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Abstract: We consider a predictor–corrector numerical method for solving Caputo–Hadamard frac-
tional differential equation over the uniform mesh log tj = log a+

(
log tN

a
)( j

N
)
, j = 0, 1, 2, . . . , N with

a ≥ 1, where log a = log t0 < log t1 < · · · < log tN = log T is a partition of [log a, log T]. The error
estimates under the different smoothness properties of the solution y and the nonlinear function f
are studied. Numerical examples are given to verify that the numerical results are consistent with the
theoretical results.

Keywords: predictor–corrector method; Caputo–Hadamard fractional derivative; uniform meshes;
error estimates; Adams–Bashforth–Moulton method; smoothness properties; error estimates

1. Introduction

Fractional differential equations have recently become an active research area due
to the applications in fields including mechanics, computer science, and biology [1–4].
There are different fractional derivatives, e.g., Caputo, Riemman–Liouville, Riesz, etc. Such
fractional derivatives are well studied in literature. One particular fractional derivative, the
Hadamard fractional derivative, is also important and has been used to model physical
problems in many fields [5–11]. The Hadamard fractional derivative was first introduced
in early 1892 [12], and the Caputo–Hadamard derivative was suggested by Jarad et al. [8].
In this paper, we will discuss the numerical method for solving a Caputo–Hadamard
fractional initial value problem. We will be analyzing the smoothness properties of various
aspects of such equations and explain how these properties will affect the convergence
order of the numerical method.

Consider the following Caputo–Hadamard fractional differential equation, with α > 0, [8]

CH Dα
a,ty(t) = f

(
t, y(t)

)
, δky(a) = y(k)a , k = 0, 1, . . . , dαe − 1, (1)

for 1 ≤ a ≤ t ≤ T. Here, dαe denotes the least integer bigger than or equal to α. Here,
f (t, y) is a nonlinear function with respect to y ∈ R, and the initial values y(k)a are given.
We also define α such that n− 1 < α < n, for n = 1, 2, 3 . . . . Here, the fractional derivative
CH Dα

a,t denotes the Caputo–Hadamard derivative defined as ,

CH Dα
a,ty(t) =

1
Γ(dαe − α)

∫ t

a

(
log

t
s

)dαe−α−1
δny(s)

ds
s

, t ≥ a ≥ 1, (2)

with δny(s) = (s d
ds )

ny(s). It is well known that (1) is equivalent to the following Volterra
integral equation, with α > 0 [13,14],

y(t) =
dαe−1

∑
ν=0

y(ν)a
(log t

a )
ν

ν!
+

1
Γ(α)

∫ t

a

(
log

t
s

)α−1
f
(
s, y(s)

)ds
s

. (3)
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Let us begin by reviewing some different numerical methods for solving (1).
Diethelm et al. [15] first introduced the fractional Adams method for the Caputo frac-
tional differential equation as a generalization of the classical numerical method for solving
first-order ODEs. They discussed the error estimates for the proposed method, including
the convergence orders under the different smoothness assumptions of y and f . This work
was then extended by Liu et al. [16] to show that when CDα

a,ty(t) /∈ C2[0, T], the optimal
convergence order is not achieved but can be recovered by implimenting a graded mesh.
Gohar et al. [7] studied the existence and uniqueness of the solution of (1), and several
numerical methods were introduced including the Euler and predictor–corrector meth-
ods. Gohar et al. [13] extended their work by introducing the rectangular, trapezoidal,
and predictor–corrector methods for solving (1) with a uniform mesh under the smooth
assumptions CH Dα

a,ty(t) ∈ C2[a, T] with α ∈ (0, 1). Green et al. [14] extended the results
in [16] to the Caputo–Hadamard differential Equation (1). Numerical methods for solving
Caputo–Hadamard time fractional partial differential equations can be found in [7,17].
More recent works on numerical methods for solving fractional differential equations can
be referred to [17–21].

Caputo–Hadamard type fractional differential equations have the significant interests
when they come to real applications due to the logarithmic nature of the integral kernel.
This is especially true in mechanics and engineering. An example of this is the use of
Hadamard type equations in fracture analysis and the modeling of elasticity [22]. Further-
more, the Caputo–Hadamard fractional derivative has been used in fractional turbulent
flow models [23]. In biology, the Hadamard fractional derivative has been used in mod-
eling for cancer treatments by radiotherapy [24]. Many of these models require efficient
numerical methods for solving them. In literature, the error estimates of the numeircal
methods proposed for solving the Caputo–Hadamard fractional differential Equation (1)
are based on the assumptions that the solution y and f are sufficiently smooth [7,13]. In this
paper, we will consider the error estimates of the numerical methods under the different
smoothness assumptions of y and f .

Diethelm et al. [15] considered a variety of smoothness assumptions of y and f to
the fractional Adams method for solving Caputo differential equations. The aim of this
work is to extend the ideas in [15] for solving Caputo fractional differential equation to
Caputo–Hadamard fractional differential Equation (1).

Let us start by briefly recalling the Adams–Bashforth–Moulton method for the Caputo–
Hadamard fractional derivative. To construct such a method, we require an approximation
of the integral in (3). We will apply the following product trapezoidal quadrature rule,∫ tk+1

a

(
log(tk+1)− log(z)

)α−1g(z)
dz
z
≈
∫ tk+1

a

(
log(tk+1)− log(z)

)α−1 g̃k+1(z)
dz
z

, (4)

where the approximation g̃k+1(z) is the piecewise linear interpolant for g at tj, j = 0, 1, 2, . . . , k+ 1.
Using the standard techniques from quadrature theory, we can write the right hand side
integral as, ∫ tk+1

a

(
log(tk+1)− log(z)

)α−1 g̃k+1(z) =
k+1

∑
j=0

aj,k+1g(tj), (5)

where,

aj,k+1 =
∫ tk+1

a

(
log(tk+1)− log(z)

)α−1
φj,k+1dz, (6)

and,

φj,k+1(z) =


log z−log tj−1
log tj−log tj−1

, if tj−1 < z < tj,
log tj+1−log u
log tj+1−log tj

, if tj < z < tj+1,

0, otherwise.

(7)
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Evaluating the integral, we get,

aj,k+1 =
1

α(α + 1)


1

log t1
a

A0, j = 0,

1

log
tj+1

tj

Aj +
1

log
tj−1

tj

Bj, j = 1, 2, . . . , k,(
log tk+1

tk

)α
, j = k + 1,

(8)

Aj =
(

log
tk+1
tj+1

)α+1
−
(

log
tk+1

tj

)α+1
+ (α + 1)

(
log

tj+1

tj

)(
log

tk+1
tj

)α
, j = 0, 1, ..., k,

Bj =
(

log
tk+1

tj

)α+1
−
(

log
tk+1
tj−1

)α+1
+ (α + 1)

(
log

tj

tj−1

)(
log

tk+1
tj−1

)α
, j = 1, 2, ..., k.

This gives us the formula for the corrector, known as the fractional one-step Adams–
Moulton method,

yk+1 = y0 +
1

Γ(α)

( k

∑
j=0

aj,k+1 f (tj, yj) + ak+1,k+1 f (tk+1, yP
k+1)

)
. (9)

We now must determine the predictor formula required to calculate yP
k+1. For this, we

will generalize the one-step Adams–Bashforth method for ODEs. To do this, we follow a
similar method, but now, we will be replacing the integral on the right-hand side by the
product rectangle formula rule,

∫ tk+1

a

(
log(tk+1)− log(z)

)α−1g(z)
dz
z
≈

k

∑
j=0

bj,k+1g(tj), (10)

where,

bj,k+1 =
1

Γ(α + 1)

[(
log

tk+1
tj

)α
−
(

log
tk+1
tj+1

)α
]

, j = 0, 1, 2, . . . , k. (11)

Therefore, the predictor can be calculated using the fractional Adams–Bashforth
method,

yP
k+1 = y0 +

k

∑
j=0

bj,k+1 f (tj, yj). (12)

Finally, we can conclude that our basic method, the fractional Adams–Bashforth–
Moulton method, is described with the predictor Equation (12), the corrector Equation (9),
and weights (8) and (11). For this method, however, we will be using a uniform mesh
defined below.

Let N be a positive integer and let a = t0 < t1 < · · · < tN = T be the partition on [a, T].
We define the following uniform mesh on [log(a), log(T)] with log a = log t0 < log t1 <
· · · < log tN = log T,

log tj − log a
log tN − log a

=
j

N
, (13)

which implies that,

log tj = log a + jh, with h = (log tN − log a)/N. (14)
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when j = N we have log tN = log T and when j = 0, we have log t0 = log a. By applying
such a mesh on our weights, we can simplify them to,

aj,k+1 =
hα

Γ(α + 2)
×


(
kα+1 − (k− α)(k + 1)α

)
, if j = 0,

(k− j + 2)α+1 + (k− j)α+1 − 2(k− j + 1)α, if 1 ≤ j ≤ k,
1, if j = k + 1,

(15)

and
bj,k+1 =

hα

Γ(α + 1)
(
(k + 1− j)α − (k− j)α

)
. (16)

The fractional Adams–Bashforth–Moulton method has many useful properties. First,
we may use this method to solve nonlinear fractional differential equation by transform-
ing the nonlinear equation into a Volterra integral equation with a singular kernel and
approximating the corresponding Volterra integral equation with some suitable quadra-
ture formula. Second, the fractional Adams–Bashforth–Moulton method is an explicit
method, and as such, it can save computer memory and can be more computationally
time-efficient. Finally, this method has been shown to have a convergence order of O(h2−α)
for suitable meshes.

We shall consider the error estimates of the predictor–corrector schemes (9) and (12)
under the various smoothness assumptions of f and y in this paper. The paper is organized
as follows. In Section 2, we will consider some auxiliary results that will aid us for the
remainder of the paper in proving the error estimates. In Section 3, we consider the error
estimates of the predictor–corrector method for solving (1) with a uniform mesh under
different smoothness conditions. In Section 4, we will provide several numerical examples
that support the theoretical conclusions made in Sections 2 and 3.

2. Auxiliary Results

For the remainder of this work, we will be using the Adams method described by the
predictor Equation (12) and the corrector Equation (9) and the uniform mesh described by
(13) to solve the fractional initial value problem (1). To begin, we must apply some condi-
tions on the function f , namely that f is continuous and follows the Lipschitz condition
with respect to its second argument with the Lipschitz constant, L, on a suitable set G. By
forcing these conditions, we may use [25] to show that a unique solution y of the initial
value problem exists on the interval [a, T]. Our goal is to find a suitable approximation for
this unique solution.

As such, we will introduce several auxiliary results on certain smoothness properties
to help us in our error analysis of this method. Our first result is taken from [13].

Theorem 1. (a) Let α > 0. Assume that f ∈ C2(G) where G ⊂ R2 is a suitable set. Define
v̂ = d 1

α e − 1. Then, there exists a function φ ∈ C1[a, T] and some constants c1, c2, . . . , cv̂ ∈ R
such that the solution y of (1) can be expressed in the following form:

y(t) = φ(t) +
v̂

∑
v=1

cv

(
log

t
a

)vα
. (17)

(b) Assume that f ∈ C3(G). Define v̂ = d 2
α e − 1. and ṽ = d 1

α e − 1. Then, there exists a function
ψ ∈ C2[a, T] and some constants c1, c2, . . . , cv̂ ∈ R and d1, d2 . . . , dṽ ∈ R such that the solution y
of (1) can be expressed in the form,

y(t) = ψ(t) +
v̂

∑
v=1

cv

(
log

t
a

)vα
+

ṽ

∑
v=1

dv

(
log

t
a

)1+vα
. (18)

We can also relate such smoothness properties of the solution with that of the Caputo–
Hadamard derivatives. From [13], we have,



Foundations 2022, 2 843

Theorem 2. If y ∈ Cm[a, T] for some m ∈ N and 0 < α < m, then,

CH Dα
a,ty(t) = Φ

(
log

t
a

)
+

m−dαe−1

∑
l=0

δl+dαey(a)
Γ(dae − α + l + 1)

(
log

t
a

)dae−α+l
, (19)

where Φ ∈ Cm−dαe[a, T] and δny(s) = (s d
ds )

ny(s) with n ∈ N. Moreover, the (m − dαe)th
derivative of g satisfies a Lipschitz condition of order dαe − α.

A useful corollary can then be drawn from this theorem and can be used to generalize
the classical result for derivatives of integer order.

Corollary 1. Let y ∈ Cm[a, T] for some m ∈ N and assume that 0 < α < m. Then, CH Dα
a,ty(t) ∈

C[a, T].

We will now introduce some error estimates for both the product rectangle rule and
product trapezoidal rule, which we have implemented as the predictor and corrector of our
method. Doing so will aid us in producing error estimates and convergence orders of the
fractional Adams method.

Theorem 3. (a) Let z(t) = z
(

log t
a
)
∈ C1[a, T] and δz = (t d

dt )z. Let h be defined by (14). Then,

∣∣∣ ∫ tk+1

a

(
log

tk+1
t

)α−1
z
(

log
t
a

)dt
t
−

k

∑
j=0

bj,k+1z
(

log
t
a

)∣∣∣ ≤ 1
α
||δz||∞

(
log

tk+1
a

)α
h. (20)

(b) Let z
(

log t
a
)
=
(

log t
a
)p for some p ∈ (0, 1). Then,

∣∣∣ ∫ tk+1

a

(
log

tk+1
t

)α−1
z
(

log
t
a

)dt
t
−

k

∑
j=0

bj,k+1z
(

log
t
a

)∣∣∣ ≤ CRe
α,p

(
log

tk+1
a

)α+p−1
h. (21)

Proof. Using the construction of the product rectangle formula rule, we can show that in
both cases above, the quadrature error can be represented by,

∫ tk+1

a

(
log

tk+1
t

)α−1
z
(

log
t
a

)dt
t
−

k

∑
j=0

bj,k+1z
(

log
tj

a

)
=

k

∑
j=0

∫ tj+1

tj

(
log

tk+1
t

)α−1
(

z
(

log
t
a

)
− z
(

log
tj

a

))dt
t

. (22)

We will begin by proving statement (a). We first apply the Mean Value Theorem on z
in the second factor of the integrand and note that δz(t) = (t d

dt )z(t) = z′(log t
a ). This gives

us, with ‖δz‖∞ = maxt∈[0,T] |δz(t)|,

∣∣∣∣ ∫ tk+1

a

(
log

tk+1
t

)α−1
z
(

log
t
a

)dt
t
−

k

∑
j=0

bj,k+1z
(

log
tj

a

)∣∣∣∣
≤||δz||∞

k

∑
j=0

∫ tj+1

tj

(
log

tk+1
t

)α−1
(log t− log tj)

dt
t

=||δz||∞
h1+α

α

k

∑
j=0

(
1

1 + α

[
(k + 1− j)1+α − (k− j)1+α

]
− (k− j)α

)

=||δz||∞
h1+α

α

(
(k + 1)1+α

1 + α
−

k

∑
j=0

jα

)
= ||δz||∞

h1+α

α

( ∫ k+1

0
tα −

k

∑
j=0

jα

)
. (23)
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The final bracket can be interpreted as the remainder of the standard rectangle quadra-
ture formula for the function tα over the interval [0, k + 1]. We can then apply a standard
result from quadrature theory that states that this term is bounded by the total variation of
the integrand, (k + 1)α. Therefore, we can conclude that,∣∣∣∣ ∫ tk+1

a

(
log

tk+1
t

)α−1
z
(

log
t
a

)dt
t
−

k

∑
j=0

bj,k+1z
(

log
tj

a

)∣∣∣∣ ≤ ||δz||∞
h1+α

α
(k + 1)α. (24)

Now to prove (b). We use the fact that z
(

log t
a
)
=
(

log t
a
)p is monotonic and repeated

applications of the Mean Value Theorem. We are required to take cases when 0 < α < 1
and α > 1.
Case 1 : 0 < α < 1,∣∣∣∣ ∫ tk+1

a

(
log

tk+1
t

)α−1
z
(

log
t
a

)dt
t
−

k

∑
j=0

bj,k+1z
(

log
tj

a

)∣∣∣∣
≤

k

∑
j=0

∣∣∣∣z( log
tj+1

a

)
− z
(

log
tj

a

)∣∣∣∣ ∫ tj+1

tj

(
log

tk+1
t

)α−1 dt
t

=
hα+p

α

k

∑
j=0

(
(j + 1)p − jp)((k + 1− j)α − (k− j)α

)
≤hα+p

α

(
(k + 1)α − kα + pα

k−1

∑
j=1

jp−1(k− j)α−1 + (k + 1)p − kp
)

≤hα+p

α

(
αkα−1 + pα

k−1

∑
j=1

jp−1(k− j)α−1 + pkp−1
)

.

We shall show that,
k−1

∑
j=1

jp−1(k− j)α−1 ≤ Ckα+p−1. (25)

Assuming (25) holds at the moment, we then have,

I ≤hα+p

α

(
αkα−1 + pαCkα+p−1 + pkp−1

)
≤ Chα+p

(
kα+p−1 + Ckα+p−1 + kα+p−1

)
≤Chα+pkα+p−1 = Chα+p

(
log

tk+1
α

)α+p−1
h−(α+p−1) = Ch

(
log

tk+1
α

)α+p−1
.

It remains to prove (25), which we shall do now.

k−1

∑
j=1

jp−1(k− j)α−1 = 1p−1(k− 1)α−1 + 2p−1(k− 2)α−1 + · · ·+ (k− 1)p−1(1)α−1.

Let F(x) = xp−1(k− x)α−1 for 0 ≤ x ≤ k. Then,

F′(x) = xp−2(k− x)α−2
[
(2− α− p)x− (1− p)k

]
.
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By letting the parenthesis equal zero, we find that F(x) has a turning point at xp =
(1−p)k
2−α−p , meaning F(x) is decreasing on [0, xp] and increasing on [xp, k]. Therefore,

k−1

∑
j=1

jp−1(k− j)α−1 ≤
∫ xp

0
xp−1(k− x)α−1dx +

∫ k

xp
xp−1(k− x)α−1dx

≤(k− xp)
α−1

∫ xp

0
xp−1dx + xp−1

p

∫ k

xp
(k− x)α−1dx

=
(

k− 1− p
2− α− p

k
)α−1 xp

p

p
+ xp−1

p
(k− xp)α

α

=C1kα−1kp + C2kp−1kα ≤ Ckp+α−1.

Case 2: α > 1,∣∣∣∣ ∫ tk+1

a

(
log

tk+1
t

)α−1
z
(

log
t
a

)dt
t
−

k

∑
j=0

bj,k+1z
(

log
tj

a

)∣∣∣∣
=

hα+p

α

k

∑
j=0

(
(j + 1)p − jp)((k + 1− j)α − (k− j)α

)
≤hα+p

α

(
(k + 1)α − kα + pα

k−1

∑
j=1

jp−1(k− j + 1)α−1 + (k + 1)p − kp
)

≤hα+p

α

(
α(k + 1)α−1 + pα

k−1

∑
j=1

jp−1(k− j + 1)α−1 + (k + 1)p − kp
)

.

We shall show that,

k−1

∑
j=1

jp−1(k− j + 1)α−1 ≤ Ckα+p−1. (26)

Assuming (26) holds at the moment, we then have,

I ≤hα+p

α

(
α(k + 1)α−1 + pαCkα+p−1 + pkp−1

)
≤Chα+p

(
Ckα+p−1 + Ckα+p−1 + Ckα+p−1

)
≤Chα+pkα+p−1 = Chα+p

(
log

tk+1
α

)α+p−1
h−(α+p−1) = Ch

(
log

tk+1
α

)α+p−1
.

It remains to prove (26), which we shall do now.

k−1

∑
j=1

jp−1(k− j)α−1 = 1p−1(k)α−1 + 2p−1(k− 1)α−1 + · · ·+ (k− 1)p−1(2)α−1.

Let F(x) = xp−1(k− x)α−1 for 0 ≤ x ≤ k. Then,

F′(x) = xp−2(k− x)α−2
[
(2− α− p)x− (1− p)(k + 1)

]
.

By letting the parenthesis equal zero, we find that F(x) has a turning point at xp =
(1−p)(k+1)

2−α−p , meaning F(x) is decreasing on [0, xp] and increasing on [xp, k]. Therefore,
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(i) If 2− α− p > 0, then xp > 0. Therefore,

k−1

∑
j=1

jp−1(k− j)α−1 ≤
∫ xp

0
xp−1(k + 1− x)α−1dx +

∫ p

xk

xp−1(k + 1− x)α−1dx

≤(k + 1− 0)α−1 xp
p

p
+ xp−1

p
(k + 1− xp)α

α

=(k + 1)α−1C1(k + 1)p + C2(k + 1)p−1C3(k + 1)α

≤C(k + 1)α+p−1 ≤ Ckα+p−1.

(ii) If 2− α− p < 0, then xp < 0. This means that F′(x) < 0 and shows that F(x) is a
decreasing function. Therefore,

k−1

∑
j=1

jp−1(k− j)α−1 ≤
∫ k

0
xp−1(k + 1− x)α−1dx

≤(k + 1− 0)α−1
∫ k

0
xp−1dx ≤ (k + 1)α−1 kp

p
≤ Ckα+p−1,

which gives us the desired result.

Next, we come to corresponding results for the trapezoidal formula that has been
used for the corrector of our method. The proofs of this theorem are similar to those of the
previous theorem.

Theorem 4. (a) Let z(t) = z
(

log t
a
)
∈ C2[a, T] and δ2z = (t d

dt )
2z. Let h be defined by (14).

Then, there exists a constant CTr
α depending on α such that,∣∣∣∣ ∫ tk+1

a

(
log

tk+1
t

)α−1
z
(

log
t
a

)dt
t
−

k

∑
j=0

aj,k+1z
(

log
tj

a

)∣∣∣∣ ≤ CTr
α ||δ2z||∞

(
log

tk+1
a

)α
h2. (27)

(b) Let z
(

log t
a
)
∈ C1[a, T] and assume that δz fulfils a Lipschitz condition of order µ for some

µ ∈ (0, 1). Then, there exists a positive constant BTr
α,µ and M(z, µ) such that,∣∣∣∣ ∫ tk+1

a

(
log

tk+1
t

)α−1
z
(

log
t
a

)dt
t
−

k

∑
j=0

aj,k+1z
(

log
tj

a

)∣∣∣∣ ≤ BTr
α,µ M(z, µ)

(
log

tk+1
a

)α
h1+µ. (28)

(c) Let z
(

log t
a
)
=
(

log t
a
)p for some p ∈ (0, 2) and ς := min(2, p + 1). Then,∣∣∣∣ ∫ tk+1

a
(log

tk+1
t

)α−1z
(

log
t
a

)dt
t
−

k

∑
j=0

aj,k+1z
(

log
tj

a

)∣∣∣∣ ≤ CTr
α,p

(
log

tk+1
a

)α+p−ς
hς. (29)

Proof. By construction of the product trapezoidal formula rule, we can show that in the
first two cases above, the quadrature error can be represented as,

∫ tk+1

a

(
log

tk+1
t

)α−1
z
(

log
t
a

)dt
t
−

k

∑
j=0

aj,k+1

(
log

tj

a

)
=

k

∑
j=0

∫ tj+1

tj

(
log

tk+1
t

)α−1
(

z
(

log
t
a

)
− P1(t)

)
dt
t

, (30)

where,

P1(t) =
log t

tj+1

log
tj

tj+1

z(tj) +
log t

tj

log
tj+1

tj

z(tj+1), t ∈ [tj, tj+1]. (31)
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We will begin by proving statement (a). To find an estimate for (30), we must simplify
the second factor of the integrand by applying the Mean Value Theorem. Therefore,

z
(

log
t
a

)
− P1(t)

=
log t

tj+1

log
tj

tj+1

(
z
(

log
t
a

)
− z
(

log
tj

a

))
+

log t
tj

log
tj+1

tj

(
z
(

log
t
a

)
− z
(

log
tj+1

a

))

=
log t

tj+1

log
tj

tj+1

δz(c1)(log t− log tj) +
log t

tj

log
tj+1

tj

δz(c2)(log t− log tj+1)

=
(log t− log tj+1)(log t− log tj)

(log tj+1 − log tj)

(
δz(c1)− δz(c2)

)
≤hδ2z(c3)(c1 − c2) ≤ ||δ2z||∞h2.

Applying the above to (30), we get,

k

∑
j=0

∫ tj+1

tj

(
log

tk+1
t

)α−1
(

z
(

log
t
a

)
− P1(t)

)
dt
t

≤
k

∑
j=0

∫ tj+1

tj

(
log

tk+1
t

)α−1
||δ2z||∞h2 dt

t
= ||δ2z||∞h2

k

∑
j=0

∫ tj+1

tj

(
log

tk+1
t

)α−1 dt
t

= ||δ2z||∞h2
k

∑
j=0

[−1
α

(
log

tk+1
t

)α]tj+1

tj

= ||δ2z||∞h2−1
α

k

∑
j=0

(
log

tk+1
tj+1

)α
−
(

log
tk+1

tj

)α

=
1
α
||δ2z||∞h2

k

∑
j=0

hα(k− j + 1)α − hα(k− j)α =
1
α
||δ2z||∞h2hα(k + 1)α

=
1
α
||δ2z||∞h2

(
log

tk+1
a

)α
.

Now to prove (b). As z ∈ C1[a, T], this time, we are unable to apply the mean value
theorem for a second time. Instead, we will apply the Lipschitz condition of order µ on δz
for some µ ∈ (0, 1). Therefore,

z
(

log
t
a

)
− P1(t)

=
log t

tj+1

log
tj

tj+1

(
z
(

log
t
a

)
− z
(

log
tj

a

))
+

log t
tj

log
tj+1

tj

(
z
(

log
t
a

)
− z
(

log
tj+1

a

))

=
log t

tj+1

log
tj

tj+1

δz(c1)(log t− log tj) +
log t

tj

log
tj+1

tj

δz(c2)(log t− log tj+1)

=
(log t− log tj+1)(log t− log tj)

(log tj+1 − log tj)

(
δz(c1)− δz(c2)

)
≤hM|c1 − c2|µ ≤ Mh1+µ,
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where M is a constant depending on z and µ. Applying the above to (30), we get,

k

∑
j=0

∫ tj+1

tj

(
log

tk+1
t

)α−1
(

z
(

log
t
a

)
− P1(t)

)
dt
t

≤
k

∑
j=0

∫ tj+1

tj

(
log

tk+1
t

)α−1
Mh1+µ dt

t
= Mh1+µ

k

∑
j=0

∫ tj+1

tj

(
log

tk+1
t

)α−1 dt
t

=Mh1+µ
k

∑
j=0

[−1
α

(
log

tk+1
t

)α]tj+1

tj
= Mh1+µ−1

α

k

∑
j=0

(
log

tk+1
tj+1

)α
−
(

log
tk+1

tj

)α

=
1
α

Mh1+µ
k

∑
j=0

hα(k− j + 1)α − hα(k− j)α =
1
α

Mh1+µhα(k + 1)α

=
1
α

Mh1+µ
(

log
tk+1

a

)α
.

Finally, we shall prove (c). We will start by proving the theorem when 0 < p < 1.
Case 1 : 0 < α < 1. Let

A =

∣∣∣∣ ∫ tk+1

a
(log

tk+1
t

)α−1z
(

log
t
a

)dt
t
−

k

∑
j=0

aj,k+1z
(

log
tj

a

)∣∣∣∣
=

∣∣∣∣ k

∑
j=0

∫ tj+1

tj

(
log

tk+1
t

)α−1
[(

log
t
a

)p
−
( log t

tj+1

log
tj

tj+1

(
log

tj

a

)p
+

log t
tj

log
tj+1

tj

(
log

tj+1

a

)p
)]

dt
t

∣∣∣∣
≤
∣∣∣∣ ∫ t1

t0

(
log

tk+1
t

)α−1
[(

log
t
a

)p
−
( log t

t0

log t1
t0

(
log

t1

a

)p
)]

dt
t

∣∣∣∣
+

∣∣∣∣ k

∑
j=1

∫ tj+1

tj

(
log

tk+1
t

)α−1
[(

log
t
a

)p
−
( log t

tj+1

log
tj

tj+1

(
log

tj

a

)p
+

log t
tj

log
tj+1

tj

(
log

tj+1

a

)p
)]

dt
t

∣∣∣∣
=I + I I.

For I, we have,

I =
∣∣∣∣ ∫ t1

t0

(
log

tk+1
t

)α−1
[(

log
t
a

)p
−
( log t

t0

log t1
t0

(
log

t1

a

)p
)]

dt
t

∣∣∣∣
=

∣∣∣∣ ∫ t1

t0

(
log

tk+1
t

)α−1
[(

log
t
a

)p
−
(

log t
a

h
hp
)]

dt
t

∣∣∣∣
≤
∫ t1

t0

(
log

tk+1
t

)α−1
hp dt

t
= hphα

[
(k + 1)α − kα

α

]
=hα+p αkα−1

α
= hp+αkα−1 = Chp+α(k + 1)α−1 = Chp+1 log

( tk+1
a

)α−1
.

For I I, we have,
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I I =
k

∑
j=1

∫ tj+1

tj

(
log

tk+1
t

)α−1
[(

log
t
a

)p
−
( log t

tj+1

log
tj

tj+1

(
log

tj

a

)p

+
log t

tj

log
tj+1

tj

(
log

tj+1

a

)p
)]

dt
t

=
k

∑
j=1

∫ tj+1

tj

(
log

tk+1
t

)α−1
[ log t

tj+1

log
tj

tj+1

((
log

t
a

)p
−
(

log
tj

a

)p
)

+
log t

tj

log
tj+1

tj

((
log

t
a

)p
−
(

log
tj+1

a

)p
)]

dt
t

=
k

∑
j=1

∫ tj+1

tj

(
log

tk+1
t

)α−1
[ log t

tj+1

log
tj

tj+1

pξ
p−1
2 (log t− log tj+1)

+
log t

tj

log
tj+1

tj

pξ
p−1
1 (log t− log tj)

]
dt
t

=C
k

∑
j=1

∫ tj+1

tj

(
log

tk+1
t

)α−1 log t
tj

log t
tj+1

log
tj+1

tj

[
ξ

p−1
2 − ξ

p−1
1
]dt

t
.

Therefore,

|I I| ≤C
k

∑
j=1

∫ tj+1

tj

(
log

tk+1
t

)α−1
∣∣∣∣ log t

tj
log t

tj+1

log tj+1
tj

∣∣∣∣[( log
tj

a

)p−1
−
(

log
tj+1

a

)p−1
]

dt
t

≤Chp
k

∑
j=1

∫ tj+1

tj

(
log

tk+1
t

)α−1[
jp−1 − (j + 1)p−1

] dt
t

=Chp+α

[ k−1

∑
j=1

[
jp−1 − (j + 1)p−1

][
(k + 1− j)α − (k− j)α

]
+
[
kp−1 − (k + 1)p−1

]]

≤Chα+p
[ k−1

∑
j=1

∣∣∣(p− 1)jp−2
∣∣∣[α(k− j)α−1

]
+ kp−2

]

≤Chα+p
[ k−1

∑
j=1

jp−2(k− j)α−1 + kp−2
]

.

Similar to our previous proof, we now must find the bounds for the summation.

k−1

∑
j=1

jp−2(k− j)α−1 ≤
∫ xp

1
xp−2(k− x)α−1dx +

∫ k

xp
xp−2(k− x)α−1dx

≤(k− xp)
α−1

∫ xp

1
xp−2dx + xp−2

p

∫ k

xp
(k− x)α−1dx

=(k− xp)
α−1 1

1− p
+ xp−2

p
(k− xp)α

α

=C1kα−1 + C2kp−2 · C3kα ≤ Ckα−1 + Ckα+p−2.
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Thus,

|I I| ≤Chα+p
[ k−1

∑
j=1

jp−2(k− j)α−1 + kp−2
]
≤ Chα+p

[
Ckα−1 + Ckα+p−2 + kp−2

]
≤Chα+p

[
Ckα−1 + Ckα+p−2 + kα+p−2

]
≤ Chα+p

[
Ckα−1 + Ckα+p−2

]
≤Chp+1 log

( tk
a

)α−1
+ Ch2 log

( tk+1
a

)α+p−2
≤ Chp+1 log

( tk+1
a

)α−1
.

Thus, we get the desired result.
Case 2: 1 < α < 2. Let

A =

∣∣∣∣ ∫ tk+1

a
(log

tk+1
t

)α−1z
(

log
t
a

)dt
t
−

k

∑
j=0

aj,k+1z
(

log
tj

a

)∣∣∣∣
≤
∣∣∣∣ ∫ t1

t0

(
log

tk+1
t

)α−1
[(

log
t
a

)p
−
( log t

t0

log t1
t0

(
log

t1

a

)p
)]

dt
t

∣∣∣∣
+

∣∣∣∣ k

∑
j=1

∫ tj+1

tj

(
log

tk+1
t

)α−1
[(

log
t
a

)p
−
( log t

tj+1

log
tj

tj+1

(
log

tj

a

)p
+

log t
tj

log
tj+1

tj

(
log

tj+1

a

)p
)]

dt
t

∣∣∣∣
=I + I I.

For I, we have,

I =
∣∣∣∣ ∫ t1

t0

(
log

tk+1
t

)α−1
[(

log
t
a

)p
−
( log t

t0

log t1
t0

(
log

t1

a

)p
)]

dt
t

∣∣∣∣
=

∣∣∣∣ ∫ t1

t0

(
log

tk+1
t

)α−1
[(

log
t
a

)p
−
(

log t
a

h
hp
)]

dt
t

∣∣∣∣
≤
∫ t1

t0

(
log

tk+1
t

)α−1
hp dt

t
= hphα

[
(k + 1)α − kα

α

]
=hα+p α(k + 1)α−1

α
= hp+α(k + 1)α−1 = hp+α(k + 1)α−1 = Chp+1tα−1

k+1 .

For I I, we have,

|I I| ≤C
k

∑
j=1

∫ tj+1

tj

(
log

tk+1
t

)α−1
∣∣∣∣ log t

tj
log t

tj+1

log
tj+1

tj

∣∣∣∣[( log
tj

a

)p−1
−
(

log
tj+1

a

)p−1
]

dt
t

≤Chp
k

∑
j=1

∫ tj+1

tj

(
log

tk+1
t

)α−1[
jp−1 − (j + 1)p−1

]dt
t

=Chp+α

[ k−1

∑
j=1

[
jp−1 − (j + 1)p−1

][
(k + 1− j)α − (k− j)α

]
+
[
kp−1 − (k + 1)p−1

]]

≤Chα+p
[ k−1

∑
j=1

∣∣∣(p− 1)jp−2
∣∣∣[α(k− j + 1)α−1

]
+ kp−2

]

≤Chα+p
[ k−1

∑
j=1

jp−2(k− j + 1)α−1 + kp−2
]

.
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Similar to our previous proof, we now must find the bounds for the summation.

k−1

∑
j=1

jp−2(k− j + 1)α−1 ≤
∫ xp

1
xp−2(k + 1− x)α−1dx +

∫ k

xp
xp−2(k + 1− x)α−1dx

=(k + 1− xp)
α−1 1

1− p
+ xp−2

p
(k + 1− xp)α

α

=C1(k + 1)α−1 + C2(k + 1)p−2 · C3(k + 1)α

≤C(k + 1)α−1 + C(k + 1)α+p−2.

Thus,

|I I| ≤Chα+p
[ k−1

∑
j=1

jp−2(k− j)α−1 + kp−2
]
≤ Chα+p

[
C(k + 1)α−1 + C(k + 1)α+p−2 + kp−2

]
≤Chα+p

[
C(k + 1)α−1 + C(k + 1)α+p−2 + (k + 1)α+p−2

]
≤Chα+p

[
C(k + 1)α−1 + C(k + 1)α+p−2

]
≤Chp+1 log

( tk+1
a

)α−1
+ Ch2 log

( tk+1
a

)α+p−2
≤ Chp+1 log

( tk+1
a

)α−1
.

Thus, we get the desired result. The proof for this theorem when 1 < p < 2 is similar
to when 0 < p < 1. As such, it has been omitted.

Remark 1. In the final part of Theorem 4, there is a case when α, p < 1. This would result in
a ς = p + 1, and, in turn, this would make the right hand side exponent of log(tk+1/a) become
negative, taking a value of α− 1. This results in a case in which the error increases as the interval
of integration decreases. The explanation for such a situation is that as the interval of integration
decreases, so too does the weight function, making the integral more difficult to calculate and
resulting in an increase in error.

3. Error Analysis for the Adams Method

In this section, we will be presenting the main error estimates for the Adams method
for solving (1). We will be investigating different smoothness conditions for each of y and f
and how they affect the error and convergence order.

3.1. A General Result

Using the error estimates established in the previous section, we will present the gen-
eral convergence order of the Adams–Bashforth–Moulton method relating to the smooth-
ness properties of the given function f and the solution y.

Lemma 1. Assume that the solution y of (1) is such that,∣∣∣∣ ∫ tk+1

a

(
log

tk+1
t

)α−1[
CH Dα

a,ty(t)
]dt

t
−

k

∑
j=0

bj,k+1

[
CH Dα

a,ty(tj)
]∣∣∣∣ ≤ C1

(
log

tk+1
a

)γ1
hδ1 , (32)

and,∣∣∣∣ ∫ tk+1

a

(
log

tk+1
t

)α−1[
CH Dα

a,ty(t)
]dt

t
−

k

∑
j=0

aj,k+1

[
CH Dα

a,ty(tj)
]∣∣∣∣ ≤ C1

(
log

tk+1
a

)γ2
hδ2 , (33)

with some γ1, γ2 ≥ 0 and δ1, δ2 > 0. Let yj be the approximate solution of (1). Then, for some
suitably chosen T > 1, we have,

max
0≤j≤N

∣∣y(tj)− yj
∣∣ = O(hq),
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where q = min{δ1 + α, δ2}.

Proof. We will show that, for sufficiently small h,

|y(tj)− yj| ≤ Chq, (34)

for all j ∈ {0, 1, 2, . . . , N}, where C is a suitable constant. This proof will be based on
mathematical induction. By using the initial conditions, we can confirm the basis step at
j = 0. We now assume that (34) is true for all j = 0, 1, . . . , k for some k ≤ N − 1. Finally,
we will prove that inequality (34) is true for j = k + 1. To show this, we must start by
finding the error of the predictor yP

k+1. By the definition of the predictor, we can show
the following:

|y(tk+1 − yP
k+1| =

1
Γ(α)

∣∣∣∣ ∫ tk+1

a

(
log

tk+1
t

)α−1
f (t, y(t))

dt
t
−

k

∑
j=0

bj,k+1 f (tj, yj)y(tj)

∣∣∣∣
≤ 1

Γ(α)

∣∣∣∣ ∫ tk+1

a

(
log

tk+1
t

)α−1
CH Dα

a,ty(t)
dt
t
−

k

∑
j=0

bj,k+1CH Dα
a,ty(tj)

∣∣∣∣
− 1

Γ(α)

k

∑
j=0

bj,k+1
∣∣ f (tj, y(tj)

)
− f (tj, yj)

∣∣
≤

C1 log
( tk+1

a
)γ1

Γ(α)
hγ1 +

1
Γ(α)

k

∑
j=0

bj,k+1LChq

≤
C1 log

( tk+1
a
)γ1

Γ(α)
hγ1 +

CL
(

log T
a
)α

Γ(α + 1)
hq.

For this proof, we have used several properties. These include the Lipschitz condition
placed on f , the assumption of the error on the rectangle formula, and the understanding
of the underlying predictor weights, bj,k+1 > 0 for all j and k and,

k

∑
j=0

bj,k+1 ≤
1
α

(
log

T
a

)α
. (35)

Now, we have a bound for the predictor error. We also need to analyze the corrector
error. To do so, we will be using a similar argument as with the predictor case as well as
using the assumption made for mathematical induction. Note that,
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|y(tk+1)− yk+1|

=
1

Γ(α)

∣∣∣∣ ∫ tk+1

a

(
log

tk+1
t

)α−1
f
(
t, y(t)

)dt
t
−

k

∑
j=0

aj,k+1 f (tj, yj)− ak+1,k+1 f (tk+1, yP
k+1)

∣∣∣∣
≤
∣∣∣∣ ∫ tk+1

a

(
log

tk+1
t

)α−1[
CH Dα

a,ty(t)
]dt

t
−

k

∑
j=0

aj,k+1

[
CH Dα

a,ty(tj)
]∣∣∣∣

+
1

Γ(α)

k

∑
j=0

aj,k+1
∣∣ f (tj, y(tj)

)
− f (tj, yj)

∣∣
+

1
Γ(α)

ak+1,k+1
∣∣ f (tk+1, y(tk+1)

)
− f (tk+1, yP

k+1)
∣∣

≤
C2 log

( tk+1
a
)γ2

Γ(α)
hδ2 +

CL
Γ(α)

hq
k

∑
j=0

aj,k+1 + ak+1,k+1
L

Γ(α)

(
C1
(

log T
a
)γ1

Γ(α)
hγ1 +

CL
(

log T
a
)α

Γ(α + 1)
hq
)

≤
(

C2
(

log T
a
)γ2

Γ(α)
+

CL
(

log T
a
)α

Γ(α + 1)
+

C1L
(

log T
a
)γ1

Γ(α)Γ(α + 2)
+

CL2( log T
a
)α

Γ(α + 1)Γ(α + 2)
hα

)
hq.

Due to both γ1 and γ2 being non-negative and the relations δ2 ≤ q and δ1 + α ≤ q,
we may choose a sufficiently small T such that the second summand in the parentheses is
bounded above by C/2. Then, by fixing the value of T, we may bound the rest of the terms
by C/2 as well, given a small enough value of h and by choosing a large C value. Finally,
we can state that the error estimate for the corrector is now bounded above by Chq.

3.2. Error Estimates with Smoothness Assumptions on the Solution

In this subsection, we will be introducing some error estimates given certain smooth-
ness assumptions being placed on the solution of our inital value problem. To do this, we
will be using the general error estimate introduced above as well as the auxiliary results
demonstrated in Section 2. For our first case, we will assume that y is sufficiently differ-
entiable. This means the outcome is dependent on α—more specifically, when α < 1 and
when α ≥ 1.

Theorem 5. Let α > 0 and assume CH Dα
a,ty ∈ C2[a, T] for some suitable T. Then,

max
0≤j≤N

|y(tj)− yj| =
{
O(h2) α ≥ 1,
O(h1+α) α < 1.

(36)

We can note from this theorem that the order of convergence depends on α. More
specifically, a larger value of α gives a better order of convergence. The reason for this
is due to the fact that we have chosen to discretize an integral operator that will behave
more smoothly as the value of α increases, thus creating a higher order. We could have
chosen to discretize the differential operator directly from the inital value problem. It can
be shown that the opposite result occurs compared to the integral operator. As α increases,
the smoothness of the operator deteriorates, and the convergence order diminishes. More
specifically, it has been shown that when α ≥ 2, no convergence is achieved. This means
that such a method is effective when α is small but will be ineffective for larger α values.
This is one of the main advantages of this method for the Caputo–Hadamard derivative, as
convergence is not only achieved but is most optimal at larger values of α.
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Proof. By applying Theorems 3 and 4 and Lemma 1 with γ1 = γ2 = α > 0, δ1 = 1, and
δ2 = 2, we can show that the an O(hq) error bound where,

q = min{1 + α, 2} =
{

2 if α ≥ 1,
1 + α if α < 1.

(37)

We can note from this theorem that this is for an optimal situation. The function we
must approximate when applying the Adams method is the function f (·, y(·)) = CH Dα

a,ty.
Therefore, the error bound is heavily dependent on obtaining a good approximations of
f . To obtain such good error bounds, we can look to quadrature theory, which gives a
well-known condition for obtaining this, namely the function f ∈ C2 over the interval of
the integral. As we can see from the above theorem, that is the case that we are looking at
here. Therefore, this can be considered as an optimal situation. However, this can be also
considered as an unusual situation. Rarely are we given enough information such that we
can determine the smoothness of y or, in this case, CH Dα

a,ty, so we cannot rely on such a
theorem. In general, we must formulate our theorems using the data given on the function
f , which will be considered in the next subsection.

We next move on to giving some theorems that now give the smoothness assumptions
based on the unknown solution y instead of CH Dα

a,ty. Theorem 2 implies that the smooth-
ness of y often implies the nonsmoothness of CH Dα

a,ty; we are expecting some difficulties
in finding the error estimates. However, Theorem 2 also gives us the form of CH Dα

a,ty
under such smoothness conditions and gives us information about the singularities and
smoothness of CH Dα

a,ty. As such, we can use this information to give the following result.

Theorem 6. Let α > 1 and assume that y ∈ C1+dαe[a, T] for some suitable T. Then,

max
0≤j≤N

|y(tj)− yj| = O(h1+dαe−α). (38)

Proof. By applying Theorem 2, we have that CH Dα
a,ty(t) = C

(
log t

a
)dαe

+ g
(

log t
a
)

where
g ∈ C1[a, T] and δg follows the Lipschitz condition of order dαe − α. Therefore, by applying
Theorems 3 and 4 and Lemma 1, we get that γ1 = 0, γ2 = α− 1, δ1 = 1 and δ2 = 1+ dαe− α.
With α > 1, we can say that δ1 + α = 1 + α > 2 > δ2. Therefore, min{δ1 + α, δ2} = δ2, so
an error bound of O(hδ

2) is finally given.

From the above theorem, we can draw some conclusions, namely that the fractional
part of α plays a huge role in the overall convergence order. More specifically, as dαe − α
increases or the fractional part of α decreases, the convergence order improves. This means
that the convergence order no longer forms a monotonic function of α but rather oscillates
between 1 and 2 depending on α. However, this theorem does show that under such
smoothness properties, this method converges for all α > 0.

Theorem 7. Let 0 < α < 1 and assume that y ∈ C2[a, T] for some suitable T. Then, for
1 ≤ j ≤ N,

|y(tj)− yj| ≤ C
(

log
tj

a

)α−1
×
{

h1+α if 0 < α < 1
2 ,

h2−α if 1
2 ≤ α < 1,

(39)

where C is a constant independent of j.

From this, we can take the following corollary.



Foundations 2022, 2 855

Corollary 2. Under the assumption of Theorem 7, we have,

max
0≤j≤N

|y(tj)− yj| =
{
O(h2α) if 0 < α < 1

2 ,
O(h) if 1

2 ≤ α < 1.
(40)

Moreover, for every ε ∈ (a, T), we have,

max
tj∈[ε,T]

|y(tj)− yj| =
{
O(h1+α) if 0 < α < 1

2 ,
O(h2−α) if 1

2 ≤ α < 1.
(41)

Proof of Theorem 7. For this proof, we would be following that of Theorem 6. However,
as 0 < α < 1, we have that γ2 = α− 1 < 0, meaning that we can no longer apply Lemma 1.
We will need to adapt the proof of this lemma in order to apply it to this case. To do so, we
will retain the main structure of the proof and application of mathematical induction but
will now change the induction hypothesis to that of (39). With such a change in hypothesis,
we must now find estimates for the terms ∑k−1

j=1 bj,k+1
(

log
tj
a
)δ2 and ∑k−1

j=1 aj,k+1
(

log
tj
a
)δ2 .

By applying the Mean Value Theorem, it is known that 0 ≤ bj,k+1 ≤ hα(k − j)α−1 and
0 ≤ aj,k+1 ≤ chα(k− j)α−1 for 1 ≤ j ≤ k− 1 and c is independent of j and k. Applying
these bounds for the weights, we reduce the problem to finding bounds for the sum
Sk := ∑k−1

j=1 jγ2(k − j)α−1. Looking back at Theorems 3 and 4, we have shown similar
results, and it is easily shown that Sk = Ckγ2+α when both the indices γ2 and α− 1 are
in the interval (0, 1). By applying this, we can complete this proof using structure of
Lemma 1.

3.3. Error Estimates with Smoothness Assumptions on the Given Data

In this final subsection, we will be looking at how changing the smoothness assump-
tions of the given function f can change the error and convergence order for this method.
We will be looking at both when α < 1 and when α > 1.

Theorem 8. Let α > 1. Then, with f ∈ C3(G),

max
0≤j≤N

∣∣y(tj)− yj
∣∣ = O(h2). (42)

Proof. We will split this proof into when α ≥ 2 an when 1 < α < 2. When α ≥ 2,
we can adapt a result from Miller and Feldstein [26] to apply here which shows that
y ∈ C2[a, T]. Then, given the smoothness assumpions on f , and applying the chain
rule, CH Dα

a,ty ∈ C2[a, T]. This then fulfills the conditions of Theorem 5, which gives the
desired result.

Now, for when 1 < α < 2, we wish to apply Lemma 1. To do this, we must find
the constants γ1, γ2, δ1 and δ2 in the lemma. As in the case of our previous theorems, we
must determine the behavior and smoothness of y. We find this information by applying
Theorem 1b, which tells us that y is in the form,

y(t) = ψ(t) +
v̂

∑
v=1

cv

(
log

t
a

)vα
+

ṽ

∑
v=1

dv

(
log

t
a

)1+vα
. (43)

As ψ ∈ C2[a, T], this implies that y ∈ C1[a, T]. Similar to the case of α ≥ 2, we can
deduce CH Dα

a,ty ∈ C1[a, T]. This then fulfills the conditions of Theorem 3a, giving us that
γ1 = α and δ1 = 1. Furthermore, we may apply Theorem 4a,c to find the remaining values
such that γ2 = min{α, 2α − 2} = 2α − 2 ≥ 0 and δ2 = 2. By applying Lemma 1, the
required result is achieved.
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4. Numerical Examples

In this section, we will be considering some numerical examples to confirm the
theoretical results presented in the previous sections. We will be presenting examples
below with 0 < α < 2 as the applications for α ≥ 2 are not currently of interest. We will be
solving the following examples for a = 1 and T = 2. The following examples and graphs
were created in blueMATLAB using the following algorithm.

1. Give an initial value y0.
2. Find yP

1 using (11) and (12) such that,

yP
1 = y0 + b0,1 f (t0, y0), (44)

where,

b0,1 =
1

Γ(α + 1)

[(
log

t1

t0

)α
−
(

log
t1

t1

)α
]
=

1
Γ(α + 1)

(
log

t1

a

)α
. (45)

3. Find y1 using (8) and (9) such that,

y1 = y0 +
1

Γ(α)

(
a0,1 f (t0, y0) + a1,1 f (t1, yP

1 )

)
. (46)

4. Repeat steps 2–3 to find y2, y3, . . . , yN .

Example 1 (CH Dα
a,ty is smooth). Consider the following nonlinear fractional differential equation,

with 0 < α < 2, {
CH Dα

a,ty(t) = f (t, y), 1 ≤ a < t ≤ T,
y(a) = 0, δy(a) = 0,

(47)

where,

f (t, y) =
Γ(9)

Γ(9− α)

(
log

t
a

)8−α
− 3

Γ(5 + α/2)
Γ(5− α/2)

(
log

t
a

)4−α/2
+

9
4

Γ(α + 1) (48)

+
(3

2

(
log

t
a

)α/2
−
(

log
t
a

)4)3
− y3/2.

This example has a nonlinear and non smooth f . However, due to the form of this
equation, it is well known that the solution y is given as,

y(t) =
(

log
t
a

)8
− 3
(

log
t
a

)4+α/2
+

9
4

(
log

t
a

)α
. (49)

As such we can say,

CH Dα
a,ty(t) =

Γ(9)
Γ(9− α)

(
log

t
a

)8−α
− Γ(5 + α/2)

Γ(5− α/2)

(
log

t
a

)4−α/2
+

9
4

Γ(α + 1). (50)

For α ≤ 4, we have that CH Dα
a,ty ∈ C2[a, T]; this fulfills the requirements for Theorem 5.

As such, we can show the theorem holds for such an example. Let N be a positive integer
and let log a = log t0 < log t1 < · · · < log tN = log T be the uniform mesh on the

interval [log a, log T]. such that log tj = log a + jh for j = 0, 1, 2, . . . , N and h =
(

log T
a

)
/N.

Therefore, we have by Theorem 5,

||eN ||∞ = max
0≤j≤N

|y(tj)− yj| =
{
O(h2) α ≥ 1,
O(h1+α) α < 1.

(51)
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In Tables 1 and 2, we can see the maximum absolute error and experimental order
of convergence (EOC) for the predictor–corrector method at varying α and N values. For
our different 0 < α < 2, we have chosen N values as N = 10× 2l , l = 0, 1, 2, . . . , 7.The
maximum absolute errors ||eN ||∞ were obtained as shown above with respect to N, and we

calculate the experimental order of convergence or EOC as log
(
||eN ||∞
||e2N ||∞

)
. As we can see,

the EOCs for the above example follow that of Theorem 5.

Table 1. Table showing the maximum absolute error and EOC for solving (47) using the predictor–
corrector method for 0 < α < 1.

N α = 0.4 EOC α = 0.6 EOC α = 0.8 EOC

10 6.839 × 10−2 2.607 × 10−2 1.350 × 10−2

20 2.064 × 10−2 1.728 7.433 × 10−3 1.810 3.542 × 10−3 1.930
40 6.576 × 10−3 1.650 2.209 × 10−3 1.751 9.534 × 10−4 1.894
80 2.193 × 10−3 1.584 6.768 × 10−4 1.706 2.610 × 10−4 1.869

160 7.561 × 10−4 1.536 2.120 × 10−4 1.675 7.225 × 10−5 1.853
320 2.671 × 10−4 1.502 6.744 × 10−5 1.653 2.015 × 10−5 1.842
640 9.600 × 10−5 1.476 2.169 × 10−5 1.637 5.652 × 10−6 1.834

1280 3.497 × 10−5 1.457 7.026 × 10−6 1.626 1.591 × 10−6 1.829

Table 2. Table showing the maximum absolute error and EOC for solving (47) using the predictor–
corrector method for α > 1.

N α = 1.25 EOC α = 1.50 EOC α = 1.75 EOC

10 6.166 × 10−3 5.475 × 10−3 5.369 × 10−3

20 1.463 × 10−3 2.076 1.319 × 10−3 2.053 1.319 × 10−3 2.026
40 3.497 × 10−4 2.065 3.207 × 10−4 2.040 3.259 × 10−4 2.017
80 8.408 × 10−5 2.056 7.853 × 10−5 2.030 8.091 × 10−5 2.010

160 2.033 × 10−5 2.049 1.934 × 10−5 2.022 2.014 × 10−5 2.006
320 4.935 × 10−6 2.042 4.783 × 10−6 2.016 5.022 × 10−6 2.004
640 1.203 × 10−6 2.036 1.187 × 10−6 2.011 1.253 × 10−6 2.002

1280 2.943 × 10−7 2.031 2.951 × 10−7 2.008 3.131 × 10−7 2.001

In Figure 1, we have plotted the order of convergence for Example 1. From Equation (51),
we have for α < 1,(

log2 ||eN ||
)
≤
(

log2 C
)
+
(

log2 h(1+α)
)
≤
(

log2 C
)
+
(
1 + α

)(
log2 h

)
. (52)

We can now plot this graph such that y =
(

log2 ||eN ||
)

and let x =
(

log2 h
)

and
h = 1

5×2l , l = 0, 1, . . . , 7. Doing this, we get that the gradient of the graph would equal
the EOC. To compare this to the theoretical order of convergence, we have also plotted
the straight line y = (1 + α)x. For figure 1, we use α = 0.8. We can observe that the two
lines drawn are parallel. Therefore, we can conclude that the order of convergence of this
predictor–corrector method is O(h1+α) for when α < 1. A similar result can be obtained
for when α > 1. Figure 2 shows the same graph but for α = 1.75. However, now we can
see that the line is parallel to the straight line y = 2x, which is what we expected as the
convergence order should tend to 2 for α > 1.
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Figure 1. Graph showing the experimental order of convergence (EOC) at T = 2 in Example 1 with
α = 0.8.

Figure 2. Graph showing the experimental order of convergence (EOC) at T = 2 in Example 1 with
α = 1.75.

Example 2 (y is smooth). Consider the following nonlinear fractional differential equation, with
0 < α < 2, {

CH Dα
a,ty(t) = f (t, y), 1 ≤ a < t ≤ T,

y(a) = 0, δy(a) = 1,
(53)

where,

f (t, y) =


2

Γ(3−α)

(
log t

a

)2−α
− y +

(
log t

a

)2
− log t

a , for α > 1,

2
Γ(3−α)

(
log t

a

)2−α
− 1

Γ(2−α)

(
log t

a

)1−α
− y +

(
log t

a

)2
− log t

a , for α ≤ 1.
(54)

The exact solution of this equation is,

y(t) =
(

log
t
a

)2
− log

t
a

. (55)
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In Tables 3–5, we can see the maximum absolute error and experimental order of
convergence (EOC) for the predictor–corrector method at varying α and N values. For
our different 0 < α < 2, we have chosen N values as N = 10× 2l , l = 0, 1, 2, . . . , 7. As
y ∈ C2[a, T] we can apply Theorems 6 and 7 and more specifically, Corollary 2. As we can
see, the EOCs for the above example verifies these theorems. When α ≤ 0.5, we find that
the EOC is close to 1 + α and when 0.5 < α < 1, we find that the EOC is close to 2− α.
Finally, when α > 1, we have that the EOC is close to 1 + dαe − α.

Table 3. Table showing the maximum absolute error and EOC for solving (53) using the predictor–
corrector method for 0 < α ≤ 0.5.

N α = 0.1 EOC α = 0.3 EOC α = 0.5 EOC

10 2.225 × 10−2 9.375 × 10−3 5.123 × 10−3

20 1.261 × 10−2 0.819 3.345 × 10−3 1.487 1.622 × 10−3 1.660
40 5.625 × 10−3 1.164 1.196 × 10−3 1.484 5.255 × 10−4 1.626
80 2.387 × 10−3 1.237 4.343 × 10−4 1.461 1.739 × 10−4 1.595

160 1.004 × 10−3 1.249 1.606 × 10−4 1.436 5.856 × 10−5 1.571
320 4.242 × 10−4 1.243 6.033 × 10−5 1.412 1.998 × 10−5 1.552
640 1.805 × 10−4 1.233 2.299 × 10−5 1.392 6.884 × 10−6 1.537

1280 7.742 × 10−5 1.221 8.864 × 10−6 1.375 2.389 × 10−6 1.527

Table 4. Table showing the maximum absolute error and EOC for solving (53) using the predictor–
corrector method for 0.5 < α < 1.

N α = 0.7 EOC α = 0.9 EOC

10 5.507 × 10−3 1.162 × 10−2

20 1.931 × 10−3 1.512 5.100 × 10−3 1.188
40 7.031 × 10−4 1.457 2.300 × 10−3 1.151
80 2.635 × 10−4 1.416 1.051 × 10−3 1.129
160 1.008 × 10−4 1.386 4.847 × 10−4 1.116
320 3.920 × 10−5 1.363 2.247 × 10−4 1.109
640 1.541 × 10−5 1.347 1.045 × 10−4 1.105

1280 6.110 × 10−6 1.335 4.863 × 10−5 1.103

Table 5. Table showing the maximum absolute error and EOC for solving (53) using the predictor–
corrector method for α > 1.

N α = 1.25 EOC α = 1.50 EOC α = 1.75 EOC

10 6.166 × 10−3 5.475 × 10−3 5.369 × 10−3

20 1.463 × 10−3 2.076 1.319 × 10−3 2.053 1.319 × 10−3 2.026
40 3.497 × 10−4 2.065 3.207 × 10−4 2.040 3.259 × 10−4 2.017
80 8.408 × 10−5 2.056 7.853 × 10−5 2.030 8.091 × 10−5 2.010

160 2.033 × 10−5 2.049 1.934 × 10−5 2.022 2.014 × 10−5 2.006
320 4.935 × 10−6 2.042 4.783 × 10−6 2.016 5.022 × 10−6 2.004
640 1.203 × 10−6 2.036 1.187 × 10−6 2.011 1.253 × 10−6 2.002

1280 2.943 × 10−7 2.031 2.951 × 10−7 2.008 3.131 × 10−7 2.001

Example 3 ( f is smooth). Consider the following nonlinear fractional differential equation, with
0 < α < 2, {

CH Dα
a,ty(t) = −y(t), 1 ≤ a < t ≤ T,

y(a) = 1, δy(a) = 0.
(56)
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The exact solution of this equation is y(t) = Eα,1
(
− (log t)α

)
. Therefore, CH Dα

a,ty(t) =
−Eα,1

(
− (log t)α

)
, where Eα,γ(z) is defined as the Mittag–Leffler function,

Eα,γ(z) =
∞

∑
k=0

zk

Γ(αk + γ)
, α, γ > 0. (57)

Therefore, f is smooth. As such, this equation fulfils the conditions of Theorem 8.
In Tables 6 and 7, we can see the maximum absolute error and experimental order of
convergence (EOC) for the predictor–corrector method at varying α and N values. For
our different 0 < α < 2, we have chosen N values as N = 10× 2l , l = 0, 1, 2, . . . , 7. As f
is sufficiently smooth, we can apply Theorem 8. As we can see, the EOCs for the above
example verifies these theorems. When 0 < α < 1, we have that the EOC is close to 1 + α.
For α > 1, we have the EOC is close to 2.

Table 6. Table showing the maximum absolute error and EOC for solving Example 3 using the
predictor–corrector method for α < 1.

N α = 0.3 EOC α = 0.6 EOC α = 0.9 EOC

10 1.353 × 10−3 6.520 × 10−4 3.414 × 10−4

20 4.324 × 10−4 1.646 1.937 × 10−4 1.751 8.704 × 10−5 1.972
40 1.466 × 10−4 1.560 6.019 × 10−5 1.686 2.270 × 10−5 1.939
80 5.159 × 10−5 1.507 1.919 × 10−5 1.649 5.990 × 10−6 1.922

160 1.863 × 10−5 1.470 6.211 × 10−6 1.628 1.591 × 10−6 1.913
320 6.863 × 10−6 1.441 2.027 × 10−6 1.615 4.239 × 10−7 1.908
640 2.570 × 10−6 1.417 6.652 × 10−7 1.608 1.132 × 10−7 1.905

1280 9.752 × 10−7 1.398 2.189 × 10−7 1.604 3.026 × 10−8 1.904

Table 7. Table showing the maximum absolute error and EOC for solving Example 3 using the
predictor–corrector method for α > 1.

N α = 1.25 EOC α = 1.50 EOC α = 1.75 EOC

10 2.457 × 10−4 2.108 × 10−4 1.507 × 10−4

20 5.847 × 10−5 2.071 5.141 × 10−5 2.036 3.723 × 10−5 2.017
40 1.400 × 10−5 2.062 1.261 × 10−5 2.027 9.236 × 10−6 2.011
80 3.374 × 10−6 2.053 3.109 × 10−6 2.020 2.298 × 10−6 2.007

160 8.213 × 10−7 2.039 7.693 × 10−7 2.015 5.728 × 10−7 2.004
320 2.016 × 10−7 2.027 1.909 × 10−7 2.011 1.430 × 10−7 2.003
640 4.975 × 10−8 2.019 4.748 × 10−8 2.008 3.570 × 10−8 2.002

1280 1.233 × 10−8 2.013 1.183 × 10−8 2.005 8.919 × 10−9 2.001

5. Conclusions

In this paper, we proposed a predictor–corrector method for solving Caputo–Hadamard
fractional differential equations. Both the initial data f and the unknown solution y were
investigated to see how the different smoothness conditions affected the convergence order.
It was found under optimal conditions and with α ≥ 1 that we can obtain a theoretical
convergence order of 2. However, under certain smoothness conditions, a suboptimal
convergence order is achieved, often depending on the fractional part of α. Several numeri-
cal simulations are given to support the theoretical results obtained above in terms of the
error estimates.
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