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Abstract: The accurate monitoring and early warning of coal and rock dynamic disasters become
challenging in complex geological environments. Mostly, the signal information contains interfer-
ences, which misguides the technician, and thus leads to inaccurate monitoring results. To reduce the
influence of interference signals, the synchronous response of the acoustic emission (AE) and electro-
magnetic emission (EME) signals before the failure of coal specimens during uniaxial loading was
investigated in this study. Additionally, the coupling relationship between M value, AE energy/AE
ringing count per unit time, and the damage of coal is established, and the early warning index of AE
and EME (R value) was computed and verified through the field investigations. The results show
that a strong synchronization of the acoustoelectric signals occurs only after the specimen enters
the strain strengthening area. The analysis of the obtained results showed that the M value of the
AE-EME synchronous response signal represents a strong degree of damage occurring in the coal
body, however, this is still subject to false alarms. In contrast, the analysis of the R value accurately
helped in determining the damage evaluation, thus, it can be regarded as one of the precursors of the
imminent failure of coal. With R > 1, the specimen is closed to the failure state, thereby dangerous
regions are identified with a dense concentration of R > 1 events. The obtained R value index through
on-site AE and EME monitoring corresponds closely with the stress distribution cloud map of the
roadway. It is inferred that the anti-interference ability and the reliability of the R value index are
stronger than the routine early warning indicators of the single-AE or EME energy.

Keywords: coal; acoustic emission; electromagnetic emission; synchronous response; mining safety

1. Introduction

Coal and rock dynamic disasters has been among the most serious dynamic disasters
widely reported in worldwide case studies, including China, and it usually results in severe
destruction, economic losses, and occasional fatalities. Due to the increasing mining depth
and intensity, the probability of coal and rock dynamic disaster occurrence significantly
increases, ultimately threatening the safety of coal mine production in China [1]. Therefore,
accurate monitoring and early warning of coal and rock dynamic disaster are of great
significance to coal and rock dynamic disaster prevention and underground mine safety.
At present, there exists two main prediction methods for coal and rock dynamic disasters,
namely the use of conventional methods, such as drilling cuttings, stress, and deformation
observation [2], and the applications of geophysical methods. Geophysical methods have
been proved to be effective remote technologies, among which acoustic emission (AE)
and electromagnetic emission (EME) are used as real-time methods. The geophysical
monitoring methods have been widely practiced in earthquake prediction, rock mass
structure stability monitoring, coal rock dynamic disaster monitoring and early warning,
and other fields [3–8].
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Experimental studies have shown that the AE and EME signals are representative of
the fracture of the specimen [9]. The AE signal is an elastic wave caused by the rapid release
of energy in the material. Although, in addition to significant efforts made, compared
with the AE, the generation mechanism of the EME is relatively complex and still lacks an
in-depth explanation. At present, the research on the mechanism of EME is mainly carried
out from two aspects: the generation of electric charges and the movement of electric
charges. Nitsan proposed that the electromagnetic radiation of coal and rock damage is
caused by piezoelectric effect [10]. Alekseev et al. [11] studied the EME phenomenon before
the occurrence of an earthquake and deduced that the dislocation slip occurred on both
sides of the rock mass failure interface, resulting in triboelectric electrification and then the
EME phenomenon. Furthermore, O’Keefe et al. [12] proposed a capacitor model, stating
that with the onset of crack propagation, opposite charges are formed on both sides of
the crack, similar to the capacitor structure. With further propagation of the crack, the
charging and discharging of the capacitors result in the generation of EME. Frid et al. [13–15]
proposed a surface oscillatory dipole model showing that the oscillatory dipoles generated
by collective motion in the form of surface waves on both sides of the crack are the source
of EME. Wang et al. [16] believed that the mechanism of EME generation is due to the non-
uniform deformation of coal and rock mass, which causes its internal free charge-induced
polarization and the variable-speed motion of charged particles.

In addition to the general findings on the explanation of EME generation, a number
of efforts have been made worldwide on the precursor indicators of AE and EME for
predicting rock burst hazards. Frid [17,18] measured the EME under various mining and
geological conditions and used the EME pulse index to predict the coal-rock dynamic haz-
ards risk in front of the working face; He et al. [19–21] used EME intensity, variation range,
energy, and pulse indicators as early warning indicators of shock danger. Song et al. [22,23]
constructed a time-frequency two-dimensional early warning method of EME for coal and
rock dynamic disasters with successful field applications. Similarly, a rock burst warning
index was proposed by Wang et al. [24] based on the main frequency entropy of AE.

The prediction of disaster risk through AE and EME becomes challenging because
of the mining conditions and the respective interference of the signals. Numerous au-
thors have made efforts in eliminating the influence of interference patterns through the
synchronous monitoring of sound and electricity, according to the different generation
mechanisms of AE and EME. The spectrum analysis and energy analysis of full-wave
AE-EME data show that both acoustic emission and electromagnetic radiation have a
significant positive correlation with stress drop, and the time-series distributions of the
two are synchronized [25–27]. Wang et al. proposed the acoustic-electrical collaborative
monitoring technology, which uses anomalous amplitudes of acoustic and electrical signals
for the coal-rock dynamic disasters monitoring and prediction and comprehends the true
integration and complementary advantages of AE and EME technologies [28].

Despite the above and some other important progress made in predictions and early
warning of coal-rock dynamic disasters through AE and EME technologies, most of the
precursor early warning indicators used in the current acoustic and electrical synchronous
response typically include energy, pulse, and other dimensional indicators. Equally, it is
quite challenging to unify the thresholds of mines and coal seams under different geological
and mining conditions, and a unified dimensionless index for the fusion of AE and EME
has not been established, and the early warning results are easily affected by interference.
With the above motive, the uniaxial loading failure test is carried out on the samples of
the mine with coal and rock dynamic disasters. For this purpose, real-time AE and EME
signals were monitored synchronously and their signal characteristics and synchronization
were analyzed. A unified dimensionless index of acoustic-electrical fusion was established
and verification was made through field applications.
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2. Materials and Methods
2.1. Materials and Specimens

In this paper, coal samples from Tashan coalmine in Datong, Shanxi, coal samples from
Kuangou coalmine in Urumqi, Xinjiang and coal samples from Jinjia coalmine in Panjiang,
Guizhou were selected for uniaxial compression failure acoustic and electrical experiments.
Kuangou coalmine lies in seismically active region where number of rock burst accidents
have been reported. The Tashan coalmine is proven for increased rock pressure occurrence,
however, geologically stable coal seams have been reported. The Jinjia coal mine has high
gas pressure and complex geological structure, and there is a risk of coal and rock dynamic
disasters. The coal samples used were in accordance with the standards of International
Society for Rock Mechanics (ISRM). The large pieces of raw coal were extracted from the
borehole for sealing preservation. Samples with standard sizes of φ50 × 100 mm from a
same large piece of coal were obtained after being cut, cored, and grounded. All of the
flatness error of each end face for the sample was less than 0.02 mm.

2.2. Experimental Set-Up

The experimental system is mainly composed of an electromagnetic shielding system, a
loading control system, an acoustic and electrical monitoring system, and a data acquisition
system. The schematic diagram is shown in Figure 1.
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Figure 1. The experimental system schematic diagram.

The electromagnetic shielding system adopts GP1A detachable electromagnetic shield-
ing room. The shielding room is grounded as a whole with the loading control system and
the acoustic and electrical monitoring system. The shielding effectiveness can be achieved
as follows: 14 kHz ≥ 75 dB, 100 kHz ≥ 95 dB, 200 kHz ≥ 100 dB, and 50–103 MHz ≥ 110 dB.

The experiment was conducted by first carrying out the loading process through
a YAW-600 microcomputer-controlled electro-hydraulic servo pressure testing machine.
According to the standard parameters of the microcomputer-controlled machine for the
current study, the maximum test force is 600 kN, the load resolution is 3 N, and the
displacement resolution is 0.3 µm.

The acoustic and electrical monitoring system is mainly composed of a RS-2A acoustic
emission sensor, a SAS-560 loop electromagnetic antenna, and a corresponding signal
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amplifier. The response frequencies are 50~400 kHz for the acoustic emission sensor
and 20 Hz~2 MHz for the electromagnetic antenna. The amplification factors of acoustic
emissions and electromagnetic signals are, respectively, set to 20 dB and 64 dB.

The system is mainly composed of high-speed data acquisition instrument and com-
puter server for the data storage and analysis. The acquisition instrument is comprised of
12 data acquisition channels. The highest acquisition frequency is 10 MHz and the A/D
conversion accuracy is 16-bits. The AE, EME, and load signals can be performed with the
real-time full waveform analysis.

3. Experimental Results and Analysis
3.1. Stress-Deformation Characteristics of the Uniaxial Compression Damage Process of
Coal Samples

In this paper, three groups of coal samples from Wudong coal mine, Kuangou coal
mine, and Jinjia coal mine are selected for research. Physical and mechanical parameters of
coal samples are shown in Table 1. Three coal samples are selected from each of the three
groups for analysis, and the stress–strain curve is shown in Figure 2a. During the loading
failure of coal, the obtained stress–strain curve is shown in Figure 2b. The entire process
is divided into elastic area, strain strengthening area, failure danger area, softening strain
area, and residual strength that are based on the deformation and failure characteristics of
the coal. During the loading process, it is deduced that the failure of the coal occurred in
the post-stress peak stage. It is found that within the smaller region, the samples failure
was comparatively more severe. It can be seen that after the stress peak of Kuangou coal
sample and Tashan coal sample, the failure risk area is shorter, and the sample damage is
more severe. After the stress peak of Jinjia coal sample, the failure risk area is longer and
the sample damage is more moderate.

Table 1. Basic physical and mechanical parameters of the coal samples.

Sample Sample
Number

Density/
g·cm−1

Peak
Load/kN

Elastic Modulus
/GPa

Compressive
Strength/MPa

Kuangou
mine sample

K1 1.34 44.96 1.85 22.91
K2 1.33 42.08 1.81 21.55
K3 1.33 43.58 1.92 22.34

Mean value 1.33 43.54 1.86 22.67

Tashan
mine sample

T1 1.27 72.41 2.89 24.89
T2 1.28 67.72 3.42 34.51
T3 1.27 44.27 3.14 22.56

Mean value 1.27 61.5 3.15 27.32

Jinjia
mine sample

J1 1.44 24.98 1.78 9.24
J2 1.44 41.64 2.74 20.28
J3 1.45 32.66 0.96 14.08

Mean value 1.44 33.09 1.82 14.53

3.2. AE and EME Response of Coal Samples during Uniaxial Compression Failure

AE and EME can directly reflect the internal damage evolution law of the sample
subjected to load. Energy represents the magnitude of internal energy release, while
the count represents the internal crack propagation frequency. Taking the K1 sample
of Kuangou mine, T2 sample of Tashan mine, and J3 sample of Jinjia mine as examples,
respectively, the AE and EME response characteristics of the samples under load in different
geological conditions are explained for ease of understanding. The AE and EME energy,
counting, and stress curves during the whole loading process are shown in Figure 3a–c.
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Figure 2. Stress–strain curves (a) of different coal samples and schematic stress–strain curves (b).

Approximately, before and after 190 s of the loading, the K1 sample entered the
strain strengthening region with the initiation of a large number of microcracks in the
sample. Then, rapidly expanded and penetrated within 250 s, and, finally, the sample
was rapidly damaged. After entering the strain strengthened area, with the increase in
stress, the AE signal enters the active period, and the AE energy and ringing count increase
significantly. The EME signal also enters the active period before and after entering the
strain strengthening area, nevertheless, the overall energy magnitude and ring count are
much lower than those of the AE. After the T2 and J3 coal samples were loaded for 150 s
and 90 s, respectively, the amplitude and ringing count of AE and EME began to gradually
increase, indicating that they entered the strain strengthening area. T2 and J3 coal samples
enter the failure danger area at 200 s and 110 s, respectively. The AE and EME response are
significantly more active before and after entering the failure zone, however, the energy
and pulse are not always high. For different types of mines, it is difficult to determine a
unified threshold for the energy and ringing count of AE and EME signals due to different
buried depths, geological conditions, and physical and mechanical properties of coal.

The internal structure of coal is complex and cracks are developed. Under the action of
load, the evolution of primary and secondary cracks will cause more abundant micro and
macro cracks in the coal and release energy in the form of elastic wave and electromagnetic
energy. AE and EME signals are “Homologous and anomaly” phenomena caused by the
destruction of samples, and their mechanisms are different. Compared with EME signals,
AE signals are more abundant. AE and EME signals are not completely synchronized.
During the whole process of coal sample from loading to failure, only a small amount of
obvious EME signals are generated. AE and EME signals have strong synchronization
before and after stress drop and load peak.

3.3. Relationship between Coal Rock Body Failure and M Value

Hall [29] and Byun [30] have shown that the ratio of the total number of AE events to
the cumulative AE energy can better reflect the damage degree of coal and rock mass. The
smaller the ratio, the more intensive the large-energy events and the greater the possibility
of large damage. This index avoids huge data processing work, however, it can easily give
rise to errors in the identification process of the number of AE events.
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Figure 3. AE and EME energy and ringing counts variation (a) for K1, (b) for T2, and (c) for J3.

Therefore, based on the calculation principle of the above indicators, the average pulse
energy can be reflected by calculating the ratio of signal energy to count per unit time to
study its relationship with coal rock damage. The calculation formula is as follows (1):

Mi = Et/Nt (1)

where Et is the energy per unit time, Nt is the count per unit time, and i is A or E, represent-
ing AE and EME, respectively.

Figure 4a,b, respectively, show the M value variation of AE and EME under different
stresses during the loading process for the coal samples of Kuangou mine, and Figure 4c,d,
respectively, reflect the M value for the coal samples of Tashan mine, and Figure 4e,f,
respectively, reflect the M value for the coal samples of Jinjia mine. In addition, in order to
clearly show and analyze the relationship between M value and the failure of coal mass, it
is represented by red dots when M > 1. It can be seen that when the loading stress is low,
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the MA value is basically less than 1, and the events of MA > 1 gradually increase as the
stress increases. When with an obvious stress drop, the MA value exceeds 1. Whereas near
the stress peak, the events with MA > 1 are concentrated. It was found that the ME value
follows a similar pattern of change. Therefore, both MA and ME can reflect the failure state
of coal. When the M > 1, it indicates that the coal mass is about to enter or has entered the
failure danger area. The more concentrated the events with M > 1, the more the possibility
of coal mass entering the failure danger area.

3.4. AE and EME Synchronous Response Analysis and Early Warning R Index

With the on-site application of the AE and EME monitoring equipment, the monitoring
data are affected by electromagnetic fields, such as electromechanical equipment, cables,
and operation vibration, leading to early warning miscalculations occurring (false alarm).
At present, wavelet transform and empirical mode decomposition are mainly used to
effectively identify and filter the interference signals that change in the time domain
and overlap in the frequency domain. However, the above methods need to collect full-
waveform signals. However, in the field of underground engineering, due to environmental
constraints, network bandwidth, data volume, and other factors, it is still unable to collect
full-waveform data when the AE and EME equipment is used on site.

Due to the different generation mechanisms of AE and EME signals, it is difficult for
sources to interfere with both at the same time. Therefore, the analysis of the signal of
simultaneous acoustic and electrical response can avoid, to a greater extent, the influence
of interference signals on the early warning of the occurrence of coal and rock dynamic
disasters. The above experimental results show that the AE and EME signals can be
received synchronously during the process of coal and rock failure. With a large stress drop
in the strain strengthened area and before and after entering the failure danger area, the
synchronization of the AE and EME signal is the best. Based on the above, the AE and
EME synchronous response signal and M value during the loading failure process of coal
and rock are analyzed to establish a unified dimensionless index of AE and EME fusion for
early warning of coal and rock burst. In this paper, the harmonic mean calculation method
is used to merge MA and ME, and the calculation formula is as follows:

R =
MEMA

ME + MA
(2)

where ME is the M value of synchronous response event EME, and MA is the M value of
synchronous response event AE.

The number of AE and EME events and synchronous responses during the whole
loading process of coal samples is shown in Figure 5. During the whole loading process
of K1-J3 samples, the number of AE and EME synchronous response events is relatively
small. The variation of M and R value of AE and EME synchronous response during
sample failure is shown in Figure 6. When there is a significant stress reduction in the
strain strengthened area and before and after entering the failure danger area, one of the
MA and ME must be greater than 1. Although the value of synchronous response signal M
can better reflect the large degree of damage to the coal sample, it will also occur a false
early warning when M > 1 under a low-stress state.
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to clearly show and analyze the relationship between M value and the failure of coal mass, 
it is represented by red dots when M > 1. It can be seen that when the loading stress is low, 
the MA value is basically less than 1, and the events of MA >1 gradually increase as the 
stress increases. When with an obvious stress drop, the MA value exceeds 1. Whereas near 
the stress peak, the events with MA > 1 are concentrated. It was found that the ME value 
follows a similar pattern of change. Therefore, both MA and ME can reflect the failure state 
of coal. When the M >1, it indicates that the coal mass is about to enter or has entered the 
failure danger area. The more concentrated the events with M >1, the more the possibility 
of coal mass entering the failure danger area. 
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Figure 5. Number of AE and EME synchronous and asynchronous response events.

From the comparison of M value and R value in Figure 6, it can be seen that R value
can better reflect the overall change of M value of the acoustic electric signal. When R > 1,
there are obvious stress drops, coal rock damage, or high coal rock stress. Therefore, R > 1
is taken as the threshold of coal and rock bursting early warning.
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Figure 6. AE and EME synchronous response M and R value variation (a–c) for K1~K3, (d–f) for
T1~T3, and (g–i) for J1~J3.

4. Field Application and Validation

The presented workflow in this research has been verified through the field application
for the purpose of validation. In order to verify the validity of the R-value characterization
of coal rock damage and the local monitoring and early warning of coal rock dynamic
hazards, an on-site test was carried out in 11,224 haulage roadway of Jinjia coal mine in
Guizhou, China. The KBD5 portable coal rock dynamic disaster acoustic and electrical
monitor has been used for field acoustic-electric monitoring. This includes components,
such as an electromagnetic directional receiver antenna, acoustic emission probe, host, and
specialized software. The physical schematic diagram of the equipment and site probe
installation is shown in Figure 7. Electromagnetic radiation and acoustic emission signals
were measured at 26 stations in the 11,224 haulage roadway, each measurement point being
spaced 20 m apart for a measurement time of 90 s, as shown in Figure 8.

The measured acoustic and emission response events and their average energy at each
measuring point are shown in Figure 9. It is evident that more AE events and relatively
fewer EME events are monitored at each measurement point in the field. By comparing the
average acoustical energy of each site, it is found that the acoustic energy fluctuates greatly,
and the AE and EME do not increase synchronously. Thereby, predicting the dynamic
disaster of coal and rock becomes quite difficult. The acoustic-electric synchronous response
events occurred at 84, 14, 65, and 80 times at 0, 20, 120, and 420 m, respectively, while
the number of simultaneous acoustic-electric responses at the remaining points ranged
from zero to two. The results show that the coal rock acoustic synchronous signal mainly
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occurs before and after the rapid crack propagation and failure of the specimen, and it is
preliminarily determined that it is dangerous near 0, 20, 120, and 420 m.
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Figure 9. Acoustic-electric response events and average energy.
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Based on R exponential analysis, the statistical results of R > 1 events at each point
are shown in Figure 10. Within the 90 s, the number of R > 1 events at 120 m and 420 m
exceeded 40. However, at 0 m and 20 m, while there were more acoustic and electrical
synchronization events, there were fewer R > 1 event, which may have been caused by fan
cables and fan vibration interference at the entrance to the tunnel. Therefore, the risks of 0
and 20 m were ruled out. In conclusion, the dynamic disaster risk of coal and rock at 120 m
and 420 m on tunnel 11,224 was determined by using the acoustic-electric synchronization
response time R value.
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Figure 10. Acoustic-electric synchronous response time and R > 1 value event.

In order to verify the accuracy of this indicator used in the field, the microseismic
data monitored at the 11,224 working face were used to back-calculate the distribution
of coal seam vibration wave velocity field, and the areas with abnormally high vibration
wave velocity have higher stress and risk of coal rock dynamic disaster occurrence [31,32].
Microseism pickups near the 11,224 working face are arranged as shown in Figure 11, and
the probe can cover the working face completely to ensure the microseism monitoring
data and wave velocity back-calculation. The accuracy of microseism monitoring data
and wave velocity inverse calculation is guaranteed. The results of wave velocity anomaly
inversion calculation are shown in Figure 12. The results show that the wave velocity
anomaly increases by more than 10% in two areas between 100~140 m and 390~440 m in
the haulage roadway of 11,224 working face.

In order to obtain a clearer picture of the associated anomalies, the comparison of the
relationship between the wave velocity anomalies and the R value is shown in Figure 13. It
can be observed that the number of R > 1 events were more than 40 in regions with abnor-
mally high wave velocity, indicating that there is obvious coal and rock stress concentration
in this area. However, the number of R > 1 events were between zero and two in regions
with normal or low wave velocity, which indicates that there is no stress concentration
or that the coal and rock mass have been broken in areas with abnormal wave velocity.
Compared with a single index, such as acoustic and electric energy, the corresponding
relationship between R-value index and stress concentration is stronger. This is mainly
because the energy indicators are more susceptible to field interference, and the R index of
synchronous acoustic and electrical response signals can effectively avoid the interference
of field operation vibration and cable magnetic field to an acoustic signal and integrate the
acoustic index to realize unified warning. At the same time, compared with the region of
abnormally high wave velocity, the region of supercritical R value is significantly higher
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and the region of the frequency is smaller. This also explains the advantages of acoustic and
electrical equipment in the accurate monitoring of regional-scale studies. The synchronous
acoustic-electric warning can reduce the warning range efficiently so that more accurate
disaster prevention and mitigation measures can be taken.
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Figure 13. Comparison of the number of R > 1 events and the average acoustic-electric energy,
corresponding to the wave velocity at different measurement points.

5. Conclusions

In this paper, uniaxial compression tests were carried out on coal samples of coal mines
with the risk of coal and rock dynamic disasters, and the AE and EME signal characteristics
of different coal and rock dynamic disaster mine samples were analyzed. The R value,
which is a dimensionless early warning index of AE and EME was proposed for local
hazard warning of power disasters and verified through the on-site application. The main
conclusions are as follows.

(1) During uniaxial loading, the AE and EME signals increase significantly and appear
strongly synchronized after entering strain strengthening area. With a significant
reduction in the load in the strain-reinforced zone and before and after entering the
damaged zone, the synchronization of the AE and EME signal is the strongest. At this
stage, it can accurately reflect the coal mass entering the damage danger zone.

(2) The R value, the fusion unified dimensionless index of AE and EME, can well reflect
whether the coal mass entered the damage danger zone and can be regarded as one of
the precursors of the imminent failure of coal and rock. When R > 1, it indicates that
the specimen is about to enter or has entered the failure danger zone, and the more
concentrated the R > 1 event, the greater the danger.

(3) On-site verification shows that the stress distribution of the roadway has a good
correspondence with the number of the R > 1 events. In areas with abnormally
increased roadway stress, the number of the R > 1 events in 90 s is greater than 40.
In areas with normal or reduced roadway stress, the number of the R > 1 events in
90 s is between zero and two. Compared with the index of AE or EME energy signal,
the unified R value index of AE and EME fusion can better reduce the influence of
interference factors and can reflect the danger of localized coal and rock dynamic
disaster clearly and accurately.
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