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Abstract: In this paper, we look at the two-point boundary value problem for a finite nabla fractional
difference equation with dual non-local boundary conditions. First, we derive the associated Green’s
function and some of its properties. Using the Guo–Krasnoselkii fixed point theorem on a suitable
cone and under appropriate conditions on the non-linear part of the difference equation, we establish
sufficient requirements for at least one and at least two positive solutions of the boundary value
problem. Next, we discuss the existence and uniqueness of solutions to the considered problem. For
this purpose, we use Brouwer and Banach fixed point theorem, respectively. Finally, we provide a
few examples to illustrate the applicability of established results.

Keywords: nabla fractional difference; boundary value problem; fixed point; positive solution;
existence; uniqueness

1. Introduction

Over the last few decades, the theory of fractional calculus has been extensively devel-
oped due to its properties, generalizing most results of differential calculus and its non-local
nature of fractional derivatives. The contributions of several mathematicians over the span
of three centuries have resulted in a robust theory of fractional differential equations for
real functions. Its roots can be traced back to the Leibniz letter dated “30 September 1695”.
Today fractional calculus has been successfully used for mathematical modelling in the
fields of medical sciences, computational biology, economics, physics and several areas
of engineering in the past three decades. For further applications and historical litera-
ture, we refer here to a few classical texts on fractional calculus by Miller and Ross [1],
Samko et al. [2], Podlubny [3] and Kilbas et al. [4].

On the other side of the coin, nabla fractional calculus is a branch of mathematics,
which deals with arbitrary order differences and sums in the backward sense. The theory
of nabla fractional calculus is relatively young, with the most prominent works done
in the past decade. The notion of nabla fractional difference and sum can be traced
back to the work of Gray and Zhang [5], and Miller and Ross [6]. In this line, Atici and
Eloe [7] developed nabla fractional Riemann–Liouville difference operator, initiated the
study of nabla fractional initial value problem and established exponential law, product
rule, and nabla Laplace transform. Following their works, the contributions of several
mathematicians have made the theory of discrete fractional calculus a fruitful field of
research in science and engineering, we refer here a few applications of discrete fractional
equations [8–10]. We also refer here to a recent monograph by Goodrich and Peterson [11]
and the references therein, which is an excellent source for all those who wish to work in
this field.

The study of boundary value problems (BVPs) has a long past and can be followed
back to the work of Euler and Taylor on vibrating strings. On the discrete fractional side,
there is a sudden growth in interest for the development of nabla fractional BVPs. Many
authors have studied nabla fractional BVPs recently. To name a few, Ahrendt [12], Goar [13],
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and Ikram [14] worked with self-adjoint Caputo nabla BVPs. Brackins [15] studied a
particular class of self-adjoint Riemann–Liouville nabla BVPs and derived the Green’s
function associated with it along with a few of its properties. Gholami et al. [16] obtained
the Green’s function for a non-homogeneous Riemann–Liouville nabla BVP with Dirichlet
boundary conditions. Jonnalagadda [17–22] analyzed some qualitative properties of two-
point non-linear Riemann–Liouville nabla BVPs associated with a variety of boundary
conditions. Goodrich [23,24] analyzed discrete fractional BVP’s with non-local conditions
in the delta case. To the best of our knowledge, there are no results for the solutions of
nabla fractional BVP’s with non-local conditions.

We consider the following boundary value problem with dual non-local conditions{
−(∇ϑ

ρ(o)v)(z) = q(z, v(z)), z ∈ Np
o+2,

v(o) = g1(v), v(p) = g2(v),
(1)

where o, p ∈ R with p − o ∈ N3, 1 < ϑ < 2, q : Np
o+2 × R → R and the functionals

g1, g2 : R → R. The present paper is organized as follows: Section 2 contains a few
preliminaries on discrete fractional calculus. In Section 3, we construct the Green’s function
corresponding to (1) and state a few of its properties. In Section 4, we study the existence of
at least one and at least two positive solutions using Guo–Kranoselskii fixed point theorem
on cones. In Section 5, we obtain sufficient conditions on the existence and uniqueness of
solutions for the proposed class of boundary value problems using Brouwer and contraction
mapping theorems, respectively. Finally, we conclude this article with a few examples.

2. Preliminaries

The set of all real numbers and positive integers are denoted by R and Z+, respec-
tively. We use the following notations, definitions, and known results of nabla fractional
calculus [11]. We assume empty sums and products are 0 and 1, respectively.

Definition 1. For o ∈ R, the sets No and Np
o , where p− o ∈ Z+, are defined by

No = {o, o + 1, o + 2, ...}, Np
o = {o, o + 1, o + 2, ..., p}.

Definition 2. We define the backward jump operator, ρ : No+1 −→ No, by

ρ(z) = z− 1, z ∈ No+1.

Let v : No → R and M ∈ N1. The first order backward (nabla) difference of v is defined
by
(
∇v
)
(z) = v(z)− v(z− 1), for z ∈ No+1, and the Mth-order nabla difference of v is

defined recursively by
(
∇Mv

)
(z) =

(
∇
(
∇M−1v

))
(z), for z ∈ No+M.

Definition 3 (See [11]). Let z ∈ R \ {. . . ,−2,−1, 0} and r ∈ R such that (z + r) ∈ R \
{. . . ,−2,−1, 0}, the generalized rising function is defined by

zr =
Γ(z + r)

Γ(z)
.

Here Γ(·) denotes the Euler gamma function. Also, if z ∈ {. . . ,−2,−1, 0} and r ∈ R such that
(z + r) ∈ R \ {. . . ,−2,−1, 0}, then we use the convention that zr = 0.

Definition 4 (See [11]). Let z, o ∈ R and ξ ∈ R \ {. . . ,−2,−1}. The ξth-order nabla fractional
Taylor monomial is given by

Hξ(z, o) =
(z− o)ξ

Γ(ξ + 1)
,

given that the right-hand side exists.
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We observe the following properties of the nabla fractional Taylor monomials.

Lemma 1 (See [14,18]). Let ξ > −1 and t ∈ No. Then the following hold:

i. If z ∈ Nρ(t), then Hξ(z, ρ(t)) ≥ 0 and if z ∈ Nt, then Hξ(z, ρ(t)) > 0.
ii. If z ∈ Nt and −1 < ξ < 0, then Hξ(z, ρ(t)) is an increasing function of t.
iii. If z ∈ Nt+1 and −1 < ξ < 0, then Hξ(z, ρ(t)) is a decreasing function of z.
iv. If z ∈ Nρ(t) and ξ > 0, then Hξ(z, ρ(t)) is a decreasing function of t.
v. If z ∈ Nρ(t) and ξ ≥ 0, then Hξ(z, ρ(t)) is a non-decreasing function of z.
vi. If z ∈ Nt and ξ > 0, then Hξ(z, ρ(t)) is an increasing function of z.
vii. If 0 < v ≤ ξ, then Hv(z, o) ≤ Hξ(z, o), for each fixed z ∈ No.

Lemma 2. Let o, p be two real numbers such that 0 < o ≤ p and 1 < ϑ < 2. Then (o−t)ϑ−1

(p−t)ϑ−1

is a decreasing function of t for t ∈ No−1
0 .

Proof. It is enough to show that ∇
(

(o−t)ϑ−1

(p−t)ϑ−1

)
< 0.

Consider

∇
(
(o− t)ϑ−1

(p− t)ϑ−1

)

=
−(p− t)ϑ−1(ϑ− 1)(o− ρ(t))ϑ−2 + (o− t)ϑ−1(ϑ− 1)(p− ρ(t))ϑ−2

(p− t)ϑ−1(p− ρ(t))ϑ−1

=
(ϑ− 1)

(
−(p− t)(p− ρ(t))ϑ−2(o− ρ(t))ϑ−2 + (o− t)(o− ρ(t))ϑ−2(p− ρ(t))ϑ−2

)
(p− t)ϑ−1(p− ρ(t))ϑ−1

=
(ϑ− 1)(p− ρ(t))ϑ−2(o− ρ(t))ϑ−2(−p + t + o− t)

(p− t)ϑ−1(p− ρ(t))ϑ−1

=
(ϑ− 1)(p− ρ(t))ϑ−2(o− ρ(t))ϑ−2(o− p)

(p− t)ϑ−1(p− ρ(t))ϑ−1
.

Since p > o, it follows from Lemma 1 that ∇
(

(o−t)ϑ−1

(p−t)ϑ−1

)
< 0. The proof is com-

plete.

Definition 5 (See [11]). Let v : No+1 → R and ν > 0. The νth-order nabla sum of v is given by

(
∇−ν

o v
)
(z) =

z

∑
t=o+1

Hν−1(z, ρ(t))v(t), z ∈ No+1.

Definition 6 (See [11]). Let v : No+1 → R, ν > 0 and choose A ∈ N1 such that A− 1 < ν ≤ A.
The νth-order Riemann–Liouville nabla difference of v is given by(

∇ν
o v
)
(z) =

(
∇A(∇−(A−ν)

o v
))

(z), z ∈ No+A.

Theorem 1 (See [11]). Assume µ > 0 and A − 1 < µ ≤ A. Then a general solution of
∇µ

o v(z) = 0 is given by

v(z) = c1Hµ−1(z, o) + c2Hµ−2(z, o) + · · ·+ cA Hµ−A(z, o), for z ∈ No.
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3. Green’s Function

In this section, we will build the Green’s function formula for our boundary value
problem (1) and derive a few properties from it that will be used throughout the rest of
the paper.

Theorem 2 (See [15]). The following nabla fractional boundary value problem

−(∇ϑ
ρ(o)v)(z) = h(z), z ∈ Np

o+2, (2)

v(o) = v(p) = 0,

where o, p ∈ R with p− o ∈ N3, 1 < ϑ < 2 and h : Np
o+2 → R. Then (2) has the unique solution

v(z) =
p

∑
t=o+2

G(z, t)h(t), z ∈ Np
o , (3)

where Green’s function G(z, t) is given by

G(z, t) =


G1(z, t) =

Hϑ−1(z, o)
Hϑ−1(p, o)

Hϑ−1(p, ρ(t)), z ∈ Nt−1
o ,

G2(z, t) =
Hϑ−1(z, o)
Hϑ−1(p, o)

Hϑ−1(p, ρ(t))− Hϑ−1(z, ρ(t)), z ∈ Np
t .

(4)

Lemma 3. The equivalent form of the following homogeneous nabla fractional boundary value
problem with non-local conditions{

−(∇ϑ
ρ(o)w)(z) = 0, for z ∈ Np

o+2,

w(o) = g1(w), w(p) = g2(w),
(5)

is given by

w(z) = g1(w)
( p− z

p− o

) (z− o + 1)ϑ−2

Γ(ϑ− 1)
+ g2(w)

(z− o)ϑ−1

(p− o)ϑ−1
, z ∈ Np

o . (6)

Proof. From Theorem 1, the general solution of the equation−(∇ϑ
ρ(o)w)(z) = 0, is given by

w(z) = c1(z− o + 1)ϑ−1 + c2(z− o + 1)ϑ−2, z ∈ Np
o , (7)

where c1 and c2 are arbitrary constants. Using w(o) = g1(w) and w(p) = g2(w), respec-
tively in (7), we have

g1(w)

Γ(ϑ− 1)
= c1(ϑ− 1) + c2,

g2(w) = c1(p− o + 1)ϑ−1 + c2(p− o + 1)ϑ−2.

Now, solving the above system of equations for c1 and c2, we have

c1 = − g1(w)(p− o + 1)ϑ−2

Γ(ϑ− 1)(p− o)ϑ−1
+

g2(w)

(p− o)ϑ−1
,

c2 =
g1(w)

Γ(ϑ− 1)
− (ϑ− 1)

[
− g1(w)(p− o + 1)ϑ−2

Γ(ϑ− 1)(p− o)ϑ−1
+

g2(w)

(p− o)ϑ−1

]
.
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Substituting c1 and c2 in (7), we have

w(z) =

[
g2(w)

(p− o)ϑ−1
− g1(w)(p−o+1)ϑ−2

Γ(ϑ−1)(p−o)ϑ−1

]
(z− o + 1)ϑ−1

+

[
g1(w)

Γ(ϑ−1) − (ϑ− 1)

[
− g1(w)(p−o+1)ϑ−2

Γ(ϑ−1)(p−o)ϑ−1 +
g2(w)

(p− o)ϑ−1

]]
(z− o + 1)ϑ−2

= g1(w)(p−o+1)ϑ−2

Γ(ϑ−1)(p−o)ϑ−1

[
(ϑ− 1)(z− o + 1)ϑ−2 − (z− o + 1)ϑ−1

]

+
g2(w)

(p− o)ϑ−1

[
(z− o + 1)ϑ−1 − (ϑ− 1)(z− o + 1)ϑ−2

]
+

g1(w)

Γ(ϑ− 1)
(z− o + 1)ϑ−2

=
g1(w)

Γ(ϑ− 1)

[
(z− o + 1)ϑ−2 − (p−o+1)ϑ−2(z−o)ϑ−1

(p−o)ϑ−1

]
+ g2(w)

(z− o)ϑ−1

(p− o)ϑ−1

= g1(w)
(

p−z
p−o

)
(z−o+1)ϑ−2

Γ(ϑ−1) + g2(w)
(z− o)ϑ−1

(p− o)ϑ−1
.

The proof is complete.

Lemma 4. w satisfies the following property:

max
z∈Np

o

w(z) ≤ g1(w) + g2(w), (8)

where w is given by (7).

Proof. Consider

w(z) =
( p− z

p− o

) (z− o + 1)ϑ−2

Γ(ϑ− 1)
g1(w) +

(z− o)ϑ−1

(p− o)ϑ−1
g2(w).

Clearly, function
(

p−z
p−o

)
is decreasing with respect to z for z ∈ Np

o . It follows from

Lemma 1 that function (z−o+1)ϑ−2

Γ(ϑ−1) is decreasing with respect to z and (z−o)ϑ−1

(p−o)ϑ−1 is an increas-

ing function of z for z ∈ Np
o . Thus, we have

max
z∈Np

o

( p− z
p− o

)
= 1,

max
z∈Np

o

(z− o + 1)ϑ−2

Γ(ϑ− 1)
=

(o− o + 1)ϑ−2

Γ(ϑ− 1)
= 1,

max
z∈Np

o

(z− o)ϑ−1

(p− o)ϑ−1
= 1,

implying that
w(z) ≤ g1(w) + g2(w), for z ∈ Np

o .

The proof is complete.



Foundations 2022, 2 156

Theorem 3 (See [17]). Let 1 < ϑ < 2 and q : Np
o × R → R. The equivalent form of (1) is

given by

v(z) = A(z)g1(v) + B(z)g2(v) +
p

∑
t=o+2

G(z, t)q(t, v(t)), z ∈ Np
o ,

where A(z) =
(

p−z
p−o

)
(z−o+1)ϑ−2

Γ(ϑ−1) , B(z) =
(z− o)ϑ−1

(p− o)ϑ−1
and Green’s function G(z, t) is given by

(4), respectively.

Theorem 4 (See [15,17]). The Green’s function G(z, t) defined in (4) satisfies the following properties:

i. G(o, t) = G(p, t) = 0, for all s ∈ Np
o+1.

ii. G(z, o + 1) = 0, for all z ∈ Np
o .

iii. G(z, t) > 0, for all (z, t) ∈ Np−1
o+1 ×Np

o+2.
iv. max

z∈Np−1
o+1

G(z, t) = G(t− 1, t) for all t ∈ Np
o+2.

v. ∑
p
t=o+1 G(z, t) ≤ Λ, for all (z, t) ∈ Np

o ×Np
o+1, where

Λ =
( p− o− 1

ϑΓ(ϑ + 1)

)( (ϑ− 1)(p− o) + 1
ϑ

)ϑ−1
. (9)

4. Existence of Positive Solution

In this section, we show the existence of at least one positive solution for the boundary
value problem (1), using Guo–Krasnoselskii fixed point theorem on a suitable cone.

Definition 7. Let B be a Banach space over R. A closed nonempty subset C of B is said to be a
cone provided,
(i) ex + f y ∈ C, for all x, y ∈ C and all e, f ≥ 0, and
(ii) x ∈ C and −x ∈ C implies x = 0.

Definition 8. An operator is called completely continuous if it is continuous and maps bounded
sets into pre-compact sets.

Lemma 5 (See [25]). [Guo–Krasnoselskii fixed point theorem] Let B be a Banach space and C ⊆ B
be a cone. Assume that Ω1 and Ω2 are open sets contained in B such that 0 ∈ Ω1 and Ω1 ⊆ Ω2.
Assume further that T : C ∩ (Ω2 \Ω1) −→ C is a completely continuous operator. If either

i. ‖Tv‖ ≤ ‖v‖ for v ∈ C ∩ ∂Ω1 and ‖Tv‖ ≥ ‖v‖ for v ∈ C ∩ ∂Ω2; or
ii. ‖Tv‖ ≥ ‖v‖ for v ∈ C ∩ ∂Ω1 and ‖Tv‖ ≤ ‖v‖ for v ∈ C ∩ ∂Ω2;

holds, then T has at least one fixed point in C ∩ (Ω2 \Ω1).

We establish the following lemmas, which will be used later in the proof of our
main result.

Lemma 6. There exits a number λ ∈ (0, 1), such that

min
z∈Nd

c

G(z, t) ≥ λ max
z∈Np

o

G(z, t) = λG(t− 1, t), (10)

where, c, d ∈ Np−1
o+1 , c = o +

⌈
p−o+1

4

⌉
and d = o + 3

⌊
p−o+1

4

⌋
.

Proof. By using the properties of Green’s function and Taylor monomial from Definition 4,
Lemma 1 and Theorem 4, respectively.
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Consider, for t ∈ Np
o+2,

G(z, t)
G(t− 1, t)

=


(z−o)ϑ−1

(t−o−1)ϑ−1 , for t > z,

(z−o)ϑ−1

(t−o−1)ϑ−1 −
(z−t+1)ϑ−1(p−o)ϑ−1

(p−t+1)ϑ−1(t−o+1)ϑ−1 , for t ≤ z.

Now, for t > z and c ≤ z ≤ d. Function G1(z, t) is increasing with respect to z. Then,

min
z∈Nd

c

G1(z, t) =G1(c, t)

=
(c− o)ϑ−1

(p− o)ϑ−1
(p− t + 1)ϑ−1.

For z ≥ t and c ≤ z ≤ d, function G2(z, t) is decreasing with respect to z. Then,

min
z∈Nd

c

G2(z, t) =G2(d, t),

=
(d− o)ϑ−1

(p− o)ϑ−1
(p− t + 1)ϑ−1 − (d− t + 1)ϑ−1.

Thus,

min
z∈Nd

c

G(z, t) =


G2(d, t), for t ∈ Nc

o+2,
min(G2(d, t), G2(c, t)), for t ∈ Nd−1

c+1 ,
G1(c, t), for t ∈ Np

d ,

=

{
G2(d, t), for t ∈ Nr

o+2,
G1(c, t), for t ∈ Np

r ,

where c < r < d. Consider

minz∈Nd
c

G(z, t)

G(t− 1, t)
=


(d−o)ϑ−1

(t−o+1)ϑ−1 −
(d−t+1)ϑ−1(p−o)ϑ−1

(p−t+1)ϑ−1(t−o+1)ϑ−1 , for t ∈ Nr
o+2,

(c−o)ϑ−1

(t−o+1)ϑ−1 , for t ∈ Np
r .

Thus,

min
z∈Nd

c

G(z, t) ≥ λ(t)max
z∈Np

o

G(z, t), (11)

where

λ(t) = min

[
(c− o)ϑ−1

(t− o + 1)ϑ−1
,

(d− o)ϑ−1

(t− o + 1)ϑ−1
− (d− t + 1)ϑ−1(p− o)ϑ−1

(p− t + 1)ϑ−1(t− o + 1)ϑ−1

]
.

Let for t ∈ Np
r , denote

λ1(t) =
(c− o)ϑ−1

(t− o + 1)ϑ−1

≥ (c− o)ϑ−1

(p− o + 1)ϑ−1
.



Foundations 2022, 2 158

Similarly, for t ∈ Nr
o+2, we take

λ2(t) =
1

(t− o + 1)ϑ−1

[
(d− o)ϑ−1 − (d− t + 1)ϑ−1(p− o)ϑ−1

(p− t + 1)ϑ−1

]
.

By Lemmas 1 and 2, we see that function (d−t+1)ϑ−1

(p−t+1)ϑ−1 is decreasing for t ∈ Nr
o+2. Then

λ2(t) ≥
1

(t− o + 1)ϑ−1

[
(d− o)ϑ−1 − (d− o− 1)ϑ−1(p− o)ϑ−1

(p− o− 1)ϑ−1

]

≥ 1

(d− o)ϑ−1

[
(d− o)ϑ−1 − (d− o− 1)ϑ−1(p− o)ϑ−1

(p− o− 1)ϑ−1

]
.

Thus,

min
z∈Nd

c

G(z, t) ≥ λ max
z∈Np

o

G(z, t), (12)

where

λ = min

[
(c− o)ϑ−1

(p− o + 1)ϑ−1
, 1− (d− o− 1)ϑ−1(p− o)ϑ−1

(p− o− 1)ϑ−1(d− o)ϑ−1

]
. (13)

Since G1(c, t) > 0 and G2(d, t) > 0, we have λ(t) > 0 for all t ∈ Np
o+2, implying λ > 0.

It would be suffice to prove that one of the terms

(c− o)ϑ−1

(p− o + 1)ϑ−1
, 1− (d− o− 1)ϑ−1(p− o)ϑ−1

(p− o− 1)ϑ−1(d− o)ϑ−1
< 1.

It follows from Lemma 1 that

(c− o)ϑ−1

(p− o + 1)ϑ−1
< 1.

Therefore, we conclude that λ ∈ (0, 1). The proof is complete.

Lemma 7. There exists a number λ0 ∈ (0, 1) such that

min
z∈Nd

c

w(z) ≥ λ0
(

max
z∈Np

o

A(z)g1(w) + max
z∈Np

o

B(z)g2(w)
)
. (14)

where w is given by (6).

Proof. Clearly, function
(

p−z
p−o

)
is decreasing with respect to z for z ∈ Np

o . It follows from

Lemma 1 that (z−o+1)ϑ−2

Γ(ϑ−1) is a decreasing function of z and function (z−o)ϑ−1

(p−o)ϑ−1 is an increasing

with respect to z for z ∈ Np
o . Then, there exists M1, M2 > 0 such that

min
z∈Nd

c

( p− z
p− o

) (z− o + 1)ϑ−2

Γ(ϑ− 1)
= M1,

min
z∈Nd

c

(z− o)ϑ−1

(p− o)ϑ−1
= M2 < 1.
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Take λ0 = min(M1, M2). Clearly λ0 ∈ (0, 1). Thus, for all z ∈ Nd
c , we have

w(z) ≥min
z∈Nd

c

[( p− z
p− o

) (z− o + 1)ϑ−2

Γ(ϑ− 1)

]
g1(w) + min

z∈Nd
c

[
(z− o)ϑ−1

(p− o)ϑ−1

]
g2(w)

=M1g1(w) + M2g2(w)

≥λ0g1(w) + λ0g2(w)

=λ0

[
max
z∈Np

o

( p− z
p− o

) (z− o + 1)ϑ−2

Γ(ϑ− 1)

]
g1(w) + λ0

[
max
z∈Np

o

(z− o)ϑ−1

(p− o)ϑ−1

]
g2(w)

=λ0

(
max
z∈Np

o

A(z)g1(w) + max
z∈Np

o

B(z)g2(w)

)
.

The proof is complete.

Lemma 8. If g1, g2 are non-negative, then there exists a constant λ ∈ (0, 1), such that

min
z∈Nd

c

p

∑
t=o+2

G(z, t)q(z, v(t)) + min
z∈Nd

c

(A(z)g1(v) + B(z)g2(v)) (15)

≥ λ max
z∈Np

o

( p

∑
s=o+2

G(z, t)q(z, v(t)) + A(z)g1(v) + B(z)g2(v)
)

. (16)

Proof. It follows from Lemmas 6 and 7 have

min
z∈Nd

c

p

∑
t=o+2

G(z, t) f (t, v(t)) + min
z∈Nd

c

(A(z)g1(v) + B(z)g2(v))

≥
p

∑
t=o+2

min
z∈Nd

c

G(z, t)q(t, v(t)) + λ0
(

max
z∈Np

o

A(z)g1(v) + max
z∈Np

o

B(z)g2(v)
)

≥λ
p

∑
t=o+2

max
z∈Np

o

G(z, t)q(t, v(t)) + λ0 max
z∈Np

o

(
A(z)g1(v) + B(z)g2(v)

)

≥λ

(
max
z∈Np

o

p

∑
t=o+2

G(z, t) f (t, v(t)) + A(z)g1(v) + B(z)g2(v)

)
.

where λ = min(λ, λ0) ∈ (0, 1). The proof is complete.

We observe by Theorem 3 that the equivalent form of (1) is given by

v(z) = A(z)g1(v) + B(z)g2(v) +
p

∑
t=o+2

G(z, t)q(t, v(t)), z ∈ Np
o , (17)

where A(z) =
(

p−z
p−o

)
(z−o+1)ϑ−2

Γ(ϑ−1) , B(z) =
(z− o)ϑ−1

(p− o)ϑ−1
and Green’s function G(z, t) is given

by (4), respectively.
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Note that any solution v : Np
o → R of (1) can be viewed as a real (p− o + 1)-tuple

vector. Consequently, v ∈ Rp−o+1. Define the operator T : Rp−o+1 → Rp−o+1 by

(
Tv
)
(z) = A(z)g1(v) + B(z)g2(v) +

p

∑
t=o+2

G(z, t)q(t, v(t)), z ∈ Np
o . (18)

Clearly, v is a fixed point of T if and only if v is a solution of (1). We use the fact that
B = Rp−o+1 is a Banach space equipped with the maximum norm

‖v‖ = max
z∈Np

o

|v(z)|,

for any v ∈ B. We define the cone C by

C =
{

v ∈ B : v(z) ≥ 0 and min
z∈Nd

c

v(z) ≥ λ‖v(z)‖
}

. (19)

Note that summation operator T is defined on a discrete finite set. Hence, operator T
is trivially completely continuous.

Take
η =

1

∑
p
t=o+2G(t− 1, t)

.

We state here the following hypothesis which will be used later

(H1) q(z, v) ≥ 0, (z, v) ∈ Np
o × [0, ∞) and g1(v), g2(v) ≥ 0, ∀v ∈ C[Np

o+2 → R],
(H2) There exists a number r > 0 such that q(z, v) ≤ rη

2 , whenever 0 ≤ v ≤ r,
(H3) There exists a number r > 0 such that q(z, v) ≥ rη

λ
, whenever λr ≤ v ≤ r,

(H4) Assume that limv→0+ minz∈Np
o

q(z,v)
v = ∞, limv→∞ minz∈Np

o

q(z,v)
v = ∞,

(H5) Assume that limv→0+ minz∈Np
o

q(z,v)
v = 0, limv→∞ minz∈Np

o

q(z,v)
v = 0,

(G1) The functionals g1(v) and g2(v) are linear. In particular, we assume that

g1(v) =
p

∑
i=o

miv(i) and g2(v) =
p

∑
i=o

niv(i),

where mi, ni ∈ R,
(G2) Assume ∑

p
i=o mi + ∑

p
i=o ni ≤ 1

2 .

Lemma 9. Assume (H1) holds. Then, T : C → C.

Proof. Let operator T be as defined in (18), then by using Lemma 8, we have

minz∈Nd
c
(Tv)(z) ≥ minz∈Nd

c

p
∑

t=o+2
G(z, t)q(t, v(t)) + minz∈Nd

c
(A(z)g1(v) + B(z)g2(v))

≥ λ maxz∈Np
o

( p
∑

t=o+2
G(z, t)q(z, v(t)) + A(z)g1(v) + B(z)g2(v)

)
.

≥ λ‖Tv‖.

It is obvious that (Tv)(z) ≥ 0, whenever v ∈ C thus T : C → C.

Theorem 5. Assume q(z, v) satisfy conditions {(H1), (H2), (H3)}. Also, g1(v), g2(v) satisfy
conditions {(H1), (G1), (G2)}. Then, the boundary value problem (1) has at least one positive solution.
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Proof. We know that, T : C → C is completely continuous. For 0 < r1 < r2, define the set
Ω1 = {v ∈ C : ‖v‖ < r1}. Clearly, Ω1 ⊂ B is an open set with 0 ∈ Ω1. Since ‖v‖ = r1 for
v ∈ ∂Ω1, (H2), (G1), (G2) holds for all v ∈ ∂Ω1. Then we have for v ∈ C ∩ ∂Ω1 , by using
Lemma 4.

‖Tv‖ ≤ max
z∈No

p

p

∑
t=o+2

G(z, t)q(t, v(t)) + max
z∈Np

o

A(z)g1(v) + max
z∈Np

o

B(z)g2(v)

≤
p

∑
t=o+2

max
z∈No

p
[G(z, t)]q(t, v(t)) + g1(v) + g2(v)

≤ ηr1

2

p

∑
t=o+2

G(t− 1, t) + g1(v) + g2(v)

≤
(

1
2
+

p

∑
i=o

mi +
p

∑
i=o

ni

)
r1 ≤ r1.

Therefore ‖Tv‖ ≤ ‖v‖, for v ∈ C ∩ ∂Ω1. Similarly, set Ω2 = {v ∈ C : ‖v‖ < r2}.
Clearly, Ω2 ∈ β is an open set and Ω1 ⊆ Ω2. Since ‖v‖ = r2 for v ∈ ∂Ω2, (H3), (G1), (G2)
holds. We have

‖Tv‖ ≥ min
z∈Nd

c

|Tv(z)|

≥ min
z∈Nd

c

p

∑
t=o+2

G(z, t)q(t, v(t)) + min
z∈Nd

c

A(z)g1(v) + min
z∈Nd

c

B(z)g2(v)

≥ λ
p

∑
t=o+2

max
z∈No

p
[G(z, t)]q(t, v(t))

≥ λ
p

∑
t=o+2

G(t− 1, t)q(t, v(t))

≥ λ
r2η

λ

p

∑
t=o+2

G(t− 1, t) = r2.

Thus, we have ‖Tv‖ ≥ ‖v‖, for v ∈ ∂Ω2 ∩ C. By part (i) of Theorem 5, we conclude
that operator T has a fixed point v0 in C ∩ (Ω2 \Ω1), satisfying r1 < ‖v0‖ < r2. The proof
is complete.

Theorem 6. Assume q(z, v) satisfy conditions {(H1), (H2), (H4)}. Also, g1(v), g2(v) satisfy
conditions {(H1), (G1), (G2)}. Then, the boundary value problem (1) has at least two positive
solutions v1 and v2 with 0 < ‖v1‖ < r2 < ‖v2‖.

Proof. Let us choose a number N > 0 such that

Nλ

η
> 1, (20)

by condition (H4) there exists a number r∗ > 0 such that r∗ < r1 < r2 and q(z, v) ≥ Nv for
v ∈ [0, r∗] and z ∈ Np

o . Define the set Ωr∗ = {v ∈ C : ‖v‖ < r∗}. Then we have
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‖Tv‖ ≥ min
z∈Nd

c

|Tv(z)|

≥ min
z∈Nd

c

p

∑
t=o+2

G(z, t)q(t, v(t)) + min
z∈Nd

c

A(z)g1(v) + min
z∈Nd

c

B(z)g2(v)

≥
p

∑
t=o+2

min
z∈Nd

c

[G(z, t)]q(t, v(t))

≥ λ
p

∑
t=o+2

max
z∈No

p
[G(z, t)]q(t, v(t))

≥ λNv
p

∑
t=o+2

G(t− 1, t) > r∗.

Thus, we have ‖Tv‖ > ‖v‖, for v ∈ ∂Ωr∗ ∩ C. Next for the same N, we can find
a number R1 > 0 such that q(z, v) ≥ Nv for v ≥ R1 and z ∈ Np

o . Choose R so that
R = max

{
r2, R1

λ

}
. Define the set ΩR = {v ∈ C : ‖v‖ < R}. We can show that ‖Tv‖ ≥ ‖v‖,

for v ∈ ∂ΩR ∩ C.
Finally define the set

Ω2 = {v ∈ C : ‖v‖ < r2}. (21)

Since ‖v‖ = r2 condition (H2) holds for all v ∈ ∂Ω2. Then, we have

‖Tv‖ ≤ max
z∈No

p

p

∑
t=o+2

G(z, t)q(t, v(t)) + max
z∈Np

o

A(z)g1(v) + max
z∈Np

o

B(z)g2(v)

≤
p

∑
t=o+2

max
z∈No

p
[G(z, t)]q(t, v(t)) + g1(v) + g2(v)

≤ r2η

2

p

∑
t=o+2

G(t− 1, t) + g1(v) + g2(v)

≤
(1

2
+

p

∑
i=o

mi +
p

∑
i=o

ni

)
r2 ≤ r2.

Implying ‖Tv‖ ≥ ‖v‖, for v ∈ ∂Ωr2 ∩ C. Hence, we conclude that T has at least
two fixed points say v1 ∈ Ω2\Ω̂r∗ and v2 ∈ ΩR\Ω̂2, where Ω̂ denoted the interior of
the set Ω. In particular (1) has at least two positive solutions, say v1 and v2 satisfying
0 < ‖v1‖ < r2 < ‖v2‖. The proof is complete.

Theorem 7. Assume q(z, v) satisfy conditions {(H1), (H3), (H5)}. Also, g1(v), g2(v) satisfy
conditions {(H1), (G1), (G2)}. Then, the boundary value problem (1) has at least two positive
solutions v1 and v2 with 0 < ‖v1‖ < r2 < ‖v2‖.

5. Existence of Solutions

In this section, we present the existence and uniqueness results of the boundary
value problem (1) using Brouwer fixed point theorem and contraction mapping theorem,
respectively and also, we construct an example to illustrate the same results.

Theorem 8 (See [25]). [Brouwer fixed point theorem]. Let C0 be a nonempty compact convex
subset of Rn and T be a continuous mapping of C0 into itself. Then, T has a fixed point in C0.

Theorem 9. Assume q(z, v), g1(v) and g2(v) is continuous with respect to ′v′, for each z ∈ Np
o .

Assume there exist a positive constant L, such that

max
−L≤‖v‖≤L

{g1(v), g2(v)} ≤
L

2(Λ + 1)
(22)
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and
max

(z,v)∈Np
o×[−L,L]

{q(z, v)} ≤ L
Λ + 1

, (23)

where Λ is given by (9). Then, the boundary value problem (1) has a solution.

Proof. Consider
CL = {v ∈ Np

o → R, ‖v‖ ≤ L}.

Clearly, CL is a non-empty compact convex subset of Rp−o+1. Let T be a operator as
defined in (18). It is clear that T is a continuous operator. Therefore the main objective is to
show that T : CL → CL, then Theorem 8 can be invoked.

Let
Ω0 =

L
Λ + 1

,

By using (22), (23) and Lemma 4

‖Tv‖ ≤max
z∈Np

o

|A(z)g1(v) + B(z)g2(v)|+ max
z∈Np

o

p

∑
t=o+2

G(z, t)q(t, v(t))

≤ g1(v) + g2(v) +
( L

Λ + 1

) p

∑
t=o+2

max
z∈Np

o

[G(z, t)]

≤
( L

2(Λ + 1)

)
+
( L

2(Λ + 1)

)
+
( L

Λ + 1

)
Λ

= Ω0(1 + Λ) = L.

Thus, ‖Tv‖ ≤ L and T : CL → CL. It follows at once by Brouwer fixed point theo-
rem, that there exist a fixed point of T, say v0 ∈ C, such that |v0(z)| ≤ L. The proof is
complete.

Theorem 10 (See [25]). [Contraction Mapping Theorem]. Let S be a closed subset of Rn. Assume
T : S→ S is a contraction mapping, i.e., there exists a number ‘ξ’, 0 ≤ ξ ≤ 1, such that

‖Tv− Tu‖ ≤ ξ‖v− u‖,

for all v, u ∈ S. Then, T has a unique fixed point v0 ∈ S.

Theorem 11. Assume that q(z, v), g1(v) and g2(v) are Lipschitz with respect to ‘v’, i.e., there ex-
ists a′, b′, c′ > 0, such that |q(z, v1)− q(z, v2)| ≤ a′‖v1 − v2‖, |g1(v1)− g1(v2)| ≤ b′‖v1 − v2‖
and |g2(v1)− g2(v2)| ≤ c′‖v1 − v2‖, whenever v1, v2 ∈ C[Np

o → R]. Then the boundary value
problem (1) has a unique solution provided

a′Λ + b′ + c′ < 1, (24)

holds.
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Proof. Consider

‖Tv1 − Tv2‖ =max
z∈Np

o

|Tv1 − Tv2|

≤max
z∈Np

o

p

∑
t=o+2

G(z, t)q(t, v1)−max
z∈Np

o

p

∑
t=o+2

G(z, t) f (t, v2)

+ max
z∈Np

o

( p− z
p− o

)
Hϑ−2(z, ρ(o))g1(v1)−max

z∈Np
o

( p− z
p− o

)
Hϑ−2(z, ρ(o))g1(v2)

+ max
z∈Np

o

(z− o)ϑ−1

(p− o)ϑ−1
g2(v1)−max

z∈Np
o

(z− o)ϑ−1

(p− o)ϑ−1
g2(v2)

≤
p

∑
t=o+2

max
z∈Np

o

[G(z, t)]|q(t, v1)− q(t, v2)|

+ max
z∈Np

o

[( p− z
p− o

)
Hϑ−2(z, ρ(o))

]
|g1(v1)− g1(v2)|

+ max
z∈Np

o

[
(z− o)ϑ−1

(p− o)ϑ−1

]
|g2(v1)− g2(v2)|

≤ Λa′‖v1 − v2‖+ b′‖v1 − v2‖+ c′‖v1 − v2‖

≤ (Λa′ + b′ + c′)‖v1 − v2‖.

Thus, using (24) T is a contraction on Rp−o+1. Hence, by Theorem 10, the result
follows. The proof is complete.

Example 1. Suppose, ϑ = 1.1 and o = 0, p = 10, q(z, v) = sin(v)
15+z , g1(v) = ∑

p
t=o v(t)

20 and

g2(v) =
∑

p
t=o v(t)

10 . Then, (1) becomes
−(∇1.1

ρ(0)v)(z) =
sin(v)
15+z , z ∈ N10

2 ,

v(0) = ∑
p
t=o v(t)

20 , v(10) = ∑
p
t=o v(t)

10 .
(25)

Clearly, q(z, v), g1(v) and g2(v) are Lipschitz with respect to v with Lipschitz constant a′, b′

and c′, respectively. Here a′ = 1
15 , b′ = 1

20 and c′ = 1
10 . Then

Λ =
( (p− o)(ϑ− 1) + 1

ϑ

)ϑ−1( (p− o− 1)
ϑΓ(ϑ + 1)

)
= 8.05.

and
(a′Λ + b′ + c′) = 0.6866 < 1.

Thus, by Theorem 11 the boundary value problem (25) has a unique solution.

Example 2. Suppose, ϑ = 1.5 and o = 0, p = 6, q(z, v) = 1
20

(√
v + v2

)
, g1(v) = 1

11 v(1)−
1

23 v(4) and g2(v) = 1
9 v(5)− 1

10 v(2). Then, (1) becomes−(∇1.5
ρ(0)v)(z) =

1
20

(√
v + v2

)
, z ∈ N6

2,

v(0) = 1
11 v(1)− 1

23 v(4), v(6) = 1
9 v(5)− 1

10 v(2).
(26)
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Here for a given values of o, p we get λ = 0.1191 and η = 0.77. We see that q(z, v) satisfies
condition (H1) and (H4), also by taking r2 = 2 we have that

q(z, v) =
1

20

(√
v + v2

)
≤ 1

20

(√
r2 + r2

2

)
= 0.270 <

ηr2

2
= 0.77,

and g1, g2 satisfy conditions (G1) and (G2). Thus, all conditions of Theorem 6 are satisfied, hence
(26) has at least two positive solutions v1 and v2 such that 0 < ‖v1‖ < 2 < ‖v2‖.

6. Conclusions

In this paper, we constructed the Green’s function corresponding to the boundary
value problem (1), and stated a few of its properties. We studied the existence of at
least one and at least two positive solutions for the boundary value problem (1) using
Guo–Kranoselskii fixed point theorem on cones, and obtained sufficient conditions on the
existence and uniqueness of solutions for the proposed class of boundary value problems
using Brouwer and contraction mapping theorems, respectively. Finally, we demonstrated
the applicability of established results with a few examples. To the best of our knowledge,
there is no prior progress made with non-local conditions in the nabla case.
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