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Abstract: The review provides a pedagogical but comprehensive introduction to the foundations of
a recently proposed statistical mechanics (µNEQT) of a stable nonequilibrium thermodynamic body,
which may be either isolated or interacting. It is an extension of the well-established equilibrium
statistical mechanics by considering microstates {mk} in an extended state space in which macrostates
(obtained by ensemble averaging Â) are uniquely specified so they share many properties of stable
equilibrium macrostates. The extension requires an appropriate extended state space, three distinct
infinitessimals dα = (d, de, di) operating on various quantities q during a process, and the concept
of reduction. The mechanical process quantities (no stochasticity) like macrowork are given by
Âdαq, but the stochastic quantities Ĉαq like macroheat emerge from the commutator Ĉα of dα and
Â. Under the very common assumptions of quasi-additivity and quasi-independence, exchange
microquantities deqk such as exchange microwork and microheat become nonfluctuating over {mk}
as will be explained, a fact that does not seem to have been appreciated so far in diverse branches
of modern statistical thermodynamics (fluctuation theorems, quantum thermodynamics, stochastic
thermodynamics, etc.) that all use exchange quantities. In contrast, dqk and diqk are always fluctuating.
There is no analog of the first law for a microstate as the latter is a purely mechanical construct.
The second law emerges as a consequence of the stability of the system, and cannot be violated unless
stability is abandoned. There is also an important thermodynamic identity diQ ≡ diW ≥ 0 with
important physical implications as it generalizes the well-known result of Count Rumford and the
Gouy-Stodola theorem of classical thermodynamics. The µNEQT has far-reaching consequences with
new results, and presents a new understanding of thermodynamics even of an isolated system at the
microstate level, which has been an unsolved problem. We end the review by applying it to three
different problems of fundamental interest.
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1. Introduction

Thermodynamics is the study of physical systems in nature that eventually evolve
in time to stationary macrostates, in which any disturbance generates restoring forces to
bring them back to the stationary macrostates [1–3], which makes them stable macrostates,
usually called equilibrium (EQ) macrostate Meq, satisfying certain stability conditions. Any
disturbance to modify macrostates of the system invariably results in nonequilibrium (NEQ)
processes so that they abound in nature and obey the well-established second law [4–7].
The law is also obeyed by biological systems [8,9]. However, NEQ processes are not well-
understood, as the corresponding thermodynamics (NEQT) is not yet fully developed,
despite it having a long history of various competing schools [10–28], among which are
the most widely known schools of local equilibrium thermodynamics, rational thermody-
namics, extended thermodynamics, and GENERIC thermodynamics [21,29]. They mostly
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deal with the time evolution of macroscopic quantities only; the latter emerge as instanta-
neous averages over microstates in a more fundamental and statistical approach, and are
used to characterize any thermodynamic process and the resulting nonnegative entropy
generation ∆iS ≥ 0, as first proposed by Clausius [30,31]. In contrast, the equilibrium
(EQ) thermodynamics (EQT) in which ∆iS ≡ 0 is based on the original ideas of Carnot,
Clapeyron, Clausius, Thomson, Maxwell, and many others [3,12,32–45], and has by now
been firmly established in statistical physics, thanks to Boltzmann [46,47] and Gibbs [48],
who established that classical EQ thermodynamics is a direct consequence of the EQ statis-
tical mechanics [33,34,37,38] that deals directly with microstates {mk} of the Hamiltonian
H of the system, and their equilibrium probabilities

{
peq

k

}
that together specify the EQ

macrostate Meq. In contrast, EQT deals directly with Meq without any need to know {mk}
and

{
peq

k

}
.

In general, the collection {mk, pk} of microstates and their probabilities is used in
a statistical description of a macrostate M of the system Σ that may be isolated or interacting
with a medium Σ̃, as shown in Figure 1. The same microstate set {mk} determines different
macrostates depending on the probabilities pk = pk(M) with which mk appears in M. As
H is by definition deterministic, mk is also deterministic. Thus, it is independent of pk,
but is specified by its energies Ek and the parameters defining H. Because of this, {mk}
and {Ek} are the same for any of its possible macrostates M including Meq. This allows
{Ek} to be treated as purely mechanical, which is then supplemented by {pk} to add
stochasticity to the mechanical system. Such a description has proven very useful in EQ
statistical mechanics [33,34], where the concepts of the entropy Seq = S(Meq) that was first
introduced by Clausius [30,31] as a state function of Meq, and the temperature T are the
new concepts that play a central role in the resulting EQ thermodynamics of Σ. As such, it
is very common to use them to distinguish a thermodynamic system from a mechanical
system by recognizing that the concept of heat (a consequence of a particular commutator
as described later) is novel to thermodynamics but is not applicable to a mechanical
system, which is traditionally taken to be described by a purely conservative Hamiltonian
H. We use X .

= (N, E, V, · · · ) to collectively denote the number of particles N, their energy
E, the volume V occupied by them, etc., as representing the common thermodynamic
extensive state variables that determine Meq ≡ M(X) in the state space SX spanned by
X. We call them observables. As observables, these variables can be controlled from the
outside of the system. We will allow X = X(t) to have time dependence in this work; here,
t denotes the time. For the moment, we suppress the suffix “eq” for notational simplicity
unless necessary as we are dealing with SX. To be useful, S and T must uniquely refer to
the thermodynamic state M(X). This unique relationship is what is meant by S being a
state function of X, which when inverted gives E a state function of ζ

.
= (S, w), w .

= X\E,
where \E stands for deleting E from the set preceding it. Being functions of M of Σ, S and
T, an intensive field, must be interrelated in some fashion such as

1/T = ∂S/∂E, (1)

(see Equation (129)) so only one of them can be treated as a primitive concept, which we
take to be the entropy. The goal of NEQT is to then specify it in terms of X in the state space
SX. In this respect, having S a state function considerably simplifies the study as we then
deal with Meq. When this cannot be done, we must go beyond SX to an extended state
space in which the NEQ entropy also becomes a state function, which is the central theme
of this review. In this space, a uniform global temperature of the body is defined as its
unique field by the above derivative in the extended state space. Thus, our goal will be to
identify the NEQ entropy in this space.



Foundations 2023, 3 423

Isolated Macroscopic System S0

T(t), P(t),……,A(t)

diZ

Macroscopic System S

T(t), P(t),……,A(t)

diZ

deZ

Surrounding Environment (Medium)

T0, P0,……,A0=0

(a)

(b)

walls

walls

Figure 1. (a) An isolated nonequilibrium system Σ0 with internally generated diZ driving it towards
equilibrium, during which its SI-fields T(t), P(t), · · · , A(t) continue to change to their equilibrium
values; diZk denote the microanalog of diZ. The sign of diZ is determined by the second law.
(b) A nonequilibrium systen Σ in a surrounding medium Σ̃, both forming the isolated system Σ0.
The macrostates of the medium and the system are characterized by their fields T0, P0, ..., A0 = 0 and
T(t), P(t), . . . , A(t), respectively, which are different when the two are out of equilibrium. Exchange
quantities (deZ) carry a suffix “e” and irreversibly generated quantities (diZ) within the system are
denoted by a suffix “i” by extending the Prigogine notation. Their sum deZ + diZ is denoted by dZ,
which is a system-intrinsic quantity (see text). In a nonequilibrium system, the nonzero differences
Fh

t = T0 − T and ∆Fw = (P− P0, · · · , A) denote the set of thermodynamic forces, where we have
also included the affinity A for internal variables ξ; see text. A microstate mk of Σ is specified by
appending a subscript k to ∆Fw so that ∆Fwk = (Pk − P0, · · · , Ak), as explained in the text.

Although S plays important roles in diverse fields ranging from classical thermo-
dynamics of Clausius [3,10,12,13,17,20,24,25,30,33,39–44,46–58], quantum mechanics and
uncertainty [59–61], black holes [62–64], coding and computation [65–67], to information
technology [68–72], it does not seem to have a standard definition in all cases, even though
it is well-defined under EQ conditions, as extensively discussed in the literature; see, for ex-
ample, [46–48,73–78]. As Seq is uniquely determined by

{
peq

k

}
as a state function, peq

k ’s
must be unique functions in SX, as is well-known [33]. Requiring this uniqueness will be
a guiding force in our endeavor to formulate the NEQ statistical mechanics. Whether S
has any physical significance in a NEQ macrostate M has been a topic of extensive debate;
see for example [73–77] and references therein. The problem arises because it is not clear
if, and how, M can be uniquely identified. Because of the lack of uniqueness, introducing
S(M) as a state function becomes nontrivial. The same concern also applies to {pk}.

Recently, we have been able to extend the classical concept of Clausius entropy from
EQ states to NEQ states where irreversible entropy is generated [75–78]. That approach is
an outgrowth of an earlier review [79] in this journal about a possible source of stochasticity
that is required in a thermodynamic system, even though its mechanics is completely
deterministic due to its Hamiltonian dynamics so that heat and temperature have no
mechanical analogs. Not appreciating that the source of stochasticity is independent
from the deterministic (mechanical) aspect has been a source of bitter debate between
Boltzmann, Zermelo, Poincare, and many others ([45,56,79–96], and references cited in
there). The dispute required Boltzmann to propose the ideas of molecular chaos and of the
ergodicity hypothesis [91] that have played a major role in EQ statistical mechanics. We
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discuss these important ansatze in [92–95] with an emphasis on Kac’s ring model [97,98]
in more detail, where we find that they are not fulfilled in a deterministic dynamics. We
infer, as is commonly believed, that one needs a stochastic dynamics for the ansatz to be
satisfied. Both these ideas can only be supported by a stochastic dynamics as discussed in
these references [99–102].

It is clear that we need to supplement a purely mechanical approach by supplementing
it with stochasticity. We accomplish treating both aspects separately but unifying them
together and enabling uniqueness by using an extended state space SZ spanned by ex-
tensive state variables (compactly denoted by Z = Z(t) = X(t) ∪ ξ(t) as an extension of
X(t) in this review) to obtain a state function S. In general, Z includes the observables but
possibly some more independent variables, compactly denoted by ξ(t) required for an
NEQ situation, as will become clear later. The additional state variable ξ, when properly
chosen as will be described later, allows for a unique description of the macrostate M(Z) in
SZ. Once such a state space has been uncovered for M(Z), its entropy S(M) also become
a state function S(Z) in SZ. This again requires its pk’s to be unique functions in SZ, just
as peq

k are in SX. Thus, the identification of an appropriate SZ immediately solves the
problem of obtaining a unique statistical mechanics of an NEQ system as it directly leads to
pk as a unique function of mk and M(Z) in SZ.

In order for such an approach to work, and in particular for S(Z), which itself is
a system quantity, it is crucial that we deal with only system-intrinsic (SI) quantities (they
are determined by the system), and not medium-intrinsic (MI) quantities (they are primarily
determined by the medium) for the simple reason that utilizing {mk} requires their specifi-
cation by the Hamiltonian of the system and so require SI-quantities for its specification.
(We will use body to refer to Σ, Σ̃, and Σ0, and BI-quantities to refer to quantities of a body.)
As will become clear in the following, these quantities capture the internal processes going
on within the system. They cannot be fully captured by the MI-quantities, even though
they have been traditionally used in thermodynamics, for the simple reason that they
retain the memory of the medium and can depend on the system only weakly. Thus, they
will require additional steps to study internal processes. There has been a long debate
about the relevance and significance of the two kinds of quantities that ensued from a very
different perspective [103–107], but did not capture the importance these quantities acquire
in our approach.

The SI-quantities allow us to develop our NEQ statistical mechanics, which for brevity
is identified as the µNEQT, with µ referring to the microstates {mk}, in which we directly
capture internal processes that are responsible for irreversibility. As the collection {mk}
is the central object in the µNEQT, the latter deals with quantities such as {Ek, pk}. At the
microstate level, there are fluctuations that are essential in a statistical treatment, and are
properly captured in the µNEQT through the fluctuations in Ek and pk over mk. In contrast,
the use of the MI-quantities does not directly describe {mk} so it cannot properly yield
a statistical mechanical description of an NEQ process in a system. This is one of our
most important conclusions. In particular, an important consequence of the µNEQT as
will be shown later is that MI-quantities, after reduction (being averaged over the mi-
crostates of the medium) under commonly accepted conditions of quasi-additivity and
quasi-independence, do not exhibit any fluctuations. This explains why they are not suit-
able in developing the statistical mechanics. We call the resulting version of the microstate
NEQT the µ̊NEQT; the circle on µ is a reminder for the use of “exchange” microquantities
derived from the MI-quantities in its formulation. The most prominent are the exchange
(also called external) microwork deWk = deW, ∀k, and the exchange (also called external)
microheat deQk = deQ, ∀k, thus, explicitly exhibiting that they have no fluctuations. Be-
cause of this, it does not directly capture internal processes at the microstate level, which
require additional steps to describe irreversibility as mentioned above. The corresponding
macroscopic NEQT from the two approaches are called the MNEQT and the M̊NEQT, re-
spectively; here, M stands for the macroscopic description in terms of macrostates, the circle
again having the same connotation as above. There are no fluctuations in these theories,
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as is well-known. The M̊NEQT is the standard formulation of classical thermodynamics
and has been discussed extensively by many prominent scientists [13,18,33,39,41,42,51,108],
some including internal variables that play an important role in our approach.

It should be obvious from the above discussion that we need to make a clear distinction
between fluctuating (Fl) and nonfluctuating (NFl) quantities. In addition, we also recognize
that there are many other macrostates in SZ for which neither S nor the corresponding pk’s
are unique functions in SZ, so S must be treated independently of Z. Our previous work
did not consider such states, but they will be considered in this review. For this purpose,
we will find it convenient to introduce the following state variable sets:

S, E, w .
= X\E, W .

= Z\E, Z, ζ = (S, W), χ = (S, Z), (2)

and the corresponding state spaces SS,SE,SW,SZ,Sζ
.
= SS ∪SW, and SØ

.
= SS ∪SZ,

where the suffix denotes the variable set forming the state space.
We should emphasize that internal variables also appear in mechanical systems.

A simple example is that of two particles in a system, whose interior is hidden in the lab
from us so that we cannot see where the particles are inside the system. From outside the
system, we can only be aware of the position of the center of mass by observing its motion
in the lab. However, there is no way to determine their separation within the system. This
separation and the corresponding relative motion are examples of the internal variable and
its motion, and play a role in the dynamics of the mechanical system. Thus, it should not
come as a surprise that such internal variables will also be relevant in a thermodynamic
system. Indeed, we will see later in Section 14 that this relative motion becomes the source
of “microfriction”, resulting in friction, when we treat the system in thermodynamics.

To appreciate at a more fundamental level the distinction between a mechanical and
a thermodynamic system, we first realize that both systems are usually separated from
their surroundings Σ̃ by some clear partitions, the most common being the walls between
them; see Figure 1. We collectively call them containers or walls that contain the system [109].
In this review, we find it convenient to not include the container as part of the system,
but use it to determine the boundary conditions for the equations of motion or as defining
parameters in the HamiltonianH of the system Σ. AsH plays the role of E, the parameters
w and W are obtained by taking out E from X and Z, respectively:

w = (V, · · · ), W = (V, · · · , ξ); (3)

where · · · refers to the rest of the elements in X besides V [110]. As will become evident
below, these parameters denote the work parameter in the Hamiltonian, which we will denote
by H(x|w) or H(x|W), respectively. For simplicity in the following, we will always use
W for the work parameter to refer to both cases and express the Hamiltonian asH(x|W).
The parameter can be varied in a process with a concomitant change inH(x|W) due to the
work done by the system. This is in accordance with the work–energy theorem of mechanics
that states that the change in the energy is due to work alone. Also, x = x(t) .

={r(t), p(t)} is
the dynamical variable and denotes the collection of coordinates {r(t)} and momenta {p(t)}
of the N particles in the phase space Γ(x|W ) of Σ [110]. As internal variables play no role in
EQ, W = w in EQ. For any x ∈Γ(x|W ), the deterministic energy of Σ in the state specified
by x is Ex(W) = H(x|W), which need not be constant. However, there is no stochasticity
so there is no concept of heat. Thus, the Hamiltonian itself cannot explain the fundamental
difference between the two systems [79].

We elaborate further. Mechanics is a branch of the physical science to study the de-
terministic behavior of the system in the presence of known forces and radiation in time.
The central concept is that of energy whose changes are governed by deterministic Hamil-
tonian equation of motion in Γ(x|w ) with deterministic boundary conditions such as at
the walls confining the system Σ (see Figure 1a) that generate deterministic wall potentials
acting on the particles. Accordingly, a point x(t) ∈ Γ(x|w ) is uniquely determined by x(t0)
at some reference time t0. A central aspect of the equation is that it uniquely determines the
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properties of the system in the future (t > t0) as well as in the past (t < t0) [111,112]. We
will assume in this review that the fundamental weak nuclear forces are not included in our
discussion [113]. A movie of such a deterministic process in the future, when run backward
for the past, will appear just as natural with no hint of the direction of the time flow. Thus,
starting from x, which also identifies a microstate [110], at t, the state undergoes a unique
state transformation

x 7−→ x′ (4)

in the same interval ∆t for any ∆t. If we now consider an ensemble of the same mechanical
system, each prepared in the state x at t = 0, then at t = ∆t, each system will be in the same
state x′. In the language of probability theory [114], we say that x′ follows with certainty
from x in ∆t ≷ 0. (This will be useful later to associate the concept of a constant entropy to
a mechanical system but not heat.)

But the above invariance is contrary to our daily experience as a rule [115–124]. For ex-
ample, the initial state x0 may be when all the gas particles are confined to a small portion
of the container [109] located at the center of the container. We are not interested in particle
momenta. As the gas expands spontaneously, it occupies the entire volume uniformly.
However, once the gas has occupied the entire volume in the state x1, the reverse evolution
is not seen in nature. Similarly, the cream mixed in a cup of coffee does not ever unmix on
its own. The smoke from a burning piece of wood only spreads out in the room, but never
confines itself on its own. If we run the movies in any of these cases backward, we imme-
diately realize that the backward movies do not represent physical phenomena that are
consistent with our daily experience.

This lack of time-reversal invariance of the equations of motion is a natural fact of
daily life where we deal with macroscopic systems [125] that eventually evolve in time to
Meq. This is at the root of the second law of thermodynamics, and can be easily explained
as follows. It happens here that each member of the above ensemble that was initially
prepared in the same state x evolves during a fixed interval ∆t into different states x(n) = x′,
x′′, x′′′, · · · for different n = 1, 2, 3, · · ·

x −→ x(n), n = 1, 2, 3, · · · , (5)

then the certainty implied in Equation (4) is lost so that most often it would happen that the
states of different members after ∆t would have no discernible pattern for x(n) and appear
haphazard for the members. The result is ([126], pp. 1–14) a loss of physical determinism [127].
Thus, the mapping

x 99K x′ (6)

in (5) between x and one of its evolved states x′ is one-to-many, and the mapping becomes
unpredictable, i.e., stochastic [114]. One possible explanation of the loss of certainty at the
level of states lies in the presence of stochasticity in the system due to the uncontrollable
interactions with the surroundings, as discussed elsewhere [79] and elaborated later in
Section 7. This is the foundations of classical probability theory by Laplace, and used to
formulate the idea of density matrix by Landau [59,128] and von Neumann [129]. In this
case, the mapping (6) cannot be reversed, and we cannot perform time-reversal of the
evolution anymore. It is the success of a probabilistic approach to nonequilibrium thermo-
dynamics that prompted Maxwell [50] and Boltzmann [130,131] to promote the “ergodic
hypothesis” to achieve EQ. One of our aims in this review is to follow the consequences
of this stochasticity in the dynamics such as in the Brownian motion [132] and Langevin’s
equation [133], and extend the concept of ergodicity to a special class of NEQ states [134]
that has been identified as internal equilibrium states; see Definition 9.

1.1. Scope of the Review

It should be obvious that the scope of the NEQ statistical mechanics, the µNEQT, is
more general than that of the equilibrium statistical mechanics, to be denoted here simply
as the µEQT in short, in that the attempts are now mostly to deal with the most general
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time evolution of microscopic quantities in the former. The instantaneous averages of
these quantities over microstates {mk} are used to specify the instantaneous macrostates
M required to characterize any thermodynamic process P in time in the MNEQT. Thus, the
tasks in the µNEQT and the MNEQT are more difficult and their foundations less developed,
which justifies the motivation of this review. The exception is the validity of the first law
in terms of exchange (or external) work and heat between Σ and Σ̃ in thermodynamics,
which plays a central role in the M̊NEQT. These MI-quantities are determined uniquely
by Σ̃ regardless of P being reversible or irreversible, and are easily identified under
generally acceptable conditions such as Σ̃ always being in EQ, quasi-additivity and quasi-
independence; see later. Some of the approaches in the M̊NEQT employ the enlarged
state space SZ [18,21,42,108]. Being associated with an EQ Σ̃, the MI-quantities including
the exchange (or external) entropy carry no information about irreversibilities going on
within the system. In contrast, the MNEQT based on the use of the SI-quantities include,
by definition, these irreversible contributions so they are directly obtainable. One of our
goals, besides laying down the foundations of the µNEQT, is to justify the MNEQT from
the µNEQT.

A system in EQ always has its observables uniformly distributed throughout the
system so it is uniform in SX [33]. In contrast, an NEQ system is not uniform and requires
additional information about the nonuniformity to uniquely specify its states, which is
provided by a proper choice of internal variables in ξ. The set ξ allows us to treat Σ as
uniform in the state space SZ (see Section 5.7) so that there is a unique thermodynamic
temperature and other fields for the entire system even though it is still nonuniform in
SX. This is very useful to obtain a proper thermodynamics of the system. For example,
the single thermodynamic temperature T even for a nonuniform system satisfies Clausius’s
theorem that heat flows from hot to cold. This is what makes the µNEQT in the extended
space SZ so useful and desirable.

Various microquantities associated with Σ (having microstates {mk}), Σ̃ (having mi-
crostates

{
m̃k̃

}
), and Σ0 (having microstates

{
m0k0

}
) carry the suffix k, k̃, and k0, respectively.

However, we are only interested in microquantities associated with {mk} as our focus is
on Σ. This means that microquantities of Σ̃ and Σ0 must be manipulated so that they
can be associated with {mk}. To accomplish this, we introduce the principle of reduction,
which accounts for the correlation introduced by mutual interactions between Σ and Σ̃.
Under commonly accepted conditions about Σ̃, the principle shows that the effect of Σ̃ on
Σ can be incorporated by treating its microquantities in the form of exchange (or external)
quantities having no fluctuations. This is what makes the MI-quantities play such an impor-
tant role in classical thermodynamics, but makes them unsuitable to extract fluctuations in
a statistical theory.

Our goal here is to provide a comprehensive and self-contained introduction to our
recently developed NEQ statistical mechanics (µNEQT), in which we study deterministic
time evolution of individual microstates in {mk} along Hamiltonian trajectories in {γk}
during P . When quantities associated with these trajectories are averaged over them using
their probabilities, the result is the MNEQT, an extension of the equilibrium thermodynam-
ics to describe NEQ processes. This consistency with the MNEQT is not only a check on
the validity of the µNEQT, but also a justification of the MNEQT by the µNEQT. The use of
the SI-quantities in the µNEQT allows for directly obtaining quantities such as ∆iS after
averaging. Thus, the µNEQT is an extension of the EQ statistical mechanics [33,34], the
µEQT, that was originally developed by Boltzmann [46,47] and Gibbs [48], and limited to
∆iS ≡ 0.

We will follow deterministic trajectories {γk} during P between two macrostates Min
and Mfin. Only the latter determine the trajectories so they are the same for all processes P
between them. This makes {γk} independent of the trajectory probabilities

{
pγk

}
control-

ling various P ’s, which is similar to {mk} being independent of the microstate probabilities
{pk}. The extended state space SZ is chosen appropriately to uniquely specify {mk} and
{γk} in it. This uniqueness is an important aspect of the µNEQT and the MNEQT as it is
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missing in other contemporary NEQT theories [10,12,13,17–21,24–28,99,135–147]. The in-
stantaneous Ek along γk can only change mechanically due to the variation in W. This
variation is responsible for the net change {∆Ek} along {γk}, and is only determined by
Min and Mfin and not by

{
pγk

}
as noted above. To complete the formulation of the µNEQT,

we determine the unique
{

pγk (P)
}

for any P in SZ, which is another exceptional aspect
of the µNEQT. This way, the deterministic aspect of a process (the mechanical work) has
been separated from the stochastic aspect (the heat) in thermodynamics in a unique way in
the µNEQT for any P , NEQ or not. With the unique probabilities in hand, all calculation
can be carried out exactly in the µNEQT, once SZ has been identified. In the µ̊NEQT,
the trajectory probabilities need to be determined using additional steps such as using the
master equation [54], Fokker–Planck equation [37,102], etc., which are phenomenological.

Being deterministic, microquantities associated with {mk} or {γk} are not constrained
by the second law, which is a macroscopic law based on stochasticity. This is not surprising,
as the Hamiltonian dynamics has nothing to say about the second law. For the MNEQT, we
need to determine various thermodynamic averages over {γk} using

{
pγk

}
. Thus, the de-

velopment of the µNEQT is carried out in two independent stages. First we determine
mechanical quantities as if the system is a mechanical one following Hamiltonian dynamics.
Its stochastic aspects are captured by

{
pγk (P)

}
, which determine not only mechanical

averages such as work but also the stochastic averages such as heat and entropy. It is the
latter that finds itself manifested in the second law for appropriate choices of {pk} and{

pγk

}
. By simply modifying the second stage, we are able to investigate the catastrophic con-

sequences of violating the second law. This proves the usefulness of our approach. With {∆Ek}
and

{
pγk (P)

}
in hand, we now have a complete NEQ statistical mechanics to describe any

process P . The division in the two distinct and independent stages is of central importance
to the µNEQT and the MNEQT [148–157].

We have successfully applied the µNEQT recently to study free expansion [154], to pro-
vide a correct application of microwork and microheat [155,156] in the various modern
fluctuation theorems [26,158,159], and to describe viscous dissipation [157] associated with
the dynamics of a Brownian particle (BP) [115,132,133,140] in its medium by developing an
alternative to the stochastic Langevin description [38,99]. The above applications clearly
show the usefulness of the µNEQT. However, our previous studies were mostly limited to
microworks; microheats were not treated as extensively. One of our major incentives here
is to overcome this limitation to determine the µNEQT for which the central requirement
is the unique microstate probability pk in the state space SZ. This ensures that M(Z) and
S(Z) are uniquely identified in SZ. Such macrostates are said to be in internal equilibrium
(IEQ) in SZ and written as Mieq or M(Z), as opposed to EQ macrostates Meq = M(X) in
SX. The unique entropy S(Z) has the maximum possible value for a given Z so it has no
memory of where the microstate has come from. Once M becomes uniquely specified as
M(Z) in SZ, it satisfies the extension of the ergodic hypothesis for Mieq; see Section 14 for
an example.

But the applications so far of the µNEQT have provided only a piecewise and incom-
plete description of the µNEQT [148–157] that was restricted in scope to highlight its NEQ
aspects in the limited context. This comprehensive review aims to overcome this limitation
and provide a complete introduction to the foundation of the µNEQT by assimilating and
extending together the previous results and by including missing details and newer aspects
that emerge from the use of the SI-quantities in the extended state space SZ, where mk and
M are uniquely specified in an IEQ macrostate Mieq just as they are uniquely specified for
an EQ macrostate Meq in the EQ state space SX. The µNEQT has met with success, as we
will describe in this review, so it is desirable to introduce it to a wider class of readers.

Due to its microscopic SI-nature, the µNEQT provides a more detailed description of
fluctuations in a thermodynamic process that are hidden in the MNEQT. For this reason,
therefore, the former is highly desirable from both a theoretical and experimental point
of view. It is an extension of the MNEQT [77,78,134,148,149,152,153,160] to the microstate
level, which brings about a very close parallel with µEQT [32–34,36].
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A microstate mk, k = 1, 2, · · · , carries an index k; the set {mk} forms a countable
set and is specified by its energy set {Ek(W)}; however, we will usually suppress W
in mk and Ek(W), unless necessary. In a macrostate M, mk’s appear with a probability
pk(M); see Section 7 for details. For simplicity, we will also not explicitly show the
argument M in pk; the dependence is always implicit. In the rest of the review, all quantities
pertaining to M are identified as macroquantities, while those pertaining to mk are identified
as microquantities that always have the microstate index k of mk or of xk in H(xk|W); see
Definition 4. After statistical averaging over microstates using their probabilities pk (see
Equation (12) for its proper definition), we obtain quantities without k or x.

A microquantity associated with mk will always carry the index k (see later). A macrostate
M and a macroquantity associated with it do not carry the index k so it is always easy to
distinguish the two kinds of quantities. We will continue to use “quantity” to stand for both
microquantity and macroquantity, unless clarity is needed.

1.2. System-Intrinsic and Medium-Intrinsic Thermodynamics

As the medium is always taken to be in EQ, its properties do not change even if the
system is out of equilibrium. This has made the choice of MI-description (M̊NEQT) very con-
venient to formulate classical thermodynamics [13,18,33,39,41,42,51,108], in which one uses
the exchange macroheat ∆eQ = T0∆eS in terms of the exchange entropy (see Equation (46))
and the exchange macrowork ∆eW (see Equation (135c)) such as ∆eW = P0∆eV = P0∆V
for the PV-macrowork; see Equation (94) for the first law as an example. Here, T0 and P0
are the temperature and pressure of the medium (see Figure 1), which remain the same
for all possible states of the system. This has made the M̊NEQT a highly desirable ther-
modynamic theory as it is applicable in all cases. The main problem with this theory is
that it is not directly applicable to an isolated system in Figure 1b for which exchange
quantities are identically zero, but which provides the most cogent formulation of the
second law ∆S0 ≥ 0; see Equation (213) in Proposition 3. It is useful only for an interacting
system in Figure 1a for which the second law is stated indirectly in terms of irreversible
entropy generation ∆iS ≥ 0; see Equation (67c). Indeed, all irreversible quantities including
irreversible macrowork are indirectly determined.

In contrast, the MNEQT provides an SI-description involving quantities associated
with the system alone so it is applicable to both systems in Figure 1 by explicitly taking
into account the EQ properties of the medium, when it is present. All irreversible quan-
tities including macroworks and macroheats are contained in this approach so they are
determined directly in the MNEQT.

We elaborate on the distinction between the MNEQT and the M̊NEQT. The exchange
quantities deZ require the system Σ to be embedded in a medium Σ̃ (see Figure 1a) and are
controlled by Σ̃ [154] so that deZ = −deZ̃ (see Section 2) and are easy to handle and
measure, as Σ̃ is normally taken to be in equilibrium with no irreversibility (diZ̃ = 0) so
that deZ̃ = dZ̃. Thus, the exchange quantities do not directly provide any information
about diZ and any irreversibility as mentioned above. As an example, the lost macrowork
due to irreversibility in the M̊NEQT is defined as

d̊lostW = d̊revW − d̊irrW ≥ 0,

where various d̊revW and d̊irrW refer to the exchange macroworks along two distinct
processes: a reversible and an irreversible. We have used a new notation d̊ to ensure that
any d̊W is not confused with dW in the MNEQT. It is easy to see that d̊lostW is precisely the
irreversible macrowork diW, which is determined by the actual process.

Similar distinctions can also be noted between the µ̊NEQT and the µNEQT; they differ
at least in the following important ways, with sweeping consequences, as we will see:

A. The internal microwork ∆iWk has no analog in the former because it uses the following
questionable conjecture:

∆eWk
?
= −∆Ek, (7)
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(see Section 15) which is often used in fluctuation theorems [99,135–147]; the use of ?
=

is a reminder of its possible questionable nature, which is justified later in Theorem 7.
In these fluctuation theorems, one begins with the conventional form of the first law
dE = deQ− deW in terms of exchange macroquantities, but identifies

deW ?
= −∑k pkdEk, deQ ?

= ∑kEkdpk.

As a consequence of the above identification, no distinction can be made between
fluctuating microwork

dWk ≡ −dEk,

which is an identity in accordance with the work–energy theorem (see Theorem 6)
and nonfluctuating exchange microwork

deWk = deW, ∀k;

see Theorem 7. The distinction is always maintained in the latter, in which we also
show (see Section 10.1) why the above identification cannot be rigorously justified.
Similar conclusions as above are obtained by replacing infinitesimal dα by accumula-
tion ∆α, properly defined in Section 13 along a process P .

B. Consequently, the microforce imbalance (µFI) that results in fluctuating ∆iWk = −∆iEk,
a ubiquitous quantity, is absent in the former in that ∆iWk = ∆Wk − ∆eWk ≡ 0 but is
always present (∆iWk 6= 0) in the latter.

C. The former results in a first law of thermodynamics (∆Ek = ∆eQk − ∆eWk) for each
mk, while the latter has it hold (∆E = ∆eQ − ∆eW) only for a M; however, see
Equation (243).

D. The lost or dissipated macrowork ∆lostW measured by the average ∆iWk should be
absent in the former due to its above conjecture, but is always present in the latter.

E. The exchange microwork ∆eWk depends on the entire trajectory γk in the former to
make it fluctuating over γk, while in the latter, ∆Wk depends only on the terminal
microstates of γk, and ∆eWk ≡ ∆eW is nonfluctuating (it is the same for all γk’s).

1.3. Main Results

The review emphasizes the very close parallel with EQ statistical mechanics (µEQT)
that is clearly seen in the microstate probabilities and the existence of IEQ partition functions
for Mieq. There are also major differences mainly in new concepts, some of which are
very counter-intuitive, such as ubiquitous diEk, microforce imbalance (µFI) and internal
microwork diWk resulting from it, etc., for any macrostates including Meq that have not
been appreciated so far. They have been introduced previously [77,78,150,156,157] but now
receive detailed explanation here. For example, it is a well-known fact that diE = 0 [12]
(see Equation (53a)) for any M; yet diEk is fluctuating and so can be different from zero,
its average. The presentation here is simple enough to reach even an untrained reader.
To accomplish this goal, we only focus on some examples borrowed from undergraduate
physics so that a reader will not be lost; however, it does require an open mind to learn
new concepts that are counter-intuitive and perplexing, as it is very hard to shake off
old preconceptions.

Remark 1. As µEQT only deals with EQ processes, the second law plays no role here. However,
the situation in the µNEQT is different, where we deal with NEQ processes. As the second law
does not operate at the microstate level, our development of the µNEQT is not limited by this law.
To make contact with thermodynamics, however, we will have to impose it at the level of macrostate.
By investigating the internal inconsistencies that emerge if the second law is violated, we are able to
conclude that the law cannot violated for a stable system. This is one of the most important benefits
of our approach.
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Throughout this review, we work in the enlarged state space SZ so we include at
least one internal variable ξ as a prototype to make our discussion more realistic, as will
become clear in Sections 4 and 14. The main emphasis here will be to demonstrate the
ubiquitous nature of internal changes such as diEk, a new concept whose existence has not
been previously appreciated in various fluctuation theorems [26,158,159]. Not recognizing
its existence has resulted in the conjecture deWk = −dEk = − deEk (see Equation (7)),
used extensively in the µ̊NEQT. This is contrary to a central result of the µNEQT; see
Theorem 6. It is the microforce imbalance (µFI) between the internal and external microforces,
a hitherto unrecognized purely mechanical concept at the microstate level in EQ and NEQ
thermodynamics, that generates diEk and is present in all processes, whether they are
thermodynamic or not, as we will demonstrate. This is the most important outcome of the
our approach; see Proposition 2. It emphasizes the importance of SI-quantities (such as in
dEk = −dWk) that are very different from the MI-quantities (such as in deEk = dW̃k) for
any γk, even if the trajectory belongs to a reversible process. The use of generalized work
dW = −dEm in Equation (234a) as isentropic change allows us to calculate microscopic
work (microwork) dWk, which changes Ek but not pk. This is because mk, whose concept
is independent of pk, uniquely determines Ek for a fixed work set W; see Definition 5.
Therefore, dEk is uniquely determined by dW and does not have any contribution from
the change in pk. On the other hand, the generalized heat dQ allows us to introduce
microscopic heat (microheat) dQk, which does not change Ek but changes pk. The above
mutually exclusive nature of dWk and dQk proves to be a great simplification and allows us to treat
dWk and dQk as purely a mechanical and a stochastic concept, respectively, in the development of the
µNEQT. In addition, as dEk does not have any contribution from dpk, it has no microheat
contribution, so there is no first law for mk in the µNEQT.

As Ek is fluctuating, dEk = −dWk is also fluctuating and is uniquely determined as
dEk

.
= Ek(W+dW)− Ek(W) for mk; the (slow or fast) nature of the process is irrelevant.

The latter only controls pk. This provides a simplification in evaluating the cumulative
change ∆Wk, which is independent of the nature of P between two macrostates; see
Remark 71 and the discussion following it. The fluctuating microwork dWk is different
from ∆W̃k = ∆W̃, which is the microwork done by the working medium on mk after
reduction, and which depends strongly on the nature of P but is the same for all microstates
for a given P .

The most important new results that emerge in the µNEQT are the following:

1. a clear separation of different kinds of work and heat and their fluctuations that emerge
from dα;

2. additional thermodynamic forces for irreversibility due to internal variables;
3. stochasticity resulting from a nonvanishing commutator Ĉα

.
= dα Â− Âdα;

4. exchange microquantities are nonfluctuating, which makes them useless for directly
obtaining fluctuations and irreversibility;

5. the fundamental identity ∆iW = ∆iQ between irreversible macrowork and macroheat
generalizing the result of Count Rumford and the Gouy-Stodola theorem;

6. the origin of work dissipation ∆iW > 0 in an irreversible process;
7. the uniqueness of macrostates and microstate probabilities in the enlarged state space

for M(Z) determined by the experimental setup;
8. the µNEQT justifies the MNEQT as the µEQT justifies the EQT.

1.4. Layout

The layout of the paper is the following. In the next section, we introduce our notation,
definitions, and new concepts, which may be unfamiliar to many readers but are justified
in the following sections. We describe here our basic approach that a thermodynamic
description is equivalent to treating microquantities as purely mechanical without any
consideration of stochasticity, to be followed by bringing in microstate probabilities to
determine macroquantities, just as in EQ statistical mechanics. Microstate probabilities
are not truly microquantities as they are not independent of each other. The stochasticity
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adds the dimension of entropy, without which we only have a mechanical description
of an NEQ body in SZ. An arbitrary macrostate Marb is divided into an EQ macrostate
Meq and an NEQ macrostate Mneq; the latter is further divided into an IEQ (internal
equilibrium) macrostate Mieq and an NIEQ (non-internal equilibrium) macrostate Mnieq.
The IEQ macrostates share all the properties of EQ macrostates, except that the former have
nonvanishing irreversible entropy generation ∆iS > 0. The principle of reduction is also
introduced here. In Section 3, we discuss the mathematical properties of and manipulations
with the linear operators dα, and give some examples for clarification. The origin of internal
variables is explained in Section 4, where we show that they also emerge in mechanical
descriptions so that they are not unique to thermodynamics. This explains why we need the
enlarged state space SZ for microscopic mechanical descriptions as well. We finally present
the fundamentals of the µNEQT in Section 5. This is a very important section, where we
present various axioms and requirements of the µNEQT. We then discuss stochasticity
to derive a very general formulation of the entropy in terms of {pk}, which is then used
to obtain the unique form of {pk} for Mieq. An important and surprising aspect of the
µNEQT is obtained in the equality of internal microwork (a mechanical microquantity) and
microheat (a stochastic microquantity) even though they have distinct origins. At this stage,
we have a complete and unique NEQ statistical mechanics (the µNEQT) in SZ. We identify
SI-macroquantities and use them to derive the MNEQT for Mieq exemplified by the Gibbs
fundamental relation in SZ, which is then generalized to obtain the Gibbs fundamental
relations for Mnieq in SZ.

In Sections 6 and 7, we begin to introduce the mechanical and stochastic aspects of
the µNEQT, respectively. In Section 6, we use W to identify microforces that operate in
the mechanical formulation of the body so they are also present in its thermodynamic
formulation. We use them to introduce the concept of microforce imbalance in Section 6.4,
which captures the mechanical disparity between Σ and Σ̃. The imbalance is responsible
for the internal microwork. In Section 6.5, we derive the extension of the work–energy
theorem of mechanics in SZ. In Section 7, we revisit a previous proposal for the origin
of stochasticity and extend it further by discussing the effect of correlations between Σ
and Σ̃, and introducing the principle of reduction in Section 7.2. We then discuss quasi-
independence in Section 7.3, and the simplification it brings about in thermodynamic
considerations after reduction, especially with respect to the effects produced by Σ̃ on Σ,
which is discussed in Sections 7.4 and 7.5. The discussion, which forms a very important
part of the review, shows why classical thermodynamics works so well.

In Section 8, we discuss the properties of the unique entropy Sieq for Mieq in SZ,
and discuss its approximate formulation as a flat distribution that is commonly used in EQ
statistical mechanics. This distribution neglects any fluctuations in the entropy, which are
always present in the body. Despite this, it correctly gives the entropy so it can always be
used to determine it as it simplifies the calculation. We show that the entropy additivity
requires quasi-independence in Section 8.1 so the latter should not be confused with the
principle of additivity for W. Using this flat distribution, we provide a simple proof of
the second law for Mieq in SZ in Section 8.3 by simply counting the number of distinct
microstates as the system evolves in time, which can only increase with time; see Theorem 8.
This direct proof is supplemented by Theorem 9 in Section 8.4 that the law is simply a direct
consequence of the stability of the system so it does not need to be included as an additional
part of Axiom 2 in the µNEQT; see Section 5). In Section 9, we show that a violation [161]
of the second law results in internally inconsistent thermodynamics for stable physical
systems, and cannot be taken seriously (see Conclusion 7), even though thermodynamic
instabilities arise in approximate calculations such as van der Waals equations or mean
field, but are always removed from consideration; see Remark 58. Therefore, we will always
assume that we are dealing with a stable system for which the law is always valid, as noted
in Section 1, except in Section 9. In Section 10, we initiate the formulation of the µNEQT
by focusing on the two most important concepts, those of generalized or BI-microwork
and microheat for Σb. We show that various micro- and macroheats emerge from the
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nonvanishing commutator Ĉα introduced in Equation (229). For a fuller understanding,
we first revisit in Section 10.1 the ensemble average of a fluctuating state variable, and its
change in a process P . We show that for Z ∈ Z such as E belonging to SZ, its change dZ
consists of two independent process contributions in orthogonal state spaces SZ and SS,
a mechanical one dZm at fixed {pk} in SZ, and a stochastic one dZs at fixed {Zk} in SS.
Thus, dZ .

= d〈Z〉 ∈ Sχ. In contrast, the stochastic state variable S ∈ SS has only stochastic
contributions belonging to SS. For E, dEm represents the negative of the generalized
macrowork dW, and dEs the generalized macroheat dQ in the body. Their statistical
interpretation is covered in Section 10.2, where we show that dWk is purely mechanical,
and dQk purely stochastic. In Section 11, we discuss how de pk and di pk are determined,
and how they determine the forms of various microworks, microheats, and microentropies.
We also give a general proof of the identity diE ≡ 0, even if diEk 6= 0, ∀k. This now
completes the formulation of the unique NEQ statistical mechanics (µNEQT) in SZ.

The only thing remaining for a complete formulation of the µNEQT is to identify
the choice of SZ, which is discussed in Section 12. This is a very important section that
describes how the choice of SZ is dictated by the way an experiment is performed, which
must not come as a surprise for an NEQ process. This is because the observation and
relaxation times play important roles here. By ordering various internal variables with
their relaxation times in decreasing order, we show that only those internal variables have
to considered whose relaxation times are greater than the observation time to uniquely
specify the macrostate in SZ. We show how the unique microstate probability is identified.
We consider the possibilities of fluctuating (Fl) and nonfluctuating (NFl) work parameter
W. It will be convenient to take the parameters to be fixed so that they are the same for all
microstates. We introduce the Legendre transform EL

k of the microenergy Ek, which proves to
be very useful in expressing pk. The discussion justifies that once SZ has been identified
in which M becomes uniquely specified, the microstate probabilities are also uniquely
specified. No auxiliary step is required to determine pk. This is what makes the µNEQT so
useful. The discussion is easily extended to consider a microstate that is not unique in SZ.

So far, we have provided a complete formulation of the µNEQT for any Marb at each
instant. To proceed further to extend the µNEQT for any process, we need to introduce
a trajectory ensemble and determination of various path and process quantities, which
is taken over in Section 13. We show that different trajectory quantities have different
trajectory probabilities (path microprobabilities), which has not been appreciated so far.
This finally provides a complete description of the µNEQT for any process.

We now turn to some of the applications of the µNEQT in the next three sections.
In Section 14, we use it to describe the origin of microfricton at the microstate level.
A new NEQ work fluctuation theorem is derived in Section 15 between any two arbi-
trary macrostates. In Section 16, we use the µNEQT to study the quantum and classical free
expansion using our work fluctuation theorem. The final section provides a brief discussion
of our conclusions and a summary.

2. Notation, Definitions and New Concepts

Before proceeding further, it is useful to introduce in this section our notation to
describe various systems and their behavior, and new concepts for their understanding
without much or any explanation (that will be offered later in the review where we discuss
them). We also give various definitions and briefly discuss new concepts such as various
forms of NEQ work and heat that need to be carefully distinguished for a precise formula-
tion of the µNEQT. Various important concepts are highlighted in the form of Remarks to
draw the attention of the reader. It is the hope that a reader can always come back here to
be refreshed in case of confusion. In this sense, this section plays an important role in the
review for the purpose of bookkeeping.
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2.1. Systems and State Variables

Definition 1. A system Σ is a collection of material particles and radiation enclosed in a region of
space defined by some parameter W, and its Hamiltonian dynamics is determined by the Hamiltonian
H(x|W ). A system can be embedded in a medium Σ̃, which is extremely large compared to it,
and with which it interacts. The combined system Σ0 formed by Σ and Σ̃ is commonly treated as an
isolated system.

Remark 2. For convenience, we take the parameter W to be fixed so that it is the same for all
microstates, even though it is not hard to take it to be unfixed so that it changes over the microstates.
We will refer to them as nonfluctuating and fluctuating, respectively.

We draw attention to Figure 1 to introduce the notation. The review mostly deals with
statistical mechanics of macroscopically large systems Σ; however, we will also digress a bit
to discuss small systems. In both cases, Σ is extremely small compared to the medium Σ̃;
see Figure 1b. The medium Σ̃ consists of two parts: a work source Σ̃w and a heat source Σ̃h,
both of which can interact with Σ directly but not with each other. This separation allows
us to study work and heat exchanges between Σ and Σ̃ separately. We will continue to use
Σ̃ = Σ̃w ∪ Σ̃h to refer to both of them together. The collection Σ0 = Σ ∪ Σ̃ forms an isolated
system, which we assume to be stationary. We remark that the concept of an isolated system
in a laboratory is an important approximation [79,162] but extremely useful as no such
system locally exists in reality. We need to always keep this in mind.

The system in Figure 1a is an isolated system, which we may not be able to divide
into a medium and a system. Each medium in Figure 2, although not interacting with each
other, has a similar relationship with Σ. In case they were mutually interacting, they can
be treated as a single medium. The collection Σ0 = Σ ∪ Σ̃1 ∪ Σ̃2 forms an isolated system.
In the following, we will mostly focus on Figure 1 to introduce the notation, which can be
easily extended to Figure 2 or to an extension with several mediums.

Figure 2. A system driven between two sources that are different in their fields; see Figure 1. If they
are the same, the situation reduces to that in Figure 1a.

Definition 2. Observables X = (E, V, N, · · · ) of a system are extensive quantities that can
be controlled from outside the system, and internal variables ξ = (ξ1, ξ2, ξ3, · · · ) are extensive
quantities that cannot be controlled from outside the system. Their collection Z = X ∪ ξ is called
the set of extensive state variables of Σ forming SZ, which we may simply write as S when no
confusion will arise. The set W or a subset of it may be fixed or may fluctuate over all microstates
of Σ.

Definition 3. A system-intrinsic (SI) quantity is a quantity that pertains to the system Σ alone
and can be used to characterize the system. A medium-intrinsic (MI) quantity is a quantity that is
determined by the medium Σ̃ alone and can be used to characterize it and also the exchanges between
Σ and Σ̃. No external exchange is allowed for Σ0.
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We use a suffix 0 to denote all quantities pertaining to Σ0, a tilde (̃) for all quantities
pertaining to Σ̃, and no suffix for all quantities pertaining to Σ, even if it is isolated. Thus,
the set of observables is denoted by X0, X̃, and X, respectively, and the set of state variables
by Z0, Z̃, and Z, respectively, in the state space SZ; the set of internal variables are ξ0, ξ̃,
and ξ, respectively.

Remark 3. We will use the term “body" to refer to any of Σ, Σ̃, and Σ0 in this review and use Σb
to denote it. However, to avoid notational complication, we will use the notation suitable for Σ for
Σb if no confusion would arise in the context. The mechanical aspect of a body is described by its
HamiltonianH(x|W), and we refer to all quantities pertaining to it as body-intrinsic (BI), which
includes SI, MI, and ISI (for the isolated system) as the case may be.

The discussion below is mostly for a body Σb, but the notation is suited for a system.
Thus, it covers the three systems Σ, Σ̃, and Σ0, unless mentioned otherwise.

Definition 4. A microstate of H(x|W ) represents the instantaneous deterministic state of Σb.
The quantum microstates are specified by a set of good quantum numbers, which we usually denote
by k as a single quantum number for simplicity; we take k ∈ N,N denoting the set of natural
numbers. In the classical case, we use a small cell δxk of volume h3N around xk = x as the
microstate mk [163]; the collection {δxk} covers the entire phase space Γ. A microstate mk appears
with probability pk that is central for statistical mechanics.

Below, we clarify the definition further.

2.2. Microstates and Macrostates

Remark 4. In order to obtain a microscopic understanding of thermodynamics, we need to focus on
the countable set of microstates {mk}k=1,2,···. Then

Ek = H(xk|W) (8)

denotes the microenergy of mk. In explicit form, the microenergy for mk of Σ will be expressed as
Ek(W), for m̃k̃ of Σ̃ it will be expressed as Ẽk̃(w̃) (see Equation (28a)), and for m0k0 of Σ0 it will be
expressed as E0k0(W, w̃) (see Equation (28b)).

Remark 5. For clarity and ease of presentation, we will assume each microstate to be nondegenerate,
i.e., a singlet. Extending the discussion to degenerate microstates is trivial, as discussed in Section 15.

We now identify microstates {mk}. In quantum mechanics, they refer to the countable
microstates of the Hamiltonian of a bounded body, with k denoting the set of quantum
numbers. In classical mechanics, they are usually identified as follows. We will normally
employ a discretization of the classical phase space Γ of a bounded system by dividing it
into countable nonoverlapping cells δxk, centered at xk and of some small size, commonly
taken to be (2πh̄)3N . The cells cover the entire phase space Γ. To account for the identical
nature of the particles, the number of cells and the volume of the phase space are assumed
to be divided by N! to count distinct microstates mk

.
= δxk, indexed by k = 1, 2, · · · ; the

center of δxk is at xk. The energy and probability of these cells are denoted by {Ek, pk}
in which Ek(W) is a function of W. The microstates obey deterministic evolution of the
Hamiltonian H(x|W ) of the body. For Σb = Σ̃,

{
m̃k̃

}
appear with probabilities

{
p̃k̃

}
; for

Σb = Σ0,
{
m0,k0

}
appear with probabilities

{
p0k0

}
.

With the discretization, we will use the same symbol Γ to denote the space occupied
by microstates mk.

Claim 1. It is through the changes in microstate probabilities that a thermodynamic process
P gets its stochastic nature. In contrast, constant pk’s describe a mechanical process, which
is deterministic.
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A thermodynamic process P between any two arbitrary states (we will instead use P̊
to denote a process between two equilibrium (EQ) terminal microstates) is understood in
the context of the MNEQT [12,51] as a temporal sequence of macrostates M(t) of the body
which keep changing during P due to changes in {mk(t)} and/or {pk(t)}. The rate of time
variation (fast or slow compared to the equilibration time τeq) determines the (reversible or
irreversible) nature of P .

Definition 5. At the microscopic level, the state of Σb is specified by microstates set {mk}, their
energy set {Ek}, and their probability set {pk}. For the same set {mk, Ek}, different choices of {pk}
describe different macrostates M (see Definition 6), one of which, Meq, corresponding to

{
peq

k

}
,

specifies an EQ macrostate having the maximum entropy; all other states have smaller entropies and
are called nonequilibrium (NEQ) macrostates.

It is important to draw attention to the following important distinction between the
HamiltonianH required for a microstate and the average energy E of a macrostate. While
the thermodynamic energy accounts for the stochasticity through microstate probabilities,
the use of the Hamiltonian is going to be restricted to a particular microstate. In other
words, the Hamiltonian depends on x and W but the energy depends on the entropy S and
W. The energy Ek of mk, on the other hand, depends only on W and denotes the value ofH
associated with mk; see Equation (8). In the following, we will always treat Hamiltonians
and microstate energies as equivalent descriptions, which does not depend on knowing
{pk}; the average energies depend on {pk} for their definition; see Equation (12) with
q = E and qk = Ek.

Definition 6. A macrostate M in S is a collection {mk, pk} of microstates mk and their prob-
abilities pk, k = 1, 2, · · · for a Σb. Quantities that are the same for all microstates are called
macroquantities as they refer to the macrostates M. Quantities that refer to microstates are called
microquantities, and carry the suffix k when associated with the microstate mk such as Xk or Zk,
which are the microanalogs of X or Z, respectively; however, see Remark 14. We will simply use

“quantity” to refer to both of these quantities in short.

For example, we will refer to dWk as the microwork; similarly, we will refer to dW̃k
as the external microwork, deWk as the exchange microwork, and diWk as the internal
microwork. The corresponding macroworks are denoted by dW, dW̃, deW, and diW. We
thus see that there are various possible notions of works in NEQT.

A macrostate M is usually described by the state variable Z in thermodynamics but
functions of Z can also be used to characterize M. They are all macroquantities. In statistical
mechanics, microstates of the Hamiltonian are used to describe M at the microstate level.

Remark 6. Microquantities can be divided into two kinds: pure and mixed. A pure microquantity
such as Ek is determined solely by mk but not by M. A mixed microquantity such as microheat
and microentropy is one that is also determined by M. With this caveat in mind, we will call both
kinds microquantities.

We find the shorthand notation [12,13,51]

dα = (d, de, di) (9)

quite useful in the following for the various infinitesimal contributions. Thus,
dαEk = dEk, deEk, diEk will refer to microenergy change, exchange microenergy change, and in-
ternal microenergy change, respectively. We similarly use dαQk = dQk, deQk, diQk for various
forms of microheats, and dαSk = dSk, deSk, diSk for various forms of microentropies; see
Equation (27a) and Remark 14. In particular, the random variable dq should not be confused
with the differential of q, which may not even be defined; see Remark 20. We will refer to
dQk and dSk as microheat and microentropy, respectively. The corresponding macroquantities
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are denoted by dαE, dαQ, and dαS, respectively, without the index k. The following notation
generalizes the physics of various infinitesimals and their relationship.

2.3. Micro–Macro Variables

Notation 1. We introduce the sets of state variables

χk
.
= {Sk, Zk}, χ

.
= {S, Z}, ζk

.
= {Sk, Wk},ζ

.
= (S, W), (10a)

and infinitesimals

dαθk
.
= {dαχk, dαWk, dαQk}, dαθ

.
= {dαχ, dαW, dαQ}. (10b)

Notation 2. We introduce a compact notation [q] for the collection {qk, q}:

[q] .
= {qk, q}. (11a)

and [dαq] to cover all of the following quantities:

[dαq] ∈ [dαθ]
.
= {[dαχ], [dαW], [dαQ]}. (11b)

Thus, [χ] .
= {χk, χ} ∈ Sχ, [ζ] .

= {ζk, ζ} ∈ Sζ , [dαχ]
.
= {dαχk, dαχ} ∈ Sχ, etc.

For specificity, we use χ
j
k and χj to refer to the jth element of χk and χ, respectively.

Similarly, we use ζ
j
k, ζ j for the jth element of ζk and ζ, respectively, and dαθ

j
k, dαθ j for the

jth element of dαθk and dαθ, respectively.

2.4. Random Variable and Average

Remark 7. In the language of probability theory, M(t) can be thought of as a random variable
with outcomes mk with probability pk(t). A microquantity qk associated with mk appears with
probability pk(t) at time t. Thus, qk denotes an outcome of a random variable q, and usually forms
a fluctuating (Fl) microquantity.

Definition 7. The ensemble average for {qk} or of the random variable q is defined by

Âq(t) = q(t) or q(t) or 〈q〉(t) ≡∑
k

pk(t)qk (12)

for a countable set {pk}(t) that satisfies the sum rule

∑k pk(t) = 1 (13)

due to the conservation of probability. We can also extend Equation (12) to q for which qk = q, ∀k.
We have used Â to denote the above averaging operator in Equation (12).

In thermodynamics, it is customary to use the simpler notation q for 〈q〉 = Âq, which
we will also follow in this review, such as E, S, etc., for the average energy, entropy, etc.
However, we will also use the notation Âq, q or 〈q〉, when clarity is needed, as we will see
in Section 10 that such a convention can lead to confusion if care is not exercised. We wish
to emphasize that Âq = q does not imply that Â = 1, except when qk = q, ∀k.

Remark 8. To avoid confusion with the notation dαχk, which can either mean dα(χk) as dα acting
on χk, or (dα(χ))k denoting the microquantity associated with dα(χ), we will continue to use dαχk
for the former, and dαχk for the latter, where χ = χ stands for the macroquantity associated with
χk; see Section 10.1 for details. However, we will simply use dαχk in dαθk to simplify the notation,
but we will always use the specific notation when clarity is needed.
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In this review, we will not consider a constant random variable. Hence, a random
variable will always have fluctuating outcomes.

Notation 3. We use modern notation [13,51] and its extension (see Figure 1), which will be
extremely useful to understand the usefulness of our novel approach. Any infinitesimal and
extensive Σb-intrinsic quantity dq(t) (see Equation (11b)) during an arbitrary infinitesimal process
dP can be partitioned as

dq(t) ≡ deq(t) + diq(t), (14a)

where deq(t) is the change caused by exchange (“e”) with the surroundings such as the
medium and diq(t) is its change due to internal or irreversible (“i”) processes going on
within Σb. As mentioned earlier, the term external quantity will also be used for an exchange
quantity to emphasize its external nature in this review. The partition also applies to the outcome
dqk as follows:

dqk(t) ≡ deqk(t) + diqk(t), (14b)

As an example, we have (see Equation (27a) for the definition of Sk)

dEk = deEk + diEk, dSk = deSk + diSk (15)

for Σb; here diEk or diSk does not have to vanish or have a particular sign even though
diE = 0 (see Equation (53a)) or diS ≥ 0 (see Equation (67c)). We see that the linear operators
dα satisfy

d ≡ de + di. (16)

Claim 2. An extensive quantity of Σb is additive over its various macroscopic parts, but the energy
E is usually quasi-additive; see Section 5.6.

For the sake of clarity, we will take V as a symbolic representation of X, and a single ξ
as an internal variable in many examples. Then, w = (V), W = (V, ξ), and Z = (E, V, ξ).

2.5. Different States in NEQT

Definition 8. An equilibrium (EQ) macrostate is a uniform macrostate having the maximum
possible entropy in SX.

Definition 9. A nonequilibrium macrostate can be classified into two classes:

(a) Internal-equilibrium macrostate (IEQ): The nonequilibrium entropy S(X, t) for such
a macrostate is a state function S(Z) in the larger nonequilibrium state space SZ
spanned by Z; SX is a proper subspace of SZ: SX ⊂ SZ. As there is no explicit time
dependence, there is no memory of the initial macrostate in IEQ macrostates.

(b) Non-internal-equilibrium macrostate (NIEQ): The nonequilibrium entropy for such
a macrostate is not a state function of the state variable Z. Accordingly, we denote it
by S(Z, t) with an explicit time dependence. The explicit time dependence gives rise
to memory effects in these NEQ macrostates that lie outside the nonequilibrium state
space SZ. An NIEQ macrostate in SZ becomes an IEQ macrostate in a larger state
space SZ′ , Z′ ⊃ Z, with a proper choice of Z′.

Definition 10. An arbitrary macrostate Marb of a system refers to all possible thermodynamic
states, which include EQ macrostates, and NEQ macrostates with and without the memory of the
initial macrostate. From now on, we denote an arbitrary macrostate by M, NEQ macrostates by
Mneq, EQ macrostates by Meq, and IEQ macrostates by Mieq.

Different choices of {pk} for the same set {mk, Ek} describe different macrostates for
a given W, one of which corresponding to

{
peq

k

}
uniquely specifies the EQ macrostate
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Meq; all other states are called NEQ macrostates Mneq. Among Mneq are some special
macrostates Mieq that are said to be in internal equilibrium (IEQ); the rest are nonIEQ
macrostates Mnieq. An arbitrary macrostate M refers to either an EQ or an NEQ macrostate;
the latter can be either Mieq or Mnieq.

2.6. Mechanical Description

Claim 3. There are two distinct approaches to handling state variable W for a macrostate {mk, pk}
of Σb; see Remark 2 and Definition 2.

1. Nonfluctuating (NFl) approach: It can be treated as a nonfluctuating (fixed) parameter
in the Hamiltonian of Σb so that it is the same for all of its microstates. If we alter W, it
changes the same way for all mk’s. We say that W is a NFl-parameter over mk’s. This results
in fluctuating generalized microforce

Fwk
.
= −∂Ek/∂W (17a)

over mk’s, with its ensemble average (see Equation (12)), given by the generalized macroforce

Fw
.
= ∑k pkFwk = −∂E/∂W. (17b)

Even though Fwk is a microvariable, we find it useful conceptually to think of it as the outcome
of a random variable Fw on mk. We use the notation {W, Fwk} to compactly refer to this case.

2. Fluctuating (Fl) approach: Alternatively, we let W fluctuate over mk’s and think of it
conceptually as a random variable W with outcomes {Wk}, even though Wk is a microvariable.
To be consistent with the NFl-approach (see below), we require that Fw becomes nonfluctuating
(fixed) defined by

∀k, −∂Ek/∂Wk = −∂E/∂W = Fw. (18)

In this view, the macroforce Fw is fixed (so it is the same for all macrostates) with the result
that mk(Wk) is determined by the fluctuating random variable W over mk’s, with its average
(see Equation (112)) given by

W .
= ∑k pkWk. (19)

We use the notation {Wk, Fw} to compactly refer to this case.

The same two approaches apply as well if we replace W by w, and Fw by fw in the
above equations.

Claim 4. The presence of a parameter in the Hamiltonian H(x|W) of the body brings forth the
Legendre-transformed HamiltonianHL(x|WL) as the most important quantity to consider, where
WL

w is the work parameter inHL; see Section 6.3.

Claim 5. The nonfluctuating (NFl) parameter W results in fluctuating (Fl) microfield {Fwk} that
plays the role of WL, and fluctuating {Wk} results in a NFl workfield Fw that plays the role of
WL. As noted in Remark 2, we find it convenient to take W and Fw as the parameters, respectively,
as will become clear later in the review.

We provide an intuitive understanding of the two approaches. For the NFl-W, we use
the microstates {mk} ofH(x|W) so that every microstate is specified by the same W. If we
use the same HamiltonianH(x|W) for the Fl-W case, this will require considering different
HamiltonianH(xk|Wk) for different microstates so that their slopes are all equal to (−Fw);
see Equation (18). This is quite cumbersome. It is well-known that in this case, it is most
convenient to consider HL(x|Fw) with WL = Fw so that every microstate is specified by
the same WL, which plays the role of the work-parameter in HL(x|Fw); see Section 6.3.
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Remark 9. We now explain the concept of consistency noted above. Consider Ek(W) for some
microstate mk in the NFl-approach, and determine Fwk at some W. Using the variation dW, we
determine the change dENFl

k = −Fwk · dW. In the Fl-approach, we choose that particular value
Wk at which Ek has the NFl slope Fw as shown in Equation (18). We emphasize that only the
particular {Wk} is considered that satisfies Equation (18). We then determine the variation dWk
so that dEFl

k = −Fw · dWk, as follows from Equations (17a), has exactly the same value as dENFl
k .

Therefore, we do not have to distinguish between dENFl
k and dEFl

k , and use the simpler notation dEk
for both of them. As a consequence, we can make the following:

Claim 6. We have the same microwork in both approaches:

dWk = Fwk · dW = Fw · dWk = −dEk. (20)

Remark 10. In the NFl approach, we introduce the Legendre transform

EL,NFl
k (Fwk) = Ek(W) + Fwk ·W, (21a)

as a function of Fwk with
W = ∂ENFl

k (Fwk)/∂Fwk. (21b)

In the Fl approach, we introduce the Legendre transform

EL,Fl
k (Fw) = Ek(Wk) + Fw ·Wk, (22a)

as a function of Fw with
Wk= ∂ENFl

k (Fw)/∂Fw. (22b)

We see that the above definitions of the Legendre transform EL
k of Ek in the two

approaches can be compactly denoted by

EL
k (b) = Ek(a) + Φ(a, b) (23a)

in terms of a scalar function
Φ(a, b) .

= a · b; (23b)

see also Section 6.3. It is clear from Equation (23a) that it is sufficient to investigate the
behavior of Ek; the behavior of EL

k is easily obtained from it. Therefore, we will mostly
focus on Ek in the review.

Remark 11. As microstates mk play the central and important role in our approach involving
the Hamiltonian, the microstate energies {Ek} represent the outcomes of a random variable E
over the microstates. Thus, we always deal with a fluctuating microstate energy. Consequently,
the corresponding “macroforce”

fs
.
= −∂E/∂S = −T (24)

(see Equation (1) or equivalently Equation (129)) always appears as a NFl-parameter for Σb, which
can be combined with fw and Fw as

f .
= { fs, fw}, F .

= { fs, Fw} (25)

to represent the relevant macroforces.

Remark 12. It follows from the above Remark that we can either consider the case {W, Fwk} or
{Wk, Fw}. In both cases, we obtain the same thermodynamics. A NFl parameter can be treated as
a deterministic parameter for which qk =q, ∀k, as the probability of q is unity (certainty).
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Remark 13. The work parameter may be a function of time t. By taking one of the components
of the work parameter w to be simply t, it is also possible to include t as a separate parameter in
H(x|t, W ) as is common in mechanics [164].

Definition 11. In general, pk are functions of the microquantity Xk or Zk in SX or SZ, respectively,
and are implicit functions of t through the latter; they may also depend explicitly on time t if not
unique in the state space. For an EQ or an IEQ macrostate, pk have no explicit dependence on t;
see Section 12 for details. As pk always satisfies the sum rule (see Equation (13)) over any M, it is
also an ensemble quantity because of this, and should be treated as a mixed microquantity; it is not
determined by mk alone so it is not a true microquantity.

Definition 12. The collection {mk, pk} provides a complete microscopic or statistical mechanical
description of thermodynamics of any arbitrary macrostate M in some state space S in which one deals
with macroscopic or ensemble averages using {pk} (see Definition 7) over {mk} of microstate variables.

2.7. Entropy and Stochastic Description

Definition 13. A state function entropy S for Meq or Mieq is defined thermodynamically by the
Gibbs fundamental relation up to a constant.

Definition 14. Statistical entropy S, often called the Gibbs entropy, for M is defined by its
microstates by the Gibbs formulation (see Equation (116)),

S ≡ 〈S〉 = ∑k pkSk = −∑k pk ln pk, (26a)

with its differential given by

dS = d〈S〉 = −∑k(ηk + 1)dpk ≡ −∑kη̂kdpk (26b)

where Sk is defined by
Sk ≡ −ηk

.
= − ln pk; (27a)

in terms of Gibbs’ index of probability ([48], p. 16)

ηk
.
= ln pk, (27b)

and where we have also introduced
η̂k

.
= ηk + 1. (27c)

Remark 14. The quantity Sk and any deterministic function of it are mixed microquantities for
the simple reason that pk satisfies the sum rule in Equation (13), which requires considering all the
microstates; see also Definition 11. However, S is a macroquantity that is also a state variable.

This property of Sk should not be forgotten.

Remark 15. Being additive, S is extensive. As a consequence, Sk must be extensive.

As Σ̃ is taken to be in EQ, its Hamiltonian is defined by its observable X̃; the internal
variable ξ̃ plays no role. Thus, we will express its Hamiltonian as

H̃(x̃|w̃ ). (28a)

We will also assume that Σ̃ is weakly interacting with Σ, a point discussed carefully in
Section 5.6. By neglecting their mutual interaction, we have quasi-additivity of their
Hamiltonians to determine the Hamiltonian of Σ0:

H0(x0|W,w̃ )≈H(x|W ) + H̃(x̃|w̃ ), (28b)
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and states the quasi-additivity of the microstate energies; see Equation (119). We also
assume the following additivity in this case:

W0 ≡ W+w̃; (28c)

see also Equation (118a).

2.8. Reduction

Very often, we need to define an ensemble average over a composite system such
as Σ0 formed by two or more systems. We focus on Σ0 = Σ ∪ Σ̃. A microquantity q0k0
associated with Σ0 may also refer to a microquantity qk associated with Σ, or a microquantity
q̃k̃ associated with Σ̃.

Definition 15. The ensemble average over m0k0 of a composite microquantity q0k0 of Σ0 is given
by the joint probability

p0k0 ≡ p( k|k̃)pk̃ = pk p( k̃
∣∣∣k) (29)

to be used in the following two equivalent ways:

q0 = ∑k pk∑k̃
p( k|k̃)

pk
pk̃q0k0

(30a)

= ∑k pk∑k̃ p( k̃
∣∣∣k)q0k0

. (30b)

This averaging is properly discussed in Section 7. The conditional probabilities p( k|k̃)
and p( k̃

∣∣∣k) contain all the information about the correlation between Σ and Σ̃ due to their
mutual interaction, which will be considered in detail in Sections 5.6 and 7. Here, we
use the above definition to define the conditional microquantity q0k given that Σ is in the
microstate mk.

Definition 16. The reduction of the composite microquantity q0k0 to a conditional Σ0-microquantity
q0k is defined by

q0k
.
= ∑k̃

p( k|k̃)
pk

pk̃q0k0
= ∑k̃ p( k̃

∣∣∣k)q0k0
. (31)

Here, the conditional microquantity q0k associated with Σ0 carries the suffix k and not k0, and is
obtained under the condition that Σ is in the microstate mk, and requires conditionally averaging
over all the microstates m̃k̃ of Σ̃ using the reduced or conditional probability p( k|k̃)/pk; see Section 7
for details.

It is evident, but also easily verified, that the conditional microquantity associated
with Σ is the same as qk. For q̃k̃, we find that

q̃k
.
= ∑k̃ p( k̃

∣∣∣k)q̃k̃, (32)

and can be very different from q̃k̃.

Claim 7. When the two bodies in the above definition are quasi-independent (see Definition 28
and Section 7.3 for full details), then

p( k|k̃)≈pk, p( k̃
∣∣∣k)≈pk̃. (33)
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Remark 16. A composite microquantity χ
j
0k0

and a medium microquantity χ̃
j
k̃

are easily reduced

to the conditional microquantities χ
j
0k and χ̃

j
k ascribed to mk, respectively, by using quasi-

independence condition as
χ

j
0k≈∑k̃ pk̃χ

j
0k0

, χ̃
j
k≈∑k̃ pk̃χ̃

j
k̃
= χ̃j, (34)

so that their averages following Equation (12) finally give χ
j
0 and χ̃j approximately compared to its

exact formulation in Equation (31). Here, the conditional quantities χ
j
0k and χ̃

j
k require conditional

averaging over all the microstates m̃k̃ with their probabilities pk̃, given that Σ is in the microstate mk;
the reduced or conditional probability approximately becomes unity due to Equation (33). The last
equation in Equation (34) follows from Theorem 1.

Remark 17. The above reduction plays a very important role in the formulation of the NEQ
statistical mechanics (µNEQT) of the system Σ by reducing all microquantities in Σ0 to conditional
microquantities under the condition that Σ is in microstate mk.

For a medium microquantity q̃k̃, we obtain a very important result, which we quote as
a Theorem because of its extreme importance.

Theorem 1. Under quasi-independence approximation, the conditional q̃k is simply given by the
macroquantity q̃:

q̃k≈q̃, ∀k. (35)

Proof. By replacing χ̃
j
k̃

by q̃k̃ and χ̃
j
k by q̃k in Equation (34), we obtain the ensemble average

on the right side, which proves the theorem.

The application and general proof of this important theorem is deferred to Section 7.5,
where it is restated slightly differently as Theorem 7, where we justify Remark 16, which is
used in the simple proof given above.

2.9. Process Quantities

Remark 18. For a state variable q∈ {S, Z} for Σb, its microstate analog qk is trivially identified
as the microstate value q takes on mk, and appears as the coefficient of pk in the right-hand side of
Equation (12), the ensemble average. We now consider the process quantity dqk and consider its
ensemble average

〈dq〉 ≡ Âdqk
.
= ∑k pkdqk (36a)

if we follow the convention adopted in Equation (12). However, 〈dq〉 above is not the same as

dÂq ≡ dq or dq(t) or d〈q〉 .
= ∑k pkdqk ≡ d(∑k pkqk); (36b)

we have also introduced the microstate analog dqk for dq or d〈q〉 to make sure that we distinguish
dqk and

dqk =
(

dÂq
)

k

.
= dqk + qkdηk, (36c)

so that d〈q〉 = Âdq. This distinction becomes very important for q= E and S, as we will see in
Section 10.1; see also Definition 23.

Definition 17. In mechanics, the generalized or BI-microwork by Σb with parameter W is
defined as the microwork done by the fluctuating microforce Fwk

dWk
.
= Fwk · dW = −(∂Ek/∂W) · dW = −dEk, (37a)

with Fwk in its component form is given by

Fwk=(Pk, ..., Ak) = (fwk, Ak); (37b)
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here, · · · denotes microfields corresponding to the rest of the state variables in w besides V, and

fwk
.
=− ∂Ek/∂w, Ak

.
=− ∂Ek/∂ξ, (37c)

with Ak representing the microaffinity.

With fluctuating {Wk}, it is defined as the microwork done over the fluctuating
generalized displacement dWk

dWk
.
= Fw · dWk = −(∂Ek/∂Wk) · dWk; (38)

see Claim 6. The generalized or BI-macrowork done by Σb after ensemble averaging (see
Equation (19)) in both approaches are the same:

dW = 〈dW〉 = Fw · dW (39)

Explicitly, we express Fw in its component form as

Fw=(P(t), ..., A(t)) = (fw(t), A(t)); (40)

see Figure 1. Here, · · · denotes the macrofields corresponding to the rest of the state
variables in w besides V, and

fw
.
=− ∂E/∂w. (41)

The SI-affinity
A .

=− ∂E/∂ξ (42)

corresponding to ξ [12,51] is nonzero, except in EQ, when it vanishes: Aeq ≡ A0 = 0 = 0 [13,51].
The SI-macrowork dWξ done by Σ as the internal variable ξ varies is

dWξ ≡ diWξ
.
= A·dξ ≥ 0. (43)

Even for an isolated NEQ system, dWξ will not vanish; it vanishes only in EQ, since ξ does
no work when A0 = 0. Because of this, deWξ ≡ 0 so that dWξ ≡ diWξ . However, fw, dW̃
and deW are unaffected by the presence of ξ.

Definition 18. In statistical mechanics, generalized or SI-microheat for Σb is defined as

dQk
.
= −T(ηk + 1)dηk ≡ −Tη̂kdηk; (44a)

see Equation (255). The average of dQk is the generalized or SI-macroheat

dQ .
= ∑kEkdpk ≡ TdS. (44b)

Remark 19. We will use “generalized” or “SI” interchageably in this review.

Conclusion 1. The SI-macroheat or the generalized macroheat dQ

dQ .
= TdS, (45)

is identified as the Clausius equality; see Remark 42.

This interesting equality should be distinguished from the well-known Clausius inequality

deQ .
= T0deS ≤ T0dS. (46)

Thus, Equation (93a) allows us to uniquely identify generalized heat and work as
independent of each other.
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Remark 20. The d in dW, dQ, dWk, and dQk does not denote any differential operator on some
quantity W, Q, Wk, and Qk, respectively. Conventionally, one uses a symbol d̄ or some other symbols
in thermodynamics to emphasize this distinction. However, we follow the standard notation of
mechanics for dW and dWk to emphasize these mechanical concept of work. We also use the same
symbol for dQ and dQk. If we extend Equation (36a) to also include dWk and dQk, then we could
also use dW and dQ for dW and dQ, respectively, but we will use the simpler notation dW and dQ.
This should not cause any confusion.

It follows from Equations (45) and (46) that the irreversible macroheat is

diQ =

{
(T − T0)dS + T0diS
(T − T0)deS + TdiS

; (47)

see also Equation (142).

Definition 19. Changes in quantities such as S, E, V, · · · in an infinitesimal process δP are de-
noted by dαS, dαE, dαV, · · · ; changes during a finite process P are denoted by ∆αS, ∆αE, ∆αV, · · · .
All of these are process quantities, which also include dαW, dαQ, ∆αW, and ∆αQ.

Definition 20. The path γP of a macrostate M is the path it takes in SZ during a process P .
The trajectory γk is the trajectory a microstate mk takes in time in S during the process P . The path
and the trajectories are uniquely specified in SZ if {mk} are uniquely specified in it.

2.10. Σ0 (Isolated Body) and Σ̃ (Medium)

Remark 21. As an isolated body cannot exchange anything with its surroundings, we must
always have

deθ0(t) ≡ 0, deθ0k0(t) ≡ 0, deθ0k(t) ≡ 0, ∀k0, k; (48a)

see Definition 3. The last equality emerges from reduction; see Remark 16.

Remark 22. For a medium Σ̃, which is assumed to be in EQ and weakly interacting with and
quasi-independent of the system Σ in microstate mk, we must have

diθ̃(t) ≡ 0, diθ̃k̃(t) 6= 0, diθ̃k(t) = 0 (49)

after reduction of diθ̃k̃(t) from k̃ to k. The last equality follows from Theorem 1 by replacing q̃k by
diθ̃k = diθ̃, a NFl macroquantity, even though diθ̃k̃ is a Fl microquantity over m̃k̃.

Remark 23. As we always use microstates mk’s with fluctuating energies Ek, we find it useful and
simple to use the notation in which W is fluctuating with Wk over microstates. This means that we
will consider the state variable Z fluctuating with Zk over microstates as if we are dealing with the
fixed field approach with Z given by the extension of Equation (19)

Z = ∑k pkZk. (50)

The approach also covers the fluctuating workfield approach if we simply replace each Wk by a fixed W.

3. Mathematical Digression on {dα}
In NEQT, there are various forms of work and heat [dW] and [dQ]. Therefore, it is nec-

essary to distinguish between them. Let us consider the Clausius equality in Equation (45)
relating the SI-macroheat dQ and the entropy change dS. It would be naïve to take this
equality to conjecture that

dαQ = TdαS,

for the simple reason that the exchange macroheat deQ is a MI-quantity so it must be
determined by the medium alone. The presence of T in the above conjecture deQ = TdeS
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raises doubts about the conjecture as T has nothing to do with the medium. Therefore, it
is important to understand the role of the operators dα, which is explained in this section.
This makes this section extremely important in the review.

3.1. Generalizing d ≡ de + di

The linear operators dα satisfy not only the identities in Equations (14a) and (14b),
but also the following identities:

dα(aq1 + bq2) = adαq1 + bdαq2,

dα(q1q2) = q1dαq2 + (dαq2)q2; (51)

here q1 and q2 are two extensive random variables, and a and b are two pure numbers.
The generalization of de Groot–Prigogine notation in Notation 3 provides a very

compact description of NEQ processes in the µNEQT. The original notation [13,51] is
restricted to the entropy, particle number, energy, and volume changes dS, dN, dE, and dV,
respectively, for Σb; see Figure 1 for dZ → dX = dS, dN, dE and dV:

d[S] ≡ de[S] + di[S], (52a)

d[N] ≡ de[N] + di[N], (52b)

d[E] ≡ de[E] + di[E], (52c)

d[V] ≡ de[V] + di[V], (52d)

As no internal process can change the energy [12], we have

diE ≡ 0. (53a)

The surprising fact is that diEk 6= 0, as we will establish below; see Theorem (6). Similarly,

diV = 0. (53b)

We have also assumed that diN = 0, but this is no consequence as we are assuming no
chemical reaction in the review. We should emphasize that the partitions above have
nothing to do with the partitions in Equations (238) and (247a), respectively. The original
partition in Equation (52b) is not relevant in the review as we do not consider any chemical
reaction, so dN ≡ deN. Observe that the above partitions are defined only for macroscopic
extensive observables for a body. We have extended the notation to not only all extensive
state variables in [χ] but for [dαW], [dαQ] for any body Σb. We thus have

dWk = deWk + diWk, dQk = deQk + diQk, (54a)

dW = deW + diW, dQ = deQ + diQ; (54b)

For Σb an isolated system Σ0, it follows from Equation (48a) that

deW0 ≡ 0, deQ0 ≡ 0. (55a)

For Σb a medium Σ̃, it follows from Equation (49) that

diW̃ ≡ 0, diQ̃ ≡ 0. (55b)

Note that dW, dQ, etc., do not represent changes in any SI-macrovariable; see Remark 20.

Remark 24. We mostly focus on {qk} or {dαqk} in the µNEQT, from which we obtain the
information about the corresponding macroquantity q or dαq, respectively, by ensemble averaging.
The approach in this sense is to effectively discuss [q] or [dαq], without explicitly showing the suffix
k, unless clarity is needed. We will, however, use [q]k or [dαq]k when we consider specific cases.
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We now consider the three systems separately for clarity below so we need [q], [dαq], [q̃],
[dαq̃], and [q0], [dαq0] for Σ, Σ̃ (not necessarily in EQ) and Σ0, respectively, which satisfy
additivity for Σ0 so that

[q0]k0
= [q]k + [q̃]k̃, [dαq0]k0

= [dαq]k + [dαq̃]k̃, (56)

where we have explicitly shown microstate indices for Σ, Σ̃, and Σ0; here and in the
following, q∈ χ, and dαq∈ dαθ. For these equations to hold, we need to assume that Σ
and Σ̃ interact so weakly that their interactions can be neglected (recall that [E] is one of
the possible [q]) and that Σ and Σ̃ are quasi-independent [148]; see Section 7.3. We also
consider their partitions as shown in Equation (14a).

Remark 25. The medium Σ̃ in Equation (56) need not be in EQ, so Equation (56) also applies to a system
Σ consisting of two subsystems Σ1 and Σ2 interacting with each other satisfying quasi-additivity and
quasi-independence. All we need to do is to take Σ0 → Σ, Σ→ Σ1, and Σ̃→ Σ2. We can also have Σ
embedded in a medium Σ̃, distinct from the previous Σ̃. It follows from Equation (56) that

qk = qk1
+ qk2

, dαqk0
= dαqk1

+ dαqk2
, (57a)

and
q = q1 + q2, dαq = dαq1 + dαq2. (57b)

Explicitly, we have

dq = dq1 + dq2, dqk = dq1k1
+ dq2k2

,

deq = deq1 + deq2, deqk = deq1k1
+ deq2k2

, (58)

diq = diq1 + diq2, diqk = diq1k1
+ diq2k2

.

in which we must treat deqj, deqjkj
, j = 1, 2, carefully. As usual, [deq] is the exchange with Σ̃,

but [deq1], [deq2] each have two exchanges; one exchange involving the suffix m is with Σ̃, and the
other exchange is with the other subsystem. Thus, we have

[deq1] = [deq1m] + [deq12], [deq2] = [deq2m] + [deq21], (59)

in which [deq12], [deq21] stand for mutual exchanges between the subsystems.

Remark 26. For an isolated Σ in Equation (58), we must have [deq]k = [deq1m]k1
= [deq1m]k2

= 0
(see Remark 21), so

[deq1]k1
= −[deq2]k2

. (60)

Remark 27. It follows from Remark 26 that

deWk = 0, deW1k1 = −deW2k2 . (61)

We now turn back to discussing a system embedded in a medium as above, and prove
the following important theorem.

Theorem 2. We consider the system Σ and the medium Σ̃ (not necessarily in EQ) forming the
isolated system Σ0. We prove two important identities that are extremely useful in the µNEQT:

[deq]k
.
= −[deq̃]k̃ = −[dq̃]k̃ + [diq̃]k̃, (62a)

[dq0]k0
≡ [dq]k + [dq̃]k̃ = [diq0]k0

= [diq]k + [diq̃]k̃. (62b)
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Proof. As Σ0 is isolated, there cannot be any exchange quantity, so [deq0] ≡ 0. It follows
from Equation (60) that

[deq0]k0
= [deq]k + [deq̃]k̃ ≡ 0.

The identity in Equation (62a) immediately follows. Again using the second equation in
Equation (56) for dα = d, and using [deq0]k0

= 0 proves the second identity, after using
Equations (14a) and (14b) in [dq0]k0

. This case is appropriate for treating Σ̃ as another
system.

For Σ̃ in EQ, diq̃ = 0 but not diq̃k̃, as it is an outcome of a random variable diq̃; see
Remark 22. Thus,

dq̃k̃ = deq̃k̃ + diq̃k̃; dαq0k0
= dαqk + dαq̃k̃, (63a)

which should undergo reduction as our interest is to investigate Σ in mk. This is done in
Section 7.5, where we find that

deqk = −deq̃k = −deq̃ = deq, ∀k, (64a)

showing that exchange microquantities are not random variables; see Theorem 7. For the
macrostate, we have

dq̃ = deq̃ = −deq, dq0 = diq. (64b)

For [q] = [Z] and Σ̃ in EQ, we have from Equation (62b) and the general additivity

[Z0]k0
≡ [Z]k+

[
Z̃
]

k̃
,

obtained by extending Equation (28c), the identity

d[Z0] = de[Z] + di[Z] + d
[
Z̃
]
= di[Z], (65a)

which shows that
de[Z] = −d

[
Z̃
]
= −de

[
Z̃
]

(65b)

in accordance with Equation (62a). We thus have

dZ0k = diZk, dZ0 = diZ, (65c)

where all quantities pertaining to m0k0 have been reduced (see Definition 4) and we have
used the fact that after reduction (see Remark 22),

diZ̃k = diZ̃ = 0, ∀k.

For q= [E] for a macrostate M, we have

dE0k = diEk, dE0 = diE0 = diE = 0; (66)

the last equation follows from Equation (53a).
For q= [S] for a macrostate M, we have the standard result

d[S]0 ≡ di[S] , (67a)

from which we obtain
dS0k ≡ diSk (67b)

giving the internal entropy generation, which has no particular sign, and

dS0 = diS ≥ 0 (67c)
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for the irreversible entropy generation. We similarly have

dW0k = diWk, dQ0k = diQk, (68a)

after reducing all quantities pertaining to m0k0 . For a macrostate M,

dW0 = diW ≥ 0; dQ0 = diQ ≥ 0; (69)

see Equation (145). Here, diW and diQ are the irreversible macrowork done by and macroheat
generation due to internal processes in Σ; see Theorem 4.

Claim 8. The nonnegative inequalities for macroquantities diq in the above equations are in
accordance with the second law, where ensemble averaging at each instant plays a central role.
Because of this relationship with the second law, we call these quantities irreversible. There is
no sign requirement for corresponding microquantities diqk that do not require such averaging.
To make this clear distinction, we call these microquantities simply internal.

The discussion above finally justifies Conclusion 2 of several micro- and macroworks
that are distinct in nature. Intuitively, the generalized microwork dWk denotes the mechani-
cal work done by the system, a part

deWk = deW = −deW̃ = −dW̃ (70a)

of which is transferred to Σ̃w through exchange and diWk is internally spent to overcome
internal processes due to the microforce force imbalance (µFI) within Σ. Of the three, only
dWk and diWk are the outcomes of random variables dW and diW, respectively.

Similarly, there are several micro- and macroheats that are distinct in nature. Of dQk,
a part

deQk = deQ = −deQ̃ = −dQ̃ (70b)

is transferred from Σ̃h through exchange and diQk is internally generated by internal
processes within Σ. Of the three, only dQk and diQk are the outcomes of random variables
dQ and diQ, respectively. Similar comments also apply to dSk, deSk, and diSk.

What has been said above can be summarized as follows (also see Claim 15):

Summary 1. dqk = (dSk, dEk, dWk, dQk) and diqk = (diSk, di,Ek, diWk, diQk) are random
variables and fluctuate around their respective averages dq and diq, so they have values on both
sides of their averages.

This justifies Remark 22.

3.2. Consequences of Theorem 60

We show the importance of the above theorem about exchange microquantities, which
is why they have been extensively exploited in modern NEQ statistical mechanics (µ̊NEQT).
We will only consider the case of fixed work parameter so we have fluctuating microforces
associated with the random variable Fw. The discussion is easily extended to fluctuating
work parameter. We first consider an NEQ Σ in the microstate mk. The microwork dWk
is given in Equation (37a); see also Equation (40). The same equation, applied to Σ̃ in the
microstate m̃k̃, gives

dW̃k̃
.
= f̃wk̃ · dw̃ = f̃wk̃ · dew̃ = −f̃wk̃ · dew, (71a)
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where we have used the fact that Σ̃ is in EQ so Ẽk̃ does not depend on the internal variable
ξ̃ (see Equation (28a)), so that F̃wk̃ → f̃wk̃, dW̃ → dw̃ = dew̃, and diw̃ = 0. We have also
used Equation (65b) to set dw̃ = −dew in the last equation. Thus,

dW̃k̃ = deW̃k̃ = −deWk, (71b)

where we have also used Equation (70a) to derive the last equation.

Remark 28. A careful reader will notice that we have an equality between two quantities having
different and independent suffixes k̃ and k. This implies that we can change one index, say k, and not
change k̃. As the equality again remains valid, both sides must be independent of the suffixes. It will
be justified later in Section 7.5 in a different way.

Thus,
dW̃k̃ = dW̃ = deW̃, deWk = deW, (72a)

and
deW = −dW̃ = −deW̃. (72b)

This is consistent with Equation (64b) as expected. Explicitly, we have

deW̃k = −f̃w · dew = dW̃ ,̃fw ≡ ∑k̃ pk̃ f̃wk̃ = f0w, ∀k, (73a)

where f0w refers to Σ0. Thus, the exchange microwork is

deWk
.
= f0w · dew = deW, ∀k. (73b)

We now identify the internal microwork diWk:

dW0k = dWk + dW̃k = dWk − deW = diWk, (74)

and is explicitly given by

diWk = (fwk − f0w) · dew + fwk · diw + Ak · dξ, (75)

where we have allowed the possibility of an internal change diw = dw−dew, similar to
diξ = dξ. Such a situation arises if w refers to polarization or magnetization, which can
change due to internal processes.

We now turn to the physical significance of the three different terms in the internal
microwork diWk:

1. The first term is the internal microwork due to force imbalance fwk − f0w between the
SI-microforce of Σ, and the MI-macroforce of Σ̃.

2. The second term is the internal microwork due to the internal displacement diw by
the SI-microforce fwk of Σ.

3. The last term is due to the internal variable displacement by the SI-microaffinity Ak.

We introduce the internal microforce imbalance (µFI, µ for micro) between Σ and Σ̃,
and the internal SI-microforce

∆Fwk
.
= (fwk − f0w, Ak), fwk, (76a)

respectively, and the corresponding displacements

(dew, dξ), diw (76b)

to reproduce Equation (75).
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The corresponding macroforce imbalance and the internal macroforce are given by

∆Fw = (fw − f0w, A), fw, (76c)

with the same displacements as above. Here, we will take a more general view of A,
and also extend its definition to X. For w, this means that we can treat fw − f0w also as an
affinity. By including ∆Fh .

= T0 − T also as an affinity [134], we can include it with ∆Fw to
form an extended set of thermodynamic forces or macroforce imbalances [51]:

∆F .
= (T0 − T, fw − f0w, A). (76d)

Claim 9. The extended set ∆F of thermodynamic forces in Equation (76d) must vanish in EQ.
However, ∆Fwk need not vanish even in EQ.

3.3. Some Simple Examples

As an example, we focus on the case with W = (V, ξ), w̃ = (Ṽ). The corresponding
f0w is replaced by P0 of Σ̃ so that (setting diV = 0)

dWk = PkdV + Akdξ, (77a)

deWk = P0dV, ∀k, deW = P0dV; (77b)

diWk = (Pk − P0)dV + Akdξ, ∀k; (77c)

we can identify the two internal parts

diWkV = (Pk − P0)dV, diWkξ = Akdξ (78)

that make up diWk. The corresponding macroworks are given by

dW = PdV + Adξ, deW = P0dV, (79a)

diW = (P− P0)dV + Adξ. (79b)

The results deW = P0dV, diW = (P− P0)dV in the absence of ξ are well-known in classical
thermodynamics [51]. We identify the irreversible macrowork dWV and dWξ due to V and
ξ, respectively, from Equation (78):

diWV = (P− P0)dV ≥ 0, diWξ = Adξ ≥ 0. (80)

The above example describes a possible NEQ situation in Figure 3a of a gas of volume
V in a cylinder with a movable piston forming the system Σ described by W = (V, ξ) by
considering its microstate M very close to Meq so that only one internal variable is sufficient
to describe it uniquely by treating M = Mieq. A possible choice of ξ can be rationalized as
follows. We imagine the gas to be divided into two parts of volumes V1, V2 and uniform
number densities n1, n2, respectively, by an imaginary wall, with the region next to the
piston designated as V1. The entire volume is not uniform if n1 6= n2, which we assume.
We now define

ξ
.
= V1/n1 −V2/n2,

recalling that V = V1 + V2; see Section 4 for a generalization to describe M = Mieq far
away from Meq that will require many internal variables. In a given microstate mk, the SI-
pressure Pk and the affinity Ak form the corresponding microforce Fwk = (Pk, Ak) (see
Equation (17a)) with

Pk = −∂Ek/∂V, Ak = −∂Ek/∂ξ. (81)

The corresponding generalized microwork dWk is given in Equation (77a). For the medium,
the generalized microforce f̃wk̃ = P̃k determines the generalized microwork dW̃k̃ = P̃kdṼ =

−P̃kdV in Equation (71a). The conditional microforce f̃wk from Theorem 1 is equal to
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f̃w = P0, ∀k; here, P0 is the external pressure on the piston. Thus, the conditional microwork
is dW̃k = dW̃ = −P0dV so that deWk = −dW̃k = P0dV = deW given in Equation (77b).
The internal microwork in the gas is diWk in Equation (77a).

pulling force F0

cylinder

(b)

(a)

fluid

Spring, Fs

piston

P0
P

particle

gas

Figure 3. We schematically show a system of (a) gas in a cylinder with a movable piston under
an external pressure P0 controlling the volume V of the gas, and (b) a particle attached to a spring in
a fluid being pulled by an external force F0, which causes the spring to stretch or compress depending
on its direction. In an irreversible process, the internal pressure P (the spring force Fs) is different in
magnitude from the external pressure P0 (external force F0).

The irreversible macrowork diW = (P− P0)dV + Adξ must be nonnegative as we
prove in Theorem 4. For this to be true, each term must be nonnegative; see Equation (80).
Indeed, it is easy to verify that diWV

.
= (P− P0)dV ≥ 0. For P > P0, the gas must expand

so dV > 0. For P < P0, the gas must contract so dV < 0. In both cases, the product satisfies
the inequality.

This will become more clear by the following example of a spring discussed below.
The pressure difference ∆P = P − P0 (see Figure 3a) plays an important role as

a macroforce imbalance in capturing dissipation. Only under mechanical equilibrium
do we have the imbalance vanish (∆P = 0). This imbalance is a general feature but its
importance at the microstate level in NEQ statistical mechanics has not been recognized.
The following examples will make it abundantly clear that a nonzero microforce imbalance
like ∆Pk = Pk − P0 is just as common even in classical mechanics whenever there is absence
of mechanical equilibrium as in thermodynamics, EQ or otherwise. This is because the
determination of various microforces and microworks are oblivious to any stochasticity;
see Remark 30 for dαW = −dαEw. As a consequence, there are no restrictions on the sign of
diWk as it is purely a mechanical quantity. Therefore, our second example below covers
classical mechanics as well as thermodynamics; see also Conclusion 3.

Consider a general but purely classical mechanical one-dimensional massless spring
of arbitrary HamiltonianH(x) with one end fixed at an immobile wall on the left and the
other end with a mass m free to move; see Figure 3b with vacuum and no fluid filling
the cylinder. We consider a particular microstate mk of energy Ek given byH. The center
of mass of m is located at x from the left wall. The free end is pulled mechanically by
an external force (not necessarily a constant) F0 applied at time t = 0 and changes x; thus, x
acts as a work parameter. We do not show the center-of-mass momentum p, as it plays no
role in determining work.

Initially the spring is undisturbed and has zero SI restoring spring microforce
Fwk = −∂Ek/∂x; see Equation (17a). The microwork done by Fwk is the SI-work
dWk = Fwkdx as given in Equation (37a). The total microforce

Ftk = F0 + Fwk (82)

represents the microforce imbalance (µFI) Ftk ≶ 0 as discussed later in Section 6.4; recall
that F0 and Fwk point in opposite directions so Ftk is a difference ∆Fwk = Fwk − |F0|. There
is no mechanical equilibrium unless ∆Fwk = 0 and the spring continues to stretch or contract,
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thereby giving rise to an oscillatory motion that will go on forever. During each oscillation,
∆Fwk is almost always nonzero, except when the mass is momentarily at the equilibrium
(mechanical) position of the spring where ∆Fwk = 0. The SI-microwork done by Fwk is the
spring work (see Equation (37a))

dWk = −dEk, (83)

while the microwork performed by the external source is deW = −F0dx. Being a purely me-
chanical example, there is no dissipation. Despite this, we can introduce using our notation

diWk
.
= dWk − deW ≡ ∆Fwkdx; (84)

this microwork can be of either sign (no second law here) and represents the work done by
the µFI Ftk = ∆Fwk. Thus,

Conclusion 2. dWk, deWk and diWk represent different kinds of mechanical work, a result that
has nothing to do with dissipation but only with the microforce imbalance; among these,
only the generalized work dWk is a SI microwork.

3.4. Manipulations with dα

As introduced in Equation (9), dα can be applied to micro- and macroquantities in the
collection such as dαEk, dαWk, dαQk, etc., and dαE, dαW, dαQ, etc.

Definition 21. Micropartition: The micropartition of the BI-dθk(t) for Σb is given in Equation (14b),
in which deθk(t) is the change due to exchange with its surroundings, and diθk(t)(t) is the internal
change within Σb.

The corresponding partitions for dEk and dSk are given in Equation (15), and those for
dWk and dQk in Equation (54a). For a Fl-W, we have

dWk
.
=deWk+diWk. (85)

The micropartition also applies to dpk:

dpk
.
=de pk+di pk, (86a)

We define
dαηk

.
=

dα pk
pk

. (86b)

Definition 22. Macropartition: The macropartition of dθ(t) for Σb is given in Equation (14a). It
consists of two parts; the exchange de θ is the change due to exchange with its surroundings, and
diθ is the irreversible change occurring within Σb.

For the average in Equation (19) or for a NFl-W, we have

dW .
=deW+diW. (87)

In a process, χ undergoes infinitesimal changes dαχk at fixed pk, or infinitesimal
changes dα pk at fixed χk. The changes result in two distinct ensemble averages or pro-
cess quantities.

Definition 23. Infinitesimal macroquantities 〈dαq〉, q∈ χ = {S, Z} are ensemble averages

dαqm = 〈dαq〉 = Âdαqk
.
= ∑k pkdαqk, (88a)
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at fixed {pk} so they are isentropic. They generalize the earlier definition in Equation (36a). We
identify them as mechanical macroquantity and write them as dαqm for brevity. Infinitesimal
macroquantities

dαqs
.
= 〈qdαη〉 .

= ∑kqkdα pk, (88b)

which are ensemble averages involving {dα pk} with a concomitant change dS in the entropy. We
identify them as stochastic macroquantities and write them as dαqs for brevity. Together, they
determine the change dαq:

dαq ≡ dαq
.
= dαqw + dαqs, q ∈ {S, Z}. (89)

Remark 29. The above equation shows that we must carefully distinguish dαq = dαq and
dαqw = dαq; their difference, the commutator Ĉαq, is the stochastic quantity dαqs, discussed
in Section 10:

Ĉαq = dαq− dαqm; (90)

see Equation (229).

Remark 30. For E, the above distinction is the content of the extension of the first law or the law of
the conservation of energy

dαE = dαQ− dαW. (91)

We immediately identify that

dαQ = dαEs, dαW = −dαEw. (92)

For dα = d, de, we have the SI- and MI-formulation of the first law given by (recall that dE ≡ deE
as diE ≡ 0)

dE = dQ− dW, (93a)

deE = deQ− deW. (93b)

Remark 31. The SI-formulation of the first law in Equation (93a) shows that dE can be uniquely
partitioned into a stochastic component dQ determined by dS and a mechanical component dW
determined by dW, which have independent origins.

Traditionally, the first law is expressed in terms of the change in the energy caused by
exchange quantities and is written as

dE = deQ− deW. (94)

As the exchange form of dE is written as deE (see Equation (52c)), this is equivalent to the
first law in Equation (93b).

We now prove the following important thermodynamic identity as
a theorem [75,76,134,148,149].

Theorem 3. For any NEQ process P ,

diQ ≡ diW ≥ 0. (95)

Proof. For dα = di in Equation (91), and using Equation (53a), we have

diE = diQ− diW = 0, (96)

from which follows the following important thermodynamic identity diQ ≡ diW. We defer
the proof of the inequality to a later part of the review.
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The above equality emphasizes the well-known fact (first discovered in 1798 by Count
Rumford of Bavaria [165]) that the irreversible macrowork is always equal in its value but not
in its cause (see later) to the irreversible macroheat. The inequality is governed by the second
law. The analysis also demonstrates the important fact that the first law in Equation (93a)
can be applied either to an exchange process in Equation (93b) or to an interior process
in Equation (96). Indeed, in the last formulation, the law is also applicable to an isolated
system for which it is replaced by

dE0 = dQ0 − dW0 = 0. (97)

Definition 24. For any body Σb, we simply refer to dWk and dQk as generalized or BI-microwork
and generalized or BI-microheat or simply microwork and microheat, respectively. Similarly,
we refer to dW and dQ as generalized or BI-macrowork and generalized or BI-macroheat or
simply macrowork and macroheat, respectively. We will always refer to deWk and deQk as exchange
microwork and exchange microheat, respectively. We use exchange macrowork and exchange
macroheat for deW and deQ, respectively. As there is no irreversibility in mechanics, we use
internal microheat for diQk and internal microwork for diWk, respectively; see Claim 8. We
never the use the prefix irreversible for these or other internal microquantities. We use irreversible
macroheat for diQ and irreversible macrowork for diW, respectively.

As the system Σ is of primary interest in the µNEQT, we will always reduce any micro-
quantity associated with Σ̃ and Σ0 to refer to the microstate mk. Thus, all microquantities for
any Σb will carry the suffix k of mk. We will usually refer to dW̃k as the external microwork
to distinguish it from the microwork dW̃k̃ done by Σ̃ in its microstate m̃k̃. We will use
microenergy change, exchange microenergy change, and internal microenergy change for
dEk, deEk, and diEk. We will refer to dαSk as microentropy change, even though both dαSk
and dαQk are mixed microquantities; see Remark 14.

4. Internal Variables

Let us consider two noninteracting mechanical systems Σ1 and Σ2 that form a compos-
ite system Σ, which we take to be isolated. We assume that both Σ1 and Σ2 are physically
“similar” in that each requires the same set of NFl-state variable W having r components,
so separately they are described by Hamiltonians E1k1 = H1k1(W1) and E2k2 = H2k2(W2)
for m1k1 and m2k2 of Σ1 and Σ2, respectively. We assume that the number of particles
N1 ∈ W1

.
= (w1, ξ1) and N2 ∈ W2

.
= (w2, ξ2) are kept fixed in the two microstates so their

total N is also fixed for each microstate mk of Σ given by

mk = m1k1 ⊗m2k2 . (98)

As the particle numbers are fixed, we do not consider them to be part of the work sets
anymore. We choose to express the combined Hamiltonian as

Ek
.
= Hk(Z1, W2) = H1k1(W1) +H2k2(W2) (99)

of mk, which is a function of 2r + 2 state variables (which includes the microenergies E1k1
and E2k2 of Σ1 and Σ2, respectively), from which we construct the following indepen-
dent combinations:

Z .
= Z1 + Z2, ξ̂

.
= Z1/n1 − Z2/n2, (100)

so that we can equivalently expressHk(Z1, W2) asHk(Ŵ, ξ) of 2(r + 1) variables, which
excludes Ek as explained below; here, n1 = N1/N and n2 = N2/N,

Ŵ .
= W1 + W2 = (w1 + w2, ξ1 + ξ2) (101)

is the total initial work variable set, and ξ is the new set of internal variables beyond those
included in Z1 and Z2. In addition, the excluded Ek

.
= E1k1 + E2k2 is the microenergy of mk,
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and carries the suffix k. The choice of new arguments forHk(W1, W2) is convenient as it
allows it to be expressed asHk(W) in terms of the set formed by 2r + 1 variables

W .
= (Ŵ,ξ̂) (102a)

of the composite system Σ, as is also done for Σ1 and Σ2. The set of internal variables

ξ
.
= (ξ1 + ξ2, ξ̂) (102b)

denotes the set of internal variables for Σ.
Manipulating W will change the energy Ek of Σ. Thus,

dEk =
∂E1k1

∂W1
· dW1 +

∂E2k2

∂W2
· dW2. (103a)

It is easy to check that dEk is also given by

dEk =
∂Ek
∂W
· dW =

∂Ek

∂Ŵ
· dŴ +

∂Ek
∂ξ
· dξ̂, (103b)

so both representations ofHk are equivalent in all ways.
The choice of ξ̂ in terms of n1 and n2 ensures that it vanishes if the two systems form

a uniform system Σ for which we must have Z1/N1 = Z2/N2. However, other choices for
ξ̂ can also be made as long as ξ̂ remains independent of Ŵ.

Let us consider a simple example in which we only allow the energy E and volume V
for each each system (r = 1). We have ξV, ξEk as work variables in forming W. In this case,
we have Ek = E1k1 + E2k2 for the microstate energy and V = V1 + V2 for the total volume.
By definition,

ξEk = E1k1 /n1 − E2k2 /n2, ξV = V1/n1 −V2/n2. (104a)

The microstate energy

Ek(V, ξV, ξEk) = E1k1(V1) + E2k2(V2) (104b)

is a function of three (2r + 1) variables. We first consider ξV. We have for Pk, using
Equation (81),

Pk = n1P1k1 + n2P2k2 , AVk = n1n2(P1k1 − P2k2), (104c)

where we have used V1 = n1V + n1n2ξV and V2 = n2V − n1n2ξV. As V is NFl, Pk is Fl over
mk, as we have learned.

We now use ξEk to express Ek1 = n1Ek + n1n2ξEk and Ek2 = n1Ek − n1n2ξEk. Differen-
tiating Equation (104b) with respect to Ek and ξEk, respectively, and using Equation (42),
we obtain

1 = n1 + n2, AE = 0, (104d)

where AE (see Equation (18)) is NFl, so it has no suffix k.
As Σ is an isolated system, it is deterministic. So the observables (Ek1 , Ek2 , V1, V2)

remain constant, which means that Ek and ξEk, ∀k, will remain constant in time. If we allow
a mutual interaction so that there is a possible energy (or volume) transfer between Σ1
and Σ2, then this will be characterized by oscillating ξEk and ξV due to energy and volume
transfers, respectively, back and forth between the two systems. On the other hand, if the
interacting Σ0 become stochastic, as discussed in Section 7, it will obey the second law
and ξEk and ξV will eventually vanish. This case is studied later, where it is shown that
macroheat flows from hot to cold.

The above discussion can be easily extended to a composite system composed of
m > 2 subsystems by the trick proposed by Gujrati in ([77], Section 3). The trick is very
simple. We use the collection W = (Ŵ, ξ̂) introduced above for the composite system. We
consider two such composite systems, and introduce their work parameters W1 and W2,
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which are used in Equation (103b) for each one of them. We now treat each as a system so
that we have two new systems Σ1 and Σ2 that form a new composite system Σ. We use
W1 and W2 to obtain the new collection of (Ŵ, ξ̂) as introduced above. This set defines a
new W = (Ŵ, ξ̂) for the new composite system, which now has m = 4 subsystems. We
then treat two such composite systems and treat each as a system to form another new
composite system with m = 8, and so on to finally consider a composite system formed of
m subsystems. We thus claim the following:

Claim 10. The internal energy Ek of the microstate mk of a composite system of m subsystems
is a function of the work set {W1, W2, · · · , Wm} composed of their work parameters, and can be
expressed as a function of

Ŵ .
= W1 + W2 + · · ·+ Wm

and a set ξ̂ of internal variables [77]; together, they form the set W for the composite system, as
shown in Equation (102a).

Claim 11. We see that the new combination ξ is the set of internal variables, which also plays
an important role in the unique description of the composite system. As the uniqueness is just
as important in a thermodynamic consideration, which will be taken up in the following sections,
internal variables will play just as important a role there as here.

The above discussion is for a mechanical system with no interaction, but is easily
extended to the case in which the two systems are interacting, as will be done in the
following sections. The internal variables discussed above relate to a particular microstate
mk so some of them may carry the suffix k, and should be denoted as a internal microvariable
ξk. To see this, we recall that the microenergy Ek carries the suffix k so any internal variable
formed from microenergies of Σ1 and Σ2 will carry it as was the case for ξEk constructed
above. The discussion is also easily extended to include thermodynamics, where the
internal macrovariable ξ obeys the restrictions imposed by the second law; see Equation (43)
and Corollary 1. In this case, Wkl

of the lth subsystem will also include the internal variable
ξkl

, not to be confused with ξk for the system. It is clear that the complications due to ξkl
are avoided if each subsystem is in EQ so that ξkk

’s do not exist, as was the simple example
considered above. Then there is a maximum number n∗ of internal macrovariables in ξ that
is determined by m. This has been discussed in recent publications [77,78], to which we
refer the reader. By the addition of the suffix, it should be obvious that the above discussion
is easily extended to Fl work parameter, such as Fl volume Vk for mk, so that all microstates
experience the same pressure P; see Equation (18). Thus, the above concept of internal
variables is quite general. However, for the notational simplicity, we will not add the suffix
to W and ξ unless needed for clarity by clearly specifying the situation.

5. Fundamentals of the µNEQT

In this section, we will usually talk about a system, but the discussion is valid for
any body Σb. The most convenient and most common framework of describing a thermo-
dynamic system Σ is in terms of the SI-set X = (E, V, N, · · · ) of its extensive macroscopic
observables, which results in the SI-set f of the generalized macroforces (see Equation (25))
and the state space SX that is sufficient to uniquely describe the EQ system and its macrostate
Meq. A very important SI quantity in thermodynamics is the entropy S that in EQ is
uniquely determined by X so that Seq

.
= S(X) is a state function of Meq. For an NEQ

macrostate M, S will not be a state function in SX, so it will depend explicitly on time.
In this case, X no longer forms the set of state variables to uniquely describe M in SX,
and both M and S have an explicit t-dependence; see Equation (141) for the latter. This is
true whether the system is noninteracting (i.e., isolated) or interacting (i.e., interacts with
a medium Σ̃, which is external to the system Σ); see Figure 1.

With respect to microstates mk, the interaction between Σ and Σ̃ causes MI-exchange
[deX], which is then used to identify [diX]

.
= [dX]− [deX]; see Notation (11a). In general,



Foundations 2023, 3 458

the SI-change [dq] can be partitioned into [deq] and [diq] in accordance with
Equations (14b) and (14a), respectively, in which the MI-exchange between Σ and Σ̃ is
caused by their interaction and [diq] is the change brought about by internal processes
within Σ. In particular, diqk represents the internal microchange, while diq the irreversible
macrochange. The SI-force corresponding to w is [fw]; see Equation (37c). There is no
microanalog of fs introduced in Equation (24).

The above discussion is restricted to any Meq that is uniquely specified in SX,
X = (E, w). In an NEQ macrostate Mneq, SX is no longer a convenient state space as
it cannot specify Mneq NEQ macrostate uniquely. This loss of uniqueness for Mneq has
been a major obstacle in formulating an NEQ thermodynamics that can be as robust and
complete as the classical EQ thermodynamics. All competing NEQT approaches belong
to M̊NEQT as discussed in Section 1 and deal only with exchange quantities that can be
uniquely described in SX, as the medium Σ̃ is always taken to be in EQ. Thus, they cannot
offer any help to overcome the nonuniqueness of Mneq.

We consider this loss of uniqueness to be the main issue in improving our current
incomplete understanding of NEQ processes. Our approach to overcome this loss is to
describe Mneq in an appropriately enlarged state space to SZ by including internal vari-
able set [12,13,18,42,51,108,134,148,166–168] ξ and identifying Z .

= X∪ξ as the set of state
variables to uniquely specify Mneq. The internal variables also play a very dominant role
in glassy and granular materials [169–173]. In all previous theories involving internal
variables, they are introduced almost in an ad hoc manner without providing any physical
insight into their origin. In contrast, our approach to introduce them differs from other
approaches by providing a very clear and physical prescription, as discussed in Section 4.
As Meq describes a uniform system [33], Mneq invariably requires some sort of nonuni-
formity, as in a composite system Σ = ∪iΣi composed of various subsystems Σi. At the
mechanical level, this nonuniformity is captured by the parameters of the SI-Hamiltonians
of Σi, as was the case with two subsystems in Equation (99). The internal variables as
they appear in Equation (100) are mathematically required to ensure that the number of
independent variables on both sides in Equation (99) are exactly the same. While their forms
may not be unique, they must be independent. In terms of Z, we now have a complete
SI-specification of mk of Σ, assuming a certain choice of ξ. This is the uniqueness we are
looking for to develop the NEQ statistical mechanics. As discussed in Section 4, ξ cannot
be controlled from the outside of Σ. Therefore, its variation is due to internal processes
only and may be controlled by the second law. It should be obvious from the discussion in
Section 4 that ξ for a purely mechanical system such as mk cannot have any connection with
the second law. Only in the presence of stochasticity required for a thermodynamic system
will its average behavior be governed by the second law, so it also plays an important role
in our approach. However, the requirement of including internal variables for a complete
specification is a mechanical necessity due to nonuniformity, but becomes critical in the
NEQ statistical mechanics. We direct readers to Section 5.7 for a simple example that
clarifies its importance.

In the following, we will be considering the state space SZ in which the entropy is
a state function S(Z) so that we will be dealing with Mieq; see Definition 13. This means
that {pk} are uniquely defined to specify Mieq. However, {mk} themselves are independent
of this particular choice of {pk}, simply because {mk} are determined by the deterministic
Hamiltonian of Σ as discussed in Section 1, so they remain oblivious to their probabilities. It
is this independence of {mk} and {pk} that allows us to develop the µNEQT as a mechanical
theory that is modified by stochasticity by extending the conventional similar approach in
the µEQT [33,54].

Let us consider an infinitesimal change dZ in Z that takes M′ieq = Mieq(Z) to
M′′ieq = Mieq(Z + dZ) both belonging to SZ. If the system always stays within SZ during
this change, then the change is carried out along an IEQ process in SZ. It is Mieq during this
change so that dWk = −dEk. If intermediate macrostates leave SZ during this change, then
the change is not carried out along an IEQ process in SZ. Nevertheless, the microenergy
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change dEk = −dWk between M′ieq and M′′ieq is the same in both situations. In other words,
dEk = −dWk is the same between M′ieq and M′′ieq, regardless of the nature of the process.

We will focus on an isolated composite system Σ in microstate mk made of two
subsystems Σ1 in microstate mk1 and Σ2 in microstate mk2 ; recall Remark 25. Following
from Remarks 21 and 26, we now conclude that

dqk ≡ diqk = dqk1 + dqk2.

In particular, we have
diWk = dWk1 + dWk2 ; (105)

we can use Equation (37a) for NFl Wl and Equation (38) for Fl Wkl
, l = 1, 2, to determine

dWkl
, l = 1, 2.
Let us consider one of the above three bodies and focus on its W. For NFl W, the corre-

sponding generalized microforce Fwk is Fl as shown in Equation (17a). For Fl Wk, the corre-
sponding generalized microforce Fw is NFl, as shown in Equation (18). Including Ek, which
is always FL, we see that Z for the body is Fl in the latter case.

As shown in Equation (20), the BI-microwork dWk = Fwk · dW and dWk= Fw · dWk
defined mechanically as force×displacement in the two cases are the same, and are fluctu-
ating over {mk} as expected due to the ubiquitous Fl microforce and Fl work parameter,
respectively. The mechanically defined macrowork dW in each case will result in the
irreversible macrowork diW ≥ 0 in accordance with the second law. It follows from
Equation (105) that each side represents a mechanical microwork, showing that even diWk
is a mechanical quantity. It follows from Theorem 6 that diEk = −diWk, again emphasizing
that diWk has a mechanical origin. However, the second law puts no restriction on the Fl
mechanical microanalog diW. For the example of the spring with the force imbalance given
in Equation (82) with NFl x, the internal microwork is given in Equation (84) and can be
of any sign according to the signature of the internal microforce imbalance ∆Fwk. In the
presence of any microforce imbalance (see Conclusion 2) in an NEQ system, diWk will not
vanish, even if its average does. The following Remark emphasizes these points.

Remark 32. The internal microwork diWk within an isolated Σ due to Fl internal microforces or Fl
work parameter is ubiquitous. Its presence has a purely mechanical origin, as seen in Equation (84)
or in Equation (78) for NFl W. For Fl Wk, because of their mechanical nature, different additive
parts of diWk given in (78) are independent of pk in that they remain the same between M′ieq and
M′′ieq, both belonging to SZ, regardless of the processes between them. Despite this, the macroscopic
analogs of each of these parts and diW are controlled by the second law; see Corollary 1. It follows
that in general, determining diWk from SI-dWk will be a convenient way to discuss the statistical
mechanics of NEQ systems; see Section 2.

We now put down the set of axioms for the formulation of the µNEQT that are in
addition to the axioms put forward by Callen [3]. Callen only discusses a system in
equilibrium, so his two most important axioms are about the existence of the entropy
function and of the stable equilibrium for EQ macrostates. We extend these axioms to NEQ
macrostates below.

Axiom 1. FUNDAMENTAL AXIOM The thermodynamic behavior of a system is not the behavior
of a single sample, but the average behavior of a large number of independent samples, prepared
identically under the same macroscopic conditions at time t = 0.

Axiom 2. AXIOM OF ENTROPY FUNCTION EXISTENCE There exists an entropy function S(M)
for M in any state space, which may be a function of the state variables in that state space and time t.
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Axiom 3. AXIOM OF IEQ Any Mneq in SZ can always be turned into a unique Mieq in a suitably
enlarged state space SZ′ ⊃ SZ, Z′ = Z ∪ ξ′ so the thermodynamic and statistical entropies are
identical; see Proposition 1 and Section 12.6 for details.

Axiom 4. AXIOM OF STABILITY The unique macrostate Mieq for a given Z is stable in SZ in that
the system does not leave it if already there or returns to it if disturbed. A stable macrostate satisfies
the stability conditions

d2S < 0, d2E > 0. (106)

If we consider the matrix J formed by ∂2S/∂ZjZj′ , or the matrix K formed by ∂2E/∂ζ jζ j′ ,then all
the principle minors of the determinant of J must be strictly negative, or the determinant of K must
be strictly positive. By allowing Z to vary, Mieq moves to the most stable macrostate Meq, in which
all thermodynamic forces (see Equation (76d)) vanish.

We do not consider the stability border d2S→ 0, d2E→ 0 in the review.
It is an observed fact that nature, in her inorganic as well as organic forms, is driven

towards greater stability. This tendency is just as ubiquitous in physics as it is in biol-
ogy. Anything in nature that is capable of changing always changes eventually into an
unchanging stable form, even in an explosion. This is also true of the Belusov reaction [51],
undergoing oscillations initially but eventually ending into a stable macrostate.

Axiom 5. AXIOM OF QUASI-ADDITIVITY Any quantity [q] satisfies the principle of quasi-additivity

[q]≈∑j[q]j. (107a)

The above axiom also applies to [S], the entropy, but requires the following additional
axiom of quasi-independence, to be discussed later in Section 7.3.

Axiom 6. AXIOM OF QUASI-INDEPENDENCE For entropy to be quasi-additive, as

[S]≈∑j[S]j, (108)

requires the property of quasi-independence (see Claim 7) between different parts of the system.

Axiom 7. AXIOM OF REDUCTION All microquantities carrying the suffix k̃ and k0, and associated
with Σ̃ and Σ0, respectively, must be reduced to microquantities carrying the suffix k under the
condition that Σ is in the microstate mk in order to assess their influence on mk.

The discussion of the rules for reduction is postponed to Section 7.4.

5.1. Fundamental Axiom

To avoid any influence of the possible changes in the system brought about by mea-
surements, we instead prepare a large number NS of samples or replicas under identical
macroscopic conditions. The replicas are otherwise independent of each other in that they
evolve independently in time. This is consistent with the requirement that different mea-
surements should not influence each other. In the rest of this review, we will use the same
term ensemble to collectively represent the samples. The average over these samples of
some thermodynamic quantity then determines the thermodynamic property of the system.
As the replica approach plays a central role in our formalism, we state its importance as
Axiom 1, which was first proposed in [79].

Such an approach is standard in equilibrium statistical mechanics [11,33,34,36,54],
but it must also apply to systems not in equilibrium. For the latter, this averaging must be
carried out by ensuring that all samples have identical history, i.e., prepared at the same
time t = 0. This is obviously not an issue for systems in equilibrium. We refer the reader
to a great discussion about the status of statistical mechanics and its statistical nature by
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Tolman ([54], Section 25), where he clearly puts down this viewpoint of statistical mechanics
as follows. We quote from p. 65:

“The methods are essentially statistical in character and only purport to give
results that may be expected on the average rather than precisely expected for
any particular system.....The methods being statistical in character have to be
based on some hypothesis as to a priori probabilities, and the hypothesis chosen
is the only postulate that can be introduced without proceeding in an arbitrary
manner....”

Tolman [54] then goes on to argue on p. 67 that what statistical mechanics should
strive for is to ensure

“...that the averages obtained on successive trials of the same experiment will
agree with the ensemble average, thus permitting any particular individual
system to exhibit a behavior in time very different from the average;”

see also the last paragraph on p. 106 in Jaynes [174].

5.2. Parameter Description

As said earlier, E is always treated as a random variable E taking the values {Ek} that
fluctuate over {mk}, regardless of how W is treated. The most convenient description of
a system is to use the NFl-W so it is the same for all {mk}. Per Claim 3, this results in a
random SI-variable Fw with its outcome Fwk (see Equation (17a)) fluctuating over {mk} so
its ensemble average is the generalized (mechanical) macroforce Fw; see Equation (17b).
In contrast, the conjugate field β = 1/T for Fl-E is fixed.

It is possible to use a mixed parameter approach. We consider W having two nonover-
lapping subsets W1 and W2, with W1 a NFl-parameter WNF. The remaining subset W2 is
Fl-parameter set WF taking the values

{
WF

k
}

over {mk}. We impose the consistency condi-
tion on WF

k (see Claims 3 and 5) so that the corresponding field FF
wk = −∂Ek/∂WF

k = FF
w, ∀k;

see Equation (18). For a null set WNF, we retrieve the field-parameter description in Claim 3.
As before, the consistency requires obtaining the same MNEQT, so we must have〈

WF
〉
= W2,

〈
FNF

w

〉
= Fw1; (109)

see Condition 1.
To clarify the above distinction, we consider the simpler case of NFl-W = (V, ξ) for

a system. The energy E is a random variable E taking Fl-values {Ek}; their average value
is determined by a fixed fs = −T; see Equation (24) and Claim 5. In this ensemble, T, V
and ξ are fixed so we can also call it a (T-V-ξ)-ensemble. In this case, Ek, Pk, and Ak are
fluctuating over {mk}. If we take WNF = (ξ) and WF = (V), then Ek, Vk, and Ak are
fluctuating over {mk} with T, P and ξ kept fixed in this ensemble, which we can call a
(T-P-ξ)-ensemble. We can also consider an ensemble with WNF = (V) and WF = (ξ).
In this ensemble, Ek, Pk, and ξk are fluctuating over {mk}; T, V and A are kept fixed so we
can call it a (T-V-A)-ensemble. For these ensembles to represent the same physical system
thermodynamically, we must have V = 〈V〉, P = 〈P〉, ξ = 〈ξ〉, and A = 〈A〉 in accordance
with Equation (109).

Remark 33. An NEQ ensemble is specified by the set of its NFl quantities WNF and FF
w.

5.3. Ensemble of Replicas

The discussion here provides an extension of the ideas valid for thermodynamic
equilibrium macrostates Meq to not only nonequilibrium macrostates Mneq but also to
macrostates Mdet. The latter are governed by deterministic dynamics in which microstate
probabilities remain constant, as will be justified below; see Claim 12. The premise of
the extension to Mneq is that these ideas must be just as valid for them, as they are based
on thermodynamics being an experimental science [79]. Thermodynamics (equilibrium
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and nonequilibrium) requires verification by performing the experiment many times over.
The same premise also applies to Mdet. Therefore, we consider all these macrostates in the
following, and simply use M to stand for all these states. We must prepare many copies or
replicas N >> 1 of the system at the same time t under identical conditions specified by
the set of extensive variables Z(t) that can be used to also study how the system evolves in
time. We identify a replica as simply representing an “instantaneous state” of the system,
i.e., one of the microstates mk. The collection of all replicas at each instant t is the ensemble,
which is specified by the set Z(t) and N . The ensemble then becomes the representation of
the macrostate M. Any quantity q(Z, t) of interest associated with M is then identified as
an instantaneous average over these replicas or samples, and is an explicit function of the
set Z and possibly t. For simplicity, we will usually suppress Z and only exhibit the explicit
dependence on t in q. By definition, the ensemble average is given by

q(t) or q(t) or < q >(t) .
=

1
N

W
∑

k=1
Nk(t)qk, (110)

where qk is the value of q in the kth microstate mk, Nk(t) denotes the number of samples in
the kth microstate mk at time t, and W is the total number of distinct microstates, which
we assume is finite right now. We also assume {Nk(t)} to be a countable set. It should
be obvious that N >>W for the above definition to make sense. The overbar on or the
angular bracket around q in Equation (110) are used to indicate the average q, which is also
represented simply as q, following the acceptable tradition in thermodynamics. We will
use all three notations to indicate the average in this review as need be.

5.4. Concept of Probability

We now introduce the concept of ensemble probability

pk(t) ≡ lim
N→∞

Nk(t)/N ,
W
∑

k=1
pk(t) ≡ 1, (111)

which is valid even if W → ∞. As is well-known [114], the probabilities require the formal
limit N → ∞, which is going to be implicit in the following. This justifies Equation (12).

It should be stressed that the concept of probability introduced in Equation (111) is
also valid for a Hamiltonian system with deterministic dynamics. All one needs to do is
to prepare an ensemble with a given number Nk of replicas. As these numbers will not
change because the dynamics is deterministic, pk will not change.

It should be noted that mk, and hence the value qk on it, depend on Z(t) explicitly,
but may also depend on t explicitly. In general, pk(t) will be time-dependent as determined
by the history of the process. They become history-independent and constant in time t for
Meq. As we will soon see, they remain constant in a mechanical evolution of Mdet. In this
sense, there is a close parallel between Meq and Mdet, as discussed below.

The average of the state variable Z, using the tradition in thermodynamics, is simply
written as Z (see Equation (110)):

Z ≡
W

∑
k=1

pk(t)Zk; (112)

here Zk is the value of Z in mk. We will also extend this tradition to Fw in Equation (40) so that

Fw ≡
W

∑
k=1

pk(t)Fwk, (113)

where, as usual, Fwk is the value of Fw in mk.

Claim 12. The pk defined above in Equation (111) remains a constant of motion for a deterministic system.
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This is easy to rationalize as follows. Consider a collection of microstates {mk} of
a system with {Nk} copies at some initial time t = 0. In a deterministic evolution, Nk’s do
not change, which justifies the above claim.

Definition 25. To distinguish the usage of constant probabilities for deterministic systems with the
usage of probabilities for thermodynamic systems, where they may change spontaneously without
any external intervention, we will use the term stochastic for this aspect of probabilistic behavior in
M, but not in Mdet.

We clarify this point further. Consider an isolate system that is not in EQ. This means
that, according to the Boltzmann principle, not all microstates are equally probable. In time,
the system will come to equilibrium by ensuring that all microstates become equally
probable. This shows how a thermodynamic system behaves in a way that allows pk to
change in time even without any external intervention. For a deterministic system such as
a loaded die, this will never happen even if it is disturbed by the performance of mechanical
work, like throwing, an external intervention.

For a thermodynamic system in EQ, {pk} remains invariant (constant) in time. In this
regard, such a system is identical to a deterministic system that obeys Liouville theo-
rem [164], since it is well-known that an EQ system also obeys the theorem [33]. The
reason is very simple. The various members of the above ensemble in EQ occupy various
microstates with equal probability with the maximum entropy as shown in Section 5.5.
This entropy remains a constant of motion for the EQ system.

Remark 34. An EQ macrostate Meq under fixed conditions of the surroundings so pk’s do not
change is no different than a deterministic macrostate Mdet, except that the former has a well-defined
notion of temperature but the latter has no such notion.

5.5. Statistical Entropy for M(t)

We provide a very general statistical formulation of S for a general system Σ that
is applicable to mechanical as well as thermodynamic systems. It will be shown to be
identical to the thermodynamic entropy S by appealing to the third law. Our derivation
demonstrates that the concept of entropy in general is of a statistical nature. We consider
a state M(t) ≡M(Z(t), t) of Σ at a given instant t. We focus on a macrostate M(t) of Σ at
a given instant t, which refers to the sets m = {mk}and p = {pk} of microstates and their
probabilities, respectively. We consider Fl-W but the discussion is also valid for NFl-W
by simply setting Wk = W, ∀k. The microstates are specified by (Ek(t), Wk(t)), which
along with p need not uniquely specify the macrostate M(t). In the following, we will use
the set Z(t) for m for simplicity. We will also denote Z(t) by Z so that we can separate
out the explicit variation due to t in addition to the implicit variation in t due to Z, if any.
For simplicity, we suppress t in M in the following. For the computation of combinatorics,
the probabilities are handled as described in Section 5.4. We follow the notation used
there, choosing N = CW(Z) with C some large integer constant, and W(Z) the number of
distinct microstates mk in the ensemble or the sample space Γ(Z) spanned by {mk}. We
will see that W(Z) is determined by mk’s having nonzero probabilities [79]. We will call
them available microstates.

The ensemble Γ(Z) above is a generalization of the ensemble introduced by Gibbs,
except that the latter is restricted to an equilibrium system, whereas Γ(Z) refers to the
system in any arbitrary macrostate so that pk in Equation (111) may be time-dependent,
and may not be unique. The samples are, by definition, independent of each other so that
there are no correlations among them. Because of this, we can treat the samples in Γ(Z) to
be the outcomes of some random variable, the macrostate M(t). This independence property
of the outcomes is crucial in the following. Each sample of M(t) is one of a microstate in
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Γ(Z). They may be equiprobable but not necessarily. The number of waysW to arrange
the N samples into W(Z) distinct microstates is

W ≡ N !/∏
k
Nk(t)!. (114)

Taking its natural log, as proposed by Boltzmann, to obtain an additive quantity per sample
as described in Section 5.6 (see also Axiom 6), we obtain

S ≡ (1/N ) lnW , (115)

and using Stirling’s approximation, we see easily that it can be written as the ensemble
average (see Equations (12) and (26a)),

S(Z, t) ≡ −〈η(t)〉 ≡ −
W(Z)

∑
k=1

pk(t) ln pk(t), (116)

of the negative of Gibbs’ index of probability ([48], p. 16)

ηk(t)
.
= ln pk(t). (117)

We have shown an explicit time dependence in S, which is distinct from the implicit time
dependence in Z, to merely express the fact that it may not be a state function in SZ,
i.e., that M may not be uniquely specified in SZ. The above derivation clearly shows
that Equation (116), which is identical in form to Equation (26a), justifies the latter for
an arbitrary M.

The identification of entropy in Equation (116) with the Gibbs formulation of entropy is
a time-honored practice for nonequilibrium states since the days of Gibbs ([48] see, in partic-
ular, chapters 11 and 12, where time dependence is discussed), and has been discussed by
Tolman ([54], Ch. 13, and in particular pp. 538–539), Jaynes [174], Rice and Gray [55], and
Rice [57], to name a few. There is no restriction on pj(t). In particular, they do not have
to be given by probabilities valid for equilibrium states; see also Sethna ([36], Section 5.3.1).
The definition merely follows from the observation that the index of probability is an additive
quantity for independent replicas (see FUNDAMENTAL AXIOM) and that the entropy is merely
its average value (with a negative sign). Tolman takes great care in establishing that this
formulation of the entropy satisfies the second law ([54], Section 130). Tolman also shows
that the Boltzmann definition of entropy is a special case of the general formulation due to
Gibbs ([54], see the derivation of Equation (131.2)), just as we have argued; see Equation (208).

The identification of the entropy with the negative of the Boltzmann H-function ([54],
see p. 561), the latter describing a nonequilibrium state, should leave no doubt in anyone’s
mind that the Gibbs formulation of the entropy can be applied equally well to an equilib-
rium or a nonequilibrium system. Nevertheless, we should point out that not all subscribe
to this viewpoint of ours about the Gibbs formulation of entropy, because they insist that
the Gibbs entropy is a constant of motion [135]. This constancy follows immediately from
the application of Liouville’s theorem in classical mechanics [32–34,36,54], valid for a sys-
tem described by a Hamiltonian, as discussed above and as we have already discussed
in Section 5.4. We thus see that our formulation of the entropy in EQ is consistent with
this theorem.

The above derivation is based on fundamental principles of combinatorics and ad-
ditivity, and does not require the notion of equilibrium or nonequilibrium in the system;
therefore, it is always applicable for any arbitrary macrostate M(t) including that of a deter-
mining system; see Claim 12. To the best of our knowledge, even though such an expression
has been extensively used in the literature for NEQ entropy, it has been used by simply
appealing to the information entropy [72,175]. Thus, Equation (116) is a generalization
of Equation (26a) to the general case, and thus justifies it for M(t). We now generalize
Claim 12 as follows:
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Claim 13. The probability pk and the Gibbs entropy (see Equation (26a)) is easy to define for
a M(t) including that of a deterministic Hamiltonian system. As the probability and the entropy
for Mdet do not change as a function of time, we show in Section 10.1 that the concepts of microheat
and macroheat cannot be associated with a Hamiltonian system, although the concepts of microwork
and macrowork are defined.

The distinction between the Gibbs’ statistical entropy and the thermodynamic entropy
should be emphasized. The latter appears in the Gibbs fundamental relation that relates
the energy change dE with the entropy change dS, as is well-known in classical thermody-
namics, and as we will also demonstrate below; see also Equation (93a). The concept of
microstates is irrelevant for this, as it is a purely thermodynamic relation. On the other hand,
the Gibbs’ statistical entropy is solely determined by {mk}, so it is a statistical quantity. It
then becomes imperative to show their equivalence, mainly because the statistical entropy
is based on the Boltzmann idea. This equivalence has been justified elsewhere [75,76],
and is summarized in the following Remark.

Remark 35. Because of this equivalence, we will no longer make any distinction between the
statistical Gibbs entropy and the thermodynamic entropy and will use the standard notation S for
both of them for a macrostate Mieq, of which Meq is a special case.

Remark 36. The Gibbs entropy appears as an instantaneous ensemble average; see Definition 7.
This average should be contrasted with a temporal average in which a macroquantity q is considered
as the average over a long period τ0 of time

q =
1
τ0

∫ τ0
0 q(t)dt,

where q(t) is the value of q at time t [33]. For an EQ macrostate Meq, both definitions give the same
result provided ergodicity holds. The physics of this average is that q(t) at t represents a microstate
of Meq. As Meq is invariant in time, these microstates belong to Meq, and the time average is
the same as the ensemble average if ergodicity holds. However, for an NEQ macrostate Mneq(t),
which continuously changes with time, the temporal average is not physically meaningful as the
microstate at time t corresponds to Mneq(t) and not to Mneq(t = 0) in that the probabilities and Z
are different in the two macrostates. Only the ensemble average makes any sense at any time t, as
discussed in [176]. Because of this, we only consider ensemble averages in this review.

A word of caution must be offered. If S is not a state function, it cannot be measured
or computed. Thus, while the statistical entropy can be computed in principle in all cases if
{pk} is known, there is no way to compare its value with thermodynamic entropy in all
cases. Thus, no comment can be made about their relationship in general for an arbitrary
M(t). We have only established their equivalence for Mieq for which the two entropies are
the same.

Remark 37. We have summarized our approach for an arbitrary macrostate in Axiom 3, which
allows us to identify the two entropies in all cases. Thus, we only need to investigate the µNEQT
for Mieq to also cover M; see Section 5.9.

5.6. Principle of Additivity
5.6.1. Additivity

We consider a system Σ consisting of two nonpenetrating sub-bodies Σ1 and Σ2 at
present, each specified by W1 and W2. Later, we will generalize to any number of sub-
bodies Σj. The principle of additivity states that Σ is specified by W given by

W .
=∑jWj. (118a)



Foundations 2023, 3 466

This principle is self-evident for nonpenetrating systems. For example, the number
of particles

N ≡ ∑jNj (118b)

remains an identity. (This remains true even if the bodies are interpenetrating, for which
the volumes may not be additive). For nonpenetrating bodies, however, their volumes
become additive:

V = ∑jVj, (118c)

which we will assume in this review. We will call the case of nonpenetrating bodies the
discrete approach. It is evident that in this approach, the principle of additivity is valid for
any number of sub-bodies Σj, j = 1, 2, · · · . In this case, the sum in the above equations is
over all sub-bodies.

We now show that the above sample average in Equation (110) also follows imme-
diately from the principle of additivity of quantities that are additive; see Claim 2. One
considers a very large macroscopic system Σ0 of N0 ≡ NN particles and imagines dividing
it into a large number N of macroscopically large and nonoverlapping parts of equal size
N, each representing a microstate of the system Σ. As the parts are macroscopically large,
they will act almost independently; see Section 7.3 for details. How well this condition
is satisfied depends on how large the parts are. In principle, they can be made arbitrary
large to ensure their complete independence. At the same time t, these parts will be in mi-
crostates mk of Σ with probabilities pk(t). The additivity principle states that any extensive
thermodynamic quantity X(t) of the system Σ0 is the sum of this quantity over its various
macroscopically large parts. This principle is consistent with the definition of the average
in (110). One can also think of the N parts as representing the same measurement that has
been repeated N times on samples prepared under identical macroscopic conditions at the
same instant t.

5.6.2. Quasi-Additivity

We have enunciated the principle of additivity for W above. The energy E plays a very
different role because of mutual interactions between various sub-bodies. We again restrict
to only two sub-bodies for simplicity, which can be later generalized to any number of sub-
bodies. We assume that they are weakly interacting so that their energies are quasi-additive,
which we express in a form using j = 1, 2:

E = ∑jEj + Uint≈∑jEj, (119)

where Uint is the weak interaction energy between Σ1 and Σ2, and can be neglected to
a good approximation provided

Uint << Esm
.
= min

{
Ej
}

. (120)

We can extend the discussion to many sub-bodies
{

Σj
}

, j = 1, 2, · · · , by defining Uint as the
net interaction energies between all of them:

Uint
.
= ∑j>lEjl ,

where Ejl is the interaction energy between Σj and Σl . The inequality in Equation (120) can be
made as precise as we wish by making N extremely large compared to various sub-bodies.

Remark 38. With quasi-additivity for energies, we can extend the principle of additivity from W to

Z≈∑jZj, (121)

by including quasi-additivity for the energies; see Claim 2.
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However, the quasi-additivity of the entropy is altogether a different issue. The entropy
additivity is strictly valid if Σ and Σ̃ are (statistically) independent [3], i.e., noninteracting.
However, this independence is not of any physical interest as Σ and Σ̃ must be interacting
with each other for any interesting thermodynamics; otherwise, there is no need to consider
Σ̃, and the issue of additivity does not arise. Thus, we are inclined to consider them to be
quasi-independent. To the best of our knowledge, the discussion of quasi-independence
and its distinction from interactions between Σ and Σ̃ that are weak has been carefully
presented elsewhere ([148], Scorr was called Sint there; however, Scorr seems to be more
appropriate) for the first time, which we summarize below. The presence of interparticle
interactions that determine E and Ẽ for Σ and Σ̃, respectively, results in the thermodynamic
concept of correlation lengths in them. The correlation length λcorr > a is a property of
macrostates, and can be much larger than the interparticle interaction length a between
particles depending on the macrostate. In general, λcorr >> a. A simple well-known
example is of the correlation length λcorr of a nearest neighbor Ising model, which increases
very rapidly as the critical point is reached, and where it can be much larger than the
nearest neighbor distance a between the spins. Two interacting Ising systems at the same
temperature cannot be “independent”, so the additivity of entropy for Σ0 is replaced by
the following:

S0(X0,t) = S(X(t),t) + S̃(X̃(t)) + Scorr(t), (122a)

where Scorr(t) is a correction term to the entropy due to correlation that is present between
Σ and Σ̃ due to their mutual interaction. If the linear sizes l and l̃ of the two bodies are
much larger compared to λcorr, then this correlation becomes almost nonexistent. In this
case, Scorr(t) can be neglected to a good approximation so that

S0(X0,t)≈S(X(t),t) + S̃(X̃(t)), (122b)

provided l̃, l >> λcorr. Under this condition, Σ and Σ̃ are said to be quasi-independent [148],
which ensures that their entropies become quasi-additive. This distinction is usually not
made explicit in the literature. Usually, l̃ >> l, but this condition was not used above so
the above additivity is valid for any two bodies for which l̃, l >> λcorr. For Σ̃ representing
a medium, S̃ has no explicit time dependence as it is assumed to be in equilibrium, and X0
remains constant for the isolated system Σ0.

The above quasi-additivity principle is applicable to microstates of Σ as well. We now
focus on classical microstates represented by the sub-bodies, and apply the discussion to
only two sub-bodies representing Σ = Σ1 and Σ̃ = Σ2 forming the isolated system Σ0 as
they are central to our statistical mechanics. We consider the energies of the microstates
m0k0 ,mk, and m̃k̃. They are related as follows:

E0k0 = Ek + Ẽk̃ + Ek,̃k (123a)

where we have also included the interaction energy Ek,̃k due to Uint, which is usually

negligible relative to Ek, Ẽk̃. These energies are independent of the macrostates and,
therefore, independent of quantities such as the temperatures and probabilities that specify
macrostates of various bodies forming the system. The energies corresponding to their
macrostates are related by

E0 = E + Ẽ + Uint; (123b)

see Equation (119). Again, the smallness of Ek,̃k results in its average Uint obtained by using

p0k0 and Ek,̃k in Equation (112), being negligible relative to E and Ẽ.

Remark 39. The assumption to neglect Ek,̃k or Uint merely makes Σ and Σ̃ satisfy the principle of
additivity. We will make this assumption in this review extensively.

Remark 40. From now on, we will usually replace the sign “≈” by “=” unless clarity is needed.
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Remark 41. Throughout this review, we will think of the above approximate equalities as
equalities to make the energies additive by neglecting the interaction energy between Σ and Σ̃, which
is a standard practice in the field, but also assuming quasi-independence between them to make the
entropies to be additive, which is not usually mentioned as a requirement in the literature.

5.7. Σ in Internal EQ (IEQ)

The central concept of the µNEQT is that of the internal equilibrium (IEQ) according
to which the entropy S of an NEQ macrostate is a state function of the state variables in
the enlarged state space SZ [134,148,149]. The enlargement of the space relative to the EQ
state space SX is due to independent internal variables [13,18,51,108], which is sufficient
to uniquely specify M in SZ. We denote such a state by Mieq. The same state cannot be
uniquely specified in SX or any other extended state space SZ′ that does not have the same
set of internal variables as in Z.

We give a simple example to clarify why and how internal variables are useful for
describing an NEQ state. Consider the case of two identical bodies Σ1 and Σ2 in thermal
contact at different temperatures T1(t) and T2(t) and energies E1(t) and E2(t), respectively;
we ignore other observables N, V, etc. Thus, X = (E)̇ for each system. We assume that each
one is in an EQ state of its own at each instant. Together, they form an isolated composite
system Σ, whose entropy S(E1, E2) = S1(E1) + S2(E2) is a function of two variables at each
instant t, and can be written as a state function in the enlarged state space formed by

E = E1 + E2 = const, ξ(t) = E1 − E2.

(We have neglected the interaction energy E12 between Σ1 and Σ2 here per Remark 39.) This
situation should be compared with its mechanical analog in Section 4, and in particular with
Equation (104a) for ξEk; here, n1 = n2 = 1/2. The discussion there was purely mechanical
so there was no dissipation.

We are in a position now to understand how dissipation emerges in thermodynamics.
As the system approaches EQ, E1 → E2 so that ξ → 0. This also means that T1(t) →
T2(t) = Teq, the EQ temperature. The first thing we learn from this simple example is that
it clearly shows how the t-dependence in S(E, t) ≡ S(E1, E2) can be replaced by invoking
an extensive internal variable ξ(t) so that the entropy can be treated as a state function
S(E, ξ) in the enlarged state space SZ spanned by E and ξ. In other words, the system is in
an IEQ state. In general, we will need to enlarge SX by introducing an appropriate number
of internal variables to form SZ in which the system is in IEQ. Thus, we can always express
S in an IEQ state as a state function

S = Sieq = S(Z) (124)

in the appropriately enlarged state space SZ. This is carefully discussed in Section 12, where
we take a different approach. As S1(E1) and S2(E2), being in EQ, have their maximum
value for given E1(t) and E2(t), S(E, ξ) also has its maximum value for given E(t) and
ξ(t), but this value increases as ξ → 0, and EQ is achieved. In general, Mieq has the
maximum possible entropy for the given Z, and continues to increase as Z changes and EQ
is reached. For this IEQ state, it is trivial to show that the temperature (1/T = ∂S/∂E; see
Equation (129)) of Σ is

T(t) = 2T1T2/(T1 + T2) (125a)

and its affinity T∂S/∂ξ (see Equation (133)) is given by

A(t) = (T2 − T1)/(T1 + T2). (125b)

At equilibrium, T1 = T2 = Teq and ξ = 0, A = 0. Thus, T1 and T2 may be very different, yet
the system as a whole can be treated as being in IEQ with a unique temperature T(t), any
temperature difference T2(t)− T1(t) between its parts not withstanding. The discussion
can be extended easily to the case when the two bodies are in IEQs and also when they
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are of different sizes. In all cases, a unique temperature in accordance with Equation (129)
can be defined for the composite system [77,78]. Once it is determined, we do not have
to worry about the internal temperature difference between Σ1 and Σ2. Any internal heat
transfer between them is captured by

βA(t)dξ = diS = dE1(β1 − β2), (126)

as can be easily verified; here diS is the irreversible entropy generation due to macroheat
exchange [51]. We thus see the affinity for ξ is given by

A(t) =
TdiS
dξ

=
dE1

dξ

(β1 − β2)

β
, (127)

which vanishes as EQ is reached, a well-known feature [51] of classical thermodynamics.
The analysis clearly shows how thermodynamics brings in dissipation in a mechanical
system, showing the consistency of our approach using internal variables.

5.8. Gibbs Fundamental Relations for Mieq(Z) in SZ and Sζ

We first consider the state space SZ in which Mieq(Z) is uniquely specified. In this
space, the state function S(Z) results in the general form of the Gibbs fundamental relation

dS(Z)=
∂S
∂E

dE+
∂S
∂W
· dW (128a)

for the entropy, from which follows the Gibbs fundamental relation for E(ζ) in Sζ spanned
by ζ

.
= (S, W),

dE(ζ) =
∂E
∂S

dS+
∂E
∂W
· dW. (128b)

Introducing the SI-temperature T = 1/β as

T .
= ∂E/∂S, β = ∂S/∂E, (129)

and re-expressing the generalized macroforce in Equation (18) as

Fw = −∂E/∂W = T∂S/∂W, (130)

we rewrite Equations (128a) and (128b) as

dS = βdE + βdW (131a)

dE = TdS− dW (131b)

in terms of SI macroquantities; here, we have introduced SI-macrowork dW as the general-
ized macrowork

dW .
= Fw · dW ≡ T

∂S
∂W
· dW (132)

done by the system. The derivative with respect to ξ determines the affinity

A .
=T(∂S/∂ξ) = −(∂E/∂ξ), (133)

which vanishes in equilibrium so that Aeq = A0 = 0. Thus, in general, Fw = (fw, A), where

fw = −∂E/∂w = T∂S/∂w (134)

is the generalized macrowork due to w.

Remark 42. Comparing Equation (131) with Equation (93a) allows us to verify Conclusion 1 for
the Clausius equality.
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This equality must be distinguished from deQ in Equation (46). Thus, Equation (93a)
allows us to uniquely identify the generalized macroheat dQ = TdS determined by dS
and the generalized macrowork determined by dW to be independent of each other as
they belong to orthogonal subspaces in the subspace Sζ ; see also Section 10.2. Both are
SI-macroquantities. The resulting thermodynamics has been identified as the MNEQT.
In terms of various components of Fw, the generalized macrowork is

dW = PdV − µdN + · · ·+ A · dξ. (135a)

We can identify various components of the macrowork as dWV = PdV, dWN = µdN, · · · ,
dWξ1 = A1dξ1, · · · , using an obvious notation. The missing terms denote the contribution
from the rest of the variables not shown, and

P .
= −∂E/∂V, µ

.
= ∂E/∂N, · · · , A .

= −∂E/∂ξ, (135b)

are the SI-fields associated with W, with changes dW = dV, dN, · · · , dξ being the changes
in it.

In the M̊NEQT, the first law in Equation (94) refers to exchange macroheat deQ = T0deS
(see Equation (46)) and macrowork

deW = P0deV − µ0deN + · · · ; (135c)

in terms of the fields (the temperature T0, pressure P0, chemical potential µ0,· · · ) of the
medium and the corresponding macroscopic exchange quantities in all cases, regardless
of the irreversibility. As the medium is in EQ, there is no contribution due to ξ in deW as
the corresponding contribution A0 · dξ vanishes due to the fact that the affinity A0 ≡ 0 for
the medium. Our sign convention is that deQ is positive when it is added to Σ, and deW is
positive when it is transferred to Σ̃.

It follows from Equations (135a) and (135c) that the irreversible macrowork, also
known as dissipative work, is

diW = (P− P0)dV − (µ− µ0)dN + · · ·+ A · dξ ≥ 0. (136)

The coefficients P − P0, µ − µ0, · · · , A are commonly known as thermodynamic forces or
macroforce imbalances [51], which vanish in EQ; see Section 6.4.

Remark 43. We have included the term associated with N for completeness in Equations (135a),
(135c) and (136). We will no longer consider this term anymore.

We should compare the above equations with Equation (79). Once deW or dW has been
identified, the use of the first law allows us to uniquely determine deQ or dQ, respectively.

It is clear that the root cause of dissipation is the macroforce imbalance. It drives
the system towards equilibrium [41,42,75,76,134,148–150,152,153]. It arises due to the
imbalance between the external and the average internal forces performing work; the
microforce imbalance is introduced in the following section. The average force imbalances
give rise to an internal work diW due to all kinds of force imbalances. The irreversible or
dissipated work is given in Equation (136), which is generated within Σ.

If we include the relative velocity between a Brownian particle ΣBP and the medium
to account for the Brownian motion [148,157], we must account for [148] an additional term
−V·dPBP in diW due to the relative velocity V:

diW = (P− P0)dV −V·dPBP + Adξ; (137)

here, dPBP = FwBPdt is the change in the linear momentum of the Brownian particle
experiencing a macroforce FwBP. To see it, we recognize that V·dPBP must be nonpositive
to comply with the second law. Thus, FwBP must be antiparallel to V and describes the
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frictional drag. This is discussed in detail in Ref. [157]. Thus, the force is reviewed in
Section 14 as the role of friction in the Langevin equation turns out to be different in the
two NEQ thermodynamics. We will come back to this term later when we consider the
motion of a particle attached to a spring; see Figure 3b, a system also studied by Jarzynski,
so that a comparison can be made.

The irreversible macroheat diQ in all cases is given by Equation (47), and shows that
it does not vanish when T = T0, provided diS > 0. This means that the irreversible
macrowork is present even if there is no temperature difference, such as in an isothermal
process, as long as there exists some nonzero thermodynamic force or irreversibility. The
resulting irreversible entropy generation is then given by diS. We summarize this [51] as

Conclusion 3. To have dissipation, it is necessary and sufficient to have a nonzero thermodynamic
force. In its absence, there can be no dissipation regardless of the time dependence of the work process;
see also Remark 32. This understanding of dissipation becomes clear from the microscopic source of
dissipation in Proposition 2.

5.9. Time-Dependent Gibbs Fundamental Relations for Mnieq(Z) in SZ

We now consider the generalization of the Gibbs fundamental relation for Mnieq, which
is not uniquely specified in SZ or Sζ , by starting from Equation (295a) having an explicit
time dependence that comes from “hidden” internal variables ξ′ in SZ. From the state
function entropy S(Z′(t)) for Mieq(t) in SZ′ , we have

dS(Z′(t))=
∂S
∂E

dE+
∂S
∂W
· dW+

∂S
∂ξ′
· dξ′,

where W is the work variable in SZ. Expressing the last term as

∂S
∂ξ′
· dξ′

dt
dt,

we obtain the following generalization of the Gibbs fundamental relation for Mnieq(t)
in SZ:

dS(Z(t), t) =
∂S
∂E

dE+
∂S
∂W
· dW+

∂S
∂t

dt, (138a)

where
∂S
∂t

.
=

∂S
∂ξ′
· dξ′

dt
≥ 0. (138b)

Definition 26. As the presence of ∂S/∂t above in SZ is due to “hidden” internal variables in ξ′,
we will call it the hidden entropy generation rate, and

diShid(t) =
∂S
∂t

dt =
∂S
∂ξ′
· dξ′ ≥ 0, (139a)

the hidden entropy generation. It results in a hidden irreversible macrowork

diWhid .
= TdiShid = A′ · dξ′, (139b)

in SZ due to the hidden internal variable with affinity A′.

In SZ′ , we can identify the temperature T as the thermodynamic temperature in SZ′

by the standard definition. It is clear from the above discussion that ∂S(Z′(t))/∂E in SZ′

has the same value as ∂S(Z(t), t)/∂E in SZ. However, there is an alternative definition of
a temperature for M in SZ as

dQ(Z(t), t)/dS(Z(t), t) = Talt
arb(Z(t), t),
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while T(Z′(t)) = dQ(Z′(t))/dS(Z′(t)) for Mieq in SZ′ . It is easy to see that they are
not the same as macroheats dQ(Z′(t)) = dE(t) + dW(Z′(t)) and dQ(Z(t), t) = dE(t) +
dW(Z(t), t) are not the same as macroworks. Thus, this definition is not a thermodynamic
temperature for M in SZ. Therefore, we are now set to identify Tarb (see also Equation (257))
as a thermodynamic temperature ofMarb by this T.

Remark 44. 1/Tarb
.
= ∂S(Z(t), t)/∂E in SZ is identified by the same derivative in the Gibbs

fundamental relation in SZ′ as follows:

1
Tarb

=
∂S(Z′(t))

∂E
≡ 1

T(Z(t))
, (140a)

while the alternative nonthermodynamic temperature satisfies

Talt
arb(Z(t), t) = T(Z(t))[1 + diShid/dS(Z(t), t)], (140b)

as is easily verified.

Remark 45. As discussed above and as will be discussed in detail in Section 12.1, a macrostate
Mnieq(t) with S(Z(t), t) can be converted to Mieq(t) with a state function S(Z′(t)) in an appro-
priately chosen state space SZ′ ⊃ SZ by finding the appropriate window in which τobs lies as well.
The needed additional internal variable ξ′ determines the hidden entropy generation rate ∂S/∂t in
Equation (138b) due to the non-IEQ nature of Mnieq(t) in SZ, and ensures validity of the Gibbs
relation in Equation (138a) for it, thereby not only providing a new interpretation of the temporal
variation of the entropy due to hidden variables but also extending the MNEQT to Mnieq(t) in SZ.

The above discussion strongly points towards the following possible proposition.

Proposition 1. The MNEQT provides a very general framework to study any Mnieq(t) in SZ,
since it can be converted into a Mieq(t) in an appropriately chosen state space SZ′ , with diShid(t)
originating from hidden internal variable ξ′.

We now consider a process P to be studied in SZ. It is natural to think of at least the
initial macrostate Min of P as being uniquely identified as Min

ieq in SZ. During the process,
M(t) along P may turn into Mnieq(t) or remain Mieq(t). The former has been studied
above. The latter can happen under the following two cases:

(i) all internal variables in ξ remain out of equilibrium;
(ii) internal variables in a subset ξ′ ⊂ ξ have equilibrated so that the affinity

A′ = T∂S/ ∂ξ′ vanishes.
In both cases, M(t) remains Mieq(t) in SZ, except that in (ii), M(t) can also be

treated as Mieq(t) in the proper subspaces between SZ′′ ⊂ SZ and SZ, with Z′′ de-
fined by Z′′ ∪ ξ′ = Z. Even though A′ = 0 in these subspaces so that diShid(t) = 0 and
diWhid(t) = 0, the Fl microaffinity A′k 6= 0 in these subspaces, and will still play an impor-
tant role in the µNEQT. Therefore,

Remark 46. We will use the state space SZ to construct the NEQ statistical mechanics in (i) and
(ii) without affecting the hidden entropy generation and hidden irreversible macrowork. This allows
us to use SZ over the entire process.

Remark 47. In a process P resulting in Mnieq(t) in SZ, it is natural to assume that the terminal
macrostates in P are Mieq so the affinity corresponding to ξ′ must vanish in them.

The above discussion can be easily applied to consider the case SZ′ ⊂ SZ, in which
internal variables in a subset ξ′ of ξ have equilibrated. The result is summarized in
the following:
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Remark 48. By replacing Z by X, and Z′ by Z, we can also express the Gibbs fundamental relation
for any NEQ macrostate in SX as

dS(X(t), t) =
∂S
∂E

dE+
∂S
∂w
· dw+

∂S
∂t

dt, (141)

by treating Mneq as Mieq in SZ. In an NEQ process P between two EQ macrostates but resulting
in Mieq(t) between them in SZ, the affinity corresponding to ξ must vanish in the terminal EQ
macrostates of P .

Equation (141) proves extremely useful to describe Mneq in SX as it may not be easy
to identify ξ in all cases.

Remark 49. The explicit time dependence in the entropy for Mneq in SX or Mnieq(t) in SZ is solely
due to the internal variables, which do not affect the validity of the Clausius equality dQ = TdS
(Equation (45)), with T defined as the inverse of ∂S/∂E at fixed w, t or W, t in the two state spaces,
respectively; see Equation (129). As a consequence, Equation (47) remains valid for any M.

5.10. Consequences of the Second Law

Theorem 4. As a consequence of the second law, the irreversible macrowork diW (see Equation (136))
which is equal in magnitude to the macroheat diQ (see Equation (95)) for any M is nonnegative in
any real process.

Proof. Using Equation (47), we find

T0diS = (T0 − T)dS + diW
TdiS = (T0 − T)deS + diW

≥ 0, (142)

where the inequality follows from the second law diS ≥ 0 in Equation (67c); we assume T
and T0 to be nonnegative. Therefore, each of the two independent contributions in each
equation must be nonnegative. This thus proves that

diW = diQ ≥ 0. (143)

Corollary 1. Different components of diW and diQ for any M must be individually nonnegative.

Proof. Consider the independent components such as diWV, diWξ , etc., of diW. As diW is
nonnegative, each component must be nonnegative.

This proves the inequalities in Equations (43) and (80). In addition, it shows that
each term on the right in Equation (75) is nonnegative. We thus have a proof of a part of
Remark 32 that deals with the consequences of the second law.

Corollary 2. In any real process,

(T0 − T)deS ≥ 0; (T0 − T)dS ≥ 0.

Proof. The corollary follows from the preceding theorem.

The first inequality merely states the well-known fact of thermodynamics that macro-
heat deQ = T0deS flows from “hot” to “cold”. The second inequality also states a well-
known fact about the stability in thermodynamics, which requires the entropy to increase
with temperature. As EQ is reached, T → T0 either from above (T > T0) or from below
(T < T0). In the former case, S decreases, while it increases in the latter case.
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Corollary 3. For an isolated system (dS ≡ diS) or for T = T0,

TdiS = diW ≥ 0. (144)

Proof. Setting deS = 0 for an isolated system or T = T0 in Equation (142) proves the
theorem immediately.

The inequalities in Equation (142) follow from the second law diS ≥ 0 in Equation (67c).
Each term on the right side, being independent of each other, must be nonnegative sepa-
rately, which yields

(T0 − T)dS ≥ 0, (1− T/T0)deQ ≥ 0, diW ≥ 0 (145)

as consequences of the second law. In view of Equation (95), the last inequality above
proves the last two inequalities in Equation (69).

5.11. Assumptions

We list the two important assumptions of our approach. They can be relaxed but we
will not do that in this review.

5.11.1. N Fixed for Σ

In order to fix the size of Σ, we need to specify one of its extensive state variables.
Usually, N is kept fixed to ensure a fixed size. Therefore, N is not considered part of
X = (E, V, · · · ) and Z from now on [177]. This also means that (i) there is no chemical
reaction, and (ii) there is EQ with respect to the chemical potential. Most of the time, we will
simplify the discussion by using a single internal variable; the extension to many internal
variables is trivial.

Our primary interest is in studying an irreversible process P , which in MNEQT
requires the existence of thermodynamic forces [51]. Their absence signifies that P represents
a reversible process. It should be stressed that our notation is designed in such a way that the
investigation can also apply directly to the (isolated) NEQ system Σ0, if need be, for which
no exchange with the outside is possible. In that case, the external driving must be replaced
by spontaneous processes going on within Σ0 that drive it towards equilibrium. During this
drive, there is dissipation within Σ0 that is found to contribute to work fluctuations in the
µNEQT. As is well-known, such spontaneous fluctuations are not directly captured in the
µ̊NEQT, the microstate extension of the M̊NEQT. This makes our approach superior.

5.11.2. Σ̃ Always in EQ

We will assume Σ̃ to be always in equilibrium (which requires it to be extremely large
compared to Σ, as noted above). Any irreversibility going on within Σ0 due to internal
dissipation, internal motion, internal nonuniformities, etc., is ascribed to Σ alone. Moreover,
we assume additivity of volume, a weak interaction between, and quasi-independence
of, Σ and Σ̃; the last two conditions, respectively, ensure that the energies and entropies
are additive [75,76,134,148,149] but also impose some restriction on the size of Σ in that it
cannot be too small. In particular, the size should be at least as big as the correlation length
for quasi-independence as discussed there. In this study, we will assume that all required
conditions necessary for the above-mentioned additivity are met.

6. Mechanical Aspects

We will consider a system in this section, but the arguments are valid for any system Σ.

6.1. Microstate Evolution in SZ

The traditional formulation of statistical thermodynamics [33,48,79] is built on a me-
chanical approach in which mk follows its classical or quantum mechanical Hamiltonian
evolution dictated by its SI-HamiltonianHk = H(xk(t)|W(t)), which suffices to provide the
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deterministic mechanical description with NFl-W. We will see below that k does not change
as W changes in a process P . We will only consider a classical case system Σ, for which the
change inHk in P is

dHk =
∂Hk

∂xk(t)
· dxk(t) +

∂Hk
∂W(t)

· dW(t). (146)

The first term on the right, due to the dynamical variations of xk in the system, vanishes
identically due to Hamilton’s equations of motion for any mk. Thus, for fixed W, the energy
Ek(W) = H(xk|W) of mk remains constant in time due to deterministic Hamiltonian
dynamics. Only the variation dW in SZ generates any change in Ek. Consequently, we
can write

dHk = dH(w)
k =

dHk
∂W(t)

· dW(t) (147)

for all mk, which clearly shows that only the variation dH(w)
k due to dW is relevant. This

is indicated by the superscript w on dH(w)
k . We do not worry about how xk changes

dynamically inH(xk|W) from now on, and focus, instead, on the state space SZ, in which
we can simply express the Hamiltonian asHk(W) for any microstate, remembering that its
value Ek(W) is a point in SZ.

6.2. SI-Microwork in SZ

The point Ek(W) in SZ undergoes a change due to dW given by

dEk =
∂Ek
∂W
· dW = −dWk, (148)

where
dWk = Fwk · dW, Fwk

.
= −∂Ek/∂W. (149)

denotes the Fl-generalized microwork produced by the Fl-generalized microforce Fwk; see
Definition 17. These are SI-microquantities. As Ek is uniquely determined by W, the micro-
force is a deterministic and continuous function of W; see below. The SI-microwork dWk is
mechanically defined work as W is varied, which explains why W is identified as the work
parameter in H. The variation dZ(t) .

= (dE(t), dW(t)) in time defines a thermodynamic
process P . The trajectory γk in SZ followed by mk during P as a function of time will be
called the Hamiltonian trajectory. Being purely mechanical in nature, the trajectory is com-
pletely deterministic and cannot describe the evolution of the thermodynamic macrostate
M during P unless supplemented by thermodynamic stochasticity over P ; see Claim 1.
This is accounted for by the variation in pk(M) as M changes, and is determined by some
stochastic perturbation such as the random interaction with Σ̃ [33,59]; see Definition 25. We
discuss the origin of this stochasticity in Section 7, which will allow us to introduce heat
and temperature.

Since mk and pk(M) are independent of each other, we can treat them separately.
This provides a major simplification, as described below, for studying the process P in
terms of a Hamiltonian trajectory γk. We study the mechanical evolution of mk along γk
without being concerned about the probabilities. The effect of the probability can then
be supplemented by an appropriate probability. This will lead to the introduction of the
concept of SI-microheat; see Section 10, where we investigate this concept in detail for the
first time.

6.3. SI-Legendre Transform

We can alternatively consider the case with {Wk} as the Fl-parameter. In that case, we
will be dealing with W as a random variable with outcome Wk; see Claim 3. Let us clarify
the significance of Equation (18) by considering Fwk = (Pk, Ak) defined above, and show
how we ensure a fixed P and A by considering Fl-Wk = (Vk, ξk). We consider a mk with
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microenergy Ek(V, ξ), from which we obtain Pk(V, ξ) and Ak(V, ξ). They are functions
of two variables, and we look for their crossing Wk = (Vk, ξk) with a plane Π defined by
Fw = (P, A) to determine Wk. We now do this for every k using the same plane Π. Using
these crossings, we have

∀k, P = −∂Ek/∂Vk, A = −∂Ek/∂ξk. (150a)

As the two derivatives have fixed values for every k, their averages are also the same fixed
values in Fw = (P, A) as required in Equation (18). The crossings Wk give the fluctuating
(Vk, ξk).

Alternatively, we can easily determine (Vk, ξk) by considering an NEQ SI-Legendre
transform EL

k of Ek, defined as

EL
k (P, A)

.
= Ek(Vk, ξk) + PVk + Aξk, (150b)

which is a function of P and A, but not of Vk and ξk, since ∂EL
k /∂Vk = 0, ∂EL

k /∂ξk = 0, as is
easily seen using Equation (150a). We now have

Vk = ∂EL
k /∂P, ξk = ∂EL

k /∂A. (150c)

After averaging over microstates in Mdet, we obtain

EL(P, A)
.
= E(V, ξ) + PV + Aξ. (151)

Remark 50. EL(P, A) must not be confused with the NEQ enthalpy H = E(V, ξ) + P0V.

We can generalize the above discussion for the general case of NFl Fw or Fl {Wk}. We
first define the SI-Legendre-transformed Hamiltonian

HL(Fw)
.
= H(W) + Φ(Fw, W), (152a)

in terms of Φ(Fw, W) introduced in Equation (23b). Its microenergy EL
k (Fw) is the SI-

Legendre transform of Ek(Wk), and is given by

EL
k (Fw)

.
= Ek(Wk) + Φ(Fw, Wk); (153)

compare with EL,Fl
k (Fw) in Equation (22a). We are suppressing the suffix NFl, as it is clear

from the dependence on Fw that we are dealing with Fl Wk; see Claim 5. For EL
k (Fw), Fw

plays the role of the (Legendre-transformed) NFl “work” parameter WL(= Fw) so that the
generalized (Legendre-transformed) Fl “microforce” FL

wk is given by

FL
wk

.
= −∂EL

k /∂Fw = −Wk, (154)

which should be compared with the second equation in Equation (149); note the presence of
the negative sign above on the right side. The extension of the generalized microwork given
in the first equation in Equation (149) to this case is the Fl Legendre-transformed microwork

dWL
k (Fw) = −Wk · dFw, (155)

so that
dEL

k (Fw) ≡ −dWL
k (Fw), (156)

which is identical in form with Equation (148).
For the medium Σ̃, we have

dW̃L
k̃
(f̃w) = −w̃k̃ · df̃w,
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which, after reduction, yields

dW̃L
k (f̃0w) = dW̃L(f̃0w) = −w̃ · df̃0w = −deWL(f̃0w), (157)

where we have replaced f̃w by f̃0w of Σ0, and used Equation (64a).
The average of EL

k (Fw) is given by

EL(S, Fw)
.
= E(S, W) + Fw ·W (158)

(compare with Equation (152a)), while other microquantities have their averages given by

FL
w

.
= −∂EL(S, Fw)/∂Fw = −W,

dWL(S, Fw) = −W · dFw, (159)

dEL(S, Fw) ≡ −dWL(S, Fw),

as is expected from the above discussion.
As considering Fl-W creates no additional complication, we will mostly deal with

NFl-W in this review.
For completeness and later usage in Section 12.2, we also introduce another Legendre

transform in the case that W is NFl, but Fwk is Fl. We quote the results that are easily
derived using a similar approach as above. The SI-Legendre-transformed microenergy is

EL
k (Fwk)

.
= Ek(W) + Φ(Fwk, W), (160)

which should be compared with Equations (22a) and (153); we also have

FL
w

.
= −∂EL

k /∂Fwk = −W,

dWL
k (Fwk) = −W · dFwk, (161)

dEL
k (Fwk) ≡ −dWL

k (Fwk),

For the macroquantities, we obtain exactly the same equations as in Equations (158) and (159),
which is expected in view of the consistency requirement we have imposed; see Remark 9.

6.4. Mechanical Force Imbalance (FI)

We now formalize the important mechanical concept of force imbalance (FI). It is the
presence of the FI that results in an NEQ mechanical state and emerges as a central novel
concept in NEQ statistical mechanics by being ubiquitous in any arbitrary macrostate M.
For example, consider a spring being pulled by an external force F0. This induces a spring
force Fs in the opposite direction. The total force Ft = F0 + Fs = F0 − |Fs| does not usually
vanish, except in stable equilibrium. For nonvanishing Ft, the spring will undergo an
oscillatory motion forever, as there is no second law for a mechanical system.

We now consider a general situation of a FI to formalize it for our purpose. To this
end, we focus on an isolated system Σ consisting of two systems Σ1 and Σ2, with their
HamiltoniansH1(W1) andH2(W2), respectively; we take NFl-W parameters for simplicity.
Assuming the quasi-additivity (see Section 5.6) of corresponding Z1 and Z2, we have the
HamiltonianH of Σ given by

H(Z1, W2) = H1(W1) +H2(W2). (162a)

Thus, under this assumption, the microenergy Ek of mk is given by

Ek(Z1, W2)≈Ek1(W1) + Ek2(W2) (162b)
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in terms of the microenergies Ek1(W1) of m1k1 of Σ1, and Ek2(W2) of m1k2 of Σ2. The gener-
alized microworks by the two systems are

dW1k1 = F1wk1 · dW1, dW2k2 = F2wk1 · dW2;

see Equation (37a). Here the suffixes 1 and 2 refer to Σ1 and Σ2, respectively.

Definition 27. The difference between SI-microforces F1wk1 and F2wk1of Σ1 and Σ2, respectively,
that is given by

∆Fwk = F1wk1 − F2wk2 (163)

is called the internal microforce imbalance (µFI) produced by Σ1 and Σ2.

Theorem 5. The internal microwork diWk by an isolated body Σ consisting of Σ1 and Σ2 is
an algebraic sum of all possible internal microworks that occur inside Σ.

Proof. The generalized microwork by Σ is the algebraic sum

dWk = diWk = dW1k1 + dW2k2 ; (164)

see the second equation in Equation (57a). Using Equation (14a) for dW1 and dW2, and us-
ing deW1 = −deW2, which follows from Equation (60), we have

diWk = ∆Fwk · deW1 + F1wk1 · diW1 + F2wk1 · diW2. (165)

The first term with ∆Fwk is the internal microwork performed by it over the exchange
displacement deW1 by Σ1. The other two terms also represent internal microworks pro-
duced by the two generalized microforces over the internal displacements diW1 and diW2,
respectively. These three components exhaust all internal microworks within Σ, which
proves the theorem.

We can use Remark 27 to define deW1k1 of Σ1 as the negative of the exchange microwork
by Σ2, and vice versa. The importance of this corollary is, therefore, that it allows us to
determine one of them in terms of the other one, which happens to be easier to determine,
such as when it happens to be a medium, as will be seen in Section 7.5; see Theorem 7.

There is an alternate way to express Ek(Z1, W2) in terms of Ŵ and ξ (see Equation (100)),
that describes Σ directly. It is easy to verify that

W1 = n1Ŵ + n1n2ξ,W2 = n2Ŵ− n1n2ξ. (166)

In terms of these, we introduce the microforce Fwk and microaffinity Ak for Σ,

F̂wk = −∂Ek/∂Ŵ, Ak = −∂Ek/∂ξ;

see Equation (17a). We easily verify that

F̂wk = n1F1wk1 + n2F2wk2 , (167a)

Ak = n1n2(F1wk1 − F2wk2) = n1n2∆Fwk, (167b)

which again shows the physical importance of the microforce imbalance ∆Fwk. The direct
evaluation of dEk = −dWk = −diWk using Ek(Ŵ, ξ) gives

diWk = F̂wk · dŴ + Ak · dξ.

It is easy to verify that this diWk is identical to that in Equation (165), as expected by using
Equation (166). We also see that deWk = dWk − diWk = 0 in accordance with Remark 27.

For n1 → 0, n2 → 1, we have
F̂wk → F2wk2 ,
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a very common situation when Σ2 becomes extremely large compared to Σ1, such as when
we consider a system in a medium; see Figure 1.

Let us split Ŵ .
= (ŵ, ξ), where

ŵ = w1 + w2, ξ̂ = ξ1+ξ2 (168)

(see Equation (101)) are the sum of work-observables and internal variables of Σ1 and Σ2,
respectively. Then we can re-express diWk as

dWk = f̂wk · dŵ + Âk · d ξ̂+ Ak · dξ,

where f̂wk = −∂Ek/∂ŵ, Âk = −∂Ek/∂ξ̂.
If we set

deŵ = 0

for the isolated Σ, then dWk reduces to the internal microwork done by it:

diWk = f̂wk · diŵ + Âk · d ξ̂+ Ak · dξ. (169)

The second term on the right is the internal microwork by ξ̂ and the third term is the
internal microwork by the new internal variable ξ.

We now apply the above discussion to the important case in which Σ becomes the
isolated system Σ0, and Σ1 and Σ2 become the system of interest Σ and the medium Σ̃; see
below. As the latter is always in EQ, it has no ξ2 to consider so that W2 → w̃, A2k2 → Ãk̃ = 0.
The µFI from Equation (163) becomes

∆Fwk0 = Fwk − f̃wk̃, (170)

which is the difference between the SI-microforce Fwk
.
= −∂Ek/∂W of Σ, and the MI-

microforce F̃wk̃
.
= −∂Ẽk̃/∂W̃ associated with Σ̃. Consequently,

∆fwk0 = fwk − f̃wk̃, ∆Ak0 = Ak. (171)

The internal microwork for Σ0 is obtained from Equation (165)

diW0k0 = ∆Fwk0 · deW + Fwk · diW, (172)

where we have set diW̃ = 0 as Σ̃ is in EQ. In addition, we also have from Remark 27

deW0k0 = 0, deWk = −deW̃k̃ = −dW̃k̃. (173)

Regarding the last two equations above containing different suffixes, we must recall
Remark 28, as a consequence of which Equation (194b) results.

6.5. Work–Energy Principle

The most important confirmation of the mechanical nature of microstates appears
in the form of the work–energy principle (dEk = −dWk) that was proposed a while
back [150,151], connecting the SI-microenergy change and the SI-generalized microwork,
a principle whose importance has not been recognized in various fluctuation
theorems [26,135–147,158,159], as the distinction between SI and MI quantities has not
been properly accounted for. Because of this, it is important to emphasize this principle for
microstates and to clarify its significance for the reader. Indeed, we give a more general
formulation of the principle than presented earlier.

The well-known work–energy theorem of classical mechanics [33] shows that the
SI-work done by the SI-force is nothing but the change in the energy (itself a SI-quantity).
But the SI-aspect of the principle is never discussed, even though it is implied. However,
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in NEQT, there are various works that one needs to confront, as we have seen. The theorem
presented below extends the previous result to all bodies and to all microworks.

Theorem 6. Work–Energy Principle The microenergy change deEk of a body due to parameter
change must be identified with the negative of the BI-microwork deWk. The change dEk has two
contributions; see Equation (15). The first one corresponds to the external microwork

deEk = −deWk = dW̃k̃ (174)

performed by the medium on mk and the second one to the internal microwork

diEk = −diWk, (175)

given in Equation (165) or (169). All these relations can be compactly expressed by

dαEk = −dαWk. (176)

Proof. The generalized microwork in Equation (37a) done by Fwk is exactly as in mechanics,
which proves dEk = −dWk (see Equation (148)); both sides are SI-quantities as expected.
This is true for Σ, Σ̃, and Σ0. For the medium Σ̃, which we take to be in EQ, dW̃k̃ = −dẼk̃ =

deW̃k̃ = −deẼk̃, with dW̃k̃ given in Equation (71a). We now use Equation (62a) to relate
MI-quantities with SI-quantities of Σ. From this equation, we find deẼk̃ = −deEk and
deW̃k̃ = −deWk. It immediately follows from these relations (see also Remark 27) and
Equation (148) that

deEk = −deWk, diEk = −diWk.

This proves the theorem.

Corollary 4. We have also seen in Section 6.3 that

dEL
k = −dWL

k , (177a)

which can be generalized to
dαEL

k = −dαWL
k , (177b)

to be compared with Equation (176).

Proof. We follow the same steps as above in Theorem 6 to trivially prove the above
conclusion.

The significance of the identity in Equation (174) cannot be overemphasized. Because Σ̃
is in EQ, as the exchange microquantities for Σ are determined by the MI-microquantities,
having Σ̃ in EQ is extremely helpful since all of its microquantities, such as dW̃k̃, are
uniquely described in the µEQT. This then determines deWk, and in turn deEk, from which
we obtain diEk and diWk using

diEk ≡ dEk − deEk = −diWk.

In the process, we have identified deEk and diEk from the general work–energy principle.
The same thread of thought justifies a similar conclusion for the Legendre-transformed energies.

We now elaborate on its significance further.
We first consider the NFl-W case, in which the variation dW determines the (mechani-

cally defined) generalized microwork dWk done by Fwk as seen in Equations (37a) and (37b).
We similarly determine dW̃k̃ done by fwk̃; see Equation (71a). From knowing dW̃k̃, we de-
termine deEk. Without the use of the above principle, this will not be possible. We finally
determine diEk and diWk, as discussed above. As E with outcomes {Ek} represents a ran-
dom variable undergoing fluctuations, dE with outcomes {dEk} also represents a random
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variable undergoing fluctuations. Accordingly, diEk ≡ −diWk 6= 0 is also fluctuating over
the microstates {mk} so this fluctuation is ubiquitous. Similar arguments also apply to the
fluctuating nature of dEL

k and dWL
k , and diEL

k and diWL
k . In this case, we use Φ(Fwk, W)

(see Equation (23b)), to determine EL
k ; see Equation (23a). For the case of Fl-W, we need to

instead use Φ(Fw, Wk) to determine EL
k .

For completeness, we discuss now the possibility of using only a subset WNF⊆ W as
the NFl-parameter and the remaining subset WF as the Fl-parameter, and taking the value
WF

k over mk as described in Section 5.2. As noted earlier, we must satisfy Condition 1. Thus,

FNF
wk

.
= −∂Ek/∂WNF, FF

w
.
= −∂Ek/∂WF

k , (178a)

FNF
w =

〈
FF

w

〉
, WNF =

〈
WF
〉

. (178b)

In this case, we need to use

Φ(FNF
wk , WNF, FF

w, WF
k )

.
= Φ(FNF

wk , WNF) + Φ(FF
w, WF

k ) (179)

to obtain EL
k .

The theorem merely represents the fact that the generalized microwork dαWk is at the
expense of its microenergy loss dαEk [75,76,150,151]. For the case W = (V, ξ), the corre-
sponding microforce Fwk is (Pk, Ak) given in Equation (81). The three different microworks
dαWk and dαW are given in Equations (77) and (79).

As an example, consider V as a NFl-parameter so that the corresponding fluctuating
field (the pressure) for mk is given by Pk

.
= −∂Ek/∂V, with P = 〈P〉 with nonzero fluctu-

ation
〈
(∆P)2〉 [33]. To allow for a fluctuating Vk over mk corresponding to a fixed P (see

Equation (18)), we choose it so that ∀k, ∂Ek/∂Vk = −P. To obtain the same thermodynamics
in both cases, we expect that

〈V〉 = V,
〈
(∆V)2

〉
≥ 0;

here, V is the fixed volume in the NFl-description. Thus, a fixed V results in fluctuating Pk,
and a fixed P results in fluctuating Vk, as already noted earlier; see Claim 5.

The isentropic change in dE is precisely dE − TdS, which is nothing but
(−dW) = −Fw · dW; see Equation (131). It represents the average 〈dE〉 of dEk = −dWk.
It follows from Equation (176) that 〈dαE〉 ≡ −dαW, a result already derived earlier,
with diW ≥ 0; see Equation (143). However, there is no constraint on the sign of the
internal microwork diWk = −diEk, as will become clear below.

7. Stochastic Aspects
7.1. Origin of Stochasticity

In the example of the two noninteracting mechanical systems Σ1 and Σ2 forming the
combined system Σ in Section 4, the discussion did not consider any physical or imaginary
“wall” separating the two systems through which interactions can be transmitted. We
should emphasize that a physical wall may also represent a container Σ2 used to confine
the system Σ1 under investigation such as in Figure 1a, or a very thin layer separating the
two subsystems as in Figure 1b. An imaginary wall may be a way to divide Σ into two
parts Σ1 and Σ2, a very common trick in EQ statistical mechanics [33] to study conditions
of equilibration. However, to be specific, we will be considering a physical wall.

For our investigation, a wall merely allows the possibility of turning the mechanical
system Σ1 into a thermodynamic system surrounded by Σ2. It may be real or imaginary.
We have used this scheme a while back to study its role for stochasticity in a deterministic
system with special attention to Kac’s ring model [92–95,97,98,174,176]. For concreteness,
we will think of the wall as a second system Σ2 in the following. The same discussion
will also cover other kinds of walls mentioned above. A brief discussion of this approach



Foundations 2023, 3 482

has been given earlier in [79], which we will now elaborate in this review to extend it
to microstates.

If there were no interactions between the two systems, they would be completely
independent, which is of no interest to us. We have already treated this case in Section 4.
The discussion there is easily extended to the case when the two systems are interacting,
except that we will consider Fl-work parameters in this section to give a flavor of how
to treat them. Following the approach taken in Section 4, we introduce the same two
independent combinations Zk and ξk by extending Equation (100) to Z1k1 and Z2k2 in place
of Z1 and Z2, respectively. Thus, we will be dealing with NFl-F; see Equation (18).

The simplest way to account for the wall is to treat it as rigid having a single fixed
microstate m

(0)
2 , i.e., having fixed locations of its particles. In this case, its Hamiltonian can

be simply written asH(0)
2 (W2) with the suffixes referring to m

(0)
2 and its energy E(0)

2 . In this
case, there is no difference between NFl- or Fl- W2 for Σ2. This case also means that k is not
different from k1.

We now consider the interacting case, withH(0)
12 the nonvanishing interaction Hamil-

tonian between Σ1 and Σ2. This interaction causes correlations between them and results
in a deterministic force of interaction between the microstate m1k1 of Σ1 and the unique

microstate m
(0)
2 of Σ2. The energy transfer between the two microstates due to H(0)

12 is,
therefore, deterministic so there is no possibility of any stochasticity in Σ.

As Σ1 and Σ2 are purely mechanical systems, it should be clear [79] that the only
source of stochasticity can emerge from their mutual interaction, i.e., the interactionH12
between Σ1 and Σ2. For the wall to produce any stochasticity in Σ1, the wall must be allowed
to have an enormously large number of possible microstates m2k2 . Therefore, we will use
Z1k1 and Z2k2 or W1k1 and W2k2 for clarity. Let

E(0)
k = H(0)

k (Wk)
.
= H1k1(W1k1) +H2k2(W2k2) (180)

be the undisturbed Hamiltonian of Σ in mk in the absence of any interaction; it is a function
of 2r + 2 variables (see Section 4). The above identity should be compared with the
approximation in Equation (162a) for NFl-work parameters. Here, Wk is the Fl-analog of W
in Equation (102a) with the corresponding microforce Fw; see Claim 3. The presence of the
interaction HamiltonianH12k(Z1k1 , W2k2) modifiesH(0)

k (Wk) to the Hamiltonian

Hk(Wk, ξ12k) = H
(0)
k (Wk) +H12k(Z1k1 , W2k2), (181)

which is a function of 2r + 3 variables; here, we have introduced

Ek = E(0)
k + E12k, ξ12k = E(0)

k − E12k, (182)

and E12k = H12k(Z1k1 , W2k2). Because ofH12, Ek is different from E(0)
k , even though mk is

still given by Equation (98). It should be evident from Section 4 that the presence of Σ2 even
when the mutual interaction is absent requires using the internal variable ξ to uniquely
specify the microstate of Σ; see Claim 11. The internal variable ensures the correct matching
of the number of quantities specifying m1k1 and m2k2 together. The presence of H12 adds
another quantity that now must be accounted for a unique description of mk. This strongly
suggests some modification of how Σ and, therefore, Σ1 should be specified in the presence
of Σ2, which we now discuss.

As discussed, the inclusion of internal variables must uniquely specify mk of Σ even in
the presence ofH12. Thus, nothing has changed with respect to includingH12, which plays
the role of an internal variable in the sense that it is not controlled by the outside of Σ; the
latter is mechanically described by 2r + 3 variables. This then is similar to the discussion
above, so nothing new is required for its analysis, to which we now turn.
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The problem arises if we are interested in describing Σ1 by itself, and are not specifically
concerned with any particular microstate m2k2 of the wall (Σ2) in this description; see
Remark 16. Effectively, the effect on m1k1 will be different from different microstates m2k2
so their effects on m1k1 such as its microenergy will appear haphazard, as we are not privy to
know or focus on any particular m2k2 . It is this stochasticity that gives rise to the notion of
a probability p1k1 of m1k1 and the correlation between m1k1 and m2k2 that determines their
joint probability. As we are interested in quantities pertaining to m1k1 , we must reduce the
probability for mk, for which all of

{
m2k2

}
must be considered by summing over conditional

probabilities, as already noted in Definition 16. Thus, we will follow below the reduction as
shown in Equation (31).

7.2. Process of Reduction

Let p2k2 = p2k2(Z2k2 , F2) (we include F .
= {−T, Fw}; see Equation (25) for the two systems

for clarity) denote the BI-probability of Σ2 in m2k2 , and p( k1|k2) = p(
{

Z1k1 , F1
}∣∣{Z2k2 , F2

}
;

ξ12k) the conditional probability of the microstate m1k1 of Σ1 given Σ2 is in the microstate
m2k2 . Similarly, p( k2|k1) = p(

{
Z2k2 , F2

}∣∣{Z1k1 , F1
}

; ξ12k) is the conditional probability of
the microstate m2k2 of Σ2 given Σ1 is in the microstate m1k1 . The conditional probabilities in-
clude the correlation due to the interaction energy. The joint probability
pk = pk(

{
Z1k1 , F1

}
,
{

Z2k2 , F2
}

; ξ12k) given by the identity

pk = p( k1|k2)p2k2 = p( k2|k1)p1k1 (183)

gives the probability of m1k1 and m2k2 ; compare with Equation (29). If H12 vanishes
identically so that ξ12k becomes superfluous, the two systems become independent, as
already discussed in Section 4. The mathematical condition [114] for this is

pk
.
= p1k1 p2k2 , (184a)

from which it follows that the conditional probability is given by

p( k1|k2)
.
= p1k1 ; p( k2|k1)

.
= p2k2 ; (184b)

compare it with the approximate form given in Equation (33).
We pursue the effect of this interaction further to clarify the situation for the process of

reduction (see Remarks 16 and 17), which is required to reduce all the quantities associated
with Σ to a microstate mk1 of Σ1. This requires “summing” over all states m2k2 of Σ2.
We use the joint probability pk to determine the contribution of various Hamiltonians in
Equation (181) under reduction over all states m2k2 . As a result of the reduction, we obtain
the identity, called the law of total probability [114],

p1k1 = ∑k2
pk(
{

Z1k1 , F1
}

,
{

Z2k2 , F2
}

; ξ12k) (184c)

as the marginal, which no longer has any information about any particular m2k2 . Af-
ter reduction,

{
Z2k2 , F2

}
is replaced by F2. Similarly, ξ12k is replaced by ξ12k1 ; see below.

Thus, p1k1 on the left side stands for p1k1(
{

Z1k1 , F1
}

, F2; ξ12k1) and not for the BI-probability
p1k1(

{
Z1k1 , F1

}
). As the modified probability p1k1 depends on F2 and on ξ12k1 of Σ2, it

carries the correlation effects with Σ2 because of their mutual interaction. Thus, it is not a SI
probability. This will result in modifying results that are obtained by using BI-probabilities.
A similar discussion uses the BI-probability p1k1(

{
Z1k1 , F1

}
) in the second equation in

Equation (183) for the reduction to obtain a non-BI-probability p2k2(F1,
{

Z2k2 , F2
}

; ξ12k2)
for m2k2 of Σ2. However, we will only consider the reduction using m2k2 below.

ForH1(W1k1), we have

∑k2
pkH1k1(W1k1) = p1k1H1k1(W1k1), (185a)
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which is again not BI to Σ1 since p1k1 is not one. Summing over k1 will give the ensem-
ble average H1(F1, F2; ξ12), where ξ12 is defined below. As this average does not only
depend on F1, it is not a BI-macroquantity of Σ1, although it is a SI-macroquantity of Σ.
For H2(W2k2), we introduce an effective Hamiltonian E(1)

2k1
= H(1)

2k1
(W1k1 , F2; ξ12k1) for Σ2

defined as follows:

p1k1H
(1)
2k1

(W1k1 , F2; ξ12k1)
.
= ∑k2

pkH2k2(W2k2). (185b)

It represents the effective Hamiltonian of Σ2 under the condition that Σ1 is in m1k1 as indi-
cated by the subscript. Again, its average is not a BI-microquantity of Σ2 due to its depen-
dence on F1. Similarly, we introduce an effective interaction Hamiltonian
E(1)

12k1
= H(1)

12k1
(W1k1 , F2; ξ12k1) under the condition that Σ1 is in m1k1 , as above:

p1k1H
(1)
12k1

(W1k1 , F2; ξ12k1)
.
= ∑k2

pkH12k(W1k1 , W2k2). (185c)

The effect of summing over m2k2 results in the two effective Hamiltonians depending
explicitly on the microstate m1k1 , just asH1k1(W1k1).

As p1k1(
{

Z1k1 , F1
}

, F2; ξ12k1) appears as a common factor in all three Hamiltonians,
we can identify it as the effective probability that Σ1 is in the microstate m1k1 , irrespective
of m2k2 , and

Hk1(W1k1 , F2, ξ12k) = H1k1(W1k1)+

H(1)
2k1

(W1k1 , F2; ξ12k1)+

H(1)
12k1

(W1k1 , F2; ξ12k1)

as its effective conditional Hamiltonian under this condition. The benefit of this rig-
orous approach is that it allows us to treat Σ as if it is in the m1k1 with probability
p1k1(

{
Z1k1 , F1

}
, F2; ξ12k1). The reduction gives

Ek1 = E1k1 + E(1)
2k1

+ E(1)
12k1

,

ξ12k1 = E1k1 + E(1)
2k1
− E(1)

12k1
.

The average energy E of Σ is simply given by

E .
= ∑k p1k1(

{
Z1k1 , F1

}
, F2; ξ12k1)Ek1 .

The above discussion is valid regardless of the sizes of Σ1 and Σ2. Thus, it is also
applicable to small systems and was used recently by us to study the Brownian motion [157].

7.3. Quasi-Independence

We now turn to the consideration of Σ, Σ̃, and Σ0 by identifying them with Σ1, Σ2,
and Σ, respectively. This requires some changes in the notation; in particular, ξ12k1 is
replaced by ξintk, and F2 is replaced by f̃ .

= (−T̃, fw) as Σ̃ being in EQ has Ã = 0. The draw-
back of the above rigorous discussion is that the marginal pk({Zk, F}, f̃; ξintk) of mk is not
a BI-probability of Σ because of the presence of f̃ and ξintk, a reflection of the interaction,
which has been taken into account exactly. Rather, it is an effective non-SI-probability
controlled by the entire system Σ. Without any approximation of the correlation induced by
Σ̃, the most appropriate and exact thermodynamic discussion can only be obtained for Σ0.

If we wish to obtain a SI description of Σ, we need to focus only on it and not on Σ0.
The simplest way to accomplish this is to assume that the interaction partHint is nonzero
but insignificant compared toH and H̃ so that Σ and Σ̃ can be treated as quasi-independent
(see Claim 7), the requirements for which have been discuss earlier [148]. This assumption
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is central to having the approximate entropy additivity discussed in Equation (122b), so it
is very common in the field. We will now assume quasi-independence.

Definition 28. By definition, quasi-independence implies Equation (33) as an approximate equality;
the correlation due to weak interactionHint has been neglected with the effect that the two systems
become almost independent.

The joint probability therefore becomes approximately

p0k0 = pk p̃k̃.

As we are not interested in the microstate m̃k̃, we must “sum” over all states m̃k̃. As a conse-
quence, it is easy to verify that Equations (185b) and (185c) reduce to

H̃k = Ẽ(w̃),Hintk≈0,

where Ẽ(w̃) is the average energy of Σ̃, and the mutual interaction is negligible.

Claim 14. For any microstate mk of the system Σ, the energy of the medium Σ̃ is given by its
macroenergy Ẽ(w̃). Thus, Σ̃ exerts its macroforce f̃w(w̃)

.
= −∂Ẽ(w̃)/∂w̃ for all microstates mk of

Σ; compare with Equation (73a).

The above claim follows from Theorem 7, which generalizes it.
The most common situation in statistical mechanics is to consider these interactions

to be so weak that we can sensibly talk about the behavior of the system alone to a high
degree of accuracy. An idealization of the situation is when the interactions are completely
absent, so that the system is isolated from the medium. The conservation laws usually
refer to a certain measurable quantity of this system, which is then supposed to have
a fixed value as the system evolves. For example, the linear momentum is conserved
due to the homogeneity of the space, while the angular momentum is conserved due to
the isotropy of space. For discrete symmetries, the parity associated with the symmetry
remains conserved. This simplifies the discussion appreciably. If the interactions of the
system with the medium are too strong to be neglected, there is no sense in talking about
the system alone. In this case, one must consider the combined isolated system Σ0 = Σ ∪ Σ̃
as the system. Accordingly, we will usually consider an isolated system [162] if the interest
is in such conserved quantities.

7.4. Reduction

The issue of conditional probabilities was considered in Ref. [157]. Let us consider
the set of microstates {mk},

{
m̃k̃

}
, and

{
m0,k0

}
of Σ, Σ̃, and Σ0, respectively, and [q], q ∈χ.

Here, k̃ and k0 index the countable sets
{
m̃k̃

}
and

{
m0,k0

}
, respectively. The three sets are

related in that
m0,k0

.
= mk ⊗ m̃k̃,

which follows from the additivity in Equation (168).
Let us introduce conditional probabilities p(k̃ | k) of k̃ given k, and p(k | k̃) for

k given k̃. In terms of them, Equation (183) turns into Equation (29). We use them to
determine microquantities q0k and q̃k of Σ0 and Σ̃, respectively, that can be associated with
mk. Following Equation (31), we have

q0k
.
= ∑k̃ p( k̃

∣∣∣k)q0k0
, q0 = ∑k pk q0k, (186a)

q̃k
.
= ∑k̃ p( k̃

∣∣∣k)q̃k̃, q̃ = ∑k pkq̃k. (186b)
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We thus define the medium microenergy Ẽk under the condition that Σ is in mk:

Ẽk
.
= ∑k p

(
k̃
∣∣∣k)Ẽk̃, (187)

which satisfies the obvious identity

Ẽ .
= ∑k̃ pk̃Ẽk̃ = ∑k pkẼk. (188)

For the two MI-microfields defined by

F̃wk̃
.
= −∂Ẽk̃/∂W̃, F̃wk

.
= −∂Ẽk/∂W̃, (189)

we have the identity
f̃w

.
= ∑k̃ pk̃ f̃wk̃ = ∑k pk f̃wk. (190)

It is clear that F̃wk is obtained after reduction from F̃wk̃.
The process of reduction can also be carried out for [dθ] for any body following the

same steps as above by replacing q by dθ in Equation (186).

7.5. Reduction under Quasi-Independence for mk

What makes SI-microquantities for a system Σ so important in the µNEQT is the
fact that they are unaffected by the presence of other objects in the surroundings such
as a medium Σ̃; see Figures 1 and 2. For simplicity, we again focus on Figure 1. All
MI-microquantities carry the suffix k̃ of m̃k̃ so they cannot be directly associated with
mk. Similarly, the microquantities of Σ0 carry the suffix k0. Thus, we need to carry out
reduction to {mk} as prescribed in Equation (186) under the condition of quasi-additivity
and quasi-independence. We now wish to discuss this reduction.

We first consider the microquantities associated with Σ̃, and prove the following
important theorem that plays a central role in the µNEQT. It is stated slightly differently
than Theorem 1 quoted earlier and is proved here by justifying Remark 16.

Theorem 7. Under the assumption of quasi-additivity and quasi-independence, reduced or condi-
tional MI-microquantities given that Σ is in the microstate mk are not fluctuating quantities in that
they are the same for all k, i.e., they are NFl-macroquantities.

Proof. Let us first consider Ẽk introduced in Equation (187). Using Equation (33), we find

Ẽk = ∑k̃ pk̃Ẽk̃ = Ẽ, ∀k. (191)

Similarly, using Equation (186a) for E0k, the reduced microenergy of Σ0, given that Σ is in
mk, we find that

E0k
.
= ∑k̃ p( k̃

∣∣∣k)E0k0 = ∑k̃ pk̃(Ek + Ẽk̃).

where we have used quasi-additivity in Equation (123a). We immediately see that

E0k = Ek + Ẽ, ∀k. (192)

We can carry out a similar calculation for F̃wk
.
= −∂Ẽk/∂W̃, the microforce generated by

Σ̃ under the condition that Σ is in mk following the above reduction on F̃wk̃
.
= −∂Ẽk̃/∂W̃

from Equation (17a) with a similar conclusion that

F̃wk = ∑k̃ pk̃F̃wk̃ = F̃w = F0w, ∀k, (193a)
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where F0w refers to Σ0. However, it should be remarked that the affinity Ã = 0 as Σ̃ is
taken to be in equilibrium. Moreover, as f̃s = −T̃ = T0 is NFl-field, it is also the same for
all mk. It thus follows from the discussion that

F̃k = F̃ = ( f̃s, F̃w), ∀k. (193b)

The discussion is easily extended to dθ̃k using the same reasoning (shown explicitly below).
Thus,

dθ̃k = dθ̃ = deθ̃ = −deθ, ∀k. (193c)

This proves the theorem.

Equation (193c) is the simplified version of Equation (62b) under quasi-independence,
and justifies Equation (64a). The above theorem provides a theoretical justification for
Remark 28. In particular, it shows that

deW̃k = dW̃k = deW̃, (194a)

deWk = −dW̃k = −deW̃ = deW (194b)

in Equation (173). In addition, it also shows that

diW̃k = dW̃k − deW̃k = 0, (195)

as expected.
By replacing the infinitesimals dα by the accumulation ∆α, properly defined in Section 13,

we can obtain similar relations for ∆αWk and ∆αW̃k.

Remark 51. The above theorem has a profound implication for what was noted earlier as the
conjecture in Equation (7) in Section 1.2. We observe that the right side there is a Fl microquantity,
while the left side is a NFl microquantity so they cannot be equated.

Corollary 5. For Σ0 = Σ ∪ Σ̃ satisfying quasi-additivity and quasi-independence, we have

q0k = qk + q̃,

F0wk = Fwk + F̃, (196)

dθ0k = dθk + dθ̃;

for a NFl-q, we simply have q0 = q+ q̃ as expected.

Claim 15. For a system in mk, qk for a Fl-q, Fk, and dθk are random variables, so they are
Fl-microquantities.

It follows from the above theorem that the medium is seen only in its average mani-
festation, and is the hallmark of classical thermodynamics in which exchange quantities
become central because of this manifestation. The above conclusions simplify the statistical
mechanical formulation of the system in which the microstates of the medium play no
interesting role; all SI-quantities pertaining to mk are ubiquitous fluctuating microquantities.
Examples are Ek, dWk, dQk, dSk, etc.

7.6. Clarifying Examples

We now clarify the importance of the theorem and corollary by some simple examples.
We focus on the composite system Σ0 = Σ ∪ Σ̃, and consider microquantities associated
with it. We first treat diW0k by using Equation (164), which yields

dW0k0 ≡ diW0,k0 = dWk + dW̃k̃, (197a)
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which requires reduction to obtain dW0k:

dW0k ≡ diW0k = dWk + dW̃,

where we have replaced dW̃k̃ with dW̃k = dW̃ = F̃w · dW̃ = dW̃ in view of Equation (193a)

after averaging over m̃k̃ using Equation (186a) and p( k̃
∣∣∣k) = p̃k̃. We obtain the internal

microwork in Σ0, given Σ is in mk:

diW0,k = dWk + dW̃, (198)

This is in accordance with the third equation in Equation (196). We can now average over
mk to finally obtain the irreversible macrowork

dW0 ≡ diW0 = dW + dW̃ = diW ≥ 0, (199)

where we have used Equation (143) for the inequality.
We also see how the second equation in Equation (173) reduces to Equation (194b).

Of course the first equation reduces to

deW0,k = 0.

Similarly, after reducing diW̃k̃ = dW̃k̃ − deW̃k̃, it is replaced by

diW̃k = dW̃k − deW̃k,

which in conjunction with Equation (194a), shows that

diW̃k = diW̃ = 0,

which simply shows the EQ nature of Σ̃. As dWk = −dEk for any body, all above results
can be easily applied to microenergies. In particular,

deEk = deW̃, diE0k = dEk − deE = diEk.

A similar discussion can be carried out for the microheats, following the same argu-
ments as above. We simply quote the results:

dQ0k0 ≡ diQ0,k0 = dQk + dQ̃k, (200a)

diQ0,k = dQk + dQ̃ = diQk, (200b)

deQk = deQ = −dQ̃ = −deQ̃. (200c)

Using dQ̃k̃ = T0dS̃k̃, we have dQ̃k = T0dS̃k = dQ̃ = T0dS̃; see Remark 8 and Section 10.1

for the definition of dS̃k̃:

dS̃ ≡ ∑k p̃k̃dS̃k̃.

Thus, under the same reduction, we have dS̃k̃ = dS̃ = dS̃, which is consistent with
Theorem 7.

Remark 52. It should be stressed again that vanishing of NFl diW̃k and diQ̃k does not imply
vanishing of Fl diW̃k̃ and diQ̃k̃, respectively.
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For microentropies, we have

dS0k0 ≡ diS0,k0 = dSk + dS̃k̃, (201a)

diS0,k = dSk + dS̃ = diSk, (201b)

deSk = deS = −dS̃ = −deS̃. (201c)

We consider two simple examples. The first one is of an EQ Σ at temperature T in
a medium Σ̃ at temperature T0. The only irreversibility is due to the macroheat flow, which
results in nonzero diS and no diQ. We will verify these well-known results in our approach.

We have, from the above,

dQ̃ = deQ̃ = T0dS̃ = T0deS̃

(diS̃ = 0 as Σ̃ is in EQ) so that

deQk = −dQ̃ = −T0deS̃ = T0deS,

which now justifies Equation (46). To determine diSk, we use Equation (201b) to obtain

diSk = dSk −
dQ
T0

,

where we have set deQ = dQ as Σ is in EQ. Taking its average, we obtain

diS =

(
1
T
− 1

T0

)
dQ ≥ 0 (202)

We see that diS ≥ 0 is due to macroheat flow. It is easy to see that the inequality is always
satisfied and explains why macroheat always flows from hot to cold. We also see that the
first term above is dS = dQ/T (see the Clausius equality in Equation (45)), and the second
term is deS = dQ/T0 = deQ/T0, as first noted in Equation (46). Thus, diQ = dQ− deQ = 0
as noted above. This shows that the physics of diQ is very different from diS. This is easily
seen from Equation (47) or (142). As there is no mechanical work involved in this situation,
diW = diQ vanishes. Despite this, we have nonzero diSk and diS. This means that diQ and
diS cannot be linearly related, as seen in Equations (47) and (142).

A similar discussion also applies to dαηk for various bodies. Assuming quasi-independence,
we have

η0k0 = ηk + η̃k̃,

we have
dαη0k0 = dαηk + dαη̃k̃, (203a)

which reduces to
dαη0k = dαηk + dαη̃k = dαηk, (203b)

where we have used the fact

dαη̃k
.
= ∑k̃ p̃k̃dαη̃k̃ = ∑k̃dα p̃k̃ = 0

as will be established later in Theorem 11. In essence, Equation (203b) is no different from
Equation (196), as dαη̃ = 〈dαη̃〉 = 0.

We now use the above reduction to determine deQ̃k̃ = Ẽk̃deη̃k̃ as the microanalog
of deQ̃k̃ following Equation (44b). This identification is shown later in Equation (240).
Reducing the identity, we obtain deQ̃k = ∑k̃ p̃k̃Ẽk̃deη̃k̃ = ∑k̃Ẽk̃de p̃k̃ = deQ̃, as seen from
Equations (239) in which Equation (236) has to be used.

As a second example, we consider Σ to consist of a gas or a spring in a fluid, as shown
in Figure 3. The medium exerts a pressure P0 on the gas or the external pulling force F0
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pulling the spring. The deviation of the micropressure Pk exerted by the gas on the piston
or the spring microforce Fwk induced in the spring from the external pressure P0 or the
pulling force F0, respectively, creates a micro- and macro-force imbalance ∆Fwk and ∆Fw,
respectively. What is surprising is that

F0wk0 6= 0, ∀k0, even if F0w = 0 (204)

for Σ0. After reduction, F0wk = Fwk + F̃ = ∆Fw,k.
The distinction between the SI- and MI-quantities (dW and dW̃ or dWk and dW̃k̃)

clarifies the confusion about the meaning of work and heat in classical nonequilibrium ther-
modynamics [39,42] as is evident from the debate in the literature [145,178–193]. The debate
has only recently been clarified [75,76,134,148,149,152,153] by properly making the distinc-
tion between the Fl SI-microwork dWk, the work done by the Fl SI-microforce Fwk, and the
NFl MI-work dW̃, the work done by the medium by the force F̃w exerted by the medium on
mk. The confusion mentioned above is due to not differentiating the two quantities, even
though Fwk and F̃w are in general not equal and opposite. This we present as a claim [150]
that is proved by this study; see the discussion following Claim 15, that

Claim 16. At the microscopic level, dW̃k ≡ dW̃ and dEk differ by diEk ≡ −diWk, whether we
consider a purely mechanical or a thermodynamic process. This difference, which is ubiquitous, has
nothing to do with stochasticity and is a purely mechanical consequence of a microforce imbalance
(µFI) ∆Fw,k in Σ.

Proposition 2. The contribution diEk ≡ −diWk is necessary but not sufficient to describe dissipa-
tion; see also Conclusion 3.

The same conclusion also applies to the accumulation ∆iEk 6= 0 along a trajectory γk
taken by mk during an NEQ process P over a time interval (0, τ); see Section 13 for the
proper definition. The Proposition follows directly from Equation (204).

8. Properties of Entropy for M(t)

We follow Section 5.5 closely. The maximum possible value of S(t) for given
Z = Z(t) ∈ SZ occurs when mk are uniquely specified in SZ. This makes S(t) a state
function S(Z) of Z with no explicit time dependence. Thus,

Smax(Z, t)
∣∣
Z fixed = S(Z). (205)

The simplest way to understand the physical meaning is as follows. Consider Z at some
time t. As S(t) may not be a unique function of Z, we look at all possible entropy functions
for this Z. These entropies correspond to all possible sets of {pk(t)} for a fixed Z, and define
different possible macrostates {M}. We pick that particular M ∈ {M} among these that
has the maximum possible value of the entropy, which we denote by S(Z) or S(Z(t)) without
any explicit t-dependence. This entropy is a state function S(Z). For a macroscopic system,
this occurs when the corresponding microstate probabilities for M are equally probable (ep):

pk(t)→ pep
k = 1/W(Z) > 0, ∀mk ∈ Γ(Z), (206a)

so that
S(Z) = ln W(Z). (206b)

We wish to point out the presence of nonzero probabilities in Equation (206a) that explains
the comment above of available microstates. Including microstates with zero probabilities
will not correctly account for the number of microstates with given Z.
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Remark 53. All microstates in Mieq are equally probable as seen in Equation (206a), which makes
Mieq the most probable macrostate for the given Z. Once in Mieq, the body will have no memory
of its original macrostate, which may not be in IEQ, from which it arises due to evolution in time.

There is an alternative to the above picture in which we can imagine the Σ with fixed
Z, which essentially “isolates” Σ and converts it into a Σ0. Then, as t varies, its entropy
increases until it reaches its maximum value S(Z); see also Proposition 3.

Remark 54. We emphasize that Z = (E, W) so pk above in Equation (206a) is determined by the
average energy E and not by the microstate energy Ek, as derived later in Section (12.2). The pk in
Equation (206a) replaces the actual probability distribution in Equation (275) by a flat distribution
of height 1/W(Z) and width W(Z), a common practice in the thermodynamic limit of statistical
mechanics [33]. Therefore, there in no fluctuation in {pk}. Despite this modification, the entropy
has the same value for a macroscopic body so β and Fw are given by Equations (129) and (17b),
respectively; see also Section 12.2.

Let us consider a different formulation of the entropy for a nonunique macrostate
M(t) ∈ SX specified by some X = X(t)⊂ Z at some instance t. This macrostate provides
a more incomplete specification than in SZ. Applying the above formulation to M ∈ SX,
and consisting of microstates {mk}, forming the set m ≡ m(X), with probabilities {pk(t)},
we find that

S(X, t) ≡ −
W(X)

∑
k=1

pk(t) ln pk(t), (207)

is the entropy of M; here W(X) is the number of distinct microstates mk. It should be
obvious that

W(X) ≡ ∑ξ(t)W(Z).

Again, under the equiprobable (ep) assumption

pk(t)→ pep
k = 1/W(X), ∀mk ∈ Γ(X),

Γ(X) denoting the sample space spanned by m = {mk}, the above entropy takes its
maximum possible value

Smax(X, t) = S(X) = ln W(X), (208)

which is the well-known value of the Boltzmann entropy for a body in equilibrium

S(X) = ln W(X), (209)

and provides a statistical definition of, and hence connects it with, the thermodynamic
entropy of the body proposed by Boltzmann [46,47,131]. The maximization again has the
same implication as in Equation (205): For given X, we look for the maximum entropy at
all possible times. It is evident that

S(Z, t) ≤ S(Z) ≤ S(X). (210)

Thus, the NEQ entropy S(Z, t) as t → τeq, the equilibration time, reduces to S(X) in EQ,
as expected. Before equilibration, S(Z) in SZ remains a nonstate function S(X, t) in SX,
where we do not invoke ξ. It is the variation in ξ that is responsible for the time variation
in S(X, t). A simple proof of this conclusion is given in Section 12.6; see Remark 48 also.
We can summarize this conclusion as

Conclusion 4. The variation in time in S(X, t) in SX is due to the missing set of internal
variables ξ.
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We now revert back to the standard use of X, and Z. Let us consider an isolated body
Σb out of equilibrium so that its macrostate Mneq in SX spontaneously relaxes towards
Meq at fixed X. Its entropy S(X,t) has an explicit time dependence, which continues to
increase towards S(X). For such NEQ macrostates, the explicit time dependence in S(X,t)
is explained by introducing ξ to make their entropies a state function in an appropriately
chosen larger state space SZ [148] as explained later in Section 12. It is also shown there
that an NIEQ macrostate with entropy S(Z,t) may be converted to an IEQ macrostate
with a state function entropy S(Z′) by going to an appropriately chosen larger state space
SZ′ spanned by Z′ with SZ its proper subspace. Therefore, in most cases of interest here,
we would be dealing with a state function and usually write it as S(Z), unless a choice for
Z has been made based on the experimental setup, as discussed in Section 12. In that case,
we must deal with a pre-determined state space SZ so that some NEQ macrostates that lie
outside SZ have their entropy of the form S(Z,t) in SZ as we cannot use the larger state
space SZ′ .

It should be clear now that the explicit time dependence in an NEQ macrostate in
SX with a nonstate function entropy Sneq(t)

.
= S(X,t) is due to additional state vari-

ables in ξ and that this NEQ macrostate may be converted into an IEQ macrostate with
a state function entropy Sieq(Z) by going from SX to an appropriately chosen larger state
space SZ. Similarly, an NIEQ macrostate Mnieq in SZ with a nonstate function entropy
Snieq(t)

.
= S(Z,t) is converted to M′ieq in an appropriately chosen larger state space SZ′

with a state function entropy Sieq(Z′). The additional internal variables ξ ′ in Z′ that are
over and above ξ in Z give rise to additional entropy generation as they relax for fixed Z.
This results in the following inequality:

Sieq(Z) ≥ Sieq(Z′) = Snieq(Z,t). (211)

However, if the choice for Z has been made based on the experimental setup and the observa-
tion time τobs (see Section 12), we must restrict our discussion to SZ so that we must consider
Mnieq in SZ the following. This will be done in Section 12.6; see Remarks 45 and 48.

8.1. System in a Medium and Quasi-Independence

The above formulation of S(Z, t) can be applied to Σ, Σ̃, and Σ0. We assume that Σ,
and Σ̃ are quasi-independent so that S0(t) can be expressed as a sum of entropies S(t) and
S̃(t) of Σ and Σ̃, respectively:

S0(t) = S(t) + S̃(t). (212)

This follows immediately from Definition 28 and the observation that three entropies are
given by the same formulation as in Equation (26a).

In the derivation of the above additivity (see [148]), we have neither assumed the
medium nor the system to be in internal equilibrium; only quasi-independence is assumed.
The above formulation of the additivity of statistical entropies will not remain valid if the
two are not quasi-independent. From this, we also conclude that the entropy additivity
will not be true in the absence of quasi-independence.

8.2. Second Law Postulate of NEQ Entropy S

The uniqueness issue about the NEQ macrostate says nothing about the entropy of
an arbitrary (so it may be nonunique) macrostate M : {mk, pk}, which is always given
by the Gibbs entropy in Equation (26a), as derived in Section 5.5; see also [72]. In the
demonstration, M is not required to be uniquely identified. This entropy satisfies the law
of increase of entropy, as is easily seen by the discussion by Landau and Lifshitz [33] for
an NEQ ideal gas [194] in SX to derive the equilibrium distribution. Thus, the form in
Equation (26a) is not restricted to only uniquely identified M’s. We now enunciate the
central theme of the NEQT, known as the Second Law.
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Proposition 3. The Second Law The NEQ Gibbs entropy S0(X0,t) of an isolated system Σ0 is
bounded above by its equilibrium entropy S0(X0) and continuously increases towards it so that [33]

dS0(X0,t)/dt ≥ 0. (213)

This proposition is not a part of our axiomatic formulation so it needs to be justified
within this formulation. We will do so below by two independent approaches. The second
law in standard textbooks is usually stated to be applicable to the universe as a paradigm
of an isolated system [195]. However, the universe here cannot represent the entire physical
universe as this creates many unsolved issues [196]. Therefore, we will interpret the
universe as a causally bounded region of space, which we treat as an isolated system [197],
for which the above law applies; see also [162,195].

8.3. A Proof of the Second Law

The second law has been proven so far under different assumptions ([54,57,79,174,176],
among others). Here, we provide a simple proof of it based on the postulate of the flat
distribution; see Remark 54. The current proof is an extension of the proof given earlier;
see ([79], Theorem 4). We consider an isolated system Σ0 for which the second law is ex-
pressed by Equation (213) so we must use the state space SX0 . For simplicity, we suppress
the suffix 0 from all the quantities in this section. As the law requires considering the instan-
taneous entropy as a function of time, we need to focus on the sample space at each instant
to determine its entropy S as a function of time. At each instance, it is an ensemble average
over the instantaneous sample space Γ(t) formed by the instantaneous set m(t) of available
microstates in SX; see Equation (26a) or (116). This should make it clear that our approach
has nothing to do with ergodicity, which requires averaging any quantity defined for
a single microstate at each instant over a very long time period; see Remark 36. The sample
state Γergo(t) in the ergodic hypothesis always contains a single microstate. Thus, the issue
of any ensemble average at each instant does not arise. In addition, the ergodicity principle
deals only limiting average over an extremely long time evolution over Γergo(t). In our
approach, we are averaging over the set m(t) in Γ(t) of available microstates at each instant
to determine the entropy S(t) as a function of time, which is what is required for the second
law formulation in Equation (213). As we are only interested in the behavior of the entropy
at each instant, we will use the flat distributions for the microstates at each instance (see
Remark 54) so that the entropy is given by Equation (206b).

To prove the second law (see Proposition 3), we proceed in steps by considering
a sequence of sample spaces belonging to Γ as follows [79,176]. At a given instant, Σ
happens to be in some microstate. We start at t = t1 = 0, at which time it happens to be in
a microstate, which we label m1. It forms a sample space Γ1 containing m1 with probability
p(1)1 = 1, with the superscript denoting the sample space index. We have S(1) = 0. At some
t = t2 > t1, the sample space is enlarged from Γ1 = (m1) to Γ2 = (m1,m2), which
now contains two macrostates m1 and m2, with probabilities p(2)1 and p(2)2 , respectively.
The enlargement is due to the one-to-many mapping discussed in Section 1 and expressed in
Equation (6). At t2, m1 randomly evolves into a different m2. As explained above, we need
both microstates at t2 to determine the entropy. Using the flat distribution, the entropy is
now S(2) = S(2)

max = ln 2. At some t = t3 > t2, Γ2 is enlarged to Γ3 = (m1,m2,m3) containing
three distinct microstates m1,m2, and m3 so that the entropy becomes S(3) = ln 3. At some
t = t3 > t2, the enlarged sample space will include three distinct microstates m1,m2, and m3
so that the entropy becomes S(3) = ln 3. We just follow the system in a sequence of time
so that at t = tn, we have a sample space Γn = (m1,m2, · · · ,mn) containing n distinct
macrostates so that S(n) = ln n. Continuing this until all microstates in Γ have appeared,
we have Smax = ln W.

We now discuss the significance of using flat distributions at each time t so we can
apply Bolzmann’s formula S(t) = ln W(t) for the entropy, called Boltzmann’s principle [198]
by Einstein; see Equations (206b) or (209). Their use means that we are neglecting fluctua-
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tions in the temporal entropy S(t) when the instantaneous distribution is not exactly a flat
distribution. As fluctuations are overlooked in thermodynamics, use of this distribution
gives the entropy of the most probable macrostate at each tn, with Sn ≥ Sn−1. In contrast,
Gibbs formulation provides the entropies of instantaneous macrostates with {pk} that
may be different from a flat distribution that occur during the period (tn−1, tn). These
macrostates give rise to fluctuations that happen between Sn−1 and Sn, and have been
investigated earlier [79].

We now make a very important observation that shows how our proof differs from
the approach involving the extremely special assumption of molecular chaos [93] made by
Boltzmann to establish the H-theorem for the evolution of M to Meq; see also Section 1 for
a brief historical review. The theorem uses the Boltzmann kinetic gas equation for the single-
particle distribution f (r, p) along with the molecular chaos assumption, a probabilistic
concept. Boltzmann recognized that the assumption is central to derive irreversibility.
To date, there has been no convincing argument to justify the assumption, which is not
surprising as there are examples, such as the velocity inversion in spin-echo experiment
or Zermelo’s paradox [92], where the assumption and the H-theorem fail. If that happens,
it will not be possible to distinguish between reversible and irreversible processes, as
argued by Prigogine [199]. Lanford [200] has shown that the H-theorem is valid not only
under the molecular chaos assumption (no correlations), but also only in the limit of
vanishing particle size and density. Kac [201] argued that the unjustifiable assumption
must not be used for the derivation of the very general law of the increase in entropy. This
is understandable as “ . . . it has never been possible to extend Boltzmann’s argument to
wider classes of systems. A quite different point of view thus has to be adopted . . . ”, to
quote Henin and Prigogine [202]. By investigating Kac’s ring model, Fernando [79,94]
observed that the molecular chaos assumption is not unique for irreversibility to emerge,
contradicting the above claim of Boltzmann about its centrality. It is important to emphasize
that Boltzmann’s molecular chaos cannot handle many-particle interactions. Boltzmann
seems to be completely unaware of these shortcomings. Considering all these limitations,
we come to the following:

Claim 17. The molecular chaos assumption can neither be taken seriously to prove the second law nor
extended to all cases of interest such as to deterministic microstates that form the basis of the µNEQT.

The most common approach to overcome the above limitations is to assume master
equations [54] to justify this theorem instead of assuming molecular chaos [54–58]. We
avoid both of these assumptions, which are probabilistic in nature. It is important to
emphasize that Boltzmann’s molecular chaos cannot handle many-particle interactions so
such a concept is not applicable to the deterministic microstates (see Definition 4), which
are our concern. Instead, we use the Boltzmann formulation, the Boltzmann principle [198],
of the entropy in terms of just the number of distinct microstates not only at EQ (see
Equation (209)) but at all times t > 0. As microstates {mk} are determined by the deter-
ministic Hamiltonian of the system including all of the inter-particle interactions, they are
independent not only of each other, but also of {pk}; see Definition 4. This means that as Σ
probes more and more microstates, there is no correlation among them. Because of this, we
are able to avoid the shortcomings of molecular chaos, which is avoided as said above in
Claim 17. The microstates appear randomly, so which ones appear and the order of their
appearance are also random. Despite this, the number W(t) is an integer, not a random
variable, and determines the instantaneous microstate probabilities {pk} of their frequency
of appearance at t; see Equation (111).

Proposition 4. The microstate number W(t) for the isolated system Σ0 is a pure number that
increases monotonically with t, whether we start counting them from t = 0 (W(0) = 1) or
some time t = t∗ > 0 (W(t∗) = 1). It is oblivious to which ones arise and their order, which are
required to determine {pk}.
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Proposition 5. The number W(t) of distinct microstates passed by the system past t = t∗ cannot
ever decrease.

Remark 55. Propositions 4 and 5 are self-evident.

The above proof of the second law is simply based on the idea of how microstates
accumulate in time, as given in Proposition 4. In time, the system will pass through
more and more microstates with a concomitant increase in the entropy S(t), assuming flat
distributions. Eventually, at t = τeq, all microstates will have appeared once, and their
number W0 = W(τeq) is the total number of distinct microstates of the isolated system.
This results in the maximum entropy Smax = ln W0.

For a macroscopic system, the probability of a microstate repeating itself initially
for t < τeq is negligible, being of the order of 1/W0. Thus, initially all microstates are
almost distinct and give rise to flat distributions {pk = 1/W(t)} at each t as used above.
However, we note that during this period, there will be fluctuations in the entropy when
we do not have a flat distribution. However, as we are not concerned with fluctuations in
thermodynamics (they are important in statistical mechanics), the flat distribution is quite
appropriate. For t > τeq, some microstates begin to occur more than once, and we will
again have fluctuations, which we have disregarded in the proof. At t = 2τeq, almost all
microstates will have appeared twice but we still have {pk = 1/W0} so that the entropy
remains at its maximum value Smax for all t > τeq.

We now have the following:

Theorem 8. Under the assumption of flat distributions, Proposition 4 forms the basis of the second
law of thermodynamics for the isolated system that S(t) is monotonically increasing until it reaches
its maximum value Smax = ln W0 at t ≥ τeq.

Proof. See the discussion above.

The issue of fluctuations has been discussed at length elsewhere ([79], Figure 6 and
its discussion), which shows that the second law is an average law having fluctuations
that become insignificant as the size of the system becomes larger and larger. Thus, it
is conceivable that in some isolated cases, the second law is violated and the entropy
decreases over a finite period of time. But this will not happen in the majority of cases for
a macroscopic system. In other words, in most of the experiments, the chance of observing
a violation of the second law is extremely low, almost negligible, to the point that we would
never observe such an event in our lifetime [203], which also shows a deep connection of
the second law with causality.

We defer the critical discussion of this issue to the next section. Here, we only discuss
its very small possibility. It should be noted that Maxwell [50] had proposed a device
involving his famous demon that is capable of violating the second law. As the violation is
not considered a physical reality, it is termed the demon paradox that needs to be explained.
Various attempts have been made to clarify the paradox. Szilard [68] proposed the cost
of information to clarify the paradox. Later, Brillouin [69] showed that the demon is
not capable of violating the second law by carrying out a careful analysis by taking into
account a light source to help the demon see and sort molecules. Without light, the demon
cannot sort out molecules. Similarly, Smoluchowski [89] also argued that the demon cannot
violate the second law by taking into account thermal fluctuations. More recently, we have
also investigated the demon paradox and used internal variables [204] and probability
arguments [205] to explain it. The investigation of the demon paradox and its successful
explanation is clear evidence that any so-called violation of the second law is a consequence
of an incomplete or improper analysis; see also Kostic [206] and Norton [207].

As part of our attempt to demonstrate temporal asymmetry or inhomogeneity, we
need to show why this probability should be so small. As an example, we consider the
demon paradox. Let x = βε = βε, where ε is the energy of a particle. Let a very small
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but nonzero positive quantity δ ∼ 10−10 − 10−11 be the limit of the demon’s precision so
that it treats all the particles with x in the window (x − δ, x + δ) as particles identified
by xmp as the particles with most probable energies (around the mean x = 3/2, and the
standard deviation σ =

√
3/2). It also treats particles with x < x − δ as slow particles

xs, and particles with x > x + δ as fast particles xf, respectively. We consider N = 1024,
and α = (δ/σ)2/2 = 10−22. As the demon observes many slow and fast particles, we
need to consider the probability distribution f̄ (x) of x = ∑N

i=1xi/N of independent and
identically distributed random variables xi of the ith particle [205]. It is found that

f̄b(xs) or f̄b(xf) .
√

Ne−Nα = 1012e−100,

which is ≈3.758 × 10−32 ≈ 0. Therefore, fast and slow particles have extremely low
probabilities, and make no difference in determining the temperature, which is determined
by xmp alone. The example clearly shows that thermodynamics is governed by the most
probable state, so the demon is not successful in creating a temperature difference. As W(t)
cannot decrease with time, there is no possibility of observing a violation of the second law
with appreciable probability. Indeed, we show in Section 9 that the violation will invalidate
Axiom 4, which is the cornerstone of the stability observed in nature.

In any case, the probabilistic interpretation needs to be exploited, as we do here, for a proper
understanding of the second law, which merely states that it is nothing but the reflection
of the most probable event in probability theory [114]. To appreciate this, we note the Gibbs
formulation [48,54,55,57] of the entropy S(t) in Equation (26a) for an isolated system. These
probabilities are continuous functions of time and ensure that S(t) is a continuous function of t.
How these probabilities are to be determined or defined has been analyzed earlier [79,176],
where we have discussed two possible approaches, the ensemble-based and the temporal-
based, to define these probabilities. Both are standard approaches [33] and their equivalence
is needed for establishing ergodicity. Determining these probabilities is discussed in
Section 12.2. As shown by Tolman ([54], Section 106, where Boltzmann’s H = −S is
considered), Rice and Gray ([55], see Section 3.3), Rice ([57], Ch. 17), and several other
authors, this entropy for an isolated system cannot decrease with time. This expected
behavior, which is in accordance with the second law, is shown by the curve OA in Figure 4.
If we perform time-reversibility operation (|t| → t̄ .

= −|t|) at t = 0, the entropy will follow
OB, and not the continuation of AO to negative t. The increase along OB as t̄ decreases
follows from the accumulation of microstates used above to prove the second law. If,
instead, the time-reversibility (|t− t0| → t̄ .

= −|t− t0|) is performed at some instance
t = t0 at O0, then the entropy will follow O0C; it most certainly does not follow O0O,
the continuation of AO0 for t < t0. Thus, the second law shows temporal asymmetry.



Foundations 2023, 3 497

t=0 t0
−−−−t t

S(t)

AB

O

C

O0S(t0)−−−−

FIG. 4: Schematic behavior of S(t) as a function of time
t. Starting at O (t = 0), OA and OB show the symmetric
growth of S(t) in future and under time reversal at t = 0. If
we reverse time later at t = t0 + t0 by setting t0 ! �t0; then
O0C shows the growth of the entropy above its value S(t0)
at t = t0; the entropy does not retrace O0O, as would be
required by time-reversal invariance.

Thus, we have proven the second law in accordance
with Proposition 128 without any unsubstantiated ap-
proximation.

D. Second Law a Consequence of Stability

A careful reader should have noted by now that all we
have done is to use inequalities resulting from the second
law, but we have not postulated, either by itself or as
a part of the Axiom 78 in our axiomatic formulation of
the �NEQT and the MNEQT. We now wish to empha-
size that there is no need to do this, which clari�es its
absence. In this regard, we deviate from Callen [3] for
MEQT, who uses it as part of his Postulate II. The rea-
son is that, as demonstrated below in Theorem 134, it is
a direct consequence of Axiom 80, which is an extension
of Postulate I of Callen to NEQ macrostates Mneq .
To show this, we consider � embedded in e�, the latter

in EQ so it is speci�ed by its macro�elds T0; P0, etc. We
assume � not in EQ with e� so the di¤erences in their
�elds is given by �F in Eq. (76d). In view of Remark
101, we use SZ in which Mnieq happens to be Mieq . We
now prove the following

Theorem 134 The second law is a direct consequence of
the requirement of the Stable Equilibrium (Axiom 80) for
a thermodynamic system.

Proof. We recall Claim 64, and apply it to any Mieq
in SZ. Using Axiom 80, we conclude that Mieq must
approach the stable EQ macrostate Meq , which requires

�F! 0;

which can be expanded to

T ! T0; P ! P0; �! �0; � � � ;A! 0:

We now rewrite the second equation in Eq. (142) in
the following form

diS = (� � �0)deQ+ �diW; (215)

where we have used inverse temperatures, and diW is
given explicitly in Eq. (136), which we reproduce below

diW = (P�P0)dV �(���0)dN+� � �+A�d� � 0; (216)

having various contributions in SZ. The �rst two terms
refer to irreversibility caused by exchanges with e�, sim-
ilar to the exchange macroheat term in Eq. (215), and
the last term refers to irreversibility caused by internal
processes.
The �rst term in Eq. (215) represents the stochas-

tic contribution and the second term is the mechanical
contribution. We analyze each term separately. Let us
assume that �0 > � (T > T0). For T ! T0, � must
lose energy in the form of exchange macroheat with e�
so deQ < 0, which means that the resulting irreversible
entropy diSQ = (� � �0)deQ � 0. We now turn to the
mechanical contribution in Eq. (216), and consider vari-
ous terms in it. For the �rst term (P�P0)dV , we assume
P > P0. This means that the volume of � will increase
in accordance with the laws of mechanics. This results
in the corresponding irreversible entropy

diS
V = �(P � P0)dV � 0: (217a)

We assume � > �0 for the second term. This means
that dN < 0 to bring � closer to �0 until � ! �0. The
corresponding irreversible entropy

diS
N = ��(�� �0)dN � 0: (217b)

Similar arguments apply to missing terms in diW . This
brings us to the last term in diW . To be speci�c, we
consider the middle term

�V�dPBP

in Eq. (137) as an example of this term; here, dPBP =
FwBPdt is the change in the linear momentum of the
Brownian particle experiencing a macroforce FwBP , and
V is its relative velocity with respect to the center of mass
of the system [146]; see also Eq. (320a) later. The stable
EQ corresponds to a vanishing relative velocity so that
there is no motion. For this to happen, the macroforce
FwBP must oppose this motion as happens in mechan-
ics. Consequently, the corresponding irreversible entropy
diS

BP = ��V�dPBP � 0. As a second example, we con-
sider the macroa¢ nity AV obtained from in Eq. (104c).
It is given by

AV = n1n2(P1 � P2):

52

Figure 4. Schematic behavior of S(t) as a function of time t. Starting at O (t = 0), OA and OB show
the symmetric growth of S(t) in future and under time reversal at t = 0. If we reverse time later at
t = t0 + t′ by setting t′ → −t′, then O0C shows the growth of the entropy above its value S(t0) at
t = t0; the entropy does not retrace O0O, as would be required by time-reversal invariance.

For a reversible process, the entropy of each macrostate Meq(t) ∈ SX of a body
along the process is a state function of X(t), but not for an irreversible process for which
Mneq(t)/∈ SX. Their entropies are written as S(X(t),t) [75,76] with an explicit time depen-
dence. In general [33,75,76,79],

S(X(t),t) ≤ S(X(t)); fixed X(t). (214)

The equilibrium values of various entropies are always denoted with no explicit time
dependence, such as by S0(X0) for Σ0. These entropies represent the maximum possible
values of the entropies of a body as it relaxes and comes to equilibrium for a given set of
observables. Once in equilibrium, the body will have no memory of its original macrostate;
compare with Remark 53. Being observables, the set X0, which includes its energy E0
among others, remains constant for Σ0 as it relaxes. This notion is also extended to a body
in internal equilibrium.

Thus, we have proven the second law in accordance with Proposition 3 without any
unsubstantiated approximation.

8.4. Second Law as a Consequence of Stability

A careful reader should have noted by now that all we have done is to use inequalities
resulting from the second law, but we have not postulated anything, either by itself or as
a part of Axiom 2 in our axiomatic formulation of the µNEQT and the MNEQT. We now
wish to emphasize that there is no need to do this, which clarifies its absence. In this regard,
we deviate from Callen [3] for MEQT, who uses it as part of his Postulate II. The reason is
that, as demonstrated below in Theorem 9, it is a direct consequence of Axiom 4, which is
an extension of Postulate I of Callen to NEQ macrostates Mneq.

To show this, we consider Σ embedded in Σ̃, the latter in EQ, so it is specified by its
macrofields T0, P0, etc. We assume Σ not in EQ with Σ̃, so the differences in their fields are
given by ∆F in Equation (76d). In view of Remark 45, we use SZ in which Mnieq happens
to be Mieq. We now prove the following:

Theorem 9. The second law is a direct consequence of the requirement of the Stable Equilibrium
(Axiom 4) for a thermodynamic system.
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Proof. We recall Claim 9, and apply it to any Mieq in SZ. Using Axiom 4, we conclude that
Mieq must approach the stable EQ macrostate Meq, which requires

∆F→ 0,

which can be expanded to

T → T0, P→ P0, µ→ µ0, · · · , A→ 0.

We now rewrite the second equation in Equation (142) in the following form:

diS = (β− β0)deQ + βdiW, (215)

where we have used inverse temperatures, and diW is given explicitly in Equation (136),
which we reproduce below:

diW = (P− P0)dV − (µ− µ0)dN + · · ·+ A · dξ ≥ 0, (216)

having various contributions in SZ. The first two terms refer to irreversibility caused by
exchanges with Σ̃, similar to the exchange macroheat term in Equation (215), and the last
term refers to irreversibility caused by internal processes.

The first term in Equation (215) represents the stochastic contribution and the second
term is the mechanical contribution. We analyze each term separately. Let us assume that
β0 > β (T > T0). For T → T0, Σ must lose energy in the form of exchange macroheat with
Σ̃ so deQ < 0, which means that the resulting irreversible entropy diSQ = (β− β0)deQ ≥ 0.
We now turn to the mechanical contribution in Equation (216), and consider various terms
in it. For the first term (P− P0)dV, we assume P > P0. This means that the volume of Σ
will increase in accordance with the laws of mechanics. This results in the corresponding
irreversible entropy

diSV = β(P− P0)dV ≥ 0. (217a)

We assume µ > µ0 for the second term. This means that dN < 0 to bring µ closer to µ0
until µ→ µ0. The corresponding irreversible entropy

diSN = −β(µ− µ0)dN ≥ 0. (217b)

Similar arguments apply to missing terms in diW. This brings us to the last term in diW.
To be specific, we consider the middle term

−V·dPBP

in Equation (137) as an example of this term; here, dPBP = FwBPdt is the change in the linear
momentum of the Brownian particle experiencing a macroforce FwBP, and V is its relative
velocity with respect to the center of mass of the system [157]; see also Equation (320a)
later. The stable EQ corresponds to a vanishing relative velocity so that there is no motion.
For this to happen, the macroforce FwBP must oppose this motion as happens in mechanics.
Consequently, the corresponding irreversible entropy diSBP = −βV·dPBP ≥ 0. As a second
example, we consider the macroaffinity AV obtained in Equation (104c). It is given by

AV = n1n2(P1 − P2).

With dξV given in Equation (104a), and by a straightforward manipulation, we find that

AVdξV = (P1 − P2)dV1, (218)

which is precisely the first term in diW above so it is also nonnegative; see Equation (217a).
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Claim 18. The exercise to obtain Equation (218) also shows that the affinity term in diW in
Equation (216) behaves identically to other mechanical terms under the condition of stability.

Finally, the sum diS of all these irreversible entropies follows the inequality

diS ≥ 0, (219)

which is the statement of the second law for an interacting system. For an isolated system,
it reduces to Proposition 3, codified in Equation (213).

Remark 56. The form of the first two terms in diW in Equation (216) is not the most general form.
From Equations (76b) and (76c), the most general form of the missing term is

( fw − f0w)dew + fwdiw,

in which the first term is due to exchange displacement dew as the first two terms in Equation (216),
and the second term is due to the irreversible internal displacement as the last term in Equation (216).
It follows from Claim 18 that both terms above give a nonnegative irreversible entropy contribution,
which makes Equation (219) a general result.

Conclusion 5. The above theorem shows that there is no need to include the second law as an
additional part of Axiom 4 in the axiomatic formulation of the MNEQT. In this sense, the second
law is not a fundamental law in our formulation; it is merely a consequence of Axiom 4.

The above discussion now justifies that stability requires that the energy be a convex
function upwards and the entropy a convex function downwards as shown in Equation (106)
for Axiom 4.

9. Devastations Caused by Second Law Violation

As mentioned briefly in the previous section, we now wish to critically investigate
the resulting thermodynamics if we dispose of the second law completely. We will call the
resulting thermodynamics the violation thermodynamics and denote it by M̌NEQT to draw
attention to the this fact. The arbitrary macrostates in the M̌NEQT will be denoted by M̌ in
this section. A more detailed discussion will be presented elsewhere.

The violation of the second law in the M̌NEQT will result in strict inequalities

diS ≤ 0, diQ = diW ≤ 0, (220)

which only characterize the behavior of macrostates. Observe that we have included the
equalities, which are also present in Equation (219). We will call systems with equalities
to be in EQ, and call a system in NEQ when we have strict inequalities, using the same
terminology as in the MNEQT. Thus, a system is allowed to be prepared in EQ. This is
precisely how Maxwell had introduced his demon paradox, so the requirement is standard.
This is also of technical and experimental importance when one of the systems happens to
be a medium Σ̃, which is always taken to be in EQ. At the level of microstates, the second
law plays no role; see Remark 1. Therefore, we will be contrasting the M̌NEQT with
the MNEQT. We first note what is common to both. The discussion involving the use
of entropy in Equation (220) clearly implies that the existence of entropy in Axiom 2
must still be accepted. The derivation of entropy in Section 5.5 does not depend on
whether the second law holds or not, so this form will still survive. Axioms of additivity 5,
quasi-independence 6, and reduction 7 will survive as well. Similarly, the notion of internal
variables based of the properties of the Hamiltonians of various bodies as discussed in
Section 4, and the notion of partition in Equation (14a) also survive. This also means that the
notion of macroheat and macrowork as developed later in Section 10.1 in SZ, and which is
based on the first law, survives in the M̌NEQT. The identification of an IEQ macrostate M̌ieq
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as one whose entropy is a state function also survives in the M̌NEQT. Accordingly, the Gibbs
fundamental relation in Equation (131) does not change, along with the definition of T, P,
etc. We thus see that there is a lot that is common to both, so most of the notations remain
the same. We will only be considering entropies to be state functions here. The discussion
can be easily extended to entropies that are not state functions by following the procedure
of Section 5.9. We will not do that here.

Conclusion 6. The entire discussion of the MNEQT and the µNEQT can be carried out verbatim
except the second law inequalities used earlier must be replaced by Equation (220) to investigate the
consequences of the violation.

The conclusion is useful, as it makes investigation of the violation extremely simple so
that we can determine what other changes have to made now in the MNEQT. We proceed
as follows.

We consider an isolated system Σ0 of energy E0 and consisting of two subsystems
Σ1 and Σ2, each having the same number of particles of the same kind. To simplify
the discussion, we will consider a particular evolution of the microstate M̌0(t) of Σ0,
during which the subsystems are always in EQ macrostates M̌1(t) and M̌2(t), respec-
tively, at all times, but may or may not be in EQ with each other. We use P̌ to de-
note this special process, during which their entropies remain state functions in SX at
all times. We also assume that their initial temperatures are T1(0) and T2(0) > T1(0),
with ∆T(0) = T2(0) − T1(0) > 0, ∆β(0) = β2(0) − β1(0) < 0, pressures are P1(0) and
P2(0) > P1(0), with ∆P(0) = P2(0)− P1(0) > 0, etc. Thus, we will be considering the irre-
versibility produced by exchanges only, but the irreversibility in the M̌NEQT results in the
violation; there are no irreversible processes within each subsystem as they are always in
EQ, which simplifies the discussion considerably. We only consider positive temperatures
here. For simplicity, we will suppress t in the following, unless clarity is needed.

We consider two different situations involving (stochastic) macroheat and (mechanical)
macrowork separately for the clarity of the investigation; see Definition 23, and also
Section 10.2.

9.1. Macroheat Exchanges

We first assume that no macrowork is exchanged between the subsystems so their
volumes do not change. As their temperatures are different, there is macroheat exchange,
but deQ0 = deQ1 + deQ2 = 0 at all times. We set dQ = dQ1 = T1dS1 = deQ1, and
dQ2 = deQ2 = T2dS = T1dS1. We have, using Axioms of quasi-independence 6,

dS0 = diS
Q
0 = dQ(β1 − β2) = ∆TdQ/T1T2, (221a)

which is identical to Equation (126) obtained as promised. It is also similar to Equation (202)
derived earlier but for a system in a medium. For the violation to occur, we must impose
diS

Q
0 < 0 for ∆T > 0, which requires that

dQ < 0, (222)

implying that heat dQ = dE1 is flowing out of Σ1 at a lower temperature into Σ2 at a higher
temperature. We observe that Equation (221a) is valid for all times t. As a consequence and
in accordance with Axiom of additivity, E1 decreases and E2 increases. We introduce the
energy difference

∆E .
= E2 − E1 = E0 − 2E1.

Because of the sign of dQ, ∆E increases, making M̌1 and M̌2 move farther apart, instead of
getting closer, in their energies and temperatures, with no hope of them getting towards
a stable EQ M̌0eq, from which Σ0 will never leave and where E10 is the energy of Σ1 at
absolute zero, which will play an important role in the analysis as E1(t) ≥ E10.
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The most important question we need to investigate now is if there exists a unique
M̌0eq for M̌0, and whether Σ0 will approach it in time. This requires investigating what
happens to the temperatures defined by Tl = ∂El/∂Sl for Σl , l = 0, 1, and 2. This is-
sue was discussed in Section 5.7. That discussion can be carried out without affecting
Equations (125a) and (125b) even under the violation. We need to investigate the following
two possibilities.

9.1.1. El Monotonically Increases with Tl

This means that both systems have positive heat capacities, which is a requirement
of stability. It follows from this choice that β1(t) is a monotonically increasing function,
and β2(t) a monotonically decreasing function of t, making ∆β(t) decrease with t. Thus,
Σ0 will never approach M̌0eq with time, which violates Axiom 4. This axiom is our first
casualty of the violation, and has to be abandoned.

The above behavior of energy means that the entropy is also an increasing function of
the temperature for both systems. Thus, S1(t) decreases and S2(t) increases in time, making
their disparity also increase in time. Their sum, however, continues to decrease as a function
of t because of the violation of the second law. We also see from Equation (221a) that∣∣∣diS

Q
0 (t)

∣∣∣ ∝ |∆β(t)|, (223a)

implying that the degree of violation gets larger and larger. Let E10 denote the energy of Σ1
at absolute zero, which will play an important role in the analysis as E1(t) ≥ E10. Thus,

∆E(t) ≤ E0 − 2E10,

which puts a very important mechanical constraint on Equation (220) along P̌ . At some
time t = tterm, we have E1 → E10 (E2 → E0 − E10) so that the energy exchange will
terminate and T1 → 0 as there is no more energy left for exchange to Σ2. As E2(tterm)
approaches a finite value, T2(tterm) also approaches a finite value. As the derivation of
Equations (125a) and (125b) is also applicable in the M̌NEQT, we have

T(t→ tterm) = 0, A(t→ tterm) = 1. (224a)

As A 6= 0, the terminal macrostate M̌0(tterm) is not an EQ macrostate, which should be
obvious due to the temperature inhomogeneity.

What about the entropy S0 of Σ0. From Equation (221a), we observe that∣∣∣diS
Q
0

∣∣∣→ ∞, (224b)

which results in an entropy catastrophe

S0(tterm)→ −∞, (224c)

which is an impossibility in view of its Gibbs formulation in Equation (26a), and results in
an internal inconsistency. It also makes the third law the second casualty of the violation, as it
has to be abandoned. This is not surprising, as the third law is a consequence of mechanical
stability of the ground state (T = 0) of a system [33] and M̌0(tterm) at T = 0 is not a uniform
ground state.

Remark 57. While satisfying the mechanical constraint at t = tterm cannot be denied, there is no
such constraint on the value of the entropy of M̌0(tterm) to become negative in the M̌NEQT.

The above catastrophe is the result of an unstable situation that terminates in a catas-
trophic macrostate M̌cata

0 with extreme temperature and energy inhomogeneities and a catas-
trophe in S0(tterm) but with fixed E0. Therefore, the initial macrostate M̌0(0) must be
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identified as an unstable NEQ macrostate M̌unst
0 , even though M̌1(0) and M̌2(0) are both

EQ macrostates. This also means that even if both systems start in EQ with each other with
T1(0) = T2(0), and E1(0) = E2(0), any fluctuation, no matter how small it is, will drive the
system catastrophically towards M̌cata

0 . Thus, this EQ macrostate must also be treated as
unstable and should be denoted as M̌unst

0eq .

Claim 19. The violation leads to a paradoxical situation, in which a thermodynamically stable
system will leave an unstable macrostate M̌unst

0eq merely by a fluctuation, no matter how small it is,
or an unstable NEQ macrostate M̌unst

0 , and runs towards a catastrophic macrostate M̌cata
0 satisfying

Equation (224a), and in which the degree of violation measured by
∣∣∣diS

Q
0

∣∣∣ becomes unbounded, as
shown in Equation (224c).

The above catastrophe must not be confused with an explosion that happens in a run-
away reaction in a stable system in a finite time, which obeys the second law. To conclude,
a stable system undergoes an instability to M̌cata

0 , causing another internal inconsistency due
to the violation.

9.1.2. El Monotonically Decreases with Tl

This means that both systems have negative heat capacities, which makes both systems
unstable. This also means that Sl monotonically decreases with Tl . Thus, as E1 decreases
and E2 increases, β1(t) increases and β2(t) decreases so that eventually they become equal
(∆β(t)→ 0). The disparities between the two energies and the entropies also vanish so Σ0
finally approaches a stable EQ macrostate M̌st

0eq in which∣∣∣diS
Q
0

∣∣∣→ 0, (225)

to justify M̌st
0eq as an EQ macrostate. Once it is there, Σ0 will never leave M̌st

0eq. The same is

also true if Σ0 happens in M̌st
0eq initially. Thus, the two systems come to EQ in time, thus

supporting our Axiom 4 but for unstable systems. This is again paradoxical, and causes
an internal inconsistency due to the violation. We summarize the conclusion as follows:

Claim 20. The violation leads to an internal inconsistency, in which an unstable system Σ0
either does not leave a stable EQ macrostate M̌st

0eq, or approaches it if not there already so that the
irreversible entropy generation vanishes, as seen in Equation (225).

We combine the above two claims in the following:

Conclusion 7. A thermodynamically stable system will undergo a catastrophe and will end in
M̌cata

0 , thus forcing us to abandon Axiom 4 or the third law, or a thermodynamically unstable system
will end in a stable EQ macrostate M̌st

0eq. Both alternatives are too unacceptable due to the internal
inconsistencies they generate to safely conclude that the violation must be treated as mere curiosity
and nothing more.

9.2. Macrowork Exchanges

We recall that macroworks are isentropic quantities, so they are mechanical in nature,
as opposed to macroheats above, which are stochastic and are determined by entropy
changes. Therefore, we now turn our attention to the irreversible macrowork to see
what changes must be allowed in the MNEQT to obtain the M̊NEQT by focusing on its
mechanical aspect. According to Theorem 3, this macrowork is related to the irreversible
macroheat; see Equation (95). Through this connection, it is indirectly related to diSV

0 by
the following equation:

diS0 = β0diW0, (226)
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obtained from Equation (215), where we have set β1 = β2 = β0 for Σ0 with its energy
E0(N0, V0, T0) fixed so its temperature remains fixed during P̌ . The irreversible macrowork
diW0 is given by

diW0 = (P1 − P2)dV − (µ1 − µ2)dN + · · ·+ A · dξ ≥ 0; (227)

compare with Equation (216) above. We have also set dV = dV1, dN = dN1, etc. Our goal
now is to follow the consequences of each of the contributions on the right side to diSV

0 as
was done in Section 8.4. We first consider the consequences of the pressure work term

diSV
0 = β0(P1 − P2)dV < 0. (228)

We assume ∆P = P2 − P1 > 0, which makes the initial macrostate M̌0 an NEQ macrostate,
in which the force exerted by Σ2 on Σ1 is stronger than the other way around. Therefore,
on purely mechanical grounds, we expect the volume V1 of Σ1 to decrease and V2 of
Σ2 to increase, keeping their sum V0 fixed. However for diSV

0 < 0, we require dV > 0,
which means that V1 expands, while V2 shrinks. This contradicts the purely mechanical
understanding of forces in general.

Claim 21. The first consequence of violation on the pressure work is the rejection of mechanics,
which becomes the third casualty in the M̊NEQT.

We pursue this further. Consider the volume difference

∆V .
= V2 −V1 = V0 − 2V1.

Because of the sign of dV, ∆V(t) continues to decrease with time as long as ∆P(t) > 0.
To proceed further, we need to unravel the behavior of Vl as a function of Pl = −∂El/∂Vl ,
and the compressibility Kl

.
= −(∂Vl/∂Pl}/Vl .

9.2.1. Vl Monotonically Decreases with Pl

This case corresponds to Kl > 0, which is a requirement of the stability. As V1 increases,
P1 decreases. We also have P2 increasing so ∆P(t) keeps on increasing. Consequently,
∆V(t) keeps on decreasing, until finally

V1 → V0, V2 → 0,

along with P2 → ∞. Note the similarity with the behavior of T1(t) above. We thus conclude
that the stable Σ0 runs away towards a catastrophic macrostate M̌cata

0 , which satisfies
Equations (224b) and (224c) as seen from Equation (228). This means that M̌0 must be
identified as an unstable macrostate M̌unst

0 as above, even though Σ0 is stable because of
positive compressibility. As above, we also recognize that even if both systems start in
an unstable EQ macrostate M̌unst

0eq with P1(0) = P2(0), and V1(0) = V2(0) at t = 0, any

fluctuation, no matter how small it is, will drive the system catastrophically towards M̌cata
0 .

Recalling that P = T(∂S/∂V), we have S(P), an increasing function of P for both systems.
Thus, S1(t) decreases and S2(t) increases in time, making their disparity also increase in
time. Their sum, however, continues to decrease as a function of t and has the terminal
value given in Equation (224c).

The conclusion is that a stable system faces a catastrophic instability to M̌cata
0 .

9.2.2. Vl Monotonically Increases with Pl

This case corresponds to Kl < 0, which makes the system unstable. It follows from
this that V2(0) − V1(0) > 0. As V1 increases, P1 increases, and as V2 decreases, P2 de-
creases. Therefore, ∆P(t) decreases so that eventually P1 → P2, and V1 → V2, which
represents a stable EQ macrostate Mst

eq, as is seen clearly from Equation (228), which satisfies
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Equation (225). This contradicts the unstable nature of the system, which should result in
some instability in the system, but it does not happen.

It is easy to verify that each of the other terms in diW gives rise to a similar
internal inconsistency.

It should be evident from the above discussion that Conclusion 7 also holds here.
As all physical systems form stable systems, we do not need to be concerned with unsta-
ble systems.

Remark 58. It should be noted that there are many examples of thermodynamic instabilities that
arise in approximate calculations. A well-known example is the van der Waals equation in which
there is a well-defined portion of the equation of state in which compressibility becomes negative.
Many examples arise in calculations of the mean field type. In all these cases, the relevant free
energies are not globally minimum, so thermodynamics comes to the rescue to allow such portions to
be removed from consideration. Exact or rigorous calculations will never result in such instabilities.

10. Microworks, Microheats, and Commutator

To discuss process quantities (see Section 2.9) we need to be extremely careful in
distinguishing the order of infinitesimal change operators (denoted by dα) and the ensemble
average Â (denoted by 〈〉) as the two operations do not commute. In other words, for
a state quantity χ

.
= {S, Z} for any body Σb, we will demonstrate that the commutator Ĉα

acting on the microquantity χ

Ĉαχ
.
= (dα Â− Âdα)χ = dα〈χ〉 − 〈dαχ〉 6= 0, (229)

with Â introduced in Definition 7; see also Remark 18. As a result, the microquantities
corresponding to dα〈χ〉 and 〈dαχ〉must be carefully distinguished as their difference does
not vanish; see Equation (36c). It has been an accepted practice to denote dα〈χ〉 by simply
dαχ as discussed in Section 2.4. As we will show, not recognizing this subtle difference in
the orders of the two operations has resulted in some confusion. Thus, in the statistical
mechanical formulation, it is useful to not simply use χ to denote 〈χ〉 such as E and S for
〈E〉 and 〈S〉, respectively. While the microquantity associated with Âdαχ = 〈dαχ〉 will be
denoted by dαχk, so that using Equation (88a), we have

dαχm
.
= Âdαχ = 〈dαχ〉 = ∑k pk(dαχk), (230)

we will use the notation (dα〈χ〉)k or (dαχ)k for the microquantity of dα Âχ (see Equation (36c)),
so that

dα Âχ
.
= dαχ

.
= dα〈χ〉 = ∑k pk(dαχ)k. (231)

The reason for the notation dαχm is given in Definition 23, and is further expanded below.
For convenience, we will simply use dαχk and dαχk without the parentheses for the mi-
croquantities, as there cannot be any confusion, since χ, being an average, has no suffix
k, so the latter must be associated with the quantity dαχ; see also Equation (36c). We now
explain this subtle difference and the importance of making a clear distinction between the
two microquantities. We will mostly focus on E and S for a body Σb for concreteness so the
discussion is valid for any of the three systems.

10.1. Digression on Ensemble Averages

A macroquantity for Σb is an average of microquantities in M over all distinct mi-
crostates using arbitrary pk, as discussed in Section 5. The macroenergy E is the ensemble
average E (see Equation (12)),

E .
= 〈E〉 = ∑k pkEk, (232)

while S = S of Sk = −ηk is the ensemble average given in Equation (26a).
There are two kinds of thermodynamic averages we need to consider in thermody-

namics. One of them is the instantaneous state-average, such as E and S, of state variable χ
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of a macrostate. From this average, one can construct the differential dχ between two neigh-
boring macrostates; the differential does not depend on the path connecting the macrostates.
The other one is the process-average of process quantities such as dW, dQ, etc., between two
neighboring macrostates, but they depend on the path connecting them in an NEQ process
P ; see Definitions 19 and 20.

We first consider E, S ∈ χ and the case of a NFl-W. The only fluctuating microquanti-
ties are Ek and Sk.

The differential
dαE ≡ dα〈E〉 = ∑k pkdαEk + ∑kEkdα pk (233)

is a sum to two independent contributions. The term on the left is the first term dαE in
Equation (229), and the first term on the right in the last equation above is dEm

.
= 〈dαE〉

in Equation (230). Thus, the second term there is the commutator ĈαE, and is not zero
identically. We also observe that

dEm
.
= ∑k pkdEk = −∑k pkFwk · dW = 〈dE〉 .

= −dW; (234a)

see Equation (17a). The sum is carried out at fixed {pk}, i.e., at fixed S, so it represents
an isentropic contribution to dE, i.e., it is a purely mechanical contribution due to microwork
dWk; see Equation (37a). Thus, we denote this contribution simply as dEm (in general dχm)
to highlight its mechanical nature; see Equation (92). It is also easy to see that

dαEm = −dαW. (235)

This is true of any quantity in Equation (230); see also Remark 20.
The second contribution (see Equation (88b)),

dαEs
.
= ∑kEkdα pk = 〈Edαη〉, (236)

is ĈαE; see Equation (92). It is a sum involving changes dα pk at fixed Ek. These changes
result in the entropy change dαS so it is not a mechanical contribution. We will identify it
as a purely stochastic contribution involving an entropy change, with the suffix a reminder
of its stochastic nature, as discussed in Definition 23. Its microanalog is

dαEs,k
.
= Ekdαηk. (237)

The presence of dηk in the microanalog signifies a stochastic average.
We thus have

dαE = dαEs + dαEm, (238)

which should be compared with Equation (91); see Remark 30. Thus,

dαQ ≡ dαEs. (239)

Using this identity, various microheats can be identified as

dαQk = dEs,k = Ekdαηk. (240)

The above discussion can be easily extended to any of the state variables in χ to justify
the existence of the commutator Ĉα χ = dαχs for any body Σb. We also have dαχm = 〈dαχ〉.
For a deterministic system (see Remark 34), for which pk’s do not change in any mechanical
process, Ĉαχ ≡ 0. Thus, we are able to draw the following important conclusion (see also
Remark 59):

Conclusion 8. The existence of Ĉαχ is related to the existence of stochasticity in a statistical body,
and we have

dαχ ≡ dχm + Ĉαχ. (241)
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We consider the general relation in Equation (238) for d in place of dα. This is simply
the first law

dE = dQ− dW,

where we have used Equations (234a) and (239) for the arbitrary macrostate M in
SZ, Z = (E, W). The entropy for such a state is not a state function and is written as
S(Z, t), for which dS is given in Equation (138a). While dW is defined in the state space
SW, dQ = dE + dW is uniquely defined in a state space SZ′ requiring additional hidden
internal variable ξ′, as discussed in Section 5.9. The latter forms a state space orthogonal to
SZ in SZ′ .

The entropy becomes uniquely defined as a state function in SZ′ . However, to dis-
cuss the first law, it is convenient to think of E as a state function in the state space
Sζ′

.
= SW′ ∪SS, ζ′

.
= (S, W′) to describe M as a unique macrostate Mieq in Sζ′ . In this

state space, we treat E as a unique function of S and W′; here, S ∈ SS is the direction for
stochasticity, while SW′ is the subspace controlling the deterministic mechanical changes.

We now restrict our discussion to Mieq in Sζ , ζ
.
= (S, W). As both dEs and dS are

BI-extensive quantities, we expect a linear relationship between them, with the constant of
proportionality some BI-intensive quantity T, as established below:

dEs = TdS = Td〈S 〉 .
= dQ. (242)

Comparing with the Clausius equality (see Equation (45)), we find that T above is
nothing but the thermodynamic temperature in Equation (1) for the body.

Remark 59. The commutator ĈαE is the source of micro- and macroheat in a body so it plays
an important role in the µNEQT. In a deterministic body, it does not exist.

We now follow the consequence of ĈαE and the need of distinguishing dαEk with
dαEk (we use the above notation dαχk). For this, we identify the microanalog dαEk of
dαE = dα〈E〉:

dαEk = Ekdαηk + dαEk
.
= dαQk − dαWk = dαEk + dαQk, (243)

which satisfies
dαE =

〈
dαE

〉 .
= ∑k pkdαEk. (244)

We thus see that
dαEk − dαEk = dαEs,k ≡ dαQk = Ĉαχk, (245)

where Ĉαχk is the microanalog of Ĉαχ = dαQ. Recall that dαQk is a mixed microquantity
(Remarks 11 and 14). This is also evident from the above identity as dαEk is also a mixed
microquantity as seen in Equation (243). In contrast, dEk is a microquantity. Thus, dEk and
dEk are distinct. Therefore,

Remark 60. Care must be exercised in distinguishing dEk and dEk, with their difference being the
mixed microquantity dαQk, as noted above.

Remark 61. We should remark that while dαEk does not satisfy any first law for mk,
dαEk = dαQk − dαWk appears to have an interpretation of a first law for mk. But this is a mislead-
ing interpretation as dαEk is not a genuine microquantity; see Remarks 60 and 14. While dαWk is
a microquantity, dαQk is also indirectly controlled by the macrostate M. Therefore, Equation (243)
should not be taken as a first law for mk. In this respect, there is a difference between the µNEQT
and the µ̊NEQT as is evident from the work of Sekimoto [140] and Crooks [141], where a first law
for each mk is proposed without any consideration of M.
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For completeness, we consider the case of Fl-W, for which we have

dαWk − dαWk = dWs,k; (246)

the right-hand side represents the stochastic contribution in dWk, with dWk, the mechani-
cal contribution.

So far, we have not discussed the entropy, which is a stochastic quantity. It follows that

dαS ≡ d〈S〉 = ∑k pkdαSk + ∑kSkdα pk, (247a)

in which its two contributions

dαS′s
.
= 〈dαS〉 = ∑k pkdαSk, dαSs

.
= 〈Sdαη〉 = ∑kSkdα pk, (247b)

are both stochastic in nature; see Equation (86b) for dαη. There is no mechanical contribution
as in Zk. The corresponding microanalogs of the two stochastic contributions are

dαS′sk = −dαηk, dαSsk = −ηkdαηk.

As
dαS′s = −∑kdα pk ≡ 0, (248)

which follows from Theorem 11, we have

dαS ≡ dαSs, (249)

which is purely stochastic in nature, as it must be. This clearly shows the difference between
dαS and, for example, dαE. From

dαS = −〈η̂dαη〉 (250)

(see Equation (27c) for η̂), we identify the microanalog dαSk of dαS = dαS

dαSk = −η̂kdαηk, (251)

in accordance with Equation (249). This also makes dαSk = −dαηk = dαS′sk different from
dαSk, just as dαEk is different from dαEk. We have for the commutator microanalog

dαSk − dαSk = dαSsk 6= 0. (252)

As dSk 6= dSk, our µNEQT is different from the current microstate approaches to
NEQT [145,178,179,190]. The issue has been discussed elsewhere [155], where the rel-
evance of the above distinction between dS′sk and dSk is first pointed out. We summarize
this as follows:

Conclusion 9. For Fl-state variables Z and S, we have

dαZ = dαZ 6= 〈dαZ〉, dαS = dα〈S〉 6= 〈dαS〉, (253)

so care must be exercised in keeping their distinction clear.

The microenergy Ek changes isentropically as W changes without changing pk [150].
Accordingly, the generalized microwork dαWk does not generate any stochasticity. The lat-
ter is brought about by the generalized microheat dαQk, which changes pk but without
changing Ek. We summarize these important observations here as the following conclusion:

Conclusion 10. The change dαE for any arbitrary M of a body consists of two distinct and
independent contributions—an isentropic mechanical change dαEm = −dαW, the macrowork,
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and a stochastic change dαEs = dαQ, the macroheat. The entropy change dαS is also a purely
stochastic change.

We now consider the microscopic analog dαQk of dαQ. Naively identifying it using
Equation (240) as

dαQ′k
.
= Ekdαηk (254)

does not give a unique microquantity for the following reason. While its average dαQ
identified by dαEs in Equation (242) is uniquely defined, dQ′k is not as constant a shift of the
origin of Ek, ∀k, by c it changes dαQk but not dαQ, as follows from Equation (268). Therefore,
we will uniquely determine dαQk as follows. We first recognizing the Clausius relation in
Equation (45) for dQ so that

dQk
.
= TdSk = −Tη̂kdηk; (255)

see Equation (251). This justifies Equation (44a). We then determine deQk by deQ̃k:

deQk = −T0η̂kdeηk. (256a)

We now determine diQk by the difference dQk − deQk:

diQk = −(T − T0)η̂kdηk − T0η̂kdiη. (256b)

This completes the discussion of dαQk.
The generalized heat dαQ and dαQk only change pk’s, but not Ek’s. Therefore, the fol-

lowing aspects of the generalized quantities are central in the µNEQT, which we present as
three conclusions:

Conclusion 11. The index k of mk is not allowed to change under mechanical work; only Ek(W)
changes. Thus, a purely mechanical approach can be used for microwork. The microwork dαWk
changes Ek without changing pk. The effect of microheat is to change pk but not Ek so it is microheat
that makes a thermodynamic process stochastic by changing pk. They occur in two independent
state subspaces SW and SS, respectively, which makes them independent variations; compare with
Conclusion 10.

Conclusion 12. While the microheat dαQk does not change Ek, it does contribute to the energy
change dαE through dαQ = ∑kEkdα pk as pk’s change.

As dWk and dQk are independent, any infinitesimal process δP can be treated as
a process involving two independent step, a step δW in SW and a step δS in SS. This makes
them independent variations. Their independence is the outcome of using the BI-quantities.
This feature is not possible in the M̊NEQT and µ̊NEQT, which shows the superiority of using
the BI-quantities. The µNEQT provides a new way to express the macrowork irreversibility
of the process [150,151] in terms of the microforce imbalance between external and internal
mechanical forces that results in the internal microwork diWk = −diEk. The internal
microwork has no particular sign, even though the corresponding macrowork satisfies
the second law and has a particular sign: diW = −〈diE〉 ≥ 0. Similarly, the macroheat
irreversibility is expressed in terms of entropy change dS in the probability and is given by
dQ = TdS ≥ 0. We will come back to this issue in Section 13.

10.2. Statistical Significance of dW and dQ

Before proceeding further, let us see how the generalized macrowork and macroheat
could be understood from a statistical point of view for any arbitrary M so that we can
identify them using the Hamiltonian. We have already made progress in this direction
in the earlier sections so this section basically summarizes this understanding and then
extends it a bit. We now prove
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Theorem 10. E(t) is a state function of W(t) and S(t) for any Mieq in the state space Sζ , even
though Ek[W(t)]’s are functions of W(t) only.

Proof. We consider Equation (233) for dα = d. As pk(t)’s are unchanged in the first sum dEm,
it is evaluated at constant entropy. It is a function of W(t) as is seen clearly in Equation (147).
The second contribution is at fixed Ek’s so W(t) is held fixed; see Equation (147). It is the
stochastic contribution dEs. The changes {dα pk(t)} result in dS. It follows from Equation (242)
that E(t) is a function of S(t) and W(t) in general for any M.

The theorem explains why E(t) has an additional dependence only on the average S
(and not on any complicated functions of {pk}) in addition to its dependence on W for any
M. The fact is well-known for Meq.

We emphasize that the above theorem holds only for Mieq for which W is the com-
plete set of work parameters. If the set is not complete, we are dealing with an arbitrary
macrostate M. In this case, we need some hidden internal variable ξ′ as discussed in
Section 5.9 to convert M into Mieq in a more extended state space Sζ′ . The hidden in-
ternal variable will provide an explicit time dependence in E, which we now write as
E(S, W, t). The explicit time dependence gives an additional contribution diWhid given in
Equation (139b).

The linear proportionality in Equation (242) between dQ = dEs and dS for M results in

dQ(t)/dS(t) = Talt
arb(t), (257)

see Equation (140b), which extends the statistical proof of the identity in Equation (45)
relating dQ(t) and dS(t) for M. We also note that the ratio Talt

arb(t) is related to the ratio of
two SI-macroquantities. Thus, it can be used to characterize the instantaneous macrostate
M, although not uniquely, as it depends on diWhid; see Equation (139b). This should be
contrasted with the M̊NEQT, in which the ratio

deQ(t)/deS(t) = T0 (258)

does not characterize the instantaneous macrostate M. For Mieq, Talt
arb(t) reduces to T(t).

We should point out that, with W(t) as a NFl-parameter, dW(t) is the same for all
microstates. The statistical nature of dEm is reflected in the statistical nature of Fw(t), such
as Pk(t) and Ak(t), of the body. Thus, the BI-fields Fwk(t) are fluctuating quantities from
microstate to microstate, as expected in any averaging process.

The above discussion proves that the definition of macroheat and macrowork in terms
of dEs and dEm, respectively, is valid for any M. But the relationship of dQ with dS works
only for a Mieq. It is useful to compare the above approach with the traditional formulation
of the first law in terms of deQ(t) and deW(t): both formulations are valid in all cases. It
should be mentioned that the former identification is well-known in equilibrium statistical
mechanics, but its extension to irreversible processes and our interpretation are, to the best
of our knowledge, novel. While the instantaneous average Fw(t), such as the pressure
P(t), is mechanically defined under all circumstances, it will only be identified with the
thermodynamic definition of the instantaneous pressure

P(t) = −(∂E/∂V) (259)

for a uniquely identified macrostate Mieq in SZ.
It follows from Conclusion 10 that dE consists of two independent and unique

contributions—an isentropic mechanical change dEm = −dW, and an stochastic change
dEs = dQ. On the other hand, the MI-macroheat and the MI-macrowork suffer from
ambiguities; see, for example, Kestin [42]. The independent partition of dE for an arbitrary
macrostate M plays a central role in developing our NEQ statistical mechanics. Therefore,
if we focus on the state space Sζ to describe M, we must treat E in general as a nonstate
function of S, W and t. Let us focus on a thermodynamic process P in Sζ between two
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IEQ macrostates M(in)
ieq and M

(fin)
ieq . If all intermediate macrostates {M}int in P remain IEQ

macrostates in Sζ , we denote this P by Pieq. This is like following a reversible process
between two EQ macrostates. In this case, E(ζ) has no explicit time dependence as noted
above. If some of the intermediate Mint do not remain in Sζ , we need to consider E(ζ, t)
with an explicit time dependence. This is like following an irreversible process between
two EQ macrostates. Let Smax

ζ denote the largest state space required in which all the

macrostates in M
(in)
ieq , {M}int, and M

(fin)
ieq can be treated as in IEQ (some may have some of

the affinities vanishing so the corresponding internal variables become equilibrated; see
Section 12.1 for detail). We denote such a P by Pnieq.

The choice of P is governed by how far Pnieq is from Pieq. The farther it is, the larger
Smax

ζ is relative to Sζ . We put no restriction on their choices for how to do the computation.
We will simply use P to denote both processes and Sζ for both state spaces in the following.
In this state space Sζ , dEm and dEs are variations in its orthogonal subspaces SW and SS,
respectively, between two neighboring IEQ macrostates M′ieq and M′′ieq along P . This makes
the determination of dE convenient in any infinitesimal process δP ∈ P by breaking it
into two parts δPm ∈ SW and δPs ∈ SS between M′ieq and M′′ieq, with only {Ek} changing
along δPm and only {pk} changing along δPs. We take the changed parameters and
probabilities of M

′′
ieq to use for the next δP between M′′ieq and M′′′ieq, and so on.

Remark 62. It is clear from the above discussion that it is the macroheat and not the macrowork
that causes pk(t), and therefore the entropy, to change. This is the essence of the common wisdom
that heat is random motion. But we now have a mathematical definition: Macroheat is the
isometric part dEs(t) that is directly related to the change in the entropy through changes in
pk(t). Macrowork is that part of the energy change dEm(t) caused by isentropic variations in the

“mechanical" state variables W(t). This is true no matter how far the body is from equilibrium or the
internal equilibrium process. Thus, our formulation of the first law and the identification of the two
terms is the most general one, and applicable to any M by identifying Smax

ζ .

Remark 63. The relationship between the macroheat and the entropy becomes simple only when M

happens to be in internal equilibrium (see Section 5.7), in which case Talt
arb(t) (see Equation (140b))

is replaced by T(t), which has a thermodynamic significance (see Equations (24) and (129)), and we
have the thermodynamic identity, called the Clausius Equality in Equation (45)
dQ(t) = T(t)dS(t) for Mieq, which is very interesting in that it turns the well-known Clau-
sius inequality deQ = T0deS ≤ T0dS into an equality.

For the sake of completeness, we briefly discuss the various attempts at the study of
the microanalogs dWk and dQk of the dW and dQ, respectively, which has flourished into an
active field in diverse branches of NEQT at diverse length scales, from mesoscopic to macro-
scopic lengths [99,135–147]; see also some recent reviews [178,179,190]. Unfortunately, this
endeavor is apparently far from complete [42,99,103–107,135–147,156,178–193,208–218].
This is because of the confusion about the meaning of macrowork and macroheat even in
classical NEQT [39,42] involving SI- or MI- description, which has only recently been clari-
fied [75,76,134,148–154,156,157] in the MNEQT, where a clear distinction is made between
dW (dQ) and deW (deQ). In an EQ process, both macroworks (macroheats) have the same
magnitude, but not in an NEQ process, where the difference determines diW ≥ 0 (diQ ≥ 0).
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10.3. Medium Σ̃

The above discussion can be easily extended to the medium (the suffix k̃ denotes its
microstates) with the following results:

dW̃(t) = −dẼm ≡ −∑k̃ p̃k̃

∂Ẽk̃
∂w̃
· dw̃

= f̃w · dew = −deW, (260)

dQ̃(t) = dẼs ≡ ∑k̃Ẽk̃dp̃k̃ = −deQ,

where all the quantities including k̃ refer to the medium, except deW and deQ, and have
their standard meaning. Here, we have used Equation (72b) for dW̃ = deW̃. The analog of
Equation (257) is dQ̃/dS̃ = T0 as expected; see Equation (258). We clearly see that

dW0
.
= dW + dW̃ = diW ≥ 0. (261a)

We also have
dQ0

.
= dQ + dQ̃ = diQ ≥ 0, (261b)

with dW0 = dQ0 in view of Equation (95). We can also express diW(t) and diQ(t) as follows:

diW(t) ≡ −(dEm + dẼm), diQ(t) ≡ (dEs + dẼs). (262)

In a finite process P , all infinitesimal quantities are replaced by their net changes

∆W0
.
= ∆W + ∆W̃ = ∆Q0 = ∆iW ≥ 0, (263)

where ∆iW is obtained by integrating diW in Equation (75) over P ; see Equation (303a).

11. External and Internal Variations of dpk(t)

We now introduce the concept of dα pk, which we will focus on in this section. We recall
the numberN of replicas and its partition {Nk} that were introduced in Sections 5.3 and 5.5.
We partition the change dNk in accordance with the micropartition rule; see Definition 22.
We take N to be fixed. In a given process P , Nk is the change without altering N . We
denote these changes by dNk, and define the change in the probabilities by

dpk
.
= dNk/N ,N → ∞.

This ensures that
∑kdpk = 0, (264)

as the total probability is conserved. We apply dα on Nk and pk with the result

dNk = deNk + diNk, (265)

dpk = de pk + di pk, (266)

where dα pk
.
= dαNk/N . As usual, de pk is the change due to exchanges with the medium

and di pk the change due to internal processes.
It immediately follows from Equation (240) that

deQ(t) ≡ ∑kEkde pk(t), diQ(t) ≡ ∑kEkdi pk(t). (267)

Theorem 11. For any body,
∑kdα pk(t) = 0, ∀α, (268)

which puts a limitation on the possible variations dα pk.
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Proof. As dαQ(t) are thermodynamic quantities, they must not change their values if we
change Ek by adding a constant toH. This requires Equation (268) to hold.

Proof of diE = 0 Even If diEk’s Are Not

Using Equation (15) in Equation (233), we have

diE
.
= ∑k pkdiEk + ∑kEkdi pk = 0, (269a)

dE = deE .
= ∑k pkdeEk + ∑kEkde pk, (269b)

where we have used the identity diW = diQ from Equation (95) in the top equation to show
consistency of the above approach with the important identity in Equation (96); the first
term here represents (−diW) and the second term stands for diQ.

Claim 22. The most important conclusion of our approach is to establish that even if diEk 6= 0,
diE = 0 as is well-known; see Equation (53a). This is consistent with {diEk} being the outcome
of the random variable diE, just as {dEk} is the outcome of the random variable dE. In contrast,
{deEk} = deE is constant.

As Equation (269b) reproduces Equation (94), our approach is consistent with the MNEQT.
Even if diEk 6= 0, diE = 0; thus, E cannot change by internal processes as is well-

known. The second equation gives the conventional form of the first law in terms of the
exchange quantities: dE = deE ≡ deQ− deW.

12. Extended State Space, Mieq and Mnieq

This section forms the central core of the review as it deals with identifying the state
space SZ based on the experimental setup in which the macrostate is uniquely described
in terms of Z. This uniqueness of Mieq then immediately leads to the unique microstate

probabilities
{

pieq
k

}
without any additional requirement or approximation. It is this aspect

of uniqueness that distinguishes the µNEQT from other contemporary attempts in the
µ̊NEQT, where the determination of {pk} requires additional ingredients such as the
Fokker–Planck equation or the Markov process.

12.1. Choice of Z for Mieq in SZ

We come to the very important issue of identifying SZ in a given experimental setup.
We have recently reported this in [160]. But because of its importance and to provide
continuity, we briefly revisit this issue in this section.

We will see from Equations (275) and (286) that the statistical mechanics will be
different in the two approaches depending on the choice of the parameter: W vs. Fw.
The former has fluctuations in the microforces Fwk, while the latter has fluctuations in Wk,
as we have already discussed. For the moment, we consider the NFl-W as the parameter
on which to focus our attention.

We now discuss how to choose a particular state space for a unique description of
a macrostate Mneq depending on the experimental setup. To understand the procedure for
this, we begin by considering a set ξn of internal variables (ξ1, ξ2, · · · , ξn) and Zn

.
= X ∪ ξn

to form a sequence of state spaces S(n)
Z . In general, one may need many internal variables,

with the value of n increasing as Mneq is more and more out of EQ [160] relative to
Meq. We will take n∗ to be the maximum n in this study, as discussed in Section 4, even

though n << n∗, needed for S(n)
Z , will usually be a small number in most cases, which is

determined by the experimental setup. The two most important but distinct time scales are
τobs, the time to make observations, and τeq, the equilibration time for a macrostate Mneq
to turn into Meq. For τobs < τeq, the system will be in an NEQ macrostate. Let τi denote
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the relaxation time of ξi needed to come to its equilibrium value so that its affinity Ai → 0
[12,13,51,160,169–173]. For convenience, we order ξi so that

τ1 > τ2 > · · · ; (270a)

we assume distinct τi’s for simplicity without affecting our conclusions. For τ1 < τobs, all
internal variables have equilibrated so they play no role in equilibration, except thermody-
namic forces T− T0, P− P0, etc., associated with X that still drive the system towards EQ.
We introduce the relaxation window ∆nτ satisfying

∆nτ
.
= τn > τobs > τn+1 (270b)

to identify n so that all of ξ1, ξ2, · · · , ξn have not equilibrated (their affinities are nonzero).
They play an important role in the NEQT, while ξn+1, ξn+2, · · · need not be considered as
they have all equilibrated. This specifies Mneq uniquely in S

(n)
Z , which was earlier identified

as in IEQ.
Note that NEQ macrostates with τn+1 > τobs > τn+2 are not uniquely identifiable in

S
(n)
Z , even though they are uniquely identifiable in S

(n+1)
Z . Thus, there are many NEQ

macrostates that are not unique in S
(n)
Z . The unique macrostates Mieq are special in that

its Gibbs entropy S(Zn) is a state function of Zn in S
(n)
Z . Thus, given τobs, we look for the

window τn > τobs > τn+1 to choose the particular value of n. This then determines S(n)
Z in

which the macrostates are in IEQ. From now onward, we assume that n has been found
and S

(n)
Z has been identified. We now suppress n and simply use SZ below.

Remark 64. The linear sizes of various subsystems introduced in Section 5.6 must be larger than
the correlation length λcorr as discussed elsewhere [148] for the first time. In addition, quasi-
independence discussed in Section 7.3 is required to ensure entropy additivity. Therefore, it is
usually sufficient to take the linear size of Σ to be a small multiple (for example, 10 to 20) of the
correlation length to obtain a proper thermodynamics, which is extensive. This means that we will
usually need a theoretically manageable but small number of internal variables n that is controlled
by the experimental setup.

Remark 65. The most direct way to determine n is to begin with a model to describe nonuniformity
of a system, determining the number of required internal variables, as described in Section 4, to
determine S(n)

Z . The consequences of the resulting thermodynamics of Mieq should be compared
with what is observed in experiments performed on the system to verify if the model is appropriate
to describe the experiment. This trial and error method is the price that we pay to study NEQ
macrostates, of which there are many in SX. A simple example of such a modeling is considered in
Section 16.

12.2. Microstate Probabilities for Mieq: NFl-W

The time dependence in some or all components in W during P gives rise to time
dependence in the Hamiltonian H(x|W); the dynamical variable x plays no role as we
show in Equations (146) and (148). The time dependence of W gives rise to time depen-
dence in Ek(W); we will usually suppress the W-dependence unless necessary for clarity.
The microstate mk appears with probability pk in the statistical ensemble. The set {pk}
determines the stochasticity in the ensemble. Accordingly, it determines the nature of the
macrostate (EQ vs. NEQ) but the sets {Ek} and {mk} are independent of {pk}, as they
are deterministic.

We take Σ to be in an internal equilibrium with temperature T and macroforce Fw.
As ηk is extensive, it must be a linear combination of extensive quantities specifying mk;
they are Ek and Fwk. Therefore, we express ηk as

ηk = a + bEk + cw·Fwk, (271)
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where a, b and cw are unknown quantities that have to be determined by probability normal-
ization and evaluating S using Equation (26a), and comparing with dS in Equation (128a)
in the MNEQT. Another way to determine pk is to use the Lagrange multiplier technique to
maximize the entropy in Equation (26a) under the constraints.

As Mieq is unique in SZ, we need to identify the unique set {pk}. We recall that
Z = (E, W) is used in identifying SZ, and W appears as a parameter in the Hamiltonian
H(W) so it also appears as a parameter in Mieq(Z). As a consequence (see Definition 12),
Fwk are fluctuating microforces in SZ. In addition, we have microstate energies Ek always
fluctuating, with the corresponding “macroforce” inverse temperature β fixed. We need to
maximize the entropy S(Z) ([33,175], for example) at fixed

1 = ∑
k

pk, E = ∑
k

pkEk, Fw = ∑
k

pkFwk (272)

by varying pk. We now give two different methods to determine the unique entropy.

12.3. Lagrange Multiplier Method: NFl W

Using the well-known Lagrange multiplier technique [33], it is easy to show that the
conditions in Equation (272) require three Lagrange multipliers λ1, λ2, and λ3 to yield

ηk = λ1 + λ2Ek + λ3 · Fwk. (273)

Also, compare with Equation (271), from which follows

Ek(W) = (1/λ2)(−λ1 + ηk − λ3 · Fwk).

Recalling the definition of Fwk from Equation (149), we identify λ3/λ2 ≡ W. Taking the
ensemble average of Ek, we find

E(S, W) = (1/λ2)(−λ1 − S− λ2W · Fw),

as a function of S and W so that we finally identify λ2 = −β, λ3 = −βW. Thus,

S = −λ1 + βE + βW · Fw, (274a)

and
dS = βdE + βFw · dW, (274b)

as we vary E and W. We finally have

pieq
k (β, Ek, Fwk, W) = exp[β(Gieq

Z − Ek −W · Fwk)], (275)

where βGieq
Z

.
= λ1 is easily identified by taking the average of Equation (273) and using

Equation (26a). We thus see that the thermodynamic potential Gieq
Z is a BI-potential given by

Gieq
Z (F) = Gieq

Z (T, Fw) = EL(S, Fw)− TS, (276)

where EL(S, Fw) is the SI-Legendre transform of E(S, W) introduced in Equation (158); see
Section 6.3. We also have

∀k, Gieq
Z (F) ≡ Gieq

Zk
.
= EL

k (Fwk)− TSk, (277)

where Gieq
Zk is a micropotential corresponding to Gieq

Z (F) but does not fluctuate over {mk},
and EL

k (Fwk) is introduced in Equation (160); see also Equation (161). We now see that

pieq
k (β, Fwk, Ek, W) ≡ exp(−Sk), (278)
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which is consistent with the general definition of Sk; see Equation (27a).
We emphasize that the SI-potential Gieq

Z (F) is not a function of S and W as is easily
checked since dGieq

Z = −SdT + W · dFw. Moreover, it is determined by the ensemble so it
is not a microquantity; see Remark 14. From Equation (277), we find that

∆kS .
= Sk − S = β(EL

k − EL) (279)

is fluctuating over {mk}; here, we have introduced the notation

∆kχ
.
= χk − χ (280)

that describes the fluctuation of χ over {mk} about its average χ; note the difference in the
definition with thermodynamic forces in Equation (76a) that refer to the deviation from
the fields of the medium. We see that the fluctuation ∆kS has two components. The first
part ∆kSE is related to microenergy fluctuation ∆kEk, and the second one ∆kSFw is related
to microforce fluctuation ∆kFw. We see that there is a very close similarity with the first law
and the above result, which we rewrite as

∆kEL ≡ T∆kS, (281)

except that this law relates to fluctuations over microstates and not any transfer.
If we neglect the fluctuations ∆kE and ∆kFw or replacing Ek by E and Fwk by Fw by

considering only those microstates with Ek = E and Fwk = Fw, then pieq
k reduces to the

flat distribution

pieq,ep
k =

1
W(Z)

= exp[β(Gieq
Z − EL)] = exp(−S); (282)

see Remark 54, which can be identified as the microstate probability in the NEQ micro-
canonical ensemble in which ∆kS = 0. It should be stressed that this is consistent with the
well-known fact that EQ thermodynamics does not describe fluctuations; the latter require
statistical mechanics [33]. The same also holds for Mieq(Z) and is captured by pieq,ep

k above.

The normalization constant Gieq
Z (F) defines an NEQ partition function

Z
ieq
Z (F) .

= exp(−βGieq
Z ) ≡ ∑k exp(−βEL

k ). (283)

It should be remarked that the Lagrange multipliers in pieq
k are determined by compar-

ing the resulting entropy to match exactly the Gibbs fundamental relation, a thermodynamic
relation. This then proves that the statistical entropy is the same as the thermodynamic en-
tropy S up to a constant [76], which can be fixed by appealing to the third law, according to
which S vanishes or takes a universal constant at absolute zero; see also [160,176]. The pieq

k
above clearly shows the effect of irreversibility and is very different from its equilibrium
analog peq

k
peq

k = exp[β0(GX(T0, f0w)− Ek −w · f0wk)];

see Equation (40), obtained by replacing W by w, Fwk by f0wk, and β by β0 associated with
the medium Σ̃. The fluctuating Ek, f0wk satisfy

E = ∑
k

Ek peq
k , f0w = ∑

k
f0wk peq

k .

The observation time τobs is determined by the way T and W are changed during a
process. Thus, during each change, τobs must be compared with the time needed for Σ
to come to the next IEQ macrostate, and for the microstate probabilities to be given by
Equation (275) with the new values of T and W.
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12.4. Extensivity Method

We now introduce the second method. For this, we make an important point about the
condition extensivity imposes on ηk = ln pieq

k ; see Remark 14. This requirement requires
that ηk must be a linear combination of SI extensive quantities, which in the present case
can be written as

λ1 + λ2Ek + λ3 · Fwk, (284)

in addition to an extra dependence on the macrostate, which in the present case is λ1 to
be determined by the normalization required by Equation (13). This is nothing but the
expression in Equation (271). We now determine λ1, λ2, and λ3 by determining S using
Equation (284), from which we obtain dS, which is then compared to dS in Equation (274b)
to determine them. The result is exactly what we found above. Thus, the extensive method
is quite useful in obtaining pieq

k directly in SZ.

12.5. Fluctuating {Wk}

We now obtain pieq
k when Fw is used as a NFl parameter instead of W to describe the

same macrostate Mieq. In this case, {Wk} are fluctuating work variables in SZ. We can use
the customary Lagrange multiplier technique to maximize the entropy S(Z) at fixed

E = ∑
k

pkEk, W = ∑
k

pkWk,

or use the following linear combination of extensive SI macroquantities

ηk = ρ1 + ρ2Ek + ρ3 ·Wk,

and apply the aforementioned extensivity argument. Either way, we obtain

Ek(Wk) = (1/ρ2)(−ρ1 + ηk − ρ3 ·Wk).

From Equation (18), we identify definition ρ3/ρ2 ≡ Fw. Taking the ensemble average of Ek,
we find

E(S, W) = (1/ρ2)(−ρ1 − S− ρ2W · Fw),

as a function of S and W so that we finally identify ρ2 = −β, ρ3 = −βW. Thus,

S(E, W) = −ρ1 + βE + βW · Fw,

showing that ρ1 = βGZ with GZ as a normalization constant, which defines a different
representation of the NEQ partition function

Z
ieq
Z

.
= exp(−βGieq

Z ) ≡∑
k

exp(−βEL
k (Fw)), (285)

with Gieq
Z given in Equation (276), and EL

k (Fw) given in Equation (153). It should come

as no surprise that the state functions E(S, W), S(E, W), and Gieq
Z (F) have the same form

whether W is treated as a parameter or Fw. The existence of E(S, W) or S(E, W) for Mieq(Z)
can now be used to obtain the MNEQT for Mieq(Z).

We finally have

pieq
k (β, Ek, Fw, Wk) = exp[β(Gieq

Z (F)− EL
k (Fw))], (286)

which shows that these probabilities are different because the microstates are now mk(Wk),
while they were mk in Equation (275). In both cases, we have the same macrostate Mieq(Z),
and the same entropy; they possess the same MNEQT, but the µNEQT are different for
both cases.
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Remark 66. Comparing the forms of pieq
k (β, Fwk) and pieq

k (β, Wk) above, we see that they differ
only in the presence of Fwk (parameter W) in the former and Wk (parameter Fw) in the latter.
Therefore, all we have to do to construct the latter from the former is to simply replace W · Fwk by
Wk · Fw, i.e., to remove the suffix k from Fw to W. In other words, we interchange the fluctuating
form (Fwk) with its nonfluctuating form (Fw), and vice versa (nonfluctuating form W by its
fluctuating form Wk).

Let us now consider a slight modification of the case above for Mieq(E, W), which we
now describe. Let us divide W into two disjoint groups WNF and WF :

W .
= WNF ∪WF. (287)

We now use WNF as the parameter, but use FF
w corresponding to WF as another parameter.

Remark 67. The last statement in Remark 66 also applies to the above modified case in Equation (287),
where W · Fwk in pieq

k (β, Fwk) is replaced by WNF · Fwk + WF · Fwk so that

pieq
k (β, WNF, WF) = exp[β(Gieq

Z (F)− EL
k (F

NF
wk , FF

w))], (288)

with
EL

k (F
NF
wk , FF

w)
.
= Ek + WNF · FNF

wk + WF · FF
w, (289)

which can be used to define the corresponding NEQ partition function

Z
ieq
Z

.
= ∑

k
exp(−βEL

k (F
NF
wk , FF

w)). (290)

Remark 68. Because of the above two remarks, we will now focus mostly on using NFl-W as the
parameter in the rest of the review. Changing some of the work parameters to fluctuate can be simply
obtained by the results as described above.

12.6. Mnieq(Z) and Its Microstate Probabilities

We now focus on a non-unique macrostateMnieq(SZ) in SZ. We will have to confront
such macrostates if τobs is reduced to make the process faster so that instead of falling in the
window (τn, τn+1), it now falls in a higher window such as (τn+1, τn+2). As said above,M
can now be treated as a unique macrostate in a larger state space SZ′ ⊃ SZ, where n′ > n
is the number of internal variables in SZ′ . Let ξ′(t) denote the set of additional internal
variables needed over SZ so that

Z′(t) = (Z(t), ξ′(t)). (291)

The relaxation times of the internal variables in ξ′ are arranged as in Equation (270a):

τn+1 > τn+2 > · · · > τn′ > τobs; (292)

We can now treat the aboveMnieq(SZ) as an IEQ macrostateMieq(SZ′) in SZ′ = SZ ∪Sξ′ .
In the latter state space, we will have additional macroforce F′wk

.
= A′k, the microaffinity

associated with ξ′ in Sξ′ . Thus, we can always find the state space by identifying the
window (τn′ , τn′+1) in which τobs falls.

Recognizing Mnieq(Z) becomes Mieq(Z′) in SZ′ , we have from Equation (291)

pieq
k (β, EL

k , Fwk, W, A′k, ξ′) = exp[β(Gieq
Z′ − E′Lk (Fwk, A′k))], (293a)

where
E′Lk (Fwk, A′wk)

.
= EL

k (Fwk) + ξ′ ·A′k, (293b)
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in which we have separated out the term, which is the contribution from Sξ′ , from the
Legendre-transformed microenergy in SZ. The situation now is no different than that of
Mieq(Z) studied above, except that Z and SZ must be replaced by Z′ and SZ′ , respectively.

This explains the similarity in the form of pieq
k in Equation (293a) with that in Equation (275),

except that Gieq
Z′ is different from Gieq

Z .

Let us now pursue what happens to the above pieq
k when we wish to describe Mieq(Z′)

in SZ, where ξ′ does not exists. Then, ξ′ ·A′wk, which is defined in orthogonal subspace
Sξ′ , cannot be treated as a function of Z. Thus, it must only be considered as an explicit
function of t in SZ so we introduce a new function

Φ′k(t)
.
= ξ′ ·A′k. (294)

In terms of this function, the microstate probability of Mnieq(Z) becomes

pnieq
k (β, Fwk, EL

k , W, t) = exp[β(Gnieq
Z − EL

k (Fwk, t))], (295a)

with Gnieq
Z

.
= Gieq

Z′ , and
EL

k (Fwk, t) = EL
k (Fwk) + Φ′k(t) (295b)

with an explicit time dependence coming from Φ′k(t). We now extend the definition of
the above partition functions to the current situation of an arbitrary macrostate M with a
possible explicit time dependence:

ZZ(F, t) .
= exp(−βGZ(F, t)) ≡∑

k
exp(−βEL

k (Fwk, t)), (296)

which covers all possible macrostates; we have eliminated the suffix “nieq” as it is no longer
necessary. The extension to the Fl {Wk} is trivial and will not be given.

In this general form, ZZ(F, t) includes the above three partition functions.
We have seen above from Equations (275) and (286) that the statistical mechanics will

be different in the two approaches depending on the choice of the parameter: W vs. Fw.
The former has fluctuating microforces Fwk, while the latter has fluctuating microworks Wk.

From peq
k (β0, w0), pieq

k (β, W), and pnieq
k (β, W, t), we have a complete description of

the microstate probability pk for any arbitrary macrostate. This completes the discussion of
the most important quantity in the µNEQT.

12.7. Common EQ Ensembles

We make a few comments about some common EQ ensembles in statistical mechanics.
They are defined in different state spaces. The microcanonical ensemble correspond to
a system at fixed (NFl) E, while a canonical ensemble corresponds to a Fl {Ek} due to a NFl
temperature T. In both ensembles, the state variable w becomes irrelevant so the entropy
S(E) only depends on E. This means that fw ≡ 0 so fw ·w ≡ 0. This makes EL = E for
both ensembles. Therefore, both ensembles are defined in the state space SE. As there are
no fluctuations (besides the unimportant width of the energy shell around E in the phase
space) in the microcanonical ensemble, its probability distribution must be given by the flat
distribution in Equation (282) over all microstates

pmicro
k = 1/W(E, w) = exp(−S); (297)

see Equation (282). For the canonical ensemble, the microstate probability becomes

pcan
k (β, Ek) = exp(−β0Ek)/Zeq(β0), (298a)

Zeq(β0)
.
= ∑k exp(−β0Ek), (298b)
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where we have used the standard symbols for the EQ partition function Zeq(β0) =
exp(−β0F(β0)) and the Helmholtz free energy F(β0).

In the grand canonical distribution, we allow Fl particle number N, which is controlled
by a NFl chemical potential µ0, in addition to Fl energy E, so the distribution is defined in
the state space SE,N . It is written as the VTµ-ensemble. By extending the discussion above
to now include N and use SE,N , we have

pgr-can
k (β0, µ0, Ek, Nk) = exp(−β0EL

k )/Zeq(β0, µ0), (299a)

Zeq(β0, µ0)
.
= ∑k exp(−β0EL

k ), (299b)

where
EL

k (µ0)
.
= Ek − µ0Nk, (300)

and Zeq(β0, µ0)
.
= exp(−β0Φ) is the grand canonical partition function. For the NTP-

ensemble, we have FL E and V so we find EL
k (P0)

.
= Ek(Vk) − P0Vk, which is used to

obtain the microstate probability and the partition function. Other ensembles can also be
considered following the discussion given above.

All these ensembles are easy to extend to NEQ ensembles by introducing the internal
variables in ξ̈ ⊆ ξ and affinity Äk in EL

k and the NEQ partition function

ZZ
.
= exp(−βGZ) ≡∑

k
exp(−βEL

k ).

With proper change in EL
k , we can also consider Fl-ξ̈ and NFl-Ä, or a combination of them,

to be used in the ZZ above.

13. Ensembles of Process Trajectories

With W (whether NFl or Fl) as the macrowork parameter, the variation dZ(t) .
=

(dE(t), dW(t)) in SZ defines not only the microwork {dWk}, but also a thermodynamic
process P . The trajectory γk in SZ followed by mk as a function of time will be called
the Hamiltonian trajectory during which W varies from its initial (in) value Win to its final
(fin) value Wfin during P , the path γP denoting the path the macrostate follows during
this process; see Definition 20. The variation produces the generalized microwork dWk.
As pk plays no role in dWk, its determination is simplified considerably in the µNEQT.
The microwork dWk also does not change the index k of mk, as said above. The ensemble
average of Fwk is Fw (see Equation (113)), and that of dWk is dW (see Equation (39)). This
notion of micro- and macrowork is consistent with using the mechanical definition of work
(force times displacement).

Here, we discuss a process P in terms of trajectories {γk} followed by microstate {mk}.
We assume that the trajectories are uniquely specified. For an NEQ process, this requires
defining these trajectories in the state space SZ, as discussed in Section 12. Trajectories
are useful only when the number |m| of microstates remain the same during the process:
|m|in = |m|fin. If they are different, such as when |m|in < |m|fin, we need to add in |m|in the
missing microstates that have vanishing microstate probabilities initially during P . This
is a common situation in the expansion of a classical gas, which we discuss in Section 16.
The converse happens in the contraction, where missing microstates are added in |m|fin but
again with vanishing microstate probabilities. We will assume in this section that we have
ensured that |m|in = |m|fin. Thus, the number of unique Hamiltonian trajectories in P is
exactly |m|in = |m|fin at all times during P .

13.1. Trajectory Ensemble

A central aspect of the µNEQT is the fundamental distinction between process mi-
croquantities like dWk and dQk along a Hamiltonian trajectory γk. As we have seen in
Conclusion 11, dWk and dQk are defined in independent state subspaces SW and SS, respec-
tively, which makes them independent process microquantities. To introduce a trajectory
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ensemble requires a collection γ of all Hamiltonian trajectories {γk} and the probabilities,
which will be used to introduce the trajectory ensemble average (TEA). The uniqueness in-
herent in Equation (110) that there is a well-defined pk for each uniquely specified mk will
not usually hold for the TEA 〈•〉TE. We will see that there are many possible probabilities
depending on the microquantities {χk} being averaged over γ. Thus, we need to introduce
a trajectory probability p(q,α)

γk for accumulation ∆αχ(P), χ ∈ χ
.
= {S, E, W}, with χ defined

as the average in Equation (12):

∆αχ(P) =
∫
Pdαχ = ∑k

∫
γk
(pkdαχk + χkdα pk) (301)

The accumulation in the first equation is defined as the integration (summation) of dαχ
over P , which can be expressed as a sum over the Hamiltonian trajectories {γk} followed
by {mk} over P , as shown in the second equation and briefly discussed recently [156]; see
also Equation (307b).

In order for the resulting theory to remain consistent with classical thermodynamics
and, in particular, with the second law, we must ensure that 〈•〉TE remains consistent with
thermodynamic averages in the MNEQT described in the previous sections. This is not
a major issue for the consideration of various microworks in SW, as we show now.

13.2. Trajectory Quantities

Let us consider some infinitesimal microquantity dαθk for a body Σb (see Equation (10b))
and the ensemble average

〈dαθ〉 = ∑k pkdαθk

for a body Σb. We now introduce a trajectory quantity ∆αθk and a path quantity 〈∆αθ〉 obtained
by accumulating them along γk and P by simply integrating dαθk and 〈dαθ〉, respectively:

∆αθk
.
=
∫

γk
dαθk, 〈∆αθ〉 .

=
∫
P 〈dαθ〉. (302)

We give the explicit forms of the most important trajectory quantities below:

∆αWk
.
=
∫

γk
dαWk, ∆αW̃k

.
=
∫

γk
dαW̃k, (303a)

∆αQk
.
=
∫

γk
dαQk, ∆αEk

.
=
∫

γk
dαEk, (303b)

∆αSk
.
=
∫

γk
dαSk, (303c)

using which we finally obtain

〈∆αW〉 = ∆αW = −∑k
∫

γk
pkdαEk,

〈∆αQ〉 = ∆αQ = ∑k
∫

γk
Ekdα pk, (304)

∆αS = −∑k
∫

γk
ηkdα pk.

We must also recall Theorem 3. The equation for ∆αWk, ∆αW = 〈∆αW〉 above and their
differential forms dαWk, dαW = 〈dαW〉 provide the correct identification at the microscopic
level in terms of the SI-quantities dαEk, 〈dαE〉, and must be used to account for irreversibility.
So far, we have had no need to introduce the concept of temperature in the discussion so
the discussion is valid for all possible processes. In terms of T(t) of the body Σb, we can
use an alternate expression for ∆αQk and ∆αQ as follows:

∆Qk
.
=
∫

γk
T(t)dSk, ∆Q = ∑k

∫
γk

T(t)dSk,

∆eQk
.
=
∫

γk
T0(t)deS, ∆eQ = ∑k

∫
γk

T0(t)deS, (305)

∆iQk
.
= ∆Qk − ∆eQ, ∆iQ = ∑k∆iQ,
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where we have used the fact that exchange microquantities are NFl; see Theorem 7 and
Equation (193c). The instantaneous temperature T(t) does not necessarily equal the instan-
taneous temperature T0(t) of the medium Σ̃h; see Equation (144). Only if the process is
isothermal (we now require the temperature of Σ̃h to remain constant at T0 throughout the
process) do we have

∆iW = T0∆iS; (306)

see also Equation (144). Otherwise, ∆iW is given by integrating diQ in Equation (47)
over P .

13.3. Trajectory Averages and Probabilities

We consider the expanded form of ∆αχ in Equation (301) obtained by interchanging
the integration and summation and changing the integration to over the Hamiltonian
trajectory γk. Using the mean-value theorem of calculus, we can rewrite it as

∆αχ(P) = ∑k(p(χα)
γk ∆αχk + χ

(α)
γk ∆α pk) (307a)

in terms of the mean values pγk and χγk
of the two integrals, respectively,

p(χα)
γk

.
=

∫
γk

pkdαχk

∆αχk
, χ

(α)
γk

.
=

∫
γk

χkdα pk

∆α pk
; (307b)

here, ∆αχk is defined in Equation (302), and

∆α pk
.
=
∫

γk
dα pk(t). (308)

It is well-known that p(χα)
γk is the value of pk at some point along γk; similarly, χ

(α)
γk is the

value of χk also at some point along γk; the two points need not be the same. It is easy to
verify that

∑k p(χα)
γk = 1 (309)

as expected of a probability measure.
We see that the sum of the first term in Equation (307a) is identical in form to the

accumulated thermodynamic average 〈∆αθ〉 given in Equation (302), and is expressed in
terms of trajectories as follows:

〈∆αθ〉 .
= ∑k

∫
γk

pkdαθk, (310)

where pk(t) usually cannot be taken out of the integral sign; see Equation (303). We now
express 〈∆αθ〉 in a form suitable for using trajectory quantities. We require that the trajectory
average 〈∆αθ〉TE reproduce the thermodynamic average 〈∆αθ〉 over P . In that case, there
is no reason to explicitly show the suffix TE unless the requirement is not met. Using
Equation (302) for 〈∆αθ〉, we define

〈∆αθ〉TE
.
= ∑k p(θα)

γk ∆αθk (311)

where we have introduced the trajectory probability pγk = p(θα)
γk in terms of dαθk:

p(θα)
γk

.
=
∫

γk
pk(t)dx(θα)

k (t); (312)

see Equation (307b). Here
dx(θα)

k (t) .
= dαθk(t)/∆αθk.

We note from Equation (311) that ∆αθ is the trajectory average with respect to {p(θα)
γk }.

The procedure ensures that 〈∆αθ〉TE = 〈∆αθ〉 per our requirement. Using
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dW̃k(t) ≡ −deWk(t) and dWk(t) for dαθk(t), we obtain the average accumulated work
∆W̃ ≡ −∆eW done on and ∆W done by the system, respectively, in terms of the respective
trajectory probabilities:

∆W̃ .
= ∑k p(We)

γk ∆W̃k = −∆eW, (313a)

∆W .
= ∑k p(W)

γk ∆Wk; (313b)

the probabilities are determined by

dx(We)
k (t) = dW̃k(t)/∆W̃k,

and
dx(W)

k (t) .
= dWk(t)/∆Wk,

respectively, over P , in Equation (312). The irreversible macrowork is obtained as
∆iW = ∆W0 = ∆W + ∆W̃.

One can similarly define another possible trajectory probability p(I)γk by using

dx(t)k (t) .
= dt/τ over γk:

p(I)γk

.
=
∫

γk
pk(t)dx(t)k (t);

here τ is the duration of P . This trajectory probability is determined by γk(t) alone (it is
not affected by dαθk(t)])and can be identified as an intrinsic (I) trajectory probability.

It should be evident that the three trajectory probabilities are not the same. In other
words, there is no unique trajectory probability pγk as said earlier. This justifies the use of
the identifying superscript in each of the trajectory probabilities above.

As suggested above, use of γk allows us to determine thermodynamic macroworks
∆W or ∆W̃ in a straightforward manner. The determination of ∆W̃ = −∆eW is simplified
by the use of Theorem 7 as we show below. We first use dW̃k = dW̃ = deW̃ to obtain

∆eW̃k
.
=
∫

γk
deW̃ = ∆eW̃ = −∆eW

so that
∆W̃ = −∆eW∑k p(I)γk = −∆eW

as expected.
We now turn to the sum of the second term in Equation (307a), which is simply

∆αχs(P)
.
=
∫
Pdαχs

.
= ∑k

∫
γk

χkdα pk.

For example, the cumulative macroheat ∆Q = ∆Es is the ensemble sum over k of the
integral of Ekdpk or ensemble average of Ekdηk over γk [33]. We now express ∆αχs in a form
suitable for using trajectories by using the mean value theorem; see Equation (307b). This
is precisely the above sum in Equation (307a). We can express χ

(α)
γk

χ
(α)
γk

.
=
∫

γk
χk(t)dy(pα)

k (t),

where
dy(pα)

k (t) .
= dα pk(t)/∆α pk.

As an example, we show how the above discussion can be applied to ∆eQ given in
Equation (304). We have already observed that deQk = Ekdeηk = deQ. Thus,

∆eQ = ∑k
∫

γk
pkdeQ =

∫
PdeQ∑k pk =

∫
PdeQ,
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an obvious result from the MNEQT. By replacing deQk by deSk, and following the same
argument, we find the same consistency with the MNEQT in that

∆eS = ∑k
∫

γk
pkdeS =

∫
PdeS.

13.4. The MNEQT

We briefly review the MNEQT, which is described by considering SI-changes in χ over
the process P . The corresponding change is

∆χ
.
=
∫
Pdχ = χfin − χin (314)

between the initial (in) and the final (fin) macrostates of the process P ; here dχ
.
= χ(t +

dt)− χ(t). We also need to determine

∆eχ
.
=
∫
Pdeχ, ∆iχ

.
=
∫
Pdiχ, (315)

so that ∆χ = ∆eχ + ∆iχ, as expected. Similarly, for the process quantities, we have

∆αχm
.
=
∫
Pdαχm, ∆αχs

.
=
∫
Pdαχs. (316)

The determination of {χk(t)} at each instant t by following its Hamiltonian evolution
γk is needed to formulate the µNEQT. However, this is not the complete story, as the
stochasticity requires a strategy to determine the set {pk(t)} as well. The knowledge of
both {χk(t)} and {pk(t)} will completely determine the µNEQT. The same knowledge also
allows us to determine the average χ, which then determines the MNEQT of M. In some
situation, it is also possible to derive the µNEQT from first developing the MNEQT. In both
cases, we must ensure that Condition 1 is fulfilled:

Condition 1. A µNEQT is required to remain consistent with the MNEQT. This should be
equivalent to the justification of the MNEQT by a statistical procedure.

14. Mechanical Microfriction

Within the framework of the µNEQT, we wish to uncover how microscopic friction
(microfriction) that eventually results in frictional dissipation emerges in a system in the
guise of an internal variable; see Equation (137). The application further gives an example
of how a system Hamiltonian becomes dependent on internal variables, and how the
system can be kept stationary despite motion of its parts. However, the most important
aspect of this section is the emergence of the Langevin evolution due to the relative motion
of its parts in the µNEQT without introducing an ad hoc Langevin dynamics.

Remark 69. This is an example of how internal variables in deterministic mechanics turn into
stochastic (i.e., thermodynamic) variables with fluctuating dynamics. This is a consequence of the
stochastic aspect in the µNEQT.

14.1. Piston–Gas System
14.1.1. Microdescription

We consider the traditional undergraduate example depicted in Figure 3a for this
exercise. To describe it realistically, we need to treat the motion of the piston by including
its momentum Pp in our discussion. The gas, the cylinder, and the piston constitute
the system Σ. We have a gas of mass Mg in the cylindrical volume Vg, the piston of
mass Mp, and the rigid cylinder (with its end opposite to the piston closed) of mass Mc.
The Hamiltonian H of the system is the sum of Hg of the gas, Hc of the cylinder, Hp
of the piston, and the interaction HamiltonianHint between the three subsystems Σg, Σc,
and Σp that make up Σ, and the stochastic interaction HamiltonianHstoc between Σ and
Σ̃. As is customary, we will neglectHstoc here. We assume that the centers of mass of the
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composite subsystem Σgc = Σg ∪ Σc and Σp are moving with respect to the medium with
linear momenta Pgc and Pp, respectively. We do not allow any rotation for simplicity. We
assume that

Pgc + Pp = 0, (317)

so that Σ is at rest with respect to the medium. Thus,

H(x|V, Pgc, Pp) = ∑λHλ(xλ|Vλ, Pλ) +Hint,

where λ =g,c,p, xλ= (rλ, pλ) a point in the phase space Γλ of Σλ, and Pg + Pc = Pgc; Vλ is
the volume of Σλ, and V = Vg + Vc + Vp is the volume of Σ. We do not exhibit the number
of particles Ng, Nc, Np as we keep them fixed. We let x denote the collection (xg, xc, xp).
Thus, the system’s microstate energy Ek = H(xk|V, Pgc, Pp) and the average energy E
depend on the parameters V, Pgc, Pp and the macrostate. We first consider Ek and introduce
the microfields

Pk
.
= −∂Ek

∂V
, Vgck

.
=

∂Ek
∂Pgc

, Vpk
.
=

∂Ek
∂Pp

. (318a)

In terms of these microfields, we have

dEk = −PkdV + Vgck·dPgc + Vpk·dPp = −dWk. (318b)

Using Equation (317), we can rewrite this equation as

dEk = −PkdV + Vk·dPp, (319a)

in terms of the relative microvelocity

Vk
.
= Vpk −Vgck (319b)

of the piston with respect to Σgc in the microstate mk. The corresponding macrofields
are denoted by P, V .

= Vp −Vgc that appear in the MNEQT, which has been investigated
previously in [157]. We briefly summarize this MNEQT. The SI-first law becomes

dE = TdS− [PdV −V·dPp], (320a)

where we have used the conjugate macrofields

T .
= ∂E/∂S, P .

= −∂E/∂V, V .
= ∂E/∂Pp, (320b)

as shown elsewhere ([148], and references therein). The relative velocity V is commonly
known as the drift velocity of the piston with respect to Σgc. In terms of the exchange
quantities, we can also write the first law as

dE = T0deS− P0dV, (321)

as the EQ value of V is V0 = Ṽ = 0.
We can cast the velocity term in a more useful form from the viewpoint of dynamics

by using
Vk·dPp ≡ Fp·dRk, (322)

where Fp
.
= dPp/dt is the NFl force and dRk= Vkdt is the Fl relative microdisplacement of the

piston in mk:
dEk = −PkdV + Fp·dRk = −dWk. (323)

Thus, Ek depends on V and Rk as parameters, in which V is NFl and Rk is Fl. This makes the
current mechanical description mixed with Pk Fl and Fp NFl; see Claim 5. It is also possible

to treat
{

Fpk

}
Fl with Rk = R NFl,∀k. In this case, Fp·dRk will be replaced by Fpk·dR as
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discussed earlier in Claim 6. As this microwork is internal, we can use Equation (20) to
obtain the same physics. Thus, the corresponding Fl internal microworks are identical:

diWfk
.
= −Fp·dRk ≡ −Fpk·dR. (324)

It is later identified with the work done by the microfriction as is indicated by the additional
suffix f.

In the following, we focus on a single piston, so we will use NFl Rp and Fl Fpk. Using
Equation (176) with deWk = P0dV, we conclude that

diEk = −diWk = −(Pk − P0)dV + Fpk·dR, (325)

with dQk given in Equation (44a), and deQk given in Equation (256a). Thus,

deQk = −T0deSk, diQk = diWk. (326)

It should be evident that by treating the piston as a mesoscopic particle such as
a pollen or a colloid, we can treat its thermodynamics using the above procedure. This
allows us to finally make a connection with the system depicted in Figure 3b in which
the particle (a pollen or a colloid) may be manipulated by an external force F0. We now
treat a mesoscopic Brownian particle (BP); we will use FBP for Fp to emphasize this. The
internal motions of the BP are not controlled by any external agent, so the relative motion
described by the relative displacement Rk represents an internal variable [42,108]. Accord-
ingly, the corresponding NFl affinity Fp0 = 0 for Σ̃. Because of this, Equation (321) does not
contain the relative displacement R. Therefore, the use of this MI-version of the first law
will not directly reveal all the fluctuations encountered by the BP. The use of the SI-first law
in Equation (320a) is perfectly suited for this purpose. This will be the case below.

Let us consider the BP initially at R(0) at t = 0, which changes to R(t) in time as
we observe it at successive times τobs, 2τobs, 3τobs, · · · . In the ballistic regime seen for
t ' 0, the BP undergoes correlated motion so that ∆R(t < τobs)

.
= R(t < τobs)− R(0)

depends strongly on the history. In accordance with Equation (95), it takes a while (t < t∗),
the crossover regime, for the memory to disappear so that, at t = τobs, the correlation
disappears so that ∆R(τobs)

.
= R(τobs)− R(0) has lost memory of the past. In other

words, R(τobs) has no memory of R(0), a requirement of the BP being in some Mieq.
In another time period τobs, the macrostate changes into another Mieq , and so on. We denote
the corresponding microforces to get from one Mieq into the next Mieq, by Fi,BP(iτobs).
The motion during each observation follows

mR̈(iτobs) = Fi,BP(t),

where m is the reduced mass ([157], Equation (31)). At different observation times,
the sequence {∆R(iτobs) = R(iτobs)− R((i− 1)τobs)}i=1,2,··· is a sequence of uncorrelated
displacements. We now follow the original idea of Einstein to treat the net displacement

∆R(tobs = ı̄τobs) = ∑ı̄
i=0∆R(iτobs)

of a BP as a random walk, which gives Equation (40) in ([157], Equation (31)), as expected.
Note that this is a temporal scan of the BP. As is customary in the µEQT, we can scan
the states of the BP at successive time iτobs as different microstates so {Fi,BP} represents
the set of microforces [33]. With this interpretation, we can justify the ensemble average
to be no different than the temporal average, which is consistent with our discussion of
extending the ergodicity hypothesis to NEQ phenomena as discussed in Section 1.1; see
also Remark 53.
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14.1.2. Macrofriction

With the changeover in Equation (322), Equation (323) becomes dE = TdS− (PdV −
Fp·dR), which was extensively used in [157] to study the dynamics of the piston. Compar-
ing it with Equation (321), we immediately find

diW = (P− P0)dV − Fp·dR ≥ 0,

which is in accordance with Theorem 4. Consequently, we must have

(P− P0)dV ≥ 0, V·dPp = Fp·dR ≤0. (327)

In equilibrium,
P→ P0, and V→ 0 or Fp → 0 (328)

as expected. The inequality Fp·dR ≤0 shows that Fp and dR are antiparallel, which is what
is expected of a frictional macroforce. This causes the piston to finally come to rest. As Fp
and V vanish together, we can express this force as

Fp = −µV f (V2), (329)

where µ > 0 and f is an even function of V. The medium Σ̃ is specified by T = T0, P = P0
and V0 = 0 or Fp = 0. We will take Fp and dR to be collinear and replace Fp·dR by −Ffdx
(Ffdx ≥ 0), where the magnitude Fp is written as Ff as a reminder that this force is responsi-
ble for the frictional force and dx is the magnitude of the relative displacement dR. The sign
convention is that Ff and increasing x point in the same direction. From Equation (320a),
we obtain

dE = TdS− PdV − Ffdx. (330)

The macrowork by friction is
dWf = Ffdx. (331)

The important point to note is that the friction term Ffdx properly belongs to dW. Thus,

diWf = Ffdx ≥ 0; (332)

thus, deWf ≡ 0. In other words, friction always results in dissipation; it never appears in
a reversible process. Both contributions in diW are separately nonnegative; see Corollary 1.

We can determine the exchange heat deQ = dQ− diW

deQ = TdS− (P− P0)dV − Ffdx. (333)

It should be emphasized that in the above discussion, we have not considered any
other internal motion such as between different parts of the gas besides the relative motion
between Σgc and Σp. These internal motions within Σg can be considered by following the
approach outlined elsewhere [148]. We will not consider such a complication here.

Remark 70. In the µNEQT, the microfriction work diWfk in Equation (324) appears as part of the
internal microwork diWk. This contribution exactly balances a contribution to the internal microheat
diQk due to the last identity in Equation (326). It should be recalled that despite the equality, internal
microheat and internal microwork have two independent origins in the µNEQT as discussed in
Section 10.2: the former arises from the change diηk (see Equation (240)), while the latter arises
from the change diEk (see Equation (176)). It is interesting to observe that Sekimoto [140] treats the
frictional work Ffkdx as microheat, which then allows him to identify it as the exchange microheat
deQk. Then identifying the remainder of the SI work (PkdV above) as the opposite of the external
(medium) microwork in accordance with Equation (71b) allows him to write down an analog of the
first law at the microstate level in the µ̊NEQT; see also Crooks [141]. This makes these approaches
different from ours.
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14.1.3. Particle–Spring–Fluid System

We need to consider two additional forces Fs and Ff, both pointing in the same direction
as increasing x; the latter is the frictional force induced by the presence of the fluid in which
the particle is moving around. The analog of Equation (332) for this case becomes

diW = (Fs + F0)dx + Ffdx .
= Ftdx, (334)

where Ft = Fs + F0 + Ff. The other two works are dW = (Fs + Ff)dx and dW̃ = F0dx =
−deW. In EQ, Ff = 0 and Fs + F0 = 0 (F0 6= 0) to ensure diW = 0. In this case, dW̃ =
−dW = F0dx, but this will not be true for an NEQ state since diW > 0.

14.1.4. Particle–Fluid System

In the absence of a spring in the previous subsection, we must set Fs = 0 so

dW = Ffdx, dW̃ = F0dx = −deW, diW = (F0 + Ff)dx. (335)

This is the situation of a driven particle undergoing Langevin evolution with various
works that have been identified. In EQ, F0 + Ff = 0 so that Ff = −F0. This means that in
EQ, the particle’s nonzero terminal velocity is determined by F0 as expected. In this case,
dW̃ = −dW = F0dx, but this will not be true for an NEQ state.

As the above works denote average works, we can identify their microscopic analogs
by inspection: dWk = Ffk, deW = −F0dx and diWk = (F0 + Ffk)dx = diQk.

15. An NEQ Microwork Fluctuation Theorem in SZ

As an important application of the µNEQT, we derive an NEQ microwork fluctuation
theorem for an arbitrary macrostate M. This should be contrasted with the fluctuation
theorem proposed by [142–144], which is restricted between two EQ macrostates. We
will follow the method that we have proposed earlier [150,151]. As is usual, we take
the set {mk} to be countable infinite. We also consider W to be NFl, but the discussion
is easily extended to Fl {Wk}. The Legendre-transformed microenergy EL

k (Fwk, t) (see
Equation (295b)) for an arbitrary macrostate M changes as mk changes due to varying W
during a process P between M(in) = {mink, pink} and M(fin) = {mfink, pfink}, but k does not
change. The microenergy change along a trajectory γk

.
= γk(mfink | mink) during P between

tin = 0 and tfin = τ is related to the mechanical microwork

∆WL
k (mfink,mink) = −∆EL

k
.
= −(EL

fink − EL
ink); (336)

we use Equation (160) for EL
k . Being mechanical, ∆EL

k is independent of pk. By definition,

∆EL
k = ∆Ek + ∆Φ, (337)

with Φ defined in Equation (23b). We finally conclude that

Conclusion 13. If we are interested in knowing the cumulative change ∆WL
k , we only need to

determine ∆EL
k by following the same mk mechanically along γk during P . The probability plays

no role as ∆WL
k is a microstate function, i.e., is a difference between the Legendre-transformed

microstate energies of the terminal microstates mink and mfink, and not of the actual trajectory γk;
see Equation (336). Thus, it is not a process microquantity.

Remark 71. It should be stated here that ∆WL
k (mfink,mink) is the same for all different processes

P .
= P(M(in) |M(fin))’s between the same two arbitrary macrostates Mfin and Min so that they all

share the same set of trajectories {γk} between EL
fink and EL

ink (see Definition 5), so

∆WL
k (mfink,mink) = −∆EL

k (Fw,fin,Fw,in), ∀P , (338a)
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although Fl is not a process quantity. The internal microwork, which is a Fl process microquantity, is

∆iWL
k = ∆WL

k − ∆eWL, (338b)

with ∆eWL defined by
∆eWL = −

∫
Pw · df0w;

see Equation (157). The latter is also a process macroquantity, but is NFl as it is the same for
all mk’s.

What the above remark implies is the following. Different processes between the
same two macrostates M(in) and M(fin) differ not in

{
∆WL

k
}

but in {pk} so the Fl
{

∆WL
k
}

is the same for all processes involving Meq,Mieq, or Mnieq. This means that we can deter-
mine

{
∆WL

k
}

for some process between M(in) and M(fin) such as an EQ process between
M(in) = M

(in)
eq and M(fin) = M

(fin)
eq . Then, the same

{
∆WL

k
}

will also describe any possible
P(M(in) | M(fin)). On the other hand, ∆eWL(P) is NFl (over {mk}) but depends on the
process, and will have to be determined for each one of them separately. This makes the
generalized microwork ∆eWL or ∆Wk unique in that it does not depend on the nature
of P so dealing with it is simpler. Despite this, as it is Fl, it contains the contribution of
dissipation in it given by the average ∆iWk(P)

.
= 〈∆iW(P)〉, as we will demonstrate below.

Before demonstrating this, we make the following observation. The property of a quan-
tum mk maintaining its identity during P is because we have assumed mk to be a singlet;
see Remark 5. If mk is degenerate, it can be, without any intervention from the medium,
transformed into any of them without changing their microenergies. The important fact to
remember is that transformations among degenerate microstates happens in both ways so
they do not affect their probabilities. This is no different for a classical microstate mk; see
Definition 4. This microstate changes from δxk to δxl , k 6= l as it evolves in time following
its Hamiltonian dynamics, both having the same microenergy so the dynamics relates
microstates on the same energy shell just like the degenerate microstates above. The Hamil-
tonian dynamics also does not change {pk}. In both mechanics, the deterministic dynamics
causes no problem as the change ∆WL

k = −∆EL
k is not affected by any stochasticity in the

evolution. It only changes due to work variables; see Conclusions 11 and 12 for more
details. In this case, introducing

EL
k (τ) = EL

k (δxk(τ)), EL
k (0) = EL

k (δxk(0),

we can write ∆WL
k as in Equation (336). Thus, whether we are considering a classical system

or a quantum system, we can always express ∆WL
k as in Equation (336).

We now consider a process P taken by Σ between two arbitrary macrostates M(in) and
M(fin) having ZZin(β, Fw,in, t) and ZZfin(β, Fw,fin, t) as respective NEQ partition functions
(see Equation (283)), as the work parameter varies from Win to Wfin. The inverse tem-
perature in the terminal macrostates is β, which may be different from β0 of the medium.
As a special case, the terminal macrostates can refer to EQ macrostates, so they are in-
cluded in our analysis below. In this case, F = F0 in the terminal macrostates, and will be
considered below.

We now introduce the following exponential microwork average:

Win( β|
{

∆WL
k

}
)

.
=
〈

eβ∆WL
〉

in
= ∑k pkineβ∆Wk (339)

involving Fl microworks ∆WL
k ; here, 〈·〉in refers to a special averaging with respect to the

initial probabilities given in Equation (295a) at time tin:

pkin
.
= e−βEL

k,in /ZZin(β, Fw,in, 0)
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of the initial macrostate M
(in)
ieq . This particular averaging was first introduced by Jarzynski

in deriving what is commonly known as the Jarzynski equality (JE) [142–144] in the µ̊NEQT.
We will return to the equality latter; see the discussion leading to Equation (345).

Let us evaluate the particular average
〈

eβ∆WL
k

〉
in

in Equation (339) using Equation (336).
We have

Win( β|∆WL
k )

.
=
〈

eβ∆WL
〉

in

.
= ∑

k

e−βEL
k,in

ZZin
eβ∆WL

k

= ∑
k

e−βEL
k,i

ZZin
e−β(EL

kfin−EL
kin),

which leads to

Win( β|
{

∆WL
k

}
) = ∑

k

e−βEL
k,fin

ZZin
=

ZZin(β, Fw,in, τ)

ZZin(β, Fw,in, 0)
,

where EL
k,fin and ZZin are final Legendre-transformed energy and the NEQ partition func-

tion for Σ. Introducing the thermodynamic potential energy difference ∆GZ(F, τ)
.
=

GZfin(Ffin, τ)− GZfin(Fin, 0), we finally have

Win( β|
{

∆WL
k

}
) =

〈
eβ∆WL

〉
0
= e−β∆GZ . (340a)

This is our new microwork theorem involving Legendre-transformed microworks ∆WL
k .

We can re-express the above equation in the following form:〈
eβ0(∆WL+∆GZ)

〉
in
= 1. (340b)

Recall that ∆WL
k + ∆GZ in the exponent on the left is nothing but [−(∆EL

k − ∆GZ)] =
[−(∆Ek − ∆E) − (∆Φk − ∆Φ) + T∗∆S], where we have introduced a temperature-like
quantity T∗ by the following relation

T∗ .
=

∫
P TdS
∆S

.

We thus see that the exponent on the left contains information about the entropy change
∆S, soWin contains information about ∆S.

Remark 72. The macrostates between tin and tfin in P used above need not belong to the state
space SZ.

Instead of an NEQ process between arbitrary macrostates, we now focus on an
arbitrary process between M

(in)
eq and M

(fin)
eq , each in a canonical ensemble discussed in

Section 12.7. In this case, we need to set β = β0 for the terminal macrostates, and use

pcan
kin

.
= e−β0Ek,in /Zin(β0);

given in Equation (298); here, Zin(β0) is the initial equilibrium partition function for
the system at inverse temperature β0, and Ek,in is the initial EQ microstate energy in
M

(in)
eq . As we are in space SX, we must set Φ = 0 so

[
EL] reduces to [E] for the terminal

macrostates; see Equation (11a). In essence, this means that we do not need to consider
any Legendre-transformed quantity in our discussion. Thus, Win in Equation (339) is
replaced by

Wcan
in ( β0|{∆eWk})

.
=
〈

eβ0∆W
〉

in
= ∑k pcan

kin eβ0∆Wk (341)
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in terms of the microworks ∆Wk. It is easy to see that Equation (340a) is replaced by

Wcan
in ( β0|{∆eWk}) =

Zfin(β0)

Zin(β0)
= e−β0∆F, (342)

in terms of the free energy difference ∆F .
= Ffin − Fin. This is our new work theorem

involving microworks in the canonical ensemble.
On the other hand, if following Jarzynski [142–144] we use ∆eWk = ∆eW in place

of ∆Wk in Win and evaluate the microwork average (we now add another suffix “e” as
a reminder of the exchange microworks) introduced by him, we find that

W (can,e)
in ( β0|{∆eWk})

.
=
〈

eβ0∆eW
〉

in
(343)

simply reduces to

W (can,e)
in ( β0|{∆eWk}) = eβ0∆eW〈pkin〉 ≡ eβ0∆eW , (344)

which is a purely MI-quantity, so it provides no information about the possible irreversibil-
ity in the system. This conclusion is very different from that arrived at by Jarzynski,
who derived the Jarzynski relation (we now add another suffix “J” as a reminder of his
evaluation)

W (can,J)
in ( β0|∆eWk) = e−β0∆F (345)

by using the conjecture in Equation (7) mentioned at the end of Section 1.1. The conjecture
and its consequence for the concept of NEQ work have generated fierce debate in the
literature [156,180–189,191–193,208–212]. We invite the reader to consult these references.
We have also discussed the conjecture elsewhere [150,151] so we will not pursue it here.
However, we do wish to make the following important observation. Instead of using
the initial probability pkin, we can use the thermodynamic trajectory probability p(E)

γk or

p(χe)
γk (see Equation (307b)) or any arbitrary probability measure pγk for each trajectory γk,

and still satisfy 〈
pγk

〉
= 1

as seen from Equation (309). Thus,

W (can,e)( β0|{∆eWk}) = eβ0∆eW〈pγk

〉
≡ eβ0∆eW .

A thermodynamically consistent result can be obtained for ∆eWk, which overcomes
all the objections raised by Cohen and Mauzerall [180,181]. Using the thermodynamic
probability p(χe)

γk in Equation (343) for each trajectory instead of pkin, we obtain a thermody-
namically consistent NEQ identity

W (e)( β|
{

∆eWL
k

}
) = eβ0∆eWL

〈
p(χe)

γk

〉
≡ eβ0∆eW , (346)

where M(in) and M(fin) both have the same NEQ temperature β, but the temperature β(t)
along the rest of P(t) does not have to be equal to β. Here, the missing suffix “in” in
W (e)( β|

{
∆eWL

k
}
) (see Equation (339)) implies that we are no longer using the initial pkin,

and the additional suffix “e” is because we are using the exchange microwork. The trajectory
probabilities contain the correct thermodynamic temperature profile of P(t) through pk(t)
in Equation (307b). However, asW (e)( β|

{
∆eWL

k
}
) is invariant under the change of pγk , the

result does not care if P is reversible or not. Therefore, it provides no information about
any irreversibility. The identity in Equation (340a) is not a thermodynamic identity but
does include irreversibility. Unfortunately, it is not clear how to extract this information
from it.
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16. The Free Expansion

We now show that the new microwork relations in Equations (342) and (344) work for
an isolated system undergoing internal dissipation for which the external work
∆W̃k = ∆eWk = ∆eW = 0, but where the applicability of the JE derived in the µ̊NEQT is
disputed [183,184,191,192,209,211]. This again shows the superiority of the µNEQT over
the µ̊NEQT. Consider the case of a free expansion (P0 = 0) of a gas in an isolated system
of volume Vfin, divided by an impenetrable partition into the left (L) and the right (R)
chambers, as shown in Figure 5a. Initially, all the N particles are in the left chamber of
volume Vin in an equilibrium state at temperature T0; there is a vacuum in the right cham-
ber. At time t = 0, the partition is suddenly removed, shown by the broken partition in
Figure 5b and the gas is allowed to undergo free expansion to the final volume Vfin during
P . After the free expansion, the gas is in an NEQ state and is brought in contact with
Σ̃h during P to come to equilibrium at the initial temperature T0. This will complete the
process P̊ . If the gas is ideal, there is no need to bring in Σ̃h for re-equilibration; we can
let the gas come to equilibrium by itself, as it is well-known that the temperature of the
equilibrated gas after free expansion is also T0. It is this case that we will study here as the
system becomes isolated.

(b)

(a)

Gas
Vacuum

Vacuum

Figure 5. Free expansion of a gas. The gas is confined to the left chamber, which is separated by
a partition (shown by a solid black vertical line) from the vacuum as shown in (a). At time t = 0,
the partition is removed abruptly as shown by the broken line in its original place in (b). The gas
expands in the empty space on the right but the expansion is gradual as shown by the solid front,
which separates it from the vacuum on its right.

It should be stated, as is also evident from Figure 5b, that while the removal of the
partition can be instantaneous, the actual process of gas expanding in the right chamber
is continuous and gradual. Therefore, at each instant, it is possible to imagine a front of
the expanding gas shown by the solid vertical line enclosing the largest among smallest
possible volumes containing all the particles so that there are no particles to the right of
it in the right chamber in all possible realizations of the expanding gas. By this we mean
the following. We consider all possible realizations of the expanding gas at a particular
time t > 0 and locate the front corresponding to the smallest volume containing all the gas
particles to its left. Then we choose among all these fronts that particular front that results
in the smallest volume on its right or the largest volume on its left. In this sense, this front
is an average concept and is shown in Figure 5b. We have identified the volume to its right
as “vacuum” in the figure. This means that at each instant when there is a vacuum to the
right of this front, the gas is expanding against zero pressure so that dW̃ = 0. Despite this,
as the expansion is an NEQ process, dW = diW > 0.

The description of the nonuniformity in Figure 5b is an example of modeling noted in
Remark 65. Above, we have model nonuniformity by dividing the volume into two regions
of different densities. As the region to the left of the solid front is still very nonuniform,
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we can divide into two different regions of different densities. Similarly, the volume to the
right of the front can also be divided into two regions of different densities as this region is
certainly not going to a pure vacuum. How good a modeling is required depends on how
good the measurements can be made or are required. More nonuniform regions require
more internal variables, and the computation will also become complicated.

16.1. Quantum Free Expansion

We now apply Equation (340a) to the free expansion of a one-dimensional ideal gas
of classical particles, but treated quantum mechanically as a particle in a box with rigid
walls, which has been previously studied [219]; see also Bender et al. [220]. We assume that
the gas is thermalized initially at some temperature T0 = 1/β0 and then isolated from the
medium so that the free expansion occurs in an isolated system. After the free expansion
from the box size Lin to Lfin > Lin, the box is left to thermalize as it comes to equilibrium at
the same temperature T0. The role of V is played by the length L of the box. The discussion
here will also set the stage for the classical treatment later.

For an isolated system, as discussed earlier, the Fl ∆Wk 6= 0, even though
∆W̃k = ∆W̃ = −∆eW = 0. Since we are dealing with an ideal quantum gas, we do
not need to bring Σ̃h, as said above (see below also), so we treat the system as isolated.
As there is no inter-particle interaction, we can focus on a single particle for our discussion;
its energy levels are in appropriate units

Ek = k2/L2,

where L is the length of the box. During the free expansion, we have ∆eQ = ∆eW = 0 (but
∆iQ = ∆iW 6= 0) so that ∆Efree(Lfin, Lin) = 0; see Equation (94). After the free expansion
from the box size Lin to Lfin > Lin, the box is allowed to come to equilibrium in isolation so
that we have ∆Ereeq(Lfin) = 0. Accordingly, ∆Eeq(Lfin, Lin) = 0 after reequilibration.

The initial partition function is given by

Zin(β0, L) = ∑ke−β0Ek,in .

Approximating the sum by an integration over k, as is common, we can evaluate Zin(β0, L),
from which we find that the free energy Feq and the average energy Eeq are given by

β0Feq = −(1/2) ln(L2π/4β0), Eeq = 1/2β0;

while Feq depends on β0 and L, and Eeq depends only on β0 but not on L so that Eeq has the
same value in the final EQ state. This means that the final equilibrium state has the same
temperature T0. This explains why we did not need to bring Σ̃h in play for re-equilibration,
as assumed above.

As we have discussed in reference to Equation (233) and concluded in
Conclusions 11, 12, and 13, and summarized in Remark 71, ∆Ek = − ∆Wk regardless
of whether the process is irreversible or not. Below we will show by explicit calculation
that we are dealing with an irreversible P̊ . The energy change ∆Ek for mk is

∆Ek = k2(1/L2
fin − 1/L2

in).

Let us determine the microwork done to take the microstate from the initial to the final
state by using the internal pressure

Pk = −∂Ek/∂L = 2Ek/L 6= 0 (347)

in

∆Wk =
∫ Lfin

Lin

PkdL. (348)
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It is easy to see that this microwork is precisely equal to −∆Ek in accordance with
Theorem 6, as expected. It is also evident from Equation (347) that for each L between Lin
and Lfin,

P = ∑k pkPk = 2E/L 6= 0.

We can use this average pressure to calculate the thermodynamic work

∆W =
∫ Lfin

Lin

PdL = 2∑k

∫ Lfin

Lin

pkEkdL/L 6= 0,

as expected. As ∆E = 0, this means that ∆Q = ∆W 6= 0, which really means ∆iQ = ∆iW 6= 0
in this case. This establishes that the expansion we are studying is irreversible. This is also
evident from the observation that P 6= P0 = 0.

Despite this, ∆Wk is always equal to the same (−∆Ek) regardless of the nature of
irreversibility of P̊ , which is consistent with Conclusion 13 and Remark 71. The same ∆Wk
will also apply to a reversible Peq as we are considering the energy change between the
same two states. The only difference is that now ∆Q = ∆W 6= 0 will mean ∆eQ = ∆eW 6= 0.
It is trivially seen that Equation (340a) is satisfied for all P̊ , not just the free expansion.

As P0 = 0, there is no difference between the exclusive Hamiltonian and the inclusive
Hamiltonian. Thus, the discussion above is also valid for the inclusive Hamiltonian and
Equation (344) with Ek = Ek and F′ = F.

16.2. Classical Free Expansion

We now consider the free expansion of an isolated classical gas in a vacuum (P0 = 0);
see Figure 5. We set Vin = V0 and Vfin = 2V0 for simplicity. The initial phase space is
denoted by the interior of the solid red ellipse Γin on the left side in Figure 6. The final
phase space is shown by the interior of the broken red ellipse on the left and the solid
red ellipse Γfin on the right in Figure 6. The gas is in a “restricted (i.e., being confined in
the left chamber)” equilibrium state with equilibrium microstate probability (with a slight
notational change that we find convenient here) in SX:

f0(δz0) = e−β0E(z0)/Zin(β0, Vin) (349)

at t = 0; here, the initial partition function in the initial volume Vin is

Zin(β0, Vin)
.
= ∑

δz0∈Γin

e−β0E(z0). (350)

We consider the set of microstates in the final phase space Γfin and pick two microstates
δz0 and δz associated with z0 ∈ Γin and z ∈ Γ

.
= Γfin \Γin; here, Γ

.
= Γfin \Γin denotes the

difference set of Γfin and Γin. We use the notation z0
.
= (z0, z) to denote the two points. Let

us identify (zγ, z′γ) as the unique 1-to-1 phase points obtained by the deterministic Hamilto-
nian evolution of (z0, z) along the deterministic or mechanical trajectories γ = γ(z0) and
γ′ = γ′(z) corresponding to a given work protocol P̊ ; see Figure 6. The probabilities of the
two paths are irrelevant for the microworks

∆Wγ(z0) = −(E(zγ)− E(z0)),
∆Wγ′(z) = −(E(z′γ)− E(z)); (351)

see Conclusions 11 and 12.
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Figure 6. The evolution of a microstate z0 ∈ Γin, z ∈ Γfin\Γin following microwork (green arrows)
into zγ and z′γ, respectively. The initial and final phase spaces are Γin and Γfin, shown by the interiors
of the red ellipses.

While the initial EQ probability distribution f0(δz0) is nonzero for δz0 ∈ Γin, it is
common to think of f0(δz) = 0 for z ∈ Γ. This is an ideal situation and requires taking
the energy E(z) = ∞, but in reality, f0(δz) falls rapidly as we move into the right chamber
away from the left one in the initial macrostate. Moreover, during free expansion, f (δz) at
t > 0 is not going to remain zero. Therefore, we formally assume that the initial probability
distribution f0(δz) is infinitesimally small by assigning to it a very large positive energy

E(z) = e(z)/ε > 0, z ∈ Γ at t = 0 (352)

by introducing an infinitesimal positive quantity ε. At the end of the calculation, we will
take the limit ε→ 0+, which simply means ε→ 0 from the positive site. Under this limit,
the contribution from e−β0E(z) will vanish:

e−β0E(z) ε→0+→ 0.

This allows us to recast the initial partition function as a sum over all microstates z ∈ Γfin:

lim
ε→0+

Z′in(β0, Vfin, ε)
.
= lim

ε→0+
∑

δz∈Γfin

e−β0E(z) = Zin(β0, Vin); (353)

Thus, we can focus on Γfin as the phase space to consider during any work protocol P̊
instead of Γin. This allows us to basically use a 1-to-1 mapping between initial microstates
z0

.
= (z0, z) and final microstates zγ

.
= (zγ, z′γ) discussed above.

We simply denote z0 or z by z ∈ Γfin or zγ ∈ Γfin for the Hamiltonian evolution of z
along the microwork protocol from now on. We consider the averageW0( β0|∆Wk) of the
exponential work in Equation (340a) for the exclusive Hamiltonian and write it as

lim
ε→0+

〈
eβ0∆W

〉
0
= lim

ε→0+

∑
δz∈Γfin

e−β0E(z)e−β0[E(zγ)−E(z)]

Zin(β0, Vfin, ε)
, (354)

where we have used ∆Wγ(z) = −(E(zγ) − E(z)) in accordance with Equation (351).
Because of the 1-to-1 mapping to zγ, we can replace the sum with a sum over zγ, and at the
same time cancel the initial energy E(z) in the exponent; the cancellation is exact even for
z = z for which E(z)→ +∞ in the limit ε→ 0+. Because of this, the lim operation has no
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effect on the numerator. The partition function in the denominator reduces to Zin(β0, Vin)
as shown in Equation (353). We finally find

W0( β0|∆Wk) =

∑
δzγ∈Γfin

e−β0E(zγ)

Zin(β0, Vin)
=

Zfin(β0, Vfin)

Zin(β0, Vin)
, (355)

which is precisely what we wish to prove in Equation (340a).
The situation with the inclusive Hamiltonian is the same asH′ = H as before. This allows

us to also prove Equation (344). Moreover, as said in the previous section, the demonstration
of Equations (340a) and (344) is valid for any arbitrary process, not just the free expansion.

It should be emphasized that allowing for a negligible probability is a common practice
even in EQ statistical mechanics where we evaluate the partition function by considering
all microstates, regardless of how negligibly small the corresponding statistical weight
is. This probability could even be zero. The only difference is that the microstate is
defined over the volume of the system and not outside. We have allowed microstates in
deriving Equations (340a) and (344) with vanishing small or zero probabilities. Here, we
are considering microstates outside the volume of the system, but mathematically, there is
no difference.

By allowing such microstates in Γ, we have shown that Equations (340a) and (344)
hold even for free expansion of a classical or quantum gas.

17. Brief Discussion and Summary

The present review is motivated by a desire to introduce a recently developed sta-
tistical mechanics (µNEQT) as an extension of the EQ statistical mechanics to an NEQ
body to a wider audience as the approach has been successfully applied to understand
some common problems of interest at the microstate level, so it should useful in other
applications. The development of the µNEQT follows two distinct and independent stages.
The first stage directly deals with deterministic mechanical evolution of microstates due
to the Hamiltonian dynamics, which is then followed in the second stage by its stochastic
modification. The division in the two stages is of central importance to the µNEQT and
the MNEQT. During the first stage, the second law has no meaning. This allows us to
develop the µNEQT by not even imposing the second law; see Remark 1. In the second
step, the stochasticity is used to perform various ensemble averages using Â to obtain the
MNEQT, in which the stability (see Axiom 4) requires thermodynamic force ∆F to vanish
in EQ (76d). We show in Section 8.4 that the second law is a direct consequence of the
stability requirement in the system, which allows us to impose the second law inequalities
diS ≥ 0, diQ ≥ 0, and diW ≥ 0 in the MNEQT in conformity with the second law.

At the center of the µNEQT is the above separation of mechanical and stochastic
aspects of a statistical body, and it contains the following four important ingredients:

1. all averages are ensemble averages (Â) as temporal averages are not meaningful;
2. its use of an extended state space SZ in which the NEQ macrostate M is uniquely

identified so that the µNEQT provides not only a straightforward extension of the well-
established EQ statistical mechanics, but also of the concept of EQ ergodicity hypothesis;

3. the need to distinguish three different infinitesimals (dα) to describe intrinsic,
exchange, and internal (or irreversible) quantities in an NEQ process;

4. its use of fluctuating BI-microquantities that are either mechanical in that they are
determined by the Hamiltonian of the body or stochastic in that they are governed by
microstate probabilities that add the required statistical nature to the mechanical model
of the body. The commutator Ĉα

.
= dα Â − Âdα is at the root of stochasticity, with ĈαE

denoting the various heats. In its absence, the body behaves purely mechanically.
The formulation of the µNEQT is contingent on identifying the extended state space

SZ in terms of a set of internal variables that is dictated by the process under investigation,
as discussed in Section 12. It should be emphasized that internal variables also appear in
a purely mechanical body, with its Hamiltonian written asH(W)

.
= H(w, ξ), as discussed
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in Section 4. The latter can be equivalently specified by the set of microstates mk and their
energies Ek(W). As there is no stochasticity associated withH(W), the temporal behavior
of ξ, if any, must be periodic, as follows from Poincaré’s recurrence theorem [84,92,93].
However, stochasticity changes this behavior dramatically [221,222], and endows each of
them with a certain relaxation time, whose interplay with the observational time scale τobs
determines if a particular internal variable has equilibrated during τobs or not. By ordering
the internal variables as in Equation (270a), we determine the window ∆nτ introduced
in Equation (270b) to eventually identify SZ in which M ={mk, pk} is uniquely specified
as Mieq=

{
mk, pieq

k

}
. The uniqueness issue is discussed in Section 12. The situation is

not very different from the EQ statistical mechanics, the µEQT. Therefore, it should not
come as a surprise that the NEQ macrostate is identified as being in internal equilibrium,
a concept that is an extension of the equilibrium. Because of this deep connection between
the µNEQT and the µEQT, the basic axioms in the µNEQT include all of the axioms of
the µEQT, except for the maximization of the entropy in Meq that is part of Postulate
II [3]. However, there are also additional axioms of quasi-independence and reduction
that play important roles in formulating the µNEQT. The former restricts the sizes of
various sub-bodies to be at least as large as their correlation lengths for entropy additivity.
The axiom of reduction allows the microquantities associated with any body to be reduced
to microquantities associated with another body interacting with the former. However, we
only consider reducing microquantities q̃k̃ and q0k0 associated with Σ̃ and Σ0, respectively,
to q̃k and q0k for Σ that is interacting with them.

In Section 8, we discuss the properties of the unique entropy Sieq for Mieq in SZ,
and discuss its approximate formulation as a flat distribution that is commonly used in EQ
statistical mechanics. This distribution neglects any fluctuations in the entropy, which are
always present in the body. Despite this, it correctly gives the entropy so it can always be
used to determine it as it simplifies the calculation. We show that the entropy additivity
requires quasi-independence in Section 8.1, so the latter should not be confused with the
principle of additivity for W.

The goal of the present study is summarized in Section 1.1 and in Proposition 2.
In particular, we have focused on and clarified in this study five important and new but
not well-understood concepts of the µNEQT that are also used extensively in the modern
approach to fluctuation theorems in the µ̊NEQT [26,158,159]. As many of these concepts are
counter-intuitive and not well-understood, we have made the entire study as pedagogical
as possible, as noted earlier in Section 1.3, to reach even an untrained reader by extensively
exploiting examples that are taught at an undergraduate level to bring forth these concepts
in as simple a way as possible. This has made the presentation lengthy. Some may find the
presentation too simple and wordy, while others may need to go back and forth to grasp the
concepts as they are inter-related and a challenge to old preconceived ideas. This is a risk
we have taken and hope that the reader is going to be patient. Their existence has been
well-known in the M̊NEQT but not well-understood. This resulted in their applications
at the microstate level generating much confusion in the µ̊NEQT, sometimes because the
distinction between concepts remained completely forgotten. This is the situation with the
distinction between Fl dWk and NFl dW̃k = dW̃ = −deW. The other one is the ubiquitous
microforce imbalance (µFI) such as the pressure fluctuation ∆kP = Pk − P within the body
that is present even in µEQT (see the discussion below Equation (178)), but its relevance
becomes apparent when considering its contribution to internal microenergy change diEk.
They remain an integral part of the µNEQT, but are not included in the µ̊NEQT, which only
deals with exchange quantities.

We now briefly summarize and discuss some important aspects of the µNEQT below.
1. SECOND LAW AND ITS VIOLATION. An arbitrary stochasticity described by {pk}

in the second stage has nothing to do with the second law or the maximum entropy
principle [3]. The latter will emerge only if {pk} is constrained appropriately such as the
flat distribution or the most probable distribution. For thermodynamics to be able to satisfy
the maximum entropy principle, Callen [3] adopts it as part of his Postulate II, but it says
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nothing about the second law as the law of increase in entropy in Proposition 3. For that,
we either postulate the second law as part of the axiomatic formalism or prove it. The second
law in Equation (213) has not been included in our axiomatic formulation described in
Section 5. We therefore need to prove it, which we do in Section 8.3 within this formulation
by two independent methods. In a direct proof in Section 8.3, we count the number W(t) of
distinct microstates that the system passes through in time to result in Marb in SZ. This
number only continues to increase in time, but can never decrease; see Propositions 4 and 5.
It is this feature that is responsible for the second law as seen from the Boltzmann principle
S(t) = ln W(t); see Equations (209) and (206b). This proof of Theorem 8 is for a general
macrostate. The method of proof avoids the molecular chaos assumption of Boltzmann
because of its several pitfalls, many of which Boltzmann seems to be completely unaware
of, that are discussed in Section 8.3 and summarized in Claim 17. We provide another proof
by showing that the second law is a direct consequence of the stability [4] (see Axiom 4)
of the system in Section 8.4.

As the second law is not part of the µNEQT, we can use the latter even if the law is vio-
lated in the violation thermodynamics M̌NEQT by properly modifying the averaging in the
second stage to obtain the inequalities in Equation (220). Thus, we are able to investigate the
catastrophic consequences of violating the second law in Section 9; see Conclusion 7. From this,
we conclude that a violation of the second law in the M̌NEQT can only happen for an
unstable system, which is not found in nature. All physical systems form stable systems,
even though instabilities arise in approximate calculations such as van der Waals equations
or mean field, but they are removed from consideration; see Remark 58. The only credible
violation is the demon paradox of Maxwell [50] or its various variants, all of which have been
shown to be consistent with the second law after careful consideration, as discussed in
Section 8.3. All the so-called violations ([223], for example) have been observed to occur
in stable systems so they must be caused due to incomplete or incorrect analyses, as they
contradict Conclusion 7, the demon paradox being one of them. Because of this, we have
always assumed that we are dealing with a stable system for which the law is always valid,
as noted in Section 1.

2. ISSUE OF UNIQUENESS AND SZ . Planck [224] seems to be the first one to sug-
gest that the concept of entropy must be just as applicable to NEQ macrostates M as
to EQ macrostates Meq. He also advocated the same for the temperature for any M.
Landau [225] seems to be the first one to successfully introduce an NEQ temperature.
We have taken the dream of Planck seriously and have attempted to provide a method-
ology to introduce a unique NEQ entropy. The experimental setup that produces the
macrostate M(t) of the body during the process P also dictates how to uniquely describe
that macrostate, as discussed in Section 12, by identifying the particular window ∆nτ
introduced in Equation (270b). This then identifies the needed state space SZ in which
M ={mk, pk} becomes Mieq=

{
mk, pieq

k

}
. The setup also determines WF and WNF, so

pieq
k ’s are also uniquely determined in SZ. Thus, the setup not only uniquely identifies

SZ but also dictates the complete statistical mechanics, the µNEQT. The relaxation times
change as the macrostate changes during P so the index n in ∆nτ may also change even
for a fixed observational time τobs, probably resulting in different state spaces during P ,
as discussed earlier. Despite this, as Remark 46 shows, we can continue to use the same
state space SZ over the entire process P by including the hidden entropy generation and
irreversible macrowork discussed in Section 5.9, as need be. In the absence of hidden
macroquantities, the thermodynamic entropy of Mieq remains a state function in each of the
state spaces along P , and has a unique value that is no different than the statistical entropy.
The statistical formulation of entropy in Equation (116) generalizes Gibbs EQ entropy
formulation [48] to any arbitrary macrostate M by including hidden macroquantities to
justify Axiom 3, whose validity for any M(t) requires quasi-independence to make the
entropy quasi-additive; see Remark 41.

There have been several attempts since Landau [225] to introduce NEQ temperature
by several authors. It is not possible to list all of them here. So, we have selected a few of
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these attempts [13,18,23,226–232] to show how our approach is different from all of them,
without casting any aspersions on those that are omitted. Our thermodynamic definition in
Equation (1) refers to the entire body, so it is not local. The inhomogeneity of the body is
captured by the presence of internal variables. Including them allows us to treat the body
as a black-box with a unique temperature that obeys Clausius’s heat theorem that heat flows
from hot to cold, as discussed earlier.

The identification of this thermodynamic definition has the following surprising con-
sequence. For any arbitrary macrostate M, the Clausius equality dQ = TdS in Equation (45)
(see Remark 49) and Theorem 4 always hold. These are the two most important aspects of
the use of the BI-quantities in the formulation of the MNEQT, to which we now turn.

Before doing that, however, we make the following comment. By replacing dS for
Mieq ∈ SZ by dS in Equations (138a) and (141), as the case may be, all results for Mieq can
be directly taken to be valid for Mnieq.

3. THE IMPORTANCE OF BI-QUANTITIES. Thermodynamic quantities can be classified
into SI- and MI-quantities, which are independent of each other, so that an SI-quantity can
be equated only with another SI-quantity; the same is also true of MI-quantities. As empha-
sized here, the SI-quantities are directly related to the Hamiltonian of the system so they
can be generalized to BI-quantities for a body Σb. Their use proves crucial in identifying
the state space SZ, which then uniquely determines the µNEQT for any Mieq ∈ SZ as the

corresponding pieq
k ’s are uniquely determined in SZ. In particular, they allow us to express

the first law in the MNEQT (see Equation (93a)) in a form in which the generalized heat dQ,
which is proportional to dS, and the generalized work dW = −dEm, which is an isentropic
change in the energy E due to work variable W, are BI-quantities (although they are process
quantities), as is dE. This follows immediately and directly from the form E = E(S, W),
which follows from Theorem 10 for any body. As dQ and dW originate from independent
variations of S and W, respectively, the two cannot be confused; see Conclusion 10. Their
independence also simplifies the µNEQT considerably. A consequence of this is the follow-
ing simplification: We need not consider any effect of the microheat dQk while considering
the microwork dWk; see Conclusion 11. This is consistent with treating a microstate as
a mechanical system during microwork for which we have the identity

∆Ek = −∆Wk
.
= −

∫
γk

dWk,

which is independent not only of pk along γk but also γk. In other words, ∆Wk only depends
on the terminal microstates mink and mfink that are the same for all processes between the
same macrostates M(in) and M(fin); see Remark 71. It is not a process microquantity. Thus,
∆Wk = −∆Ek is a microstate function but is Fl. This shows the necessity of distinguishing
process and Fl-NFl quantities. For example, ∆eWk is a NFl-process quantity. We should
contrast this with E being a state function, which is NFl, as it is a macroquantity, but is not
a process quantity; see Conclusion 13. We should also recall that ∆W (and ∆Q) is a process
(macro)quantity. It also follows from the same remark that ∆iWk varies over γk, so it is
a process microquantity because of the presence of deW(P) in the definition, but is Fl. Its
average results in the dissipation ∆iW =

∫
γdiW ≥ 0, which is also a process macroquantity.

As ∆iWk is Fl, ∆iWk 6= 0 in almost all cases, so it must be so even in Meq, even
though ∆iW = 0. It is clear from Proposition 2 that the presence of a nonzero force imbalance
is necessary (but not sufficient) for dissipation in the system; see also Remark 32 and
Conclusion 3. The force imbalance is what gives rise to thermodynamic forces, whose
importance does not seem to have been acknowledged to date by scientists who consistently
use the µ̊NEQT, a hallmark of which is the conjecture ∆W̃k = ∆W̃ = ∆Ek; see Equation (7).
This amounts to the unintentional consequence that ∆iW = 0.

The ubiquitous existence of the µFI Ftk, which immediately follows from Proposition 2,
is one of the most surprising results of our approach, which appears almost counter-
intuitive and has remained hitherto unrecognized in the field because of it. It is presumably
so because it is well-known that ∆iE =

∫
γdiE = 0, which follows Equation (53a). Thus,
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allowing ∆iEk to be nonzero seems to contradict ∆iE = 0. However, we have shown (see
Claim 22) that even if diEk 6= 0, diE always vanishes and so does ∆iE = 0. The root cause
of ∆iEk 6= 0 or ∆iWk 6= 0 is the ubiquitous nature of the FI Ftk. Thus, these three quantities
are interrelated.

From the examples given in the review, there can be no doubt that the ubiquitous
existence of Ftk is purely mechanical and does not require any thermodynamic consideration.
This has been examined carefully in Section 6.4. However, its thermodynamic average 〈Ft〉,
known as the thermodynamic force, may or may not be zero. It may vanish even if Ftk is
not identically zero. In this case, we are dealing with a reversible process. The temporal
variation in P should be slow compared to τeq so that the system has enough time to
equilibrate during the process. Indeed, is a well-known result from EQ statistical mechanics
that the fluctuations in Ftk cannot be identically zero, except at absolute zero. Thus, even in
a reversible process, Ftk is not identically zero for ∀k. For an NEQ process during which
the temporal variation is not slow compared to τeq, the system does not have enough time
to equilibrate, so 〈Ft〉 6= 0. Therefore, having a nonzero Ftk is necessary but not sufficient
for irreversibility. However, its ubiquitous nature must be accounted for, as we do in
the µNEQT.

The above discussion was related to the microscopic work–energy relation, but the
notion of microheat is just as different between the two microscopic NEQ thermodynamics;
see Remark 70. We have mentioned that the microheat in the Langevin evolution proposed
by Sekimoto [140] to obtain the first law for a microstate (a realization of the Langevin
process) in the µ̊NEQT is nothing but the irreversible microwork diWk in the µNEQT cast as
the exchange microheat deQk, which makes Sekimoto’s stochastic energetics very different
from that in the µNEQT; see Remark 61. Crooks [141] also follows the same identification
for the exchange heat. The microwork in the µNEQT is isentropic so no heat exchange with
the heat bath that Sekimoto includes will change the microenergy Ek; the heat exchange
only affects pk. It appears that the two workers are really considering the energy change
dαEk and not dαEk (see Equation (243)), but Ek is not a genuine microquantity; rather, it is
a mixed microquantity, as discussed in Remark 60.

4. NFL-EXCHANGE QUANTITIES. Assuming quasi-additivity and quasi-independence,
both commonly accepted in the field, we have proved (see Theorem 7) that quantities q̃k = q̃
for ∀k so that q̃k is NFl, a surprising and novel result despite q̃k̃ being Fl. Its significance
has not been appreciated to date by workers in microscopic NEQT. To appreciate this fact,
we consider some exchange quantity q ∈θ, for which we have

dq̃k = dq̃ = deq̃ = −deq for ∀k;

see Equation (193c) over some infinitesimal process dP between two neighboring macrostates;
see Notation 3. As {dq̃k} and {pk} are independent, {dq̃k} is the same for all dP ’s between
the same two neighboring macrostates, and so is dq̃ = deq̃. As a consequence, the exchange
quantity deq is also the same for all such dP ’s. It is determined only averaging over all
microstates of the medium so it is a genuine MI-macroquantity. Thus, it is easily determined
by knowing the properties of the medium that is in EQ. This is a well-known fact of classical
thermodynamics, and explains why the µ̊NEQT is so easy to implement. Therefore, it is
surprising that the above fact has not been appreciated in the µ̊NEQT including stochastic
thermodynamics. Unfortunately, because of Theorem 7, a proper application of the µ̊NEQT
cannot capture any statistical fluctuations unless deq̃k is improperly treated as a Fl-quantity.

5. HEAT-WORK EQUIVALENCE. As soon as SZ has been identified in terms of BI-
quantities specified by the nature of the process dP , the problem of a unique statistical
mechanical description of dP is completely solved in that pieq

k are uniquely specified in
SZ; see Equation (275). This then uniquely specifies M = Mieq at each instant along P .
The identification of Mieq is only possible because of the use of BI-quantities that properly
capture fluctuations in a statistical body. Their usage justifies the version of the first law
(see Equation (93a)) in terms of generalized macrowork dW and macroheat dQ that refer to
the body; the former is an isentropic quantity, while the latter is an entropic quantity being
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directly related to entropy change. Therefore, they can be varied independently, which
means that there is no constraint on dE in general. As a consequence, there cannot be any
equivalence between them. These macroquantities differ from their exchange counterparts
deW and macroheat deQ by their irreversible counterparts

diW ≡ diQ = (T − T0)deS + TdiS ≥ 0; (356a)

see Equation (95). It is a very important consequence in the MNEQT due to diE = 0 as
a general rule. Thus, there equivalence is a general rule in the MNEQT, and it provides not
only a theoretical support for the well-known conclusion by Count Rumford [165] about
the so-called equivalence of the irreversible macrowork and macroheat (see the discussion
just above Equation (97)) but also generalizes it, so it clarifies its significance due to diE = 0.
Indeed, Count Rumford had taken precautions to ensure no macroheat exchange with the
medium, so his observation was for irreversible macroquantities. In his experiment, the
first term on the right side vanishes and we obtain

diW ≡ diQ = TdiS ≥ 0, (356b)

a well-known result, also known as the Gouy-Stodola theorem, in classical thermodynamics
for the dissipated work; see for example [33,233,234]. Comparing with Equation (356a)
derived in the MNEQT, it becomes clear that the above theorem is valid only when the
system and the medium have the same temperature to ensure no macroheat exchange,
similar to the conditions imposed by Count Rumford. But his observations leave out
the situation of a possible heat exchange, so it is not clear what is meant by macroheat
converting into macrowork in his statement. Thus, Equation (356a) extends the theorem to
a more general situation, where the meanings of diW and diQ are clear in the MNEQT.

Moreover, the above equivalence is also extended in the µNEQT between internal
microwork diWk and microheat diQk, which has not been hitherto recognized. What is
remarkable about the equality is that it relates a purely mechanical quantity diWk = −diEk
with a purely stochastic quantity

diQk = −(T − T0)η̂kdeηk − Tη̂kdiηk,

which is easily derivable from Equation (256b). This is what makes the µNEQT so useful, and
a promising alternative to widely used current approaches [10,12,13,17–21,24–28,99,135–147]
that are primarily based on the nonfluctuating exchange quantities as remarked above.

6. WORK–ENERGY THEOREM. Microwork dαWk in the µNEQT is purely mechanical
in that it is not influenced by pk, while microheat dαQk is stochastic in that it is determined
by dα pk. Thus, dαWk and dαQk originate from different sources. From the Work–Energy
Theorem 6, we have dαEk = −dαWk. As Ek for any body is a function of W only, there is no
dQk in dEk. A comparison with the first law dαE = dαQ− dαW, Equation (91) in Remark 30,
clearly shows that there is no analog of this law for a microstate in the µNEQT. This fact
should not be confused with Equation (243), which deals with Ek and not with Ek or with
Equation (281); the latter refers to the microstate energy fluctuation within the body

∆kE = Ek − E

over its microstates. The physical implication of this first-law-looking Equation (281)
has been discussed in Section 12.2, and merely reflects the fact that the BI-combination
Gieq

Zk (T, W) in Equation (277) is NFl over mk, but that there are no exchange analogs of the
two terms on the right side of Equation (281), and has nothing to do with any first law for
mk as summarized in Conclusion 61. In contrast, there is an analog of the microscopic first
law in the µ̊NEQT; see Remark 70.

Before we end the review, we wish to briefly point out some of the major differences be-
tween the µNEQT based on the SI-quantities and other current theories that are formulated
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in terms of the MI-quantities representing exchanges with the medium [99,135–147]; see
also Section 1.2. Because of the use of exchange quantities, they all belong to the µ̊NEQT.

1. The use of the SI-quantities in the µNEQT allows us to uniquely identify all SI-
macrofields such as the unique NEQ SI-temperature T of a body; see Equation (129).
But this is not possible in the µ̊NEQT, where it has been defined in several ways, not
all different for any Mneq. This issue has been discussed elsewhere [76,77].

2. The use of SI-quantities [dq] in the µNEQT has the following important consequence. It
can be directly applied to an isolated system for which [deq0] ≡ 0 so that [dq0] ≡ [diq0]
captures the contributions from all internal processes unambiguously. But [dq] is not
even defined in the µ̊NEQT, except for a state variable q, so knowing [deq] does
not allow for determining [diq] directly and unambiguously. They are determined
indirectly. As an example, the lost macrowork due to irreversibility in classical
thermodynamics (also belonging to the µ̊NEQT) is defined as d̊lostW = d̊revW −
d̊irrW ≥ 0, where various d̊revW and d̊irrW refer to the exchange macroworks along
two distinct processes: a reversible and an irreversible. It is easy to see that d̊lostW is
precisely the irreversible macrowork diW, which is determined by the actual process.
While diQ is defined in the µNEQT, d̊lostQ is never defined in the µ̊NEQT.

3. In the µNEQT, the exchange microwork deWk is NFl as deWk = deW, ∀k. In contrast,
deWk = −deEk in accordance with the conjecture in Equation (7) is Fl in the µ̊NEQT.

4. In the µNEQT, due to the use of SI-microquantities {dqk} that are by nature Fl, the fluc-
tuations are incorporated in this statistical mechanics. In contrast, {deqk} are NFL,
some of which, such as deEk = −deWk = −deW and deSk = deS, are also used in
the µ̊NEQT. Therefore, additional justification is required to capture fluctuations in
the µ̊NEQT. The most common justification is to use the conjecture in Equation (7)
that equates deWk with (−dEk) to make it Fl; see the discussion of Equation (345).
The conjecture seems to have a wider usage including stochastic and quantum ther-
modynamics [99,135–147], which all use the µ̊NEQT; see Remarks 61 and 70.

5. Microstate probabilities {pk} are uniquely determined in the µNEQT because of the
use of SI-microquantities. For example, the macroheats in the µNEQT are ensemble
averages over microstates with {pk} as in Equations (236) and (239). We do not
need to invoke any master equation or the Fokker–Planck equation to determine
them. As {pk} cannot be uniquely determined in the µ̊NEQT, a master equation
or a Fokker–Planck equation is required to determine them. For example, the use
of a master equation allows the identification of exchange macroheat in terms of
transitions between microstates [235].

6. The use of SI-quantities allows for the introduction of partition functions in the µNEQT
but cannot be defined in the µ̊NEQT.

7. There is no analog of the first law for a microstate in the µNEQT. However, there is
such an analog in the µ̊NEQT proposed by Sekimoto [146].

A major open problem in the µNEQT is to provide a strong justification for Proposition 1
to ensure that the µNEQT is applicable to any arbitrary macrostate M. At present, it is
merely a proposition, although a very convincing one. According to this proposition, any
arbitrary macrostate M can be always identified as Mieq with no explicit time dependence
in an appropriate state space SZ′ . In a smaller state space SZ ⊂ SZ′ , M will have hidden
entropy generation diShid(t) (see Equation (139a)) due to this explicit time dependence, which
puts a very strong limitation on the possible explicit time dependence that it must give rise to
diShid(t), as discussed in Section 5.9. It is only this restricted form of explicit time dependence
in M or {pk} in the µNEQT that remains consistent with the second law. Therefore, it will be
interesting to investigate if any arbitrary form of explicit time dependence in M or {pk} can
be shown to satisfy the second law.
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Abbreviations
The following abbreviations are used in this manuscript:

Acronyms
BI, MI, SI body-, medium-, system-intrinsic
EQ, EQT equilibrium, equilibrium thermodynamics
FI, µFI force imbalance, microforce imbalance
Fl, NFl fluctuating, nonfluctuating
IEQ, NEQ, NIEQ internal EQ, non EQ, non IEQ
MNEQT, M̊NEQT macroscopic NEQT, macroscopic (with exchanges) NEQT
µNEQT, µ̊NEQT microscopic NEQT, microscopic (with exchanges) NEQT
NEQ, NEQT nonequilibrium, nonequilibrium thermodynamics
More Often Used Symbols
mk,M body-, micro-, macro state
[q], [dαq] Notation 2
[X],[Z],[ζ], [χ] body’s micro-macro state variable
[w],[W] body’s work parameter
dαθ Notation 1
[q], [dαq] Notation 2
[Fw], [fw] Claim 3, Section 2.9
dWk Claim 6, Definition 17
ηk, η̂k, dαηk Equation (27b), Equation (27c), Equation (87b)
dQk, dQ Equation (44a), Equation (44b)
∆Fwk, ∆Fw Equation (76a), Equation (76c)
[(dew, dξ), diw] Equation (76b)
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