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Abstract: The present paper includes the local and semilocal convergence analysis of a fourth-order
method based on the quadrature formula in Banach spaces. The weaker hypotheses used are based
only on the first Fréchet derivative. The new approach provides the residual errors, number of
iterations, convergence radii, expected order of convergence, and estimates of the uniqueness of
the solution. Such estimates are not provided in the approaches using Taylor expansions involving
higher-order derivatives, which may not exist or may be very expensive or impossible to compute.
Numerical examples, including a nonlinear integral equation and a partial differential equation, are
provided to validate the theoretical results.
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1. Introduction

In the field of numerical analysis, a significant role is played by numerical methods
for solving nonlinear equations. Due to lack of analytical methods, iterative techniques are
required to approximate the solutions. One of the foremost objectives to use numerical
methods for solving nonlinear transcendental equations is the ability to handle non-analytic
and complex functions. Oftentimes, such equations arise in diverse disciplines such as sci-
ence, engineering, and applied sciences [1–4]. For example, in physics, nonlinear equations
often describe the behavior of systems with multiple interacting components, such as the
Navier-Stokes equations in fluid dynamics. In engineering, nonlinear equations are used
to model the behavior of materials under different loads and conditions. The ability to
handle large and complex systems is another essential reason to use numerical methods.
Nonlinear equations generally describe the behavior of systems with many interacting
components, and solving them analytically can be extremely difficult, if not impossible.
Numerical methods provide a way to break down these large systems into smaller, more
manageable parts and find approximate solutions using iterative techniques.

A plethora of iterative methods are used for solving nonlinear transcendental equa-
tions, including fixed point iteration, root-finding methods, and the Newton–Raphson
method. Each method has its own robustness and limitations, and the selection of the
method depends on the particular equation being solved and the pre-decided accuracy
level. For instance, the bisection method is one of the simplest and most robust methods
for finding the roots of an equation but has a disadvantage of being slower and diverging
for certain types of functions. The Newton–Raphson method, on the other hand, is faster
and more accurate, but it requires the derivative of the function and may not converge for
certain types of functions.
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Moreover, the numerical method to be chosen depends on the specific equation being
solved, the interval of the solutions, the number of solutions, and the desired accuracy
level. For example, the bisection method is a good choice for finding all solutions in a
given interval, while the Newton–Raphson method is better for finding a specific solution
with an initial guess. In numerical optimization, root-finding methods are used to find the
solutions of nonlinear equations that describe the behavior of the system, which enables
the design of algorithms that are more efficient and more robust. There are several root-
finding methods for solving nonlinear transcendental equations in research. Some common
methods include:

1 The bisection method: a simple yet robust method that involves repeatedly bisecting
an interval and determining which subinterval a root lies in.

2 The Newton–Raphson method: this method uses an initial guess and an iterative
process to converge on a root and requires the ability to compute the derivative of the
function.

3 The Secant method: this method is similar to the Newton–Raphson method but uses
the slope of the secant line between two points rather than the derivative of the
function.

4 Fixed-point iteration: this method involves finding the fixed point of a function using
an iterative process. It requires the function to be in a specific form.

5 Muller’s method: this method is an extension of the secant method and is used for
complex roots.

6 Bairstow’s method: this method is used for finding the roots of polynomials with real
coefficients, and it is used to find the roots of polynomials of degree greater than two.

7 Aitken’s delta-squared method: this method is used for speeding up the convergence
of fixed-point iteration method.

8 The Hybrid method: as the name suggests, this method combines two or more meth-
ods to find the root of the nonlinear equation.

As a workaround, iterative methods have been developed to locate the initial values
of solutions to the nonlinear in the form as follows:

F(x) = 0, (1)

where F is a Fréchet differentiable operator mapping between a Banach space B1 into
a Banach space B2, and D is a convex and open subset of B1. The determination of
a solution x∗ ∈ D of the equation, whose analytical form is rarely attainable, is very
important in many disciplines [1–4]. This is the case since applications are formulated as an
equation such as (1) using mathematical modeling [1–3,5]. This is the explanation of why
iterative methods are introduced producing sequences approximating x∗. There is extensive
literature on the convergence of iterative methods motivated by algebraic or geometrical
considerations [3,5–8].

A widely used method to solve (1) is Newton’s (NM), which is defined for each
n = 0, 1, 2, . . . by

x0 ∈ D, xn+1 = xn − F′(xn)
−1F(xn). (2)

NM uses one function evaluation and one inverse per iteration. It is of convergence
order two [5]. It is always important to develop iterative methods of a higher convergence
order as they provide an efficient approximation and more accuracy in finding the solution.
There is a plethora of such methods (see [9–14] and references therein) proposed by various
researchers.

In particular, we investigate the convergence of the fourth convergence order method
defined for each n = 0, 1, 2, . . . by
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yn =xn − F′(xn)
−1F(xn),

xn+1 =xn − A−1
n F(xn), (3)

where {aj} ∈ [0, 1], {bj} with ∑k
j=1 bj = 1 are sequences of nonnegative parameters, k is a

natural number, and

An =
k

∑
j=1

bjF′(xn − ajF′(xn)
−1F(xn)).

The authors in [8,9] motivated by the quadrature formula studied the local convergence
of this method utilizing the Taylor series expansion of the operator F in the special case
when B1 = B2 = Rm, where m is a natural number. The benefits over the other methods
of the same convergence order were also explained in [8]. The convergence is established
under the differentiability assumptions on F(λ), λ = 1, 2, 3, 4, 5. However, these results
assure the convergence in case the operator is five times differentiable although the method
may converge. Let us look at a simple example in the case when D = [−0.5, 1.5] and

F(t) =

{
t2 log t + t4 − t3, t 6= 0
0, t = 0.

.

Then, one can clearly see that the results in [8,9] do not apply since F(3) is unbounded
at t = 0. Other problems include:

(1) The uniqueness of the solution region is not provided.
(2) The choice of the starting point x0 ∈ D is a “shot in the dark ”.
(3) There are no estimates on ‖xn+1 − xn‖ or ‖x∗ − xn‖ that can be computed in advance

based on the properties of the operator F.
(4) The semilocal convergence of the method has not been studied.
(5) The derivative higher than one used in the local convergence is not on the method.

It is worth noticing that the aforementioned problems appear in numerous other
methods. These problems motivate the writing of this paper. In particular, we posi-
tively address all of these problems utilizing the operators on the method and the very
general ω-continuity conditions on the operator F′ [1,7]. In the case of the semilocal con-
vergence, the concept of the majorizing sequences is employed [1,6,7]. The idea of this
paper can also be applied to other methods [6,15–17] analogously since it only depends
on the inverse of the operators F′ and not on the method itself [12]. Moreover, see the
related papers [18–21].

The paper is structured as follows: The local convergence in Section 2 is followed by
the semilocal convergence in Section 3. The numerical applications and concluding remarks
appearing in Sections 4 and 5, respectively, complete the paper.

2. Convergence I: Local

We denote the interval [0, ∞) by M for brevity.
Suppose:

There exists a nondecreasing and continuous function (NCF) w0 : M→ R such that
the function w0(t)− 1 has a smallest positive root denoted by s.
Set M1 = [0, s).
NCF w : M1 → R exists such that the function g1(t) − 1 has a smallest root r1 ∈
M1 − {0}, where

g1(t) =

∫ 1
0 w((1− θ)t)dθ

1− w0(t)
.
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The function q(t)− 1 has the smallest root rq ∈ M1 − {0}, where

q(t) =
k

∑
j=1
|bj|w0

(
|1− aj|t + ajg1(t)t

)
.

Set r1 = min{s, rq} and M2 = [0, r1).
Define the function p : M2 → R by

p(t) =
k

∑
j=1

∫ 1

0
|bj|w

(
|1− θ − aj|t + ajg1(t)t

)
dθ.

The function g2(t)− 1 has a smallest root r2 ∈ M2 − {0}, where

g2(t) =
p(t)

1− q(t)
.

Then, in Theorem 1 the parameter r given as

r = min{ri}, i = 1, 2 (4)

is proven to be a radius of convergence for the method (3).
Set M3 = [0, r).
It is implied by these definitions that for each t ∈ M3

0 ≤w0(t) < 1 (5)

0 ≤q(t) < 1 (6)

0 ≤p(t) (7)

and

0 ≤ gi(t) < 1. (8)

The sets S(x∗, µ), S [x∗, µ] denote, respectively, the open and closed balls in B1 with
center x∗ ∈ B1 and of radius µ > 0.

The parameter r and the functions w0 and w are connected to the operator F as follows,
provided that x∗ is a solution of the Equation (1) with F′(x∗)−1 ∈ L(B2, B1).

(E1) ‖F′(x∗)−1(F′(u)− F′(x∗))‖ ≤ w0(‖u− x∗‖) for each u ∈ D.
Set D1 = D ∩ S(x∗, r).

(E2) ‖F′(x∗)−1(F′(u1)− F′(u2))‖ ≤ w(‖u1 − u2‖) for each u1, u2 ∈ D1.
and

(E3) S [x∗, r] ⊂ D.

The local convergence of the method (3) follows next based on the terminology and
the conditions (E1)–(E3).

Theorem 1. Suppose the conditions (E1)–(E3) hold. Then, the sequence {xn} is convergent to x∗

provided that the starting point x0 ∈ S(x∗, r)− {x∗}.

Proof. We shall establish using induction the assertions

‖yn − x∗‖ ≤ g1(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ < r (9)

and
‖xn+1 − x∗‖ ≤ g2(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ (10)

with r, g1, and g2 as previously defined.
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By applying the condition (E1) for u ∈ S(x∗, r) − {x∗}, we obatin, in turn, by
(4) and (5)

‖F′(x∗)−1(F′(u)− F′(x∗))‖ ≤ w0(‖u− x∗‖) ≤ w0(r) < 1. (11)

The Banach lemma for invertible linear operators [1–3,16] and the estimate (11) imply
that F′(u)−1 ∈ L(B2, B1) with

‖F′(u)−1F′(x∗)‖ ≤ 1
1− w0(‖u− x∗‖) . (12)

In particular, if u = x0 in (12) the iterate y0 is well defined, and we can write by the
first substep of the method (3) if n = 0

y0 − x∗ = x0 − x∗ − F′(x0)
−1F(x0)

= [F′(x0)
−1F′(x∗)]

∫ 1

0
F′(x∗)−1(F′(x∗ + θ(x0 − x∗))− F′(x0)

)
dθ(x0 − x∗). (13)

In view of (4), (8) (for i = 1), (12) (for u = x0), (E2) and (13), we have in turn that

‖y0 − x∗‖ ≤
∫ 1

0 w((1− θ)‖x0 − x∗‖)dθ‖x0 − x∗‖
1− w0(‖x0 − x∗‖) = g1(‖x0 − x∗‖)‖x0 − x∗‖

≤‖x0 − x∗‖ < r. (14)

Thus, the iterate y0 ∈ S(x∗, r) and the assertion (9) holds for n = 0.
Next, we estimate:

‖F′(x∗)−1(A0 −
k

∑
j=1

bjF′(x∗))‖ ≤
k

∑
j=1
|bj|‖F′(x∗)−1(F′(x0)− ajF′(x0)

−1F(x0)− F′(x∗))‖

≤
k

∑
j=1
|bj|w0(|1− aj|‖x0 − x∗‖+ aj‖y0 − x∗‖) ≤ q(‖x0 − x∗‖) < 1. (15)

Thus, we deduce

‖A−1
0 F′(x∗)‖ ≤ 1

1− q(‖x0 − x∗‖) . (16)

Moreover, the iterate x1 is well defined by the second substep of the method (3)
if n = 0.

Similarly, we first have

A0 −
∫ 1

0
F′(x∗ + θ(x0 − x∗))dθ =

k

∑
j=1

bj

(
F′(x0 + aj(y0 − x0))−

∫ 1

0
F′(x∗ + θ(x0 − x∗))dθ

)
,

so

‖F′(x∗)−1(A0 −
∫ 1

0
F′(x∗ + θ(x0 − x∗))dθ)‖

≤
∫ 1

0

k

∑
j=1
|bj|w(‖x0 + aj(y0 − x0)− x∗ − θ(x0 − x∗)‖)dθ

≤
∫ 1

0

k

∑
j=1
|bj|w(|1− θ − aj|‖x0 − x∗‖+ aj‖y0 − x∗‖)dθ

≤ p(‖x0 − x∗‖), (17)
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hence,

‖x1 − x∗‖ = ‖x0 − x∗ − A−1
0 F(x0)‖

= ‖
[

A−1
0 F′(x∗)

][
F′(x∗)−1(A0 −

∫ 1

0
F′(x∗ + θ(x0 − x∗))dθ)

]
(x0 − x∗)‖

≤ p(‖x0 − x∗‖)
1− qn

≤ g2(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖. (18)

That is, the iterate x1 ∈ S(x∗, r) and the assertion (10) holds if n = 0.
By switching x0, y0, x1 with xm, ym, xm+1 in the previous calculations, the induction

for the assertions (9) and (10) is terminated. Therefore, the estimate

‖xm+1 − x∗‖ ≤ c‖xm − x∗‖ < r, (19)

where c = g2(‖x0− x∗‖) ∈ [0, 1) gives limm→∞ xm = x∗, and the iterate xm+1 ∈ S(x∗, r).

The uniqueness of the solution region is determined in the next result.

Proposition 1. Suppose:

(1) A solution u∗ ∈ S(x∗, ρ3) of the equation F(x) = 0 exists for some ρ3 > 0.
(2) The condition (E1) holds on the ball S(x∗, ρ3).
(3) ρ4 ≥ ρ3 exists such that

∫ 1

0
w0(θρ4)dθ < 1.

Set D2 = D ∩ S [x∗, ρ4]. Then, the equation (1) is uniquely solvable by x∗ in the region D2.

Proof. Let us define the linear operator T by

T =
∫ 1

0
F′(x∗ + θ(u∗ − x∗))dθ.

It follows by (1)–(3) that

‖F′(x∗)−1(T − F′(x∗))‖ ≤
∫ 1

0
w0(θ‖u∗ − x∗)dθ∫ 1

0
w0(θρ4)dθ < 1,

thus u∗ − x∗ = T−1(F(u∗)− F(x∗)) = T−1(0) = 0.

Remark 1. We can choose ρ3 = r provided that all hypotheses (E1)–(E3) of the Theorem 1 hold.

3. Convergence II: Semilocal

We still rely on the ω-continuity of F′, but a scalar majorizing sequence is
also employed.

Let v0 : M → R, v : M1 → R be NCF’s. If α0 = 0 and β0 ≥ 0, define the sequences
{tn}, {sn} by
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qn =
k

∑
j=1
|bj|v0(|1− aj|tn + ajsn)

pn =
k

∑
j=1
|bj|

∫ 1

0
v(|1− θ − aj|tn + ajsn)dθ

tn+1 = sn +
pn(sn − tn)

1− qn

γn+1 =
∫ 1

0
v((1− θ)(tn+1 − tn))dθ(tn+1 − tn) + (1 + v0(tn))(tn+1 − sn) (20)

and

sn+1 = tn+1 +
γn+1

1− v0(tn+1)
.

These scalar sequences are shown to be majorizing for the method (3). However, first,
some general convergence conditions are needed for them.

Lemma 1. Suppose that there d > 0 exists such that for each n = 0, 1, 2, . . .

qn < 1, v0(tn) < 1 and tn < d. (21)

Then, the sequences {tn}, {sn} given by the formula (20) are convergent to some d∗ ∈ [0, d].

Proof. The Formula (20) and Condition (21) imply tn ≤ sn ≤ tn+1 < d. Hence, the result
follows.

Remark 2. (a) If the function v0 is strictly increasing on the interval [0, ρ); then, we can
choose d = v−1

0 (1).
(b) If the smallest positive root ρ0 of the function v0(t)− 1 exists then we can set d = ρ0.

The functions v0, v and parameter d∗ relate to the operators F and F′ provided x0 ∈ D
is such that F′(x0)

−1 ∈ L(B2, B1) and ‖F′(x0)
−1F(x0)‖ ≤ β0.

Suppose:

(H1)‖F′(x0)
−1(F′(u)− F′(x0))‖ ≤ v0(‖u− x0‖) for each u ∈ D.

Set D3 = D ∩ S(x0, ρ0), where ρ0 is the smallest positive root of the function v0(t)− 1.
(H2)‖F′(x0)

−1(F′(u1)− F′(u2))‖ ≤ v(‖u1 − u2‖) for each u1, u2 ∈ D3.
(H3)The condition (21) holds

and
(H4)S [x0, d∗] ⊂ D.

The semilocal convergence follows for the method (3).

Theorem 2. Suppose that the conditions (H1)–(H4) hold. Then, the sequence is convergent to
some x∗ ∈ S [x0, d∗] solving the equation F(x) = 0 and such that

‖x∗ − xn‖ ≤ d∗ − tn. (22)

Proof. The following assertions are shown using induction.

‖yn − xn‖ ≤ sn − tn < d∗ (23)

and

‖xn+1 − yn‖ ≤ tn+1 − sn. (24)
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The assertion (23) holds if n = 0 by the choice of t0, s0, and the first substep of the
method (3). It follows that the iterate y0 ∈ S(x0, d∗). By switch x∗, conditions (E1)–(E3) by
x0, (H1)–(H4), we obtain

‖A−1
m F′(x0)‖ ≤

1
1− qm

(25)

and

‖F′(x0)
−1(F′(xm)− Am)‖ ≤ pm. (26)

We can write by the second substep of the method (3)

xm+1 − ym = (F′(xm)
−1 − A−1

m )F(xm) = −(A−1
m − F′(xm)

−1)F(xm)

= −A−1
m (F′(xm)− Am)F′(xm)

−1F(xm) = A−1
m (F′(xm)− Am)(ym − xm),

thus,

‖xm+1 − ym‖ ≤
pm‖ym − xm‖

1− qm
≤ tm+1 − sm (27)

and

‖xm+1 − x0‖ ≤ ‖xm+1 − ym‖+ ‖ym − x0‖ ≤ tm+1 − sm + sm − t0 = tm+1 < d∗.

Hence, the iterate xm+1 ∈ S(x0, d∗) and (23) holds. We can write by the first substep
of the method (3) in turn that

F(xm+1) =F(xm+1)− F(xm)− F′(xm)(ym − xm)

=F(xm+1)− F(xm+1)− F′(xm)(xm+1 − xm) + F′(xm)(xm+1 − ym),

thus,

‖F′(x0)
−1F(xm+1)‖ ≤

∥∥∥∥∫ 1

0
F′(x0)

−1(F(xm + θ(xm+1 − xm))− F′(xm))dθ(xm+1 − xm)

∥∥∥∥
+‖F′(x0)

−1(F′(xm)− F′(x0) + F′(x0))‖

≤
∫ 1

0
v((1− θ)‖xm+1 − xm‖)dθ‖xm+1 − xm‖+ (1 + v0(‖xm − x0‖))‖xm+1 − ym‖

≤
∫ 1

0
v((1− θ)(tm+1 − tm))dθ(tm+1 − tm) + (1 + v0(tm))(tm+1 − sm) = γm+1. (28)

Consequently, we obtain

‖ym+1 − xm+1‖ ≤ ‖F(xm+1)
−1F′(x0)‖‖F′(x0)

−1F(xm+1)‖ ≤ sm+1 − tm+1

and

‖ym+1 − x0‖ ≤ ‖ym+1 − xm+1‖+ ‖xm+1 − x0‖ ≤ sm+1 − tm+1 + tm+1 − t0 = sm+1 < d∗.

Hence, the induction is completed and the iterate ym+1 ∈ S(x0, d∗). It follows by
Lemma 1 and the condition (H2) that the sequences {tm}, {sm} are Cauchy as convergent.
Then, by (23) and (24), the sequences {xm}, {ym} are also Cauchy and, as such, they are
convergent to some x∗ ∈ S [x∗, d∗]. Moreover, by letting m → ∞ in (28) and using the
continuity of the operator F, we deduce that F(x∗) = 0. Furthermore, for j ≥ 0 an integer,
and the estimation

‖xm+j − xm‖ ≤ tm+j − tm, (29)
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we conclude that (22) holds by letting j→ +∞ in (29).

Next, the uniqueness region is provided.

Proposition 2. Suppose:

(1) There exists a solution u∗ ∈ S(x0, d1) of the Equation (1) for some d1 > 0.
(2) The condition (H1) holds on the ball S(x0, d1).
(3) There exists d2 ≥ d1 such that

∫ 1

0
v0((1− θ)d1 + θd2)dθ < 1.

Set D4 = D ∩ S [x0, d2].
Then, the equation F(x) = 0 is uniquely solvable by u∗ in the region D4.

Proof. As in Proposition 1 define the linear operator T1 =
∫ 1

0 F′(u∗ + θ(y∗ − u∗))dθ for
some y∗ ∈ D4 with F(y∗) = 0. Then, it follows in turn by (1)–(3)

‖F′(x0)
−1(T1 − F′(x0))‖ ≤

∫ 1

0
v0((1− θ)‖u∗ − x0‖+ θ‖y∗ − x0‖)dθ

≤
∫ 1

0
v0((1− θ)ρ5) + θd1)dθ < 1.

Thus, we conclude again that u∗ = y∗.

Remark 3. (i) Under all the conditions of Theorem 2, we can let d1 = d∗ and u∗ = x∗.
(ii) The condition (H4) can be replaced by (H4)

′ S [x0, ρ0] ⊂ D, where ρ0 is given in closed form.

4. Examples and Numerical Calculations

Validating and verifying theoretical results, numerical experiments are essential. This
section comprises six numerical problems based on three applied science problems to check
the theoretical results obtained from preceding sections. Two types of convergence analysis
are mainly focused on: semi-local and local.

In order to evaluate the effectiveness of the method (3), some applications are sim-
ulated, and the results are analyzed. In particular, the residual errors, the number of
iterations, the convergence radii, and the expected order of convergence are computed. The
following formulas used for COC:

µ =
ln
‖xj+1−x∗‖
‖xj−x∗‖

ln
‖xj−x∗‖
‖xj−1−x∗‖

, for j = 1, 2, . . .

or ACOC by:

µ∗ =
ln
‖xj+1−xj‖
‖xj−xj−1‖

ln
‖xj−xj−1‖
‖xj−1−xj−2‖

, for j = 2, 3, . . .

We observe that the iterations terminate when the error is sufficiently small, according
to the following sopping criterion:

(i) ‖xk+1 − xk‖ ≤ ε, and
(ii) ‖F(xk)‖ < ε,

where ε = 10−100 as error tolerance. The stopping criteria ensure that the computed
approximations are accurate to a pre-decided level of precision. The numerical examples
are stimulated by using Mathematica 11 software.
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The first four examples are based on local convergence. Moreover, on the last we apply
the method (3).

Example 1. Let B1 = B2 = R3, D = S [0, 1] and define F on D for u = (x, y, z) by

F(u) =
(

ex − 1,
e− 1

2
y2 + y, z

)T
.

The first Fréchet derivative is given by

F′(u) =

ex 0 0
0 (e− 1)y + 1 0
0 0 1


Then, we find that x∗ = (0, 0, 0), ω0(t) = (e− 1)t and ω1(t) = et. Then, taking k = 2,

a1 = a2 = 1/2, b1 = b2 = 1/2 the smallest positive roots of gi(t) − 1 = 0 for i = 1, 2 are
0.324947 and 0.264229. Then, the radius of convergence is given as r = 0.264229.

Example 2. Let B1 = B2 = R. Define F on D = (−1, 1) by

F(x) = sin x + x
7
4 .

Then, clearly x∗ = 0. For k = 1, a1 = 1, b1 = 1, and ω0(t) = ω1(t) = t + 7
4 t

3
4 . The

smallest positive roots of gi(t)− 1 = 0 for i = 1, 2 are 0.173601 and 0.14117. Then, the radius of
convergence is given as r = 0.14117.

Example 3. Consider the nonlinear integral equation of mixed Hammerstein-type equation
given by

F(x)(u) = x(u)−
∫ 1

0
utx(t)1+αdt, α ∈ (0, 1)

where x(u) ∈ C[0, 1]. Clearly, x∗ = 0. For k = 1, a1 = 1, b1 = 1, α = 1/2, and
ω0(t) = ω1(t) = 2.5(1 + α)tα. The smallest positive roots of gi(t) − 1 = 0 for i = 1, 2
are 0.0256 and 0.0189628. Then, the radius of convergence is given as r = 0.0189628.

Example 4. Consider the function defined on D = [−0.5, 1.5] by

F(t) =

{
t2 log t + t4 − t3, t 6= 0
0, t = 0.

The unique solution is x∗ = 1. Then, we find that for k = 2, a1 = a2 = 1/2, b1 = b2 = 1/2,
ω0(t) = 96.6628t, and ω1(t) = 96.6628t. Then, the smallest positive roots of gi(t)− 1 = 0 for
i = 1, 2 are 0.00689683 and 0.0064939. Then, the radius of convergence is given as r = 0.0064939.

Example 5. Consider the following nonlinear partial differential equation, also known as problem
of molecular interaction and defined by

θt1t1 + θt2t2 = θ2, (30)

subject to the following conditions:

θ(t1, 0) = 2t2
1 − t1 + 1,

θ(t1, 1) = 2,

θ(0, t2) = 2t2
2 − t2 + 1,

θ(1, t2) = 2
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where (t1, t2) ∈ [0, 1]× [0, 1].
Discretize the PDE (30) by applying the central divided difference

θt1t1 =
θi+1,j − 2θi,j + θi−1,j

a2 ,

θt2t2 =
θi,j+1 − 2θi,j + θi,j−1

a2

which further produces

θi+1,j − 4θi,j + θi−1,j + θi,j+1 + θi,j−1 − a2θ2
i,j = 0,

a system of nonlinear equations, where i = 1, 2, 3, . . . , l − 1, j = 1, 2, 3, . . . , l − 1. For instance
l = 6, we obtain a system of 5× 5 and a = 1

l . The COC, the number of iterations, residual errors,
CPU timing, and error difference between two iterations for Example 5 are mentioned in Table 1.

Table 1. Numerical outcomes for Example 5.

Cases x0 |F(xn)| |xn+1− xn| n µ CPU Timing

Method(3) ( 39
100 , 39

100 , 39
100 , 39

100 , 39
100 )

tr 8.5× 10−827 1.2× 10−826 3 4 7.56632

Example 6. Let us consider the following the Van der Pol equation, which is defined as

ν′′ − η(ν2 − 1)ν′ + ν = 0, η > 0, (31)

which governs the flow of current in a vacuum tube, with the boundary conditions ν(0) = 0,
ν(2) = 1. Further, we consider the partition of the given interval [0, 2], which is given by

τ0 = 0 < τ1 < τ2 < τ3 < · · · < τk, where τi = τ0 + ih, h =
2
k

.

Moreover, we assume that

ν0 = ν(τ0) = 0, ν1 = ν(τ1), . . . , νk−1 = ν(τk−1), νk = ν(τk) = 1.

If we discretize the above problem (31) by using the second order divided difference for the first
and second derivatives, which are given by

ν′k =
νk+1 − νk−1

2h
, ν′′k =

νk−1 − 2νk + νk+1

h2 , k = 1, 2, . . . , n− 1,

then, we obtain a (n− 1)× (n− 1) system of nonlinear equations

2h2τk − hη(τ2
k − 1)(τk+1 − τk−1) + 2(τk−1 + τk+1 − 2τk) = 0, k = 1, 2, . . . , n− 1.

Let us consider η = 1
2 and n = 8; so, we have a 7× 7 system of nonlinear equations. The

obtained results are depicted in Table 2.

Table 2. Numerical outcomes for Example 6.

Cases x0 |F(xn)| |xn+1− xn| n µ CPU Timing

Method(3) ( 34
100 , 62

100 , 8
10 , 9

10 , 12
10 , 11

10 , 13
10 )

tr 8.7× 10−944 5.7× 10−944 3 4 3.63682

Method (3) converges to the following estimated zero:

x∗ = (0.3381 . . . , 0.6208 . . . , 0.8452 . . . , 1.009 . . . , 1.111 . . . , 1.146 . . . , 1.108 . . . )tr
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5. Concluding Remarks

In the foregoing study, we have analyzed the local and the semilocal convergence for
a fourth-order iterative method based on quadrature formulae in Banach spaces by using
majorizing sequences. Local convergence analysis is based on very general ω-continuity
conditions on first order Fréchet derivative, thereby extending the applicability and usage of
the method. Theoretical results are applied to some numerical examples to demonstrate the
efficiency of our convergence analysis. It can be observed that our theoretical conclusions
worked well in the situation where the earlier analysis based on Lipschitz condition cannot
be used. Future work involves other methods and applications to integral equations and to
the solution of PDE’s.
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