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Abstract: The Newton–Kantorovich theorem for solving Banach space-valued equations is a very
important tool in nonlinear functional analysis. Several versions of this theorem have been given
by Adley, Argyros, Ciarlet, Ezquerro, Kantorovich, Potra, Proinov, Wang, et al. This result, e.g.,
establishes the existence and uniqueness of the solution. Moreover, the Newton sequence converges
to the solution under certain conditions of the initial data. However, the convergence region in all of
these approaches is small in general; the error bounds on the distances involved are pessimistic, and
information about the location of the solutions appears improvable. The novelty of our study lies in
the fact that, motivated by optimization concerns, we address all of these. In particular, we introduce
a technique that extends the convergence region; provides weaker sufficient semi-local convergence
criteria; offers tighter error bounds on the distances involved and more precise information on the
location of the solution. These advantages are achieved without additional conditions. This technique
can be used to extend other iterative methods along the same lines. Numerical experiments illustrate
the theoretical results.

Keywords: Traub’s method; Banach space; Convergence criterion

MSC: 49M15; 65J15; 65G99

1. Introduction

A plethora of applications from applied sciences can be converted to solving
nonlinear equation

G(x) = 0, (1)

where operator G ∈ C1(D, B2), D ⊂ B1 is an open set and B1, B2 are Banach spaces [1]. It is
desirable to find the solution x∗ ∈ D of equation G(x) = 0 in closed form, but this goal can
be achieved only in rare cases. This is the explanation for why most solution techniques
for equation G(x) = 0 are iterative. These techniques generate a sequence converging to
x∗ [1–6]. The most widely used method is Newton’s (NM) defined by

x0 ∈ D, xm+1 = xm − G′(xm)
−1G(xm), for ∀m = 0, 1, 2, · · · . (2)

Numerous researchers and practitioners have provided a convergence analysis for NM
in Banach space starting from the so-called Newton–Kantorovich theorem [1]. However, the
semilocal convergence criterion (see (18)) can easily be violated despite the fact that NM
may be convergent to x∗ (see also the numerical work). This criterion has mainly been used
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by other investigators (see Adly et al. [7], Argyros et al. [2–5], Ciarlet et al. [8], Equerro et
al. [6], Potra [9], Proinov [10] and the references therein).

In this article, the Kantorovich criterion is weaker, but no new conditions are employed.
Moreover, the error distances on ‖x∗ − xn‖ and the information on the uniqueness ball
are improved. This is due to the usage of parameters at least as small as those in the
aforementioned works. We extended the recent results in [8], which in turn simplified
earlier proofs. Our technique involves the determination of a region D0 of D, where the
iterates xm also remain. However, in D0, the Lipschitz constants involved are at least as tight
as the corresponding ones depending on D. This modification helps us provide a finer semi-
local convergence analysis for NM. The advantages were mentioned in the introduction.

Section 2 includes the semi-local convergence of NM. The examples appear in Section 3.
Concluding remarks can be found in Section 4.

2. Convergence Analysis

The notation U(x0, ρ) is used for the open ball of radius ρ > 0 and the center at a point
x0 ∈ D. Moreover, the ball U[x0, ρ] is the closure of the open ball. Furthermore, L(B1, B2) is
the space of continuous operators that are linear.

Three crucial types of Lipschitz continuity of G′ are introduced, so we can connect
them to each other. We suppose from now on that there exists a point x0 ∈ D such that
F′(x0)

−1 ∈ L(B2, B1).

Definition 1. Operator H ∈ C1(D, B2) is center-Lipschitz continuous on D if there exists param-
eter a0 > 0 such that

‖H′(x0)
−1(H′(v)− H′(x0))‖ ≤ a0‖v− x0‖ (3)

for all v ∈ D.

Set
D0 = U(x0,

1
a0
) ∩ D. (4)

Definition 2. Operator H ∈ C1(D, B2) is restricted center-Lipschitz continuous on D0 if there
exists a > 0 such that

‖H′(x0)
−1(H′(v1)− H′(v2))‖ ≤ a(‖v1 − v2‖) (5)

for all v1, v2 ∈ D0.

Definition 3. Operator H ∈ C1(D, B2) is Lipschitz continuous on D if there exists parameter
a1 > 0 such that

‖H′(x0)
−1(H′(w1)− H′(w2))‖ ≤ a1‖w1 − w2‖ (6)

for all w1, w2 ∈ D.

Remark 1. It follows from these definitions that

a0 ≤ a1 (7)

and
a ≤ a1 (8)

since
D0 ⊆ D. (9)
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Suppose that there exists b > 0 such that

‖G′(x0)
−1‖ ≤ b. (10)

The following estimates were used in the convergence analysis [8] for G′ = H′ or
G′ = H′(x0)

−1H′ :

‖G′(z)−1‖ ≤ b
1− bā1‖z− x0‖

for all z ∈ U(x0,
1

bā1
) ⊂ D. (11)

If
‖G′(w1)− G′(w2)‖ ≤ ā1‖w1 − w2‖ for ∀w1, w2 ∈ D (12)

or the affine invariant form

‖G′(z)−1G′(x0)‖ ≤
1

1− a1‖z− x0‖
for ∀ z ∈ U(x0,

1
a1
) ⊂ D. (13)

These estimates are based on (6), but instead we use (3), which is weaker and more
precise than (6), to obtain them, instead of using (11) and (13).

‖G′(z)−1‖ ≤ b
1− bā0‖z− x0‖

for ∀ z ∈ U(x0,
1

bā0
) ⊂ D. (14)

If
‖G′(w)− G′(x0)‖ ≤ ā0‖w− x0‖ for ∀w ∈ D (15)

and
‖G′(z)−1G′(x0)‖ ≤

1
1− a0‖z− x0‖

for ∀ z ∈ U(x0,
1
a0
) ⊂ D, (16)

respectively. Notice that parameters a0, a, and a1 depend on set D0, D and operator G
as follows: a0 = a0(D, G), a1 = a1(D, G), whereas a = a(D0, G). The computation of
the Lipschitz constant a1 induces that of a0 and a as special cases. Hence, no additional
computational effort is required under our technique. Suppose that

a0 ≤ a. (17)

If a0 > a, then the results that follow hold with a0 replacing a. Based on the above, we
can use the tighter constant a, instead of a1, in the proofs of previous results. In particular,
we present extensions of the Theorems 3–5 in [8], respectively. The proofs are omitted as
identical to the corresponding ones in [8] provided that the stated modifications are made.

Theorem 1. Suppose the following exist:

(i) The point x0 ∈ D such that G′(x0) is onto and one-to-one G′(x0)
−1 ∈ L(B2, B1) and (2)

holds.

(ii) Constants ā0, b, d such that 0 < q0 := ā0bd ≤ 1
2 , U(x0, ρ) ⊂ D,

‖G′(x0)
−1G(x0)‖ ≤ d,

(2) and (15) hold and ρ0 = 1
bā0

. Then, the following assertions hold

(1) G′(z) ∈ L(B1, B2) is onto and one-to-one G′(z)−1 ∈ L(B2, B1) for all z ∈ U(x0, ρ0);
sequence {xm} ⊂ U(x0, ρ), limm−→∞ xm = x∗ ∈ U[x0, ρ], G(x∗) = 0, so that

‖xm − x∗‖ ≤ ρ0

2m

(
ρ−
ρ0

)2m

, i f q0 <
1
2
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or
‖xm − x∗‖ ≤ ρ0

2m , i f q0 =
1
2

,

where ρ− =
1−
√

1−2q0
ā0b < ρ0.

(2) Additionally, if q0 < 1
2 , U(x0, ρ+) ⊂ D, and (15) hold, then the only solution where of

equation G(x) = 0 is U(x0, ρ+) is x∗ ∈ U[x0, ρ+], where ρ+ =
1+
√

1−2q0
ā0b < ρ0.

If q0 = 1
2 , and U[x0, ρ0] ⊂ D, then the only solution of equation G(x) = 0 in U(x0, ρ0) is

x∗ ∈ U[x0, ρ0].

(3) Scalar sequence {sm} defined by

s0 = 0, sm+1 − sm = sm −
p(sm)

p′(sm)
=

ā0b(sm − sm−1)
2

2(1− ā0bsm)

is such that
‖xm+1 − xm‖ ≤ sm+1 − sm

‖xm+1 − x∗‖ ≤ ρ− − sm+1 =
ā0b(ρ− − sm)62

2(1− ā0bsm)
,

where p(t) = ā0bt2−2t+2d
2 . Notice that sequence {sm} is majorizing for {xm}, is nondecreas-

ing and limm−→∞ sm = ρ−.

Proof. Simply replace a1 by ā0 in the proof of Theorem 3 in [8].

Theorem 2. Suppose the following exist:

(i) The point x0 ∈ D such that G ∈ C1(D, B2) is onto and one-to-one,

(ii) Constants d and a such that 0 < d ≤ a
2 , U(x0, a) ⊂ D,

‖G′(x0)
−1G(x0)‖ ≤ d,

and
‖G′(x0)

−1(G′(v)− G′(w))‖ ≤ 1
a
‖v− w‖

for ∀v, w ∈ D0.

Then, the following assertions hold

(1) G′(z) ∈ L(B1, B2) is onto and one-to-one, G′(z)−1 ∈ L(B2, B1) for all z ∈ U(x0, a);
sequence {xm} ⊂ U(x0, ρ−), limm−→∞ xm = x∗ ∈ U[x0, ρ−], G(x∗) = 0, where ρ− =

a(1−
√

1− 2d
a ) ≤ a. Moreover, the following error bounds hold

‖xm − x∗‖ ≤ a
2m

(
ρ−
ρ0

)2m

, i f d <
a
2

or
‖xm − x∗‖ ≤ ρ0

2m , i f d =
a
2

.

(2) If 0 < d < a
2 , U(x0, ρ+) ⊂ D, and

‖G′(x0)
−1(G′(v)− G′(w))‖ ≤ 1

a
‖v− w‖
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for all v, w ∈ U(x0, ρ+), where ρ+ = a(1 +
√

1− 2d
3 ). Then, x∗ ∈ U[x0, ρ−] is the

only solution of the equation G(x) = 0 in U(x0, ρ+). If d = a
2 and U[x0, a] ⊂ D, then

x∗ ∈ U[x0, a] is the only solution of the equation G(x) = 0 in U[x0, a].

Proof. Simply use a for 1
r in the proof of Theorem 4 in [8].

Theorem 3. Suppose the following exist:

(i) The point x0 ∈ D such that G′(x0) ∈ L(B1, B2) is onto and one-to-one,

(ii) Constants a1 > 0 such that U[x0, a1] ⊂ D,

‖G′(x0)
−1G(x0)‖ ≤

a1

2
,

and
‖G′(x0)

−1(G′(v)− G′(w))‖ ≤ 1
a1
‖v− w‖

for all v, w ∈ U(x0, a1).

Then, G′(z) ∈ L(B1, B2) is onto and one-to-one, G′(z)−1 ∈ L(B2, B1) for all z ∈ U(x0, a1);
sequence {xm} ⊂ U(x0, a1), limm−→∞ xm = x∗ ∈ U[x0, a1], G(x∗) = 0. Moreover, the following
error bounds hold

‖xm − x∗‖ ≤ a1

2m .

Furthermore, the point x∗ ∈ U[x0, a1] is the only solution of equation G(x) = 0 in U[x0, a1].

Proof. Simply use a1 for 1
r in the proof of Theorem 5 in [8].

Remark 2. (a) Our results clearly reduce to the corresponding results in [8] if all constants a are
equal to each other.

Concerning the comparison to the earlier works in [1,6,7,9–11], it is noted that the following
Kantorovich criterion is used

da1 ≤
1
2

. (18)

However, in the present study,

da ≤ 1
2

(19)

is used instead and
da1 ≤

1
2
⇒ da ≤ 1

2
. (20)

Hence, the Kantorovich criterion is weakened. It is important to notice that no new conditions
are used, and parameter a is a specialization of a1. Moreover, the computation of parameter a1
requires that of parameter a. (b) Based on Remark 1, the advantages of our technique have been
justified (see also the numerical work).

Finally, the existence of the solution x∗ ball can be further extended, though not
necessarily under all the conditions of these three results. This is shown next for Theorem 1.
The same can be done for the other two results.
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Proposition 1. Suppose

(i) There exists a point h∗ ∈ U(x0, r0) ⊆ D for some r0 > 0 solving equation G(x) = 0 which
is simple.

(ii) There exist x0 ∈ D, b > 0, ā0 > 0 such that G′(x0)
−1 ∈ L(B2, B1), ‖G′(x0)

−1‖ ≤ b and

‖G′(u)− G′(x0)‖ ≤ ā0‖u− x0‖

for ∀u ∈ D.

(iii) There exists r ≥ r0 such that
bā0

2
(r0 + r) < 1.

Set Ω = U[x0, r] ∩ D. Then, the only solution of equation G(x) = 0 in the region Ω is h∗.

Proof. Let h̄ ∈ Ω be a solution of equation G(x) = 0. Define Q =
∫ 1

0 G′(h∗ + θ(h̄− h∗))dθ.
By employing (ii),

‖G′(x0)
−1‖‖G′(x0)−Q‖ ≤ bā0

∫ 1

0
((1− θ)‖h̄− x0‖+ θ‖h∗ − x0‖)dθ

≤ ā0b
2

(r0 + r) < 1.

Then, the estimate, h̄ = h∗ is implied as a consequence of the Banach result on the
inverse of linear operators and Q(h̄− h∗) = Q(h̄)−Q(h∗) = 0.

The set Ω is clearly larger than the ones given in all three preceding results, since in
the former the uniqueness depends on a or a1.

Remark 3. The developed technique can be applied to extend the applicability of NM under weaker
Lipschitz conditions inaugurated by Wang Xinghva along the same lines [12,13].

3. Numerical Experiments

Two examples show that new criteria can be verified to solve equations, but the ones
in [8] (or [1–7,9–11,14,15]) cannot.

Example 1. Consider B1 = B2 = C[0, 1]. The max-norm is used. Set D = U(x0, 3). Let operator
G on D be given by

G(β)(γ) = β(γ)− α(γ)−
∫ 1

0
T(γ, s)δ3(s)ds (21)

γ ∈ [0, 1], β ∈ C[0, 1], where α ∈ C[0, 1] is given and T is the Green’s kernel function

T(γ, ζ) =

{
(1− γ)ζ, if ζ ≤ γ
γ(1− ζ), if γ ≤ ζ

. (22)

Definition (21) and (22) are used to show that the derivative G′, according to Fréchet, is given
by

[G′(δ)(β)](γ) = β(γ)− 3
∫ 1

0
T(γ, ζ)δ2(s)α(s)ds, (23)

γ ∈ [0, 1], β ∈ C[0, 1]. Let α(γ) = x0(γ) = 1. Then, by (21)–(23), we obtain G′(x0)
−1 ∈

L(B2, B1),

‖I − G′(x0)‖ <
3
8

, ‖G′(x0)
−1‖ ≤ 8

5
, d =

1
5
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ā0 = 12
5 , a1 = 18

5 , and

D0 = U(1, 3) ∩U(1,
5

12
) = U(1,

5
12

).

Consequently, it follows a = 3
2 , so a0 < a1 and a < a1. Then, the sufficient convergence

criterion (18) is not satisfied, since

da1 = 1.152 >
1
2

holds. It follows that no assurance for convergence can be provided by these results in the aforemen-
tioned references. However, our criterion (19) holds, since

da = 0.48 <
1
2

.

Example 2. Define scalar function

G(t) = υ0t + υ1 + υ2 sin eυ3t,

for t0 = 0, where υj, j = 0, 1, 2, 3 are real parameters. It follows by this definition that if υ3 is large
enough and υ2 is small enough, the fraction a0

a1
is small (enough), i.e., a0

a1
−→ 0.

4. Conclusions

A technique involving recurrent functions and restricted convergence domains was
applied to extend the application of the Newton–Kantorovich theorem to solving nonlinear
equations. The new results are better than earlier ones. Hence, they can replace them. No
additional conditions are needed. The technique is a very general rendering that is useful
to extend the usage of other iterative methods, such as the Secant, Stirling’s, Kurchatov,
Newton-type and others [4,6,11].
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