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Abstract: King’s method applies to solve scalar equations. The local analysis is established under
conditions including the fifth derivative. However, the only derivative in this method is the first.
Earlier studies apply to equations containing at least five times differentiable functions. Consequently,
these articles provide no information that can be used to solve equations involving functions that
are less than five times differentiable, although King’s method may converge. That is why the new
analysis uses only the operators and their first derivatives which appear in King’s method. The article
contains the semi-local analysis for complex plane-valued functions not presented before. Numerical
applications complement the theory.
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1. Introduction

In this article, the function F : Ω ⊂ T −→ T is differentiable, where T = R or T = C
and Ω is an open nonempty set.

The nonlinear equation
F(x) = 0 (1)

is studied in this article. An analytic form of a solution x∗ is preferred. However, this
form is not always available. So, mostly iterative solution methods have been applied to
approximate the solution x∗.

In particular, King’s [1] fourth-order method (KM) has been used;

u0 ∈ Ω, vn = un − F′(un)
−1F(un)

un+1 = vn − A−1
n (F(un) + γF(vn))F′(un)

−1F(vn), (2)

where γ ∈ T is a parameter and An = F(un) + (γ− 2)F(vn).
As motivation consider the real function

µ(s) =
{

0 i f s = 0
s5 − s4 + s3 log s2 i f s 6= 0.

This definition gives

µ′′′(s) = 6 log s2 + 60s2 − 24s + 22.

However, then, the third derivative is unbounded. So, the convergence of KM is not
assured by previous analyses in [1–8].
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This is the case, since Taylor series requiring derivatives of high order (not in KM) are
utilized in the analysis for convergence. This is a common observation for other methods,
such as Traub’s, Jarratt’s, and the Kung–Traub method to mention some [2,3,5–10]. On
the top of these concerns, some other problems exist with earlier studies. No computable
data are provided for distances ‖un+1 − un‖ or ‖un − x∗‖ or the uniqueness and location
of solution x∗.

All these concerns are addressed utilizing conditions involving only the first derivative
in the method (2) [9–16].

The next four sections include semi-local analysis, local analysis, the experiment, and
conclusions, respectively.

2. Semi-Local Analysis

Set L0, L, L1, L2, δ and η to be positive parameters. Set L3 = LL2
2 , and L4 = δ|γ|L2

4 . Let
the sequence {tn} be given as

t0 = 0, s0 = η,

tn+1 = sn +
[L3 + L4(sn − tn)](sn − tn)3

(1− pn)(1− L0tn)
(3)

sn+1 = tn+1 +
L(tn+1 − tn)2 + 2L1(tn+1 − sn)

2(1− L0tn+1)
,

where pn = L2(tn + |γ− 2|(sn− η)). Sequence {tn} shall be shown to be majorizing for KM.

Lemma 1. Suppose

tn <
1
L0

and pn < 1. (4)

Then, the following assertions hold

tn ≤ sn ≤ tn+1 (5)

and
lim

n−→∞
tn = t∗ ≤ 1

L0
, (6)

where t∗ is the unique least upper bound of sequence {tn}.

Proof. Assertions (5) and (6) follow immediately by (3) and (4).

Another result is given for the sequence {tn} using stronger conditions but which are
easier to verify than (4). However, first, we need to introduce some concepts. Let

a = (L3 + L4η)η2, b =
Lt2

1 + 2L1(t1 − η)

2(1− L0t1)η
,

and
c = max{a, b}.

Develop polynomials defined on the interval [0, 1) as

f (1)n (t) = 2(L3 + L4tnη)t2n−1η2 + L0(1 + t)(1 + t + . . . + tn−1)η − 1,

g(1)n (t) = 2(L3 + L4tn+1η)tn+1η − 2(L3 + L4tnη)tn−1η + L0(1 + t),

g1(t) = g(1)1 (t),

and
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f (2)n (t) = L[4(L3 + L4tnη)(tnη)2 + 1]2tn−1η

+8L1(L3 + L4tnη)t2n−1η2

+2L0(1 + t)(1 + t + . . . + tn)η − 2.

Moreover, set
g2(t) = g(2)2 (t).

Notice that polynomials g1 and g2 are independent of n. In particular, say

g1(t) = 2L4tη2(t3 − 1) + 2L3η(t2 − 1) + L0(1 + t).

Then, condition g1(t) ≥ 0 needed in the next Lemma holds if

2L4tη2(1− t3) + 2L3η(1− t2) ≤ L0(1 + t).

The left side of this estimate is a positive multiple of η. However, the right side of it is
positive but independent of η. So, this estimate certainly holds for sufficiently small η. The
same observation is made for polynomial g2 and condition g2(t) ≥ 0.

An auxiliary result connects these polynomials.

Lemma 2. The following items hold:

(i) f (1)n+1(t)− f (1)n (t) = g(1)n (t)tnη;

(ii) g(1)n+1(t) ≥ g(1)n (t);

(iii) g(1)n+1(t)− f (1)n (t) ≥ g1(t)tnη, if g1(t) ≥ 0;
and

(iv) f (2)n+1(t)− f (2)n (t) ≥ g2(t)tn−1η, if g2(t) ≥ 0.

Proof. By the definition of these polynomials, we get in turn:

(i)

f (1)n+1(t) = f (1)n+1(t)− f (1)n (t) + f (1)n (t)

= 2(L3 + L4tn+1η)t2n+1η2 + L0(1 + t)(1 + t + . . . + tn)η − 1

−2(L3 + L4tnη)t2n−1η2 − L0(1 + t)(1 + t + . . . + tn−1)η + f (1)n (t) + 1

= f (1)n (t) + g(1)n (t)tnη;

(ii)

g(1)n+1(t)− g(1)n (t) = 2(L3 + L4tn+2η)tn+2η

−2(L3 + L4tn+1η)tnη − 2(L3 + L4tn+1)η)tn+1η

+2(L3 + L4tnη)tn−1η

= 2[(L3 + L4tn+2η)t3 − (L3 + L4tn+1η)t

−(L3 + L4tn+1η)t2 + (L3 + L4tnη)]tn−1η

= 2(t− 1)2(t + 1)(L3 + L4ηtn(t2 + t + 1))tn−1η ≥ 0.

(iii) This estimate follows immediately from the first two;

(iv) It follows similarly from the definition of polynomials g2 and f (2)n , since t ∈ [0, 1).

Define the parameters
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β1 =
1− L0η

1 + L0η
, β2 =

1− 2L0η

1 + 2L0η
, β3 =

1− 2L2η

1 + 2L2η(1 + 2|γ− 2|) ,

β = min{β1, β2, β3}

and
M = 2 max{L0, L2}.

Notice that β ∈ (0, 1).

Lemma 3. Suppose:
L0t1 < 1, (7)

Mη < 1, (8)

c ≤ α ≤ β, (9)

g1(t) ≥ 0 at t = α (10)

and
g2(t) ≥ 0 at t = α (11)

hold for some α ∈ (0, 1). Then, sequence {tn} is convergent to t∗. Notice, criteria (7)–(11) determine
the “smallness” of η to force convergence of the method.

Proof. Mathematical induction is used to show

0 ≤ [L3 + L4(sm − tm)](sm − tm)3

(1− pm)(1− L0tm)
≤ α, (12)

0 ≤ L(tm+1 − tm)2 + 2L1(tm+1 − sm)

2(1− L0tm+1)
≤ α(sm − tm) (13)

and
tm ≤ sm ≤ tm+1. (14)

These estimates are true for m = 0 by (7) or (8) and the definition of sequence {tm}.
Then, it follows 0 ≤ t1 − s0 ≤ α(s0 − t0) = αη and 0 ≤ s1 − t1 ≤ α(s0 − t0) = αη. Suppose:

0 ≤ tm+1 − sm ≤ α(sm − tm) ≤ αm+1η (15)

and
0 ≤ sm+1 − tm+1 ≤ α(sm − tm) ≤ αm+1η. (16)

Then,

tm+1 ≤ sm + αm+1η ≤ tm + αmη + αm+1η

≤ sm−1 + 2αmη + αm+1η

...

≤ s1 + 2α2η + . . . + 2αmη + αm+1η

≤ t1 + αη + 2α2η + . . . + 2αmη + αm+1η

= η + 2αη(1 + α + . . . + αm−1)η + αm+1η

= η
(1 + α)(1− αm+1)

1− α

< η
1 + α

1− α
= t∗∗. (17)

Evidently, (12) holds if
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2(L3 + L4αmη)(αmη)2 + L0α
(1 + α)

1− α
(1− αm)η − α ≤ 0 (18)

or
f (1)m (t) ≤ 0 at t = α. (19)

Define
f (1)∞ (t) = lim

m−→∞
f (1)m (t). (20)

It can be shown instead from Lemma 2 that

f (1)∞ (t) ≤ 0 at t = α. (21)

However, by (15) and (20),

f (1)∞ (t) =
L0(1 + t)η

1− t
− 1. (22)

Then, (21) holds by (10) and (22). Moreover, instead of (13), we can show

[L(tn+1 − sn + sn − tn)2 + 2L1

(
(L3+L4(sn−tn)](sn−tn)3

(1−pn)(1−L0tn)

)
2(1− L0tm+1)

≤ α(sn − tn), (23)

since
1

1− L0tm
≤ 2, (24)

1
1− pm

≤ 2 (25)

and

0 ≤ tm+1 − tm

≤ (1 + α)(sm − tm) (26)

hold. Indeed, (24) holds if

2L2tm ≤ 2L2
(1 + α)η

1− α
≤ 1

or
α ≤ 1− 2L0η

1 + 2L0η
.

However, this holds because of the choice of β2 and (9). Moreover, estimate (25) holds
if

2L2

(
|γ− 2|[ (1 + α)η

1− α
− η] +

(1 + α)η

1− α

)
≤ 1,

which is true by the choice of β3 and (9). Then, (23) holds if

L[4(L3 + L4(sn − tn))(sn − tn)
2 + 1]2(sn − tn)

+8L1(L3 + L− 4(sn − tn))(sn − tn)
2 ≤ α

or

L[4(L3 + L4αnη)(αnη)2 + 1]αn−1η

+8L1(L3 + L− 4αnη)α2n−1η2 − 1 ≤ 0 (27)

or
f (2)m (t) ≤ 0 at t = α. (28)

or
f (t) ≤ 0 at t = α.
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However, this holds by (11). By sequence {tm}, (12) and (13), the estimate (14) also
holds. Therefore, the induction for estimates (12)–(14) is terminated. Hence, {tm} is
bounded by t∗∗, which is non-decreasing. Hence, it converges to t∗.

The semi-local convergence analysis of KM uses conditions (H). Suppose that there
exist:

(H1) u0 ∈ Ω, η ≥ 0, δ ≥ 0 : F′(u0) 6= 0, A0 6= 0, ‖F′(u0)
−1F(u0)‖ ≤ η and ‖A−1

0 F′(u0)‖ ≤
δ;

(H2) L0 > 0 : ‖F′(u0)
−1(F′(v)− F′(u0))‖ ≤ L0‖v− u0‖ for all v ∈ Ω. Set Ω0 = U(u0, 1

L0
)∩

Ω;
(H3) L > 0, L1 > 0, L2 > 0 : ‖F′(u0)

−1(F′(v)− F′(u))‖ ≤ L‖v− u‖,

‖F′(u0)
−1F′(v)‖ ≤ L1

and
‖A−1

0 F′(v)‖ ≤ L2,

for all v, w ∈ Ω0;
(H4) The conditions in Lemma 1 or in Lemma 3 are true;
(H5) U[u0, t∗] ⊂ Ω.

Theorem 1. Assume conditions H hold. Then, KM is well defined in U(u0, t∗), lies in U(u0, t∗),
for all n = 0, 1, 2, . . . and converges to a solution x∗ ∈ U[u0, t∗] of Equation (1), so

‖vm − um‖ ≤ sm − tm (29)

and
‖um+1 − vm‖ ≤ tm+1 − sm. (30)

Proof. We have by {tn} and (H1)

‖v0 − u0‖ = ‖F′(u0)
−1F(u0)‖ ≤ η = s0 − t0 < t∗.

So, (29) is true if m = 0 and v0 ∈ U(u0, t∗). Pick u ∈ U(u0, t∗). By (H1), (H2) and t∗,
then

‖F′(u0)
−1(F′(u0)− F′(u))‖ ≤ L0‖u0 − u‖ ≤ L0t∗ < 1.

That is F′(u) 6= 0 with

‖F′(u)−1F′(u0)‖ ≤
1

1− L0‖u− u0‖
. (31)

By the Banach lemma on functions [11–13], iteration u1 is well-defined. Suppose
uk, vk ∈ U(u0, t∗). Then, we can write

uk+1 − vk = A−1
k (F(uk) + γF(vk))F′(uk)

−1F(vk). (32)

By (H1), (H3), we get

‖A−1
0 (Ak − A0)‖ ≤ ‖A−1

0 (F(u0)− F(uk))‖
+|γ− 2|‖A−1

0 (F(v0)− F(vk))‖

≤ ‖
∫ 1

0
A−1

0 F′(u0 + θ(uk − u0))dθ‖‖uk − v0‖

+|γ− 2|‖
∫ 1

0
A−1

0 (F′(v0 + θ(vk − v0))dθ‖‖vk − v0‖

≤ L2(‖uk − u0‖+ |γ− 2|‖vk − v0‖)
≤ p̄k ≤ pk = L2(tk + |γ− 2|(sk − η)) < 1,
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so Ak 6= O and

‖A−1
k A0‖ ≤

1
1− pk

. (33)

Then, by (H3), (3), (31) (for u = u0), (32) and (33), we obtain

‖uk+1 − vk‖ ≤ ‖A−1
k A0‖[‖A−1

0 F(uk)‖+ |γ|‖A−1
0 F′(u0)‖

×‖F′(u0)
−1F(vk)‖]‖F′(uk)

−1F′(u0)‖‖F′(u0)
−1F(vk)‖

≤
[L2((sk − tk) + δ|γ| L2 (sk − tk)

2] L
2 (sk − tk)

2

(1− pk)(1− L0tk)

= tk+1 − sk, (34)

so (30) holds, where we also used that (29) and (30) hold for all k smaller than n− 1. We
also get

‖F′(u0)
−1F(uk)‖ ≤ ‖F′(u0)

−1F′(uk)(vk − uk)‖
≤ L1‖vk − uk‖ ≤ L1(sk − tk), (35)

F(vk) = F(vk)− F(uk) + F(uk)

=
∫ 1

0
F′(uk + θ(vk − uk))dθ(vk − uk)− F′(uk)(vk − uk),

and

‖F′(u0)
−1F(vk)‖ ≤

L
2
(sk − tk)

2 (36)

We also have

‖uk+1 − u0‖ ≤ ‖uk+1 − vk‖+ ‖vk − u0‖ ≤ (tk+1 − sk) + (sk − t0) = tK+1 < t∗,

so uk+1 ∈ U(u0, t∗). Then, we write

F(uk+1) = F(uk+1)− F(uk) + F(uk)

= F(uk+1)− F(uk)− F′(uk)(vk − uk)

= F(uk+1)− F(uk)− F′(uk)(uk+1 − uk) + F′(uk)(uk+1 − vk)

=
∫ 1

0
(F′(uk + θ(uk+1 − uk))dθ − F′(uk))(uk+1 − uk)

+F′(uk)(uk+1 − vk). (37)

By (H3), we get

‖F′(u0)
−1F(uk+1)‖ ≤

L
2
‖uk+1 − uk‖2 + L1‖uk+1 − vk‖

≤ L
2
(tk+1 − tk)

2 + L1(tk+1 − sk). (38)

Then, by the first substep of KM

‖vk+1 − uk+1‖ ≤ ‖F′(uk+1)
−1F′(u0)‖‖F′(u0)

−1F(uk+1)‖

≤
L
2 (tk+1 − tk)

2 + L1(tk+1 − sk)

1− L0tk+1

= sk+1 − tk+1, (39)

and
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‖vk+1 − u0‖ ≤ ‖vk+1 − uk+1‖+ ‖uk+1 − u0‖
≤ sk+1 − tk+1 + tk+1 − t0 = sk+1 < t∗.

Therefore, (29) holds and vk+1 ∈ U[u0, t∗]. The induction is finished. So, {uk} is
Cauchy in T. Hence, there exists x∗ ∈ U[u0, t∗] such that limk−→∞ xn = x∗. By letting k
approach ∞ in (35), F(x∗) = 0.

Notice that 1
L0

under conditions of Lemma 1 or (1+α)η
1−α under conditions of Lemma 3

provided in closed form may be used for t∗ in Theorem 1.

Proposition 1. Suppose

(1) The point b ∈ U[u0, r0] ⊂ Ω is a solution of Equation (1) with F′(b) 6= 0, and condition (H2)
holds;

(2) Point r ≥ r0 exists:
L0(r + r0) < 2. (40)

Set Ω1 = U[u0, r] ∩Ω. Then, b uniquely solves Equation (1) in Ω1.

Proof. Let ξ ∈ Ω1 satisfy F(ξ) = 0. Set B =
∫ 1

0 F′(b + q(ξ − b))dq. Then, by (H2) and (40),
we obtain in turn that

‖F′(u0)
−1(B− F′(u0))‖ ≤ L0

∫ 1

0
((1− q)‖u0 − b‖+ q‖u0 − ξ‖)dq

≤ L0

2
(r0 + r) < 1.

Therefore, ξ = b follows from B 6= 0 and B(ξ − b) = F(ξ)− F(b) = 0− 0 = 0.

3. Local Convergence

Set K0, K, and K1 to be positive parameters. Define function g1 : [0, 1
K0
) −→ R by

g1(t) =
Kt

2(1− K0t)
.

Notice that
ρ0 =

2
2K0 + K

<
1

K0
(41)

is a radius of convergence for Newton’s method provided by us in [11–13]. This point ρ0
also solves the equation

G1(t) = g1(t)− 1 = 0.

Develop q : [0, 1
K0
) −→ R, Q : [0, 1

K0
) −→ R by

q(t) = |γ− 2|K1g1(t) +
K
2

t

and
Q(t) + 1 = q(t).

Then, we have Q(0) = −1 and Q(ρ0) =
K
2 ρ0 + |γ− 2|K1 > 0. The intermediate value

theorem assures Q has zeros in (0, ρ0). Let ρQ stand for the smallest zero in (0, ρ0). Define
functions g2 : [0, ρQ) −→ R and G2 : [0, ρQ) −→ R by

g2(t) = g1(t)

(
1 +

K2
1(1 + |γ|g1(t))

(1− q(t))(1− K0t)

)

and
G2(t) = g2(t)− 1.
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It follows G2(0) = −1 and G2(t) −→ ∞ as t −→ ρ−Q . Let ρ be the smallest such zero of
G2 on (0, ρQ). Set I = [0, ρ). Then, the definition of ρ implies that for all t ∈ I

0 ≤ g1(t) < 1, (42)

0 ≤ q(t) < 1 (43)

and
0 ≤ g2(t) < 1. (44)

The local convergence of KM uses conditions (C). Suppose that there is

(C1) a solution x∗ ∈ Ω of Equation (1) with F′(x∗) 6= 0;
(C2) K0 > 0, so that

‖F′(x∗)−1(F′(x∗)− F′(w))‖ ≤ K0‖x∗ − w‖

for all w ∈ Ω. Define Ω2 = U(x∗, 1
K0
) ∩Ω;

(C3) There exist K > 0, K1 > 0 such that

‖F′(x∗)−1(F′(w)− F′(v))‖ ≤ K‖w− v‖

and
‖F′(x∗)−1F′(v)‖ ≤ K1‖x∗ − v‖

for all v, w ∈ Ω2;
(C4) U[x∗, ρ] ⊂ Ω.

Theorem 2. Choose u0 ∈ U(x∗, ρ)− {x∗}. Then, under conditions (C), sequence {un} generated
by KM converges to x∗, so that

‖vn − x∗‖ ≤ g1(dn)dn ≤ dn < ρ (45)

and
dn+1 ≤ g2(dn)dn ≤ dn, (46)

where dn = ‖un − x∗‖, and the functions g1, g2 were previously defined.

Proof. Pick z ∈ U(x∗, ρ)− {x∗}. Then, by (C1) and (C2)

‖F′(x∗)−1(F′(z)− F′(x∗))‖ ≤ K0‖z− x∗‖ ≤ K0ρ < 1. (47)

So, we have F′(z) 6= 0 and

‖F′(z)−1F′(x∗)‖ ≤ 1
1− K0‖z− x∗‖ . (48)

If z = u0, we see that iterate v0 is well-defined by KM for n = 0. Moreover, we can
write

v0 − x∗ = u0 − x∗ − F′(u0)
−1F(u0)

= F′(u0)
−1[
∫ 1

0
(F′(x∗ + θ(u0 − x∗))− F′(u0))dθ(u0 − x∗)]. (49)

By (42), (48) (for z = u0), (C3) and (46), we have in turn that

‖v0 − x∗‖ ≤ K‖u0 − x∗‖2

2(1− K)‖u0 − x∗‖
= g1(‖u0 − x∗‖)‖u0 − x∗‖
≤ ‖u0 − x∗‖ < ρ. (50)
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Hence, iterate v0 ∈ U(x∗, ρ) and (42) holds if n = 0. Next, we show that A0 6= 0. If
u0 6= x∗, we obtain by (C1), (C2), and (46)

‖(F′(x∗)(u0 − x∗)−1[A0 − F′(x∗)(u0 − x∗)]‖

≤ 1
‖u0 − x∗‖ [‖F

′(x∗)−1(F(u0)− F(x∗)− F′(x∗)(u0 − x∗))‖

+|γ− 2|‖F′(x∗)−1F(v0)‖]

≤ 1
‖u0 − x∗‖ [

K
2
‖u0 − x∗‖2 + |γ− 2|K1‖v0 − x∗‖]

≤ K
2
‖u0 − x∗‖+ |γ− 2|K1g1(‖u0 − x∗‖)

= q(‖u0 − x∗‖) ≤ q(ρ) < 1.

It follows that A0 6= 0, and

‖A−1
0 F′(x∗)‖ ≤ 1

‖u0 − x∗‖(1− q(‖u0 − x∗‖)) . (51)

Then, using (44), (C3), (48), (50), and (51)

‖u1 − x∗‖ ≤ ‖v0 − x∗‖+ ‖A−1
0 F′(x∗)‖(‖F′(x∗)−1F(u0)‖

+|γ|‖F′(x∗)−1F(v0)‖)‖F′(u0)
−1F′(x∗)‖‖F′(x∗)−1F(v0)‖

≤
(

1 +
K2

1(‖u0 − x∗‖) + |γ|‖v0 − x∗‖
‖u0 − x∗‖(1− q(‖u0 − x∗‖))(1− K0‖u0 − x∗‖)

)
‖v0 − x∗‖

≤
(

1 +
K2

1(‖u0 − x∗‖) + |γ|g1(‖u0 − x∗‖)
(1− q(‖u0 − x∗‖))(1− K0‖u0 − x∗‖)

)
g1(‖u0 − x∗‖)‖u0 − x∗‖

= g2(‖u0 − x∗‖)‖u0 − x∗‖ ≤ ‖u0 − x∗‖ < ρ. (52)

That is iterate u1 ∈ U(u0, x∗) and (43) holds for n = 0. Simply switch u0, v0, u1 by
uk, vk, uk+1 in the above calculations to terminate the induction for (42) and (43). Then, it
follows from the estimate

‖uk+1 − x∗‖ ≤ λ‖uk − x∗‖ < ρ, (53)

where λ = g2(‖u0 − x∗‖) ∈ [0, 1). We conclude limk−→∞ uk = x∗ and uk+1 ∈ U(x∗, ρ).

A uniqueness of the solution result follows next.

Proposition 2. Suppose

(1) Element λ ∈ U(x∗, ρ0) ⊆ Ω solves Equation (1), F(λ) = 0, and (C2) holds;
(2) There exists ρ∗ ≥ ρ0 such that

K0ρ∗ < 2. (54)

Set Ω3 = U[λ, ρ∗] ∩Ω. Then, element λ uniquely solves Equation (1) in Ω3.

Proof. Let x̄ ∈ Ω3 with F(x̄) = 0. Set E =
∫ 1

0 F′(λ + τ(x̄ − λ))dτ. Then, using (C2) and
(54), we get in turn that

‖F′(λ)−1(E− F′(λ))‖ ≤ K0

∫ 1

0
(1− τ)‖λ− x̄‖dτ

≤ K0

2
ρ∗ < 1.

Hence, x̄ = λ follows from E 6= 0 and E(λ− x̄) = F(λ)− F(x̄) = 0− 0 = 0.

Next, the fourth-order convergence is shown using only the first derivative. Suppose:
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‖A−1
n F′(z)‖ ≤ ω (55)

and
‖F′(x)−1(F′(x)− F′(y))‖ ≤ ω0‖x− y‖ (56)

hold for all x, y, z ∈ Ω, for some constants ω > 0 and ω0 > 0. Further, suppose

θω2
0

2
(

3
2
+

ω0

4
+
|γ|ω0

2
(1 +

ω0

4
))− 1 > 0. (57)

Let ψ(t) = ϕ(t)− 1 = 0, where ϕ(t) = ωω2
0

2 ( 3
2 +

ω0
4 t + |γ|ω0

2 (t + ω0
4 t2)t3. Then, ψ(0) =

−1 < 0 and ψ(1) = θω2
0

2 ( 3
2 +

ω0
4 + |γ|ω0

2 (1+ ω0
4 ))− 1 > 0. Hence, by the intermediate value

theorem, ψ(t) = 0 has positive solutions. Let ro be the smallest such solution.

Theorem 3. Suppose conditions (55)–(57) hold. Then, sequence {un} given in (2) is convergent to
x∗ with order four, i.e.,

‖un+1 − x∗‖ ≤ $(ro)d4
n,

where $(ro) =
θω2

0
2 ( 3

2 + ω0
4 r0 +

|γ|ω0
2 (ro +

ω0
4 r2

o).

Proof. The first substep of (2) and (56) gives

‖vn − x∗‖ ≤ ‖F′(un)
−1
∫ 1

0
[F′(un)− F′(x∗ + θ(un − x∗))]dθ(un − x∗)‖

≤ ω0

2
d2

n.

Note

un+1 − x∗ = vn − x∗ − A−1
n (F(un) + γF(vn))F′(un)

−1F(vn)

= A−1
n [An − (F(un) + γF(vn))F′(un)

−1
∫ 1

0
F′(x∗ + θ(vn − x∗))dθ](vn − x∗)

= A−1
n F(un)F′(un)

−1[F′(un)−
∫ 1

0
F′(x∗ + θ(vn − x∗))dθ](vn − x∗)

+A−1
n F(vn)F′(un)

−1γ[F′(un)−
∫ 1

0
F′(x∗ + θ(vn − x∗))dθ](vn − x∗)

−2A−1
n F(vn)(vn − x∗),

so, since F(un) =
∫ 1

0 F′(x∗ + u(un − x∗))du(un − x∗) and F(vn) =
∫ 1

0 F′(x∗ + u(vn −
x∗))du(vn − x∗)

dn+1 ≤ ‖A−1
n

∫ 1

0
F′(x∗ + u(un − x∗))duF′(un)

−1[F′(un)

−
∫ 1

0
F′(x∗ + θ(vn − x∗))dθ](un − x∗)(vn − x∗)‖

+‖A−1
n

∫ 1

0
F′(x∗ + u(vn − x∗))duF′(un)

−1γ[F′(un)

−
∫ 1

0
F′(x∗ + θ(vn − x∗))dθ](vn − x∗)2‖

+2‖A−1
n

∫ 1

0
F′(x∗ + u(vn − x∗))du(vn − x∗)2‖
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≤ ‖
∫ 1

0
A−1

n F′(x∗ + u(un − x∗))du∫ 1

0
F′(un)

−1[F′(un)− F′(x∗ + θ(vn − x∗))dθ](un − x∗)(vn − x∗)‖

+|γ|‖
∫ 1

0
A−1

n F′(x∗ + u(vn − x∗))du

+
∫ 1

0
F′(un)

−1[F′(un)− F′(x∗ + θ(vn − x∗))dθ](vn − x∗)2‖

+2‖
∫ 1

0
A−1

n F′(x∗ + u(vn − x∗))du(vn − x∗)2‖.

Therefore, (55) and (56) give

dn+1 ≤ ωω0

[
dn +

‖vn − x∗‖
2

]
dn‖vn − x∗‖

+|γ|ωω0

[
dn +

‖vn − x∗‖
2

]
‖vn − x∗‖2

+2ω‖vn − x∗‖2

≤ ω
ω2

0
2

[
1 +

ω0

4
dn

]
d4

n

+|γ|ω
ω3

0
4

[
dn +

ω0

4
d2

n

]
d4

n

+
ω2

0
4

ωd4
n

≤ ϕ(dn)dn

≤ $(ro)d4
n.

4. Numerical Example

We verify convergence criteria using KM.

Example 1. Let us consider a scalar function F defined on the set Ω = U[u0, 1− s] for s ∈ (0, 1
2 )

by
F(x) = x3 − s.

Choose γ = 2 and u0 = 1. Then, we obtain the estimates η = 1−s
3 ,

|F′(u0)
−1(F′(x)− F′(u0))| = |x2 − u2

0|
≤ |x + u0||x− u0| ≤ (|x− u0|+ 2|u0|)|x− u0|
= (1− s + 2)|x− u0| = (3− s)|x− u0|,

for each x ∈ Ω, so L0 = 3− s, Ω0 = U(u0, 1
L0
) ∩Ω = U(u0, 1

L0
),

|F′(u0)
−1(F′(y)− F′(x)| = |y2 − x2|

≤ |y + x||y− x| ≤ (|y− u0 + x− u0 + 2u0)||y− x|
= (|y− u0|+ |x− u0|+ 2|u0|)|y− x|

≤ (
1
L0

+
1
L0

+ 2)|y− x| = 2(1 +
1
L0

)|y− x|,

for each x, y ∈ Ω, and so L = 2(1 + 1
L0
),
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|F′(u0)
−1(F′(y)− F′(x)| = (|y− u0|+ |x− u0|+ 2|u0|)|y− x|

≤ (1− s + 1− s + 2)|y− x| = 2(2− s)|y− x|,

for each x, y ∈ Ω, so L1 = (2− s)2 and L2 = 3(2−s)2

F(1)+|γ−2|(1− F(1)
F′(1) )

2−s
.

Then, for s = 0.95, γ = 0.5, we have 1
L0

= 0.4878.
According to the information taken from Table 1, the conditions of Lemma 1 hold. Consequently,

the sequence converges and the interval of initial points has been further extended.

Table 1. Sequence (3) and condition (4).

n 1 2 3 4 5 6

pn 0 0.1004 0.1033 0.1033 0.1033 0.1033
tn 0.0167 0.0172 0.0172 0.0172 0.0172 0.0172
sn 0.0167 0.0172 0.0172 0.0172 0.0172 0.0172

Example 2. Set function F : I = [−1, 1] −→ R as

F(x) = ex − 1.

Notice that x∗ = 0 solves equation F(x) = 0. Choose γ = 2. Then, conditions of Theorem 3 hold
for ω = ω0 = e2. Then, the radius is ro = 0.1381.

Example 3. The example used in the introduction gives ω = ω0 = 96.6629073. Then, for γ = 2,
the radius is

ro = 0.0092.

Recall that it was shown in the Introduction that earlier articles cannot be used to solve this
problem. The method used is a specialization of KM for γ = 2.

5. Conclusions

In this article, the extension of KM is presented. The convergence of KM has been
shown by assuming the existence of a fifth derivative which was not considered before.
This observation holds true for other high-convergence order methods such as Traub’s and
Jarratt’s method. Other such methods can be found in [1–8] and the references therein.
Therefore, these results cannot assure convergence. However, these methods may converge.
Other concerns involve the absence of error estimates or uniqueness results that can be
computed. This is our motivation for presenting a convergence analysis based on the first
derivative used in KM. The generality of the technique allows its usage in other methods
mentioned previously. This can be a fruitful direction of future research.
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