∥xm+1 − x0∥))∥xm+1 − xm∥
+ (1 + ψ0(∥xm − x0∥, ∥um − x0∥))∥(ym − xm)∥ = dm+1

≤ (1 + ψ(αm, αm+1))(αm+1 − αm)

+ (1 + ψ0(αm, g3(αm))(βm − αm) = dm+1. (14)

Consequently, we obtain

∥ym+1 − xm+1∥ ≤ ∥G −1
m+1M∥∥M−1H(xm+1)∥

≤ dm+1

1 − ψ0(∥xm+1 − x0∥, ∥um+1 − x0∥)

≤ dm+1

1 − ψ0(αm+1, g3(αm+1))
= βm+1 − αm+1

and

∥ym+1 − x0∥ ≤ ∥ym+1 − xm+1∥+ ∥xm+1 − x0∥
≤ βm+1 − αm+1 + αm+1 − α0

= βm+1 < q∗.

Thus, the sequence {xm} is fundamental in Banach space S . So, there exists λ =
limm→+∞ xm ∈ B(λ, q∗). By sending m → +∞ in (14) it follows H(λ) = 0. Then, from the
estimation

∥xm+k − xm∥ ≤ αm+k − am,

the estimate (13) is realized, provided that k → +∞.

Remark 2. The functions g3 and g4 can be determined analogously to the functions g1 and g2
as follows:

u − x0 = x − x0 + H(x)

= (I + [x, x0; H])(x − x0) + H(x0),

= [(I + M) + MM−1([x, x0; H]− M)](x − x0) + H(x0).
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Assume that there exist FCN ψ3 : Q1 → Q such that

∥M−1([x, x0; H]− M))∥ ≤ ψ3(∥x − x0∥)

for all x ∈ Q1. Then, we can choose

g3(t) = (∥I + M∥+ ∥M∥ψ3(t))t + ∥H(x0)∥.

Similarly,

g4(βm) = (∥I + M∥+ ∥M∥ψ3(βm))βm + ∥H(x0)∥.

The next result determines the isolation of a solution region.

Proposition 2. Assume the following:
There exists a solution ξ ∈ B(x0, υ) of solution H(x) = 0 for some υ > 0. The first condition

in (T3) is validated on the ball B(x0, υ), and there exists ϖ ≥ υ such that

∥M−1([ξ, x; H]− M)∥ ≤ ψ3(∥ξ − x0∥, ∥x − x0∥),
ψ3(υ, ϖ) < 1,

where ψ3 : Q → R is FCN.
Let D4 = D ∩ B[x0, ϖ]. Then, the only solution of the equation H(x) = 0 is ξ in the

region D4.

Proof. Let Y ∈ D4 satisfy H(Y ) = 0. Define the divided difference [ξ, Y ; H]. This is
possible if Y ̸= ξ. Then, we obtain it, in turn, by the conditions

∥M−1([ξ, Y ; H]− M)∥ ≤ v2(∥ξ − x0∥, ∥Y − x0∥),
≤ ψ3(υ, ϖ) < 1;

thus, [ξ, Y ; H]−1 ∈ L(B). However, the identity

0 = H(ξ)− H(Y ) = [ξ, Y ; H](ξ −Y )

leads to a contradiction, and the divided difference [ξ, Y ; H] cannot be defined. Therefore,
we conclude that Y = ξ.

Remark 3. (1) The point q can also be replaced by q∗ in condition (T3).
(2) If conditions (T1)–(T4) are all validated, let λ = ξ and q∗ = υ.

4. Numerical Examples

A local example is given first. The solution in the second example is obtained by using
method (2) to solve a non-differentiable equation.

Example 1. Let S = R×R×R and D = B[λ, 1]. Consider the mapping on the ball D given
for ρ = (ρ1, ρ2, ρ3)

tr as

H(ρ) =

(
e − 1

2
ρ2

1 + ρ1, ρ2, eρ3 − 1
)tr

.

The Jacobian is given by

H′(ρ) =

(e − 1)ρ1 + 1 0 0
0 1 0
0 0 eρ3

.
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It follows that the solution λ = (0, 0, 0)tr and H′(λ) = I, the identity mapping with choice
M = H′(λ). The divided difference is defined by [x, y; H] =

∫ 1
0 H′(x + θ(y − x))dθ. Then,

the conditions (E3)–(E4) are validated provided that

φ0(u1, u2) =
1
2
(e − 1)(u1 + u2)

φ(u1, u2) =
1
2
(e − 1)u1

φ1(v1, v2, v3) =
1
2
(e

1
e−1 v1 + (e − 1)v2)

φ2(v1, v2, v3, v4) =
1
2
(v1 + v2 + v3 + v4)

and

φ3(u1) =
e − 1

2
u1.

Then, from (3), the radius of convergence P∗ is given as

P∗ = min{0.2747721282852604, 0.15403846587561557}
= 0.15403846587561557.

Example 2. Let Q : S → S be a mapping. Recall that the standard divided difference of order
one when B = Rk is defined for x = (x1, x2, . . . , xk), y = (y1, y2, . . . , yk), i = 0, 1, 2, . . . , k,
j = 0, 1, 2, . . . , k by

[y, x; Q]ji =
Qj(y1, . . . , yi−1, yi, xi+1, . . . , xk)− Qj(y1, . . . , yi−1, xi, xi+1, . . . , xk)

yi − xi
,

provided that yi ̸= xi.
The solution is sought for the nonlinear system

t2
1 − t2 + 1 +

1
9
|t1 − 1| = 0

t1 + t2
2 − 7 +

1
9
|t2| = 0.

Let Q = (Q1, Q2) for (t1, t2) ∈ R×R, where

Q1 = t2
1 − t2 + 1 +

1
9
|t1 − 1| and

Q2 = t1 + t2
2 − 7 +

1
9
|t2|.

Then, the system becomes

Q(t) = 0 for t = (t1, t2)
tr.

The divided difference L = [·, ·; Q] belongs in the space M2×2(R) and is the standard 2 × 2
matrix in R2 [14]. Let us choose x0 = (4.2, 6.1)tr. Then, the application of the method (2) gives the
solution λ after three iterations. The solution λ = (λ1, λ2)

tr, where

λ1 = 1.1593608501934547

and

λ2 = 2.361824342093888.
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5. Concluding Remarks

A methodology is provided that proves the convergence of iterative method (2) under
weaker conditions than before [19]. In particular, this methodology uses only conditions
involving the operator on the method, in contrast to earlier approaches using the fifth
derivative, not on the method. Moreover, the upper error bounds on the distances that are
computable become available, i.e., we can use them to tell in advance how many iterations
must be performed in order to obtain a pre-decided error tolerance. Such information is not
available in [19] and related studies on other methods [6–16,19]. Furthermore, a computable
ball, also not given before, is defined, inside which there is only one solution to the equation.
Finally, the more difficult and important semi-local analysis not dealt with in [19] or similar
studies on other iterative methods [5,17,18] is presented, where the convergence is shown
using real majorizing sequences. The same methodology can be applied to other methods
utilizing the inverses of linear operators. Further, numerical experiments are performed
that demonstrate the theoretical part. In our future research, the methodology shall extend
the applicability of multipoint and multi-step methods [2–4,17].
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