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Abstract: The Traub iterates generate a sequence that converges to a solution of a nonlinear equation
given certain conditions. The order of convergence has been shown provided that the fifth Fréchet-
derivative exists. Notice that this derivative does not appear on the Traub method. Therefore,
according to the earlier results, there is no guarantee that the Traub method converges if the operator
is not five times Fréchet-differentiable or more. However, the Traub method can converge, since
these assumptions are only sufficient. The novelty of our new technique is the fact that only the
Fréchet-derivative on the method is assumed to exist to prove convergence. Moreover, the new
results does not depend on the Traub method. Consequently, the same technique can be applied
on other methods. The dynamics of this method are also studied. Examples further explain the
theoretical results.
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1. Introduction

The article deals with the challenge of approximating a solution x∗ of the following
nonlinear equation:

H(x) = 0, (1)

where operator H : Ω ⊂ X −→ Y acts between Banach spaces X, Y and subset Ω 6= ∅.
Since the analytical form of x∗ is not easily attainable, iterative methods are considered for
solving (1). Throughout the article, B(x0, ρ) = {z ∈ X : ‖z− x0‖ < ρ} and B[x0, ρ] = {z ∈
X : ‖z− x0‖ ≤ ρ} for some ρ > 0. When one studies the iterative method, the convergence
order is an important issue.

Recall [1] that
‖xk+1 − x∗‖ ≤ C‖xk − x∗‖q,

for some C > 0 and q ≥ 1; then, q denotes the order for convergence of sequence {xk},
whereas C is the rate of convergence.

This order is obtained in general using Taylor expansion and required assumptions on
derivatives of higher order. This reduces the utility of iterative methods (see [1–4]).

In [5], the Traub method [6] was extended to the following:

yk = xk −H′(xk)
−1H(xk)

zk = yk −H′(xk)
−1H(yk) (2)

xk+1 = zk −H′(xk)
−1H(zk),

when X = Y = R. The convergence order was shown to be four using Taylor series
expansion and assumptions on the fifth Fréchet-derivative of F are used to obtain the
convergence order.
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The order can be found without using high-order derivatives. However, by using the
(COC) Computational Order of Convergence as follows:

ξ = ln
(
‖xk+1 − x∗‖
‖xk − x∗‖

)
/ ln

(
‖xk − x∗‖
‖xk−1 − x∗‖

)
or the (ACOC) Approximate Computational Order of Convergence:

ξ1 = ln
(
‖xk+1 − xk‖
‖xk − xk−1‖

)
/ ln

(
‖xk − xk−1‖
‖xk−1 − xk−2‖

)
the order of convergence can be found without involving derivatives of order higher
than one.

The article extends method (2) as follows:

y1
k = xk +H′(xk)

−1H(xk)

y2
k = y1

k −H
′(xk)

−1H(y1
k) (3)

...

xk+1 = ym
k = ym−1

k −H′(xk)
−1H(ym−1

k ),

where m is a fixed natural number. If m = 3, we obtain method (2). Method (3) was shown
to be of order m + 1 using Taylor expansions in [5], when X = Y = R and a = 1. However,
no estimates on ‖xk − x∗‖ or information concerning the uniqueness ball of the solution
are obtained.

As a motivation, let X = Y = R, Ω = [− 1
2 , 3

2 ]. Let the function f on the domain Ω be
the following.

f (ς) =
{

0 i f ς = 0
ς3 log ς2 + ς5 − ς4 i f ς 6= 0.

This definition provides the following.

f ′′′(ς) = 6 log ς2 + 60ς2 − 24ς + 22.

Thus, function f ′′′(ς) is discontinous on Ω. That is, the convergence of method (2) or
method (3) is not assured by earlier articles [6–9].

The article addresses in the remaining four sections the local analysis, numerical
examples, dynamics, and the conclusions for method (3), respectively.

2. Convergence

The assumptions (H) are used. Assume the following:

(H1) x∗ ∈ Ω solves Equation (1) and is simple.
(H2) ∃ a minimal positive solution ρ of the following equation:

ψ0(t)− 1 = 0,

where ψ0 : [0, ∞) −→ [0, ∞) is some nondecreasing and continuous function such that
the following is the case:

‖H′(x∗)−1(H′(x∗)−H′(w))‖ ≤ ψ0(‖x∗ − w‖)

(H3) ∃ functions ψ : [0, ρ) −→ [0, ∞), ψ1 : [0, ρ) −→ [0, ∞) continuous and nondecreasing
such that

‖H′(x∗)−1(H′(z)−H′(w))‖ ≤ ψ(‖z− w‖)
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and

‖H′(x∗)−1H′(w)‖ ≤ ψ1(‖x∗ − w‖)

holds for all z, w ∈ Ω0 = Ω ∩U(x∗, ρ).
Define functions ψj : [0, ρ) −→ [0, ∞) by the following:

ψ1(t) =

∫ 1
0 ψ((1− τ)t)dτ + |1− a|

∫ 1
0 ψ1(τt)dτ

1− ψ0(t)
,

ψ2(t) =

(
1 +

∫ 1
0 ψ1(τψ1(t)t)dτ

1− ψ0(t)

)
ψ1(t)

...

ψj(t) =

(
1 +

∫ 1
0 ψ1(τψj−1(t)t)dτ

1− ψ0(t)

)
ψj−1(t),

j = 1, 2, . . . , m. In particular, if m = j, define the following:

ψm(t) =

(
1 +

∫ 1
0 ψ1(τψm−1(t)t)dτ

1− ψ0(t)

)
ψm−1(t)

and

(H4) Equations ψi(t)− = 0, i = 1, 2, . . . , m have minimal solutions Ri ∈ (0, ρ), respectively.
Define the following parameter:

R = min{ri}; (4)

and

(H5) U(x∗, R) ⊂ Ω.

Next, the convergence is shown for method (3).

Theorem 1. Assume conditions (H) hold. Then, if x0 ∈ U(x∗, R)− {x∗}, sequence {xk} gener-
ated by method (3) exists in U(x∗, R), remains in U(x∗, R) for all k = 0, 1, 2, . . ., and is convergent
to x∗.

Proof. Let u ∈ B(x∗, R). Then, using (H1) and (H2), one obtains the following:

‖H′(x∗)−1(H′(x∗)−H′(u))‖ ≤ ψ0(‖x∗ − u‖) ≤ ψ0(R) < 1,

thus,H′(u)−1 ∈ L(Y, X) in view of the Banach perturbation lemma concerning inverses of
linear operators [3] and

‖H′(u)−1H′(x∗)‖ ≤
1

1− ψ0(‖u− x∗‖)
. (5)

In particular, iterates y1
0, y2

0, . . . , ym
0 are well-defined by method (3). Using the first

substep of this method, one can write the following.

y0 − x∗ = x0 − x∗ −H′(x0)
−1H(x0) + (1− a)H′(x0)

−1H(x0) (6)

= (H′(x0)
−1H′(x∗))

∫ 1

0
H′(x∗)−1(H′(x0)−H′(x∗ + τ(x0 − x∗))dτ(x0 − x∗)

+(1− a)(H′(x0)
−1H′(x∗))(H′(x∗)−1H(x0)).
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Using (H3), (5) (for u = x0), and (7), one obtains the following:

‖y1
0 − x∗‖ ≤

1
1− ψ0(‖x0 − x∗‖)

(∫ 1

0
ψ((1− τ)‖x0 − x∗‖)dτ

+ |1− a|
∫ 1

0
ψ1(τ‖x0 − x∗‖)dψ

)
‖x0 − x∗‖

≤ ψ1(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < R

from the definition of ψ1, r1 and R; thus, y1
0 ∈ B(x∗, R). Similarly, by the second, third,

. . . , j−step of method (3), one obtains the following:

‖y2
0 − x∗‖ = ‖y1

0 − x∗ −H′(x0)
−1H(y1

0)‖

≤ ‖y1
0 − x∗‖+

∫ 1
0 ψ1(τψ1(‖x0 − x∗‖)‖x0 − x∗‖)dτ

1− ψ0(‖x0 − x∗‖)
‖y0 − x∗‖

=

(
1 +

∫ 1
0 ψ1(τψ1(‖x0 − x∗‖)‖x0 − x∗‖)dτ

1− ψ0(‖x0 − x∗‖)

)
‖y0 − x∗‖

≤ ψ2(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖
...

‖yj
0 − x∗‖ ≤

(
1 +

∫ 1
0 ψ1(τψ1(‖y

j−1
0 − x∗‖))dτ

1− ψ0(‖x0 − x∗‖)

)
‖yj−1

0 − x∗‖

≤ ψj(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖, (7)

so y2
0, . . . , yj

0 ∈ U(x∗, R). In particular, by (7) for j = m, one obtains the following:

‖x1 − x∗‖ ≤ cj‖x0 − x∗‖, (8)

where cj = ψj(‖x0 − x∗‖) ∈ [0, 1). Simply replace x0, y1
0, . . . , yj

0 in the preceding estimate

by xk, y1
k , . . . , yj

k, to arrive at the following.

‖xk+1 − x∗‖ ≤ c‖xk − x∗‖ ≤ ck+1‖x0 − x∗‖ < R, (9)

With c = ψm(‖x0− x∗‖) ∈ [0, 1), we derive limk−→∞ xk = x∗ with xk+1 ∈ U(x∗, R).

A uniqueness result follows for the solution.

Proposition 1. Assume x∗ solves equation H(x) = 0 and is simple. Then, the only solution of
Equation (1) in the set Ω1 = Ω ∩U[x∗, R̄] is x∗ provided that there exists R̄ ≥ R satisfying the
following. ∫ 1

0
ψ0(τR̄)dτ < 1. (10)

Proof. Consider p ∈ Ω1 solving equation H(x) = 0. Define the linear operator M =∫ 1
0 H

′(x∗ + t(p− x∗))dt. Then, by using (H2) and (10), the following is the case.

‖H′(x∗)−1(H′(x∗)−M)‖ ≤
∫ 1

0
ψ0(τ‖p− x∗‖)dτ

≤
∫ 1

0
ψ0(τR̄)dτ < 1.

Therefore, we conclude p = x∗, since M−1 exists and 0 = H(p)−H(x∗) = M(p−
x∗).
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3. Numerical Experiments

The radius of convergence can be obtained by using Formula (4) for an example in
this section.

Example 1. Let X = Y = R3, D = U[0, 1], x∗ = (0, 0, 0)T . Define function F on D for
a = (v1, v2, v3)

T by the following

H(a) = (ev1 − 1,
e− 1

2
v2

2 + v2, v3)
T .

Then, one obtains the following:

H′(a) =

 ev1 0 0
0 (e− 1)v2 + 1 0
0 0 1

,

so conditions (H) hold for ϕ0(ς) = (e− 1)ς, ϕ(ς) = e
1

e−1 ς and ϕ1(ς) = e
1

e−1 . Hence, r1 = 0.3775,
r2 = 0.2026, r3 = 0.0976, and R = 0.0976.

ξ = 3.6483e− 07, ξ1 = 0.5758.

Example 2. Consider X = Y = C[0, 1], D = U(0, 1) and H : D −→ Y defined by

H(φ)(x) = φ(x)− 5
∫ 1

0
xθφ(θ)3dθ. (11)

We have the following.

H′(φ(ξ))(x) = ξ(x)− 15
∫ 1

0
xθφ(θ)2ξ(θ)dθ, for each ξ ∈ D.

Then, we obtain x∗ = 0, so ϕ0(t) = 7.5t, ϕ(t) = 15t, and ϕ1(t) = 2. Hence, r1 =
0.0199, r2 = 0.0028, r3 = 0.0049, and R = 0.0028.

4. Basins of Attractions

The Fatou sets or basins of attraction [2,8,9] of method (3) denoted by F atos is defined
as F atos = {x : x is an inital point from which (3) converges to a solution of a given
equation }. The complement of F atos is called the Julia set. We consider three problems
that are systems of polynomials in two variables and computed F atos, which is associated
with each root of the corresponding systems given in Figure 1:

Example 3.
{

x3 − y = 0
y3 − x = 0

with solutions {(−1,−1), (0, 0), (1, 1)}.

Example 4.
{

3x2y− y3 = 0
x3 − 3xy2 − 1 = 0

with solutions {(− 1
2 ,−

√
3

2 ), (− 1
2 ,
√

3
2 ), (1, 0)}.

Example 5.
{

x2 + y2 − 4 = 0
3x2 + 7y2 − 16 = 0

with solutions {(
√

3, 1), (−
√

3, 1), (
√

3,−1), (−
√

3,−1)}.

For each test problem, we chose a = 0.3939 to compute F atos and compute their
dynamics. For this, we consider the regionR = {(x, y) ∈ R2 : x ∈ [−2, 2], y ∈ [−2, 2]}. We
make sure thatR contains all the roots of the test problems considered. An equspaced grid
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of 401× 401 points in R is considered to be the initial guess X0 for the scheme (3). The
scheme is iterated to a maximum of 50 iterations with a fixed tolerance of 10−8. An iterative
scheme with initial guess X0 does not converge to any of the roots if the above accuracy
is not achieved within 50 iterations, and we assigned black colors to those points X0. In
this manner, we distinguish F atos by their respective colors for the distinct roots of each
method.

Figure 1 demonstrates F atos corresponding to each root of the method (3). The black
region denotes the Julia set.

Figure 1. F atos and Julia set for Examples 3–5.

The figures presented in this work is performed in a 4-core 64 bit Windows machine
with Intel Core i7-3770 processor using MATLAB programming language.
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5. Conclusions

The local convergence and the dynamics of the Traub method (3) have been studied
under weaker-than-before conditions. The technique used allows the extension of the
usage of the Traub method to include equations with operators that are less than five-times
Fréchet-differentiable. The new technique does not depend on the method. Thus, it can be
used on other methods [1,4,7,9].
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