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Abstract: An alternative to conventional spacetime is proposed and rigorously formulated for
nonlocal continuum field theories through the deployment of a fiber bundle-based superspace
extension method. We develop, in increasing complexity, the concept of nonlocality starting from
general considerations, going through spatial dispersion, and ending up with a broad formulation
that unveils the link between general topology and nonlocality in generic material media. It is shown
that nonlocality naturally leads to a Banach (vector) bundle structure serving as an enlarged space
(superspace) inside which physical processes, such as the electromagnetic ones, take place. The
added structures, essentially fibered spaces, model the topological microdomains of physics-based
nonlocality and provide a fine-grained geometrical picture of field–matter interactions in nonlocal
metamaterials. We utilize standard techniques in the theory of smooth manifolds to construct the
Banach bundle structure by paying careful attention to the relevant physics. The electromagnetic
response tensor is then reformulated as a superspace bundle homomorphism and the various tools
needed to proceed from the local topology of microdomains to global domains are developed. For
concreteness and simplicity, our presentations of both the fundamental theory and the examples
given to illustrate the mathematics all emphasize the case of electromagnetic field theory, but the
superspace formalism developed here is quite general and can be easily extended to other types of
nonlocal continuum field theories. An application to fundamental theory is given, which consists
of utilizing the proposed superspace theory of nonlocal metamaterials in order to explain why
nonlocal electromagnetic materials often require additional boundary conditions or extra input from
microscopic theory relative to local electromagnetism, where in the latter case such extra input is
not needed. Real-life case studies quantitatively illustrating the microdomain structure in nonlocal
semiconductors are provided. Moreover, in a series of connected appendices, we outline a new broad
view of the emerging field of nonlocal electromagnetism in material domains, which, together with
the main superspace formalism introduced in the main text, may be considered a new unified general
introduction to the physics and methods of nonlocal metamaterials.

Keywords: nonlocal metamaterials; multiscale structures; fiber bundles; superspace; mathematical
methods; mathematical physics; nonlocal continuum field theory; semiconductor materials

1. Introduction

Numerous research studies point toward a basic fact: topology and physics are des-
tined to come closer to each other in the following decades [1–4]. This in itself is not totally
new because several authors, for example, Henri Poincare, E. Cartan, and Hermann Weyl,
had already advocated topological thinking in physics [5–7]. However, a salient feature of
this convergence is the focus on material engineering applications, for example, metama-
terials and topology-based devices. In this paper, we look into the general and rigorous
foundations of the discipline behind these applications, namely the framework of nonlocal
continuum field theories [8,9], with focus on explicating the generic multiscale topological
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structure of continua studied by such theories. We propose that in addition to the now
mainstream approach to topological materials [10,11], where the emphasis is often laid
on exploiting the global dependence of the wave function on momentum (Fourier) space,
there is a need to consider how materials can be assigned an indirect structure indexed
by parameters taken directly from the spatial side of the configuration space, i.e., either
space–time or space–frequency.

Our key observation is that arriving at an adequate understanding and characteri-
zation of nonlocality in generic scenarios would naturally require gathering information
at the microtopological level of what we dub nonlocal microdomains (the topological level
of small regions around every point where the response is nonlocal), then collectively
aggregating these microdomains in order to obtain the global topological structure (the
macro-topological level). The fundamental insight coming from topology is precisely how
this process of “moving from the local to the global” can be enacted. We have found that a
very efficient method to do this is the natural formulation of the entire problem in terms
of a fiber bundle superspace, where conventional spacetime or space–frequency are here
understood as nothing but “index spaces” embedded into a larger (in our opinion more
fundamental) fibered superspace characteristic of nonlocal continuum field theories. In
other words, and in contrast to existing approaches to local field theories and topological
materials, our strategy is not to first solve Maxwell’s equations in order to find the state
function as expressed within the Fourier k-space, after which one proceeds to study topol-
ogy over momentum space; instead, we start in spacetime (or space–frequency), and then
formulate the extended or superspace structure of a topology over a fiber bundle where
the conventional position space of the nonlocal continuum, e.g., Euclidean space, would
manifest itself merely as the index space of the fiber bundle superspace.

The principal conceptual and philosophical message behind this work is that spacetime
(or space–frequency) is not adequate for formulating nonlocal continuum field theories,
and that a more appropriate natural approach is the superspace formalism proposed below,
which, in our case, is based on a specific fiber bundle construction taking into account the
intricate physics-based microdomain structure of the generic nonlocal continuum. It is
the hope of the author that by helping scientists generate new insights into their physics
and models, this formalism may provide a rigorous approach complementing some of the
exciting theories and researches currently addressing various topics in continuum field
theories, nonlocal metamaterials, and topological materials, while possibly stimulating
the creation of novel algorithms for the computation of suitable topological invariant
characterizing complex material domains. Due to the wide scope and complexity of this
work, we first provide in Section 2 a relatively lengthy overview on the our contribution,
where high-level information about this work, in addition to a guide to the literature and
how to read the present paper, are outlined before moving to the more technical treatments
of the subsequent sections and appendices.

2. Preliminary Considerations

While the essential idea of the superspace formalism introduced here will be valid
for a generic nonlocal continuum field theory, it is much easier sometimes to work with a
concrete example, especially in explaining what nonlocality is for someone who is coming
to the subject for the first time. Therefore, in this preliminary section, we emphasize the
special but very important case of electromagnetic nonlocality.

2.1. What Is Nonlocality?

In classical electromagnetic (EM) theory, it is currently widely held that there are no
nonlocal interactions or phenomena in vacuum because Maxwell’s equations, which capture
the ultimate content of the physics of electromagnetic fields, are essentially local differential
equations [12]. In other words, an effect applied at point r in space will first be felt at
the same location but then spread or propagate slowly into the infinitesimally immediate
neighborhood. Long-term disturbances, such as electromagnetic waves, propagate through
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both vacuum and material media by cascading these infinitesimal perturbations in outward
directions (rays or propagation paths) emanating from the time-varying point source that
originated the whole process. However, if we leave behind vacuum electromagnetism and
move into electromagnetically-responsive matter-filled space, then we note that nonlocal
interactions in material domains differ fundamentally from the de facto local vacuum-
like picture in allowing fields applied at position r′ to influence the medium at different
location r [13]. That is, in the nonlocal material system, a location not infinitesimally close
to the source position r′ can experience a nonvanishing effect emanating from the source
location. While the “nonlocality scale” |r− r′| tends to be quite small in most natural media
(and certainly zero in vacuum), in some types of materials, the so-called nonlocal media,
observable response can be found such that this “radius of nonlocality” |r− r′| becomes
appreciably different from zero [14–16].

The existence of multiple scales in the fundamental physics of nature is not really new.
The scaling properties are important in Yang–Mills fields, the non-abelian field theory, and
it has been recently used to propose the presence of fractal structures in the dynamical
evolution of the fields. For example, one may consider the fractal structure of Yang–Mills
fields [17] as an example of a multiple-scale effect in fundamental field theories.1 In a
more familiar setting, it is generally accepted that Aharonov–Bohm-type effects, which
lead to observable nonlocal electrodynamic effects [18], have their origin in quantum
physics. Bringing quantum physics into field theory can be shown to lead to intrinsically
nonlocal effects since quantum field theory may be considered a fundamentally nonlocal
theory due to, for example, entanglement effects [19,20]. However, in this paper, we focus
on classical field theory realized through phenomenological models of the electromagnetic
response of the material domain. The phenomenological model itself (the constitutive
relations [9]) may have as its ultimate origin a purely quantum effect. For example, the
main example considered in this paper, the nonlocal semiconductor material domain, has
as its “origin of nonlocality” the essentially quantum process of exciton polariton coupling
in solids (Section 7). It should be noted that in recent years some authors suggested that
classical electromagnetism, under certain conditions, may induce nonlocal effects [21–23];
nevertheless, such scenarios are outside the scope of the physical paradigm treated in the
present paper.

On the other hand, and interestingly enough for our purposes, Cvijanovich proposed
several decades ago a theoretical model in which vacuum itself is modeled as a nonlocal
constitutive non-material domain, where the standard Lorentzian spacetime manifold of
general relativity is assumed here to play the role of the “medium” transmitting nonlocal ac-
tions [24]. Such proposal might be linked to field–matter interaction regimes where there is
a strong coupling between gravitational fields and electromagnetic degrees of freedom. For
flat spacetime, however, we already know from experiments that classical electromagnetism
is strictly local. Nevertheless, it was discovered recently that classical electromagnetism
can be made nonlocal if the photon mass is nonzero. More precisely, classical massive elec-
tromagnetism can be shown to arise in certain nonlocal (spatially dispersive) homogeneous
domains [25]. Therefore, the statement that “classical electromagnetism is strictly local”
should be qualified by allowing for the possibility that the photon mass might be proved
experimentally to be non-vanishing, say in a future empirical research. In spite of all these
interesting proposals on how to modify classical electromagnetic theory in order to make
it compatible with nonlocality at the very fundamental level, the system of field theory
treated in this paper is mainly classical, and the underlying spacetime structure is flat (the
gravitational degrees of freedom are ignored).

The research field concerned with the study of the classical electromagnetism of nonlo-
cal material domains is called nonlocal electromagnetism/electromagnetics/electrodynamics. This
paper introduces a comprehensive general approach to this emerging discipline together
with a series of selected applications. An extensive literature survey on past researches
into nonlocal electromagnetism is given in Appendixes A.1 and A.2. The subject of non-
local electromagnetism, here understood as the electromagnetism of nonlocal material
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domains, is presently treated as a subdomain of the science of metamaterials. Historically,
it has not been a well-defined direction of research, with researchers working on nonlocal
structures often coming from very diverse and distinct fields, such as plasma physics,
crystal optics, periodic structures, metasurfaces, and so on. One of the objectives of this
article is to propose a coherent view of the inherently cross-disciplinary nonlocal materials
research program, encompassing contributions coming from theoretical physics, applied
physics, chemistry, engineering, with mathematical physics as the unifying framework of
our inquiry.

2.2. Key Contributions and Motivations in the Present Work

Currently, there is an interest within applied physics and engineering in harnessing
nonlocal media as a new generation of metamaterials for use in various settings, e.g., optical
devices, energy control, antennas, circuit systems, etc., see Appendixes A.1 and A.3. The
main goal of the present work is to explore, at a very general level, the conceptual and
mathematical foundations of nonlocality in connection with applied electromagnetic meta-
materials (MTMs). Our approach is conceptual and theoretical, with the main emphasis
being laid on understanding the mathematical foundations of the subject and how they
relate to the underlying physical bases of some illustrative examples. Indeed, while a
massive amount of numerical and experimental data on all types of nonlocal materials
abound in a literature that goes back to as early as the 1950s, the purpose of the present
paper is attaining some clear understanding of the essentials of the subject, particularly in
connection with the ability to build a very general superspace formalism for nonlocal con-
tinuum field theory without restricting the formalism first to particular classes of materials
such as metals, plasma, or semiconductors.

The central theoretical idea in this work is the introduction of the superspace concept
into the process of constructing a general formalism suitable for understanding, analyzing,
and designing nonlocal material systems in classical field theory. The superspace formalism
has a long history in physics, mathematical physics, and mathematics (see Appendix A.4).
It will be shown below that nonlocal continuum field theory appears to lead very naturally
to a reformulation of its essential configuration space by upgrading the conventional space–
time or frequency space to a larger superspace in which the former spaces serve as base
spaces for the new (larger) superspace. Such reconsideration of the fundamental structure
of the problem may help foster future numerical methods and potential applications as will
be discussed later, e.g., see Appendix A.11.2.

The key motivation behind the proposed superspace approach is explicating a subtle,
but often overlooked, difference between two fundamental scales of interactions in nature:

1. Infinitesimal interactions: this characterizes local field theories, e.g., local electromag-
netism, where all operators are differential operators.

2. Non-infinitesimal but local interactions: here, nonlocal operators, such as integral
operators, may be present. In this type of theory, interactions are extended into small
topological neighborhoods around the source/observation point.

We believe that this topological difference has not received the attention it deserves in the
growing theoretical and methodological literature on nonlocal media. In particular, the
author believes that a majority of present approaches to nonlocal metamaterials conflate
the topologically local (but EM nonlocal) domain of small neighborhoods and global do-
mains. However, general topology and much of modern mathematical physics is based on
clearly distinguishing the last two topological levels. Explicating these subtle conceptual
differences emanating from the existence of distinct types of spatial scales in field–matter
interactions, while aided by a precise, rigorous, and powerful mathematical language, is
one of the principal aims of this work. In fact, we believe that a complete understanding of
material nonlocality in nature cannot be attained without relying on a fairy advanced math-
ematical apparatus such as the theory of smooth fiber bundles and infinite-dimensional
manifolds developed below.
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Let us give a brief summary of the main conceptual findings of this research. First, we
highlight that the main idea of the superspace formalism is not restricted to electromagnetic
theory, but applies to all types of nonlocal continuum theories, i.e., field theories in nonlocal
continuous media. However, for concreteness, and in order to reduce the complexity of the
mathematical formalism, we chose to work with a specific type of field theories, namely
the classical field paradigm based on Maxwell’s equations. As will be seen below, It turns
out that the standard formalism of local field theory, which is based on spacetime points
and their differential (but not topological) neighborhoods, viewed as the basic configuration
space of the problem, is not the most natural or convenient framework for formulating field
theory in nonlocal materials. This is mainly because the physics-based domain of nonlocality
(to be defined precisely below), which captures the effective region of field–matter nonlocal
interactions, is found to not always be naturally transportable into the mathematical
formalism of boundary-value problems characteristic of classical field theory, as practiced
in several domains, such as applied electromagnetism, heat transfer, hydrodynamics, etc.
By investigating the subject from an alternative but enlarged and intrinsically broader
perspective, it will be shown that a natural space for conducting nonlocal metamaterials
research is the vector bundle structure, more specifically, a Banach bundle [26] where every
element in the fiber superspace is a vector field on the entire domain of nonlocality.

The main result of this paper is that every generic nonlocal domain can be topologically
described by a superspace comprised of a Banach (infinite-dimensional) vector bundle
M. If two materials described by their corresponding vector bundlesM1 andM2 are
juxtaposed, then one may use topological methods to combine them and to compare their
topologies. The present paper’s focus is mainly on the first part, i.e., how to construct
the material bundle M. That is, the derivation of the various vector bundle structures
starting from a generic phenomenological model of electromagnetic nonlocality is the
main contribution of the present work. It is hoped by the author that the superspace
theory developed below will stimulate new approaches to computational field theories by
adopting methods borrowed from or inspired by computational topology and differential
topology to help supporting ongoing efforts to solve challenging problems in complex
material domains as in nanoscale hydrodynamics, nonlocal optical materials, topological
insulators, topological photonic devices, and other areas where nonlocality is currently
important or expected to play an increasingly dominant role in the future.

2.3. An Outline of the Present Work

Because of the considerable complexity of the present article, which is unavoidable in
treatment of the subject of nonlocality in the continuum field theory at this broad theoretical
level, and in order to help make our contribution accessible to a wider audience involving,
for instance, physicists, engineers, and mathematicians, we have divided the argument
into different stages with different flavors, as follows. First, Section 3 provides a general
mathematical description of nonlocality in the continuum field theory, emphasizing the set-
tings of the electromagnetic case. The key ingredients of nonlocal metamaterials/materials
are illustrated in Section 3.1 using an abstract excitation-response model. This is followed
in Section 3.2 by a more detailed description of the special but important case of spatial
dispersion, which tends to arise naturally in many investigations of nonlocal metamaterials.
In Section 4, we begin the elucidation of the main topological ideas behind electromagnetic
nonlocality, most importantly, the concept of EM nonlocality microdomains, which provides
the key link between physics, material engineering, and topology in this paper. The various
physical and mathematical structures are spelled out explicitly, followed in Section 5 by a
more careful construction of a natural fiber bundle superspace structure that appears to
satisfy simultaneously both the physical and mathematical requirements of EM nonlocality
(Sections 5.1 and 5.2). We then provide a key computational application of the proposed
theory in Section 5.3, where it is shown that the material response function is representable
as a special fiber bundle homomorphism over the metamaterial base space. In this way,
a more general map than linear operators in local field theory is derived, providing solid
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mathematical foundations for possible future computational topological methods where,
for example, the bundle homomorphism itself might be discretized instead of the original
spacetime-based linear operator. The fiber bundle superspace algorithm is summarized
in Section 6, where it is highlighted that the main data needed are the physics-based (e.g.,
electromagnetic) nonlocality microdomains, which do not arise solely from purely math-
ematical considerations, but require some empirical input, for example the microscopic
theory of materials, which ultimately would involve both electromagnetism and quantum
mechanics. In this manner, the entire construction of the nonlocal metamaterial superspace
may proceed as per the procedure outlined there. In order to illustrate how the above
mentioned microdomain structure can be actually estimated in practice, in Section 7 we
present a fairly detailed computational example based on nonlocal semiconductors, where
we also explore in depth the physical origin of nonlocality in this particular setting. Insights
into the lack of general EM boundary conditions in nonlocal EM are provided in Section 8
based on the superspace formalism.

This paper provides a series of technical appendices designed to provide necessary
information to expand the scope of the treatment found in the main text. In Appendix A.1,
we back up our major formulation as developed by introducing a general review of electro-
magnetic nonlocality targeting a wide audience of mathematicians, physicists, engineers,
and applied scientists. This review does not restrict itself to specific types of materials,
such as plasma, metals, and semiconductors, but aims at integrating the author’s own
understanding of the vast literature on the subject in a tentative and necessarily provisional,
but somehow more coherent view. Because of the extreme importance of the special case of
spatial dispersion for understanding nonlocality, we provide some brief historical remarks
on this subject in a separate Appendix A.2. Some technical and historical explications of
the concept of superspace, as needed and used in the main text, is given in Appendix A.4,
which is not meant as a complete rigorous introduction to the concept of superspace in
mathematics and theoretical physics, a topic far from being well-defined and focused.
Instead, the goal of this appendix is to fix the very specific meaning we have in mind in
this paper whenever we speak about superspace structures in order to avoid confusing our
concept with other usages found in physics, such as in supersymmetry.

The Appendixes A.6–A.9 supply important technical information needed in order
to fully comprehend the specific main example developed in this paper, to illustrate the
use of the superspace formalism in actual real-life scenarios (the inhomogeneous nonlocal
excitonic semiconductor material system of Section 7). We opted to separate the content of
these appendices from the main text in order to simplify the presentation. The subject of
nonlocal semiconductor metamaterials is already well-known in the specialized literature,
but is also highly technical. In order to help keep the flow of the various ideas treated in
the main text tightly focused on the conceptual and mathematical aspects of our proposed
superspace theory, we relegated some background material, especially detailed derivations
and explanations more related to semiconductor physics than the superspace formalism, to
the three appendices mentioned above.

Some basic familiarity with vector bundles and Banach spaces is assumed, but essen-
tial definitions and concepts will be reviewed briefly within the main formulation and
references where more background on vector bundles can be found will be pointed out.
The paper intentionally avoids the strict theorem-proof format to make it accessible to
a wider audience. Most of the time we give only proof sketches and leave out straight-
forward but lengthy computations. In general, just the very basic definitions of smooth
manifolds, vector bundles, Banach spaces, etc., are needed to comprehend this theory (also
see Appendix A.5 for a guide to the mathematical background.) The only place where the
treatment is mildly more technical is in Section 5.3 when the bundle homomorphism is
constructed using partition of unity technique as a detailed computational application of
the superspace theory.

In Appendixes A.3 and A.11, various additional current and future applications to
fundamental methods, applied physics, and engineering are outlined in brief form. Some of
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the applications mentioned there, for instance numerical methods and topological devices,
appear to us to be directly relevant to the scope of a superspace extension of conventional
nonlocal electromagnetic field continuum theory, such as the one attempted below within
the main text. On the other hand, some of the other applications discussed there, e.g.,
digital communications and energy, are of a more general nature and belong to our broader
tentative global review of the subject of nonlocality in nature and engineering attempted in
the Appendix A sections of this paper. Finally we end with the conclusion.

3. The Nonlocal Continuum Response Model
3.1. A Generic Nonlocal Response Model in Inhomogeneous Continua

In order to introduce the concept of nonlocality in the simplest way possible, let us
first start with a scalar field theory setting. As mentioned in the introduction, vacuum
classical fields cannot exhibit nonlocality, so in order to attain this phenomenon, one must
consider fields in specialized domains. We therefore kick-start the technical mathematical
treatment by reviewing the broad theory of such media. The goal is to outline the main
ingredients of the spacetime-based configuration space on which such theories are often
founded in literature. To further simplify the presentation, we work in the regime of linear
response theory: i.e., all material media considered throughout this paper are assumed to be
linear with respect to field excitation.

In detail, if the medium response and excitation fields are captured by the spacetime
functions R(r, t) and F(r, t), respectively, then the most general response is given by an
operator equation of the form [9]

R(r, t) = L{F(r, t)}, (1)

where L is a linear operator describing the medium, and is ultimately determined by the
laws of physics relevant to the structure under consideration [27–29].

Now, the entire physical process will occur in a spacetime domain. In a nonrelativistic
formulation (like the one in the present work), we intentionally separate and distinguish
space from time. Therefore, let us consider a process of field–matter interactions where
t ∈ R, while we spatially restrict to a “small” region spanned by the position

r ∈ D ⊂ R3, (2)

where D is an open set containing r. (Throughout this paper, we assume the normal
Euclidean topology on R3 for all spatial domains.) Since the operator L is linear, one may
argue (informally) that its associated Green’s function or kernel function

K(r, r′; t, t′) (3)

must exist. Strictly speaking, this is not correct in general and one needs to prove the
existence of the Green’s function for every given linear operator on a case by case basis
by actually constructing one [30,31].2 However, we will follow (for now) the common
trend in physics and engineering by assuming that linearity alone is enough to justify the
construction of Green’s function. If this is accepted, then we can immediately infer from
the very definition of the Green’s function itself that [12,32]

R(r, t) =
∫

D

∫
R

d3r′ dt′ K(r, r′; t, t′)F(r′, t′). (4)

The relation (4) represents the most general response function of a (scalar) material medium
valid for linear field–matter interaction regimes [37,38]. The kernel (Green) function
K(r, r′; t, t′) is often called the medium response function [9,32,37].



Foundations 2022, 2 27

If we further assume that all of the material constituents of the medium are time
invariant (the medium is not changing with time), then the relation (4) maybe replaced by

R(r, t) =
∫

D

∫
R

d3r′ dt′ K(r, r′; t− t′)F(r′, t′), (5)

where the only difference is that the kernel function’s temporal dependence is replaced
by t − t′ instead of two separated arguments. Such superficially small difference has
nevertheless considerable consequences. Most importantly, by working with (5) instead
of (4), it becomes possible to apply the Fourier transform method to simplify the time-
dependent formulation of the problem [39]. Indeed, taking the temporal Fourier transform
of both sides of (5) leads to

R(r, ω) =
∫

D
d3r′K(r, r′; ω)F(r′; ω), (6)

where the Fourier spectra of the fields are defined by

F(r; ω) :=
∫
R

dtF(r; t)e−iωt,

R(r; ω) :=
∫
R

dtR(r; t)e−iωt.
(7)

On the other hand, the medium response function’s Fourier transform is given by the
essentially equivalent formula

K(r, r′; ω) :=
∫
R

d(t− t′)K(r, r′; t− t′)e−iω(t−t′). (8)

In this paper, we focus on time invariant material media and, hence, work exclusively
with frequency domain expressions, such as (6), (7), and (8), though we often suppress
the frequency dependence on ω in order to simplify the notation whenever no confusion
would arise.

The generalization to the three-dimensional (full-wave) electromagnetic picture is
straightforward when the dyadic formalism is employed [28,40]. The relation correspond-
ing to (4) is

R(r, t) =
∫

D
d3r′

∫
R

dt′ K(r, r′; t− t′) · F(r′, t′), (9)

where we replaced the scalar fields F(r) and R(r) by vector fields F(r), R(r) ∈ R3. The
kernel function K, however, must be transformed into a dyadic function (tensor of second
rank) [14,28,41,42]:

K(r, r′; t− t′). (10)

In the (temporal) Fourier domain, (9) becomes

R(r, ω) =
∫

D
d3r′ K(r, r′; ω) · F(r′; ω), (11)

where
K(r, r′; ω) :=

∫
R

d(t− t′) K(r, r′; t− t′)e−iω(t−t′) (12)

is the frequency domain response kernel, while

F(r; ω) :=
∫
R

dt F(r; t)e−iωt,

R(r; ω) :=
∫
R

dt R(r; t)e−iωt,
(13)

are the corresponding frequency domain excitation and response fields, respectively.
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The essence of electromagnetic nonlocality can be neatly captured by the mathematical
structure of the basic relation (9). It says that the field response R(r) is determined not only
by the excitation field F(r′) applied at location r′, but at all points r′ ∈ D. Consequently,
here we find that the following is true:

In nonlocal continuum field theories, knowledge of the field response at a specific point r
requires knowledge of the cause (excitation field) on an entire topological neighborhood
set D 3 r.

On the other hand, if the medium is local, then the material response function can be
written as

K(r, r′; ω) = K0(ω)δ(r− r′), (14)

where K0 is a spatially constant tensor and δ(r− r′) is the three-dimensional Dirac delta
function. In this case, (11) reduces to [13]

R(r; ω) = K0(ω) · F(r; ω), (15)

which is the standard constitutive relation of linear electromagnetic materials. Clearly, (15)
says that only the exciting field F(r) data at r is needed in order to induce a response at
the same location. In a nutshell, locality implies that the natural configuration space of the
electromagnetic problem is just the point-like spacetime manifold D ⊂ R3 or the entire
Euclidean space R3.

Remark 1 (Infinitesimal domains). One may use the “infinitesimally immediate vicinity”
of a given point r, where a response is sought, for computing that response itself, yet while
still remaining within the local regime of continuum field theory. Indeed, for the case of elec-
tromagnetic theory, we note that, according to the constitutive relation (15), while only the
exciting field at r is required for computing the response, Maxwell’s equations themselves,
on the other hand, still must be coupled with the local constitutive relation model of the
problem. Now, the fact that Maxwell’s equations are differential equations implies that the
“largest” domain beside the point r needed for carrying out the mathematical description of
the details of the relevant field–matter interaction physics is just the region infinitesimally
close to r. In other words, in continuum field theories, infinitesimal domains should be
treated as neither topological domains nor neighborhoods. The infinitesimal belong to
any type of continuum field theory built on the differential calculus and, hence, is not a
criterion for distinguishing local and nonlocal theoretical structures.

Conventional boundary-value problems in applied electromagnetism are formulated
in this manner, i.e., with a three-differential manifold as the main problem space on which
spatial fields live [28,29,32,40,41,43–46]. Note that, strictly speaking, the full configuration
space in local electromagnetism (also called normal optics [16]) is the four-dimensional
manifolds D × R or R4 since either time t or the (temporal) circular frequency ω must
be included to engender a full description of electromagnetic fields. However, nonlocal
materials are most fundamentally a spatial type of materials/metamaterials where it is the
spatial structure of the field what carries most of the physics involved [32,47]. For that
reason, throughout this paper, we investigate the required configuration spaces with focus mainly
on the spatial degrees of freedom. This will naturally lead to the discovery of the fiber bundle
structure of nonlocality, the main topic of the present work.

3.2. Spatial Dispersion in Homogeneous Nonlocal Material Domains

Spatial dispersion is considered by some researchers as one of the most promising
routes toward nonlocal metamaterials, e.g., see [16,47–49]. It is by large the most intensely
investigated class of nonlocal media, receiving both theoretical and experimental treatments
by various research groups since the early 1960s.3 The basic idea is to restrict electromag-
netism to the special, but important case of media possessing translational symmetry, an
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important special scenario of material nonlocality that holds when the medium is homoge-
neous. In such situation, the material tensor function satisfies

K(r, r′; ω) = K(r− r′; ω). (16)

The spatial Fourier transforms are defined by

K(k, ω) :=
∫
R3

d3(r− r′) K(r− r′; ω)eik·(r−r′), (17)

with
F(k, ω) :=

∫
R3

d3r F(r; t)eik·r,

R(k, ω) :=
∫
R3

d3r R(r; t)eik·r.
(18)

After inserting (16) into (11), taking the spatial (three-dimensional) Fourier transform of
both sides, the following equation is obtained:

R(k, ω) = K(k, ω) · F(k, ω). (19)

The dependence of K(k, ω) on the wave vector (“spatial frequency”) k, here added to the
already existing temporal frequency ω dependence, is the signature of spatial dispersion. As
a spectral transfer function of a homogeneous medium, K(k, ω) includes all the information
needed to compute the nonlocal material domain’s response to arbitrary spacetime field
excitation functions F(r, t) (through the application of inverse four-dimensional Fourier
transform [16]).

Remark 2. In several treatments of the subject within electromagnetic theory, the excitation
field is taken as the electric field E(r, t), while the response function is D(r, t). In such
formulation, the material tensor function K(k, ω) takes into account both electric and
magnetic effects [14–16,37–39,50–54]. This is different from the permittivity tensor often
invoked in local electromagnetism [28], which is ultimately based on the popular multipole
model [43] of electromagnetic interactions in material media. A comparison between the
two material response formalisms, the one based on K(k, ω) and the multipole model, is
given in [32,47,53].

Complex heterogeneous arrangements of various nonlocal materials can be realized
by juxtaposing several subdomains where each subunit is homogeneous, hence can be de-
scribed by a spatial dispersion profile of the form K(k, ω) discussed above. The idea is that
even materials that are inhomogeneous at a given spatial scale may become homogeneous
at a different (less refined) spatial level, leading to a “grid-like” spatially dispersive cellular
building blocks at the lower level. In Figure 1, we show a nonlocal metamaterial system
with various multiscale structures. A large nonlocal domain, e.g., K3(r, r′) in the figure,
acts like a “substrate” holding together several other smaller material constituents, such
as Kn(r, r′), n = 1, 2, 4. We envision that each nonlocal subdomain may possess its own
specially tailored nonlocal response function profile serving one or several applications.4

By concatenating multiple regions, interfaces between subdomains with different material
constitutive relations are created. We here show subdomains Dn, n = 1, 2, 3, 4, while some
of the possible intermaterial interfaces include D1/D2, D1/D3, D2/D3, D3/D4. More com-
plex geometrical and topological interfaces than those shown in Figure 1 are possible where
the topological type of the interface manifold can be controlled by introducing handles,
holes, gluing, cutting, and so on.
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K2(r, r′)K1(r, r′) K3(r, r′)

K4(r, r′)

Topological holes

D2D1

D3
D4 Spatial dispersion

cellular domains

Figure 1. A generic depiction of an electromagnetic nonlocal metamaterial system. Each of the
domains Dn is captured by a general linear nonlocal response function Kn(r, r′).

Recall that in local electromagnetism each intermaterial interface should be assigned a
special electromagnetic boundary condition in order to ensure the existence of a unique
solution to the problem [9,41]. This, however, is not possible in nonlocal electromagnetism.
Indeed, and as already mentioned earlier, nonlocal electromagnetism introduces several
subtle issues that are absent in the local case: additional boundary conditions are often
invoked to handle the transition of fields along barriers separating different domains, such
as between two nonlocal domains, or even one nonlocal and another local domain [16,55,56].
The topological fiber bundle theory to be developed in Section 5 will provide a clarification
of why this is so since it turns out that the traditional spacetime approach often employed
in local electromagnetism is not necessarily the most natural one (see also Section 8). There
is a need, then, to examine in a more in-depth fashion the detailed structural phenomena
associated with the presence of multiple topological scales in nonlocal metamaterials. This
paper will provide some new insights into these issues.

3.3. Preliminary Remarks on the Existence of Multiple Topological Scales in Nonlocal Continuum
Field-Theoretic Structures

For completeness and maximal clarity, we discuss here some of the directly observable
topological scales in nonlocal continuum systems whose preliminary understanding at
this stage of our presentation does not require the use of the quite elaborate mathematical
apparatus to be carefully constructed in the remaining parts of this paper. We list the most
important of these topological levels as follows:

1. The first is the geometrical separation between different nonlocal domains, such as
D1 and D2 discussed in Section 3.2 and illustrated by Figure 1.

2. The second is the case captured by the inset in the right hand side in Figure 1. Fine “mi-
croscopic” cells, each homogeneous and, hence, describable by a response function of
the form K(k, ω), can be combined to build up a complex effective nonlocal response
tensor Kn(r, r′) over its topologically global domain Dn. Such juxtaposition at the
microscopically local level that effectively leads to the emergence of a global behavior
is a classic example of multiscale physics. However, note that it even acquires a higher
importance in the present context due to the fact that both of the constituent cell level
(rectangular “bricks” in the inset of Figure 1) and the global domain level Dn already
belong to the physically, e.g., electromagnetically, nonlocal dimension of the relevant
nonlocal continuum field theory.

3. Finally, the third directly observable topological scale is that connected to what we
termed “topological holes” in Figure 1. These are arbitrarily-shaped gaps, such as
holes, vias, etchings, etc., which are intentionally introduced in order to influence
the electromagnetic response by modifying the topology of the three-dimensional
material manifolds Dn.
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The above topological levels are called “directly observable” because their determination
does not require the use of abstract and advanced concepts from continuum field theory.
This is in contrast to the more subtle distinction that will be discussed next.

In Remark 3, we discuss the very important conceptual distinction between topology-
based and physics-based nonlocal domains, a demarcation between two concepts that has
already been invoked several times above, and will also figure up repeatedly throughout
the remaining parts of this article.

Remark 3 (Distinction between physics- and topology-based locality/nonlocality). The
terms local and global possess two different senses, one physics-based, e.g., electromag-
netic theory; the other is spatio-geometric in essence, belonging to the purely formal and
mathematical dimensions of the structure of the nonlocal continuum theory of the material
system. Elucidating this subtle interconnection between the two senses will be one of the
main objectives of the present work but we will first need to introduce the various relevant
microscale topological concepts to be given in Section 4 (see also Remark 17) For the time
being, let the following be known:

1. Physics-based local/non-local distinction: this is where basically physical considerations
are at stakes. We distinguish between:

(a) Physics-based non-local level: this includes how the response of the material
continuum depends on locations r′ not infinitesimally close to the point r
where the excitation field is applied. That is, r− r′ is nonzero but it is also not
a differential. (On infinitesimal domains, see Remark 1.)

(b) Physics-based local level: this is the physical regime whose essence is captured
by local constitutive relations of the form (15).

2. Topology-based local/non-local distinction: mathematical considerations dominate at this
level. We have:

(a) Topology-based non-local level: this is the topologically global level, e.g., the
entire topological manifold in contrast to the local description applicable only
to a coordinate patch [57], and so on. At this level, the non-local-as-global is
an emerging structure based on gluing together “smaller pieces” of the total
manifold. We will see examples of processes occurring basically at this level
when we use partition of unity methods.

(b) Topology-based local level: this is the topological layer associated with struc-
tures, such as open sets, topological neighborhoods, closed sets, and so on. A
topological space is defined as a collection of all such local sets [58,59].

The two concepts outlined above interact with each. There is a subtle relation between
physics and topology. This paper will address some of these delicate interrelations in
subsequent sections.

Remark 4 (Electromagnetic Domains). For simplicity, in what follows we will occasionally
use ‘electromagnetic (EM) domain’ and ‘physics-based nonlocal domain’ as interchangeable
terms. It should be kept–in min–that the concept of physics-based nonlocality is broader
than EM nonlocality. The former refers to a characteristic structural trait enjoyed by all
nonlocal continuum field theories, while the latter is restricted to the realm of just one such
theory, that of the electromagnetism of continuous media.

4. The Microscopic Topological Structure of Physics-Based Nonlocal Domains
4.1. Introduction

In this section, we begin our careful examination of the mode of interrelation between
the physics- and topology-based types of nonlocality introduced and discussed above.5

Let the nonlocality domain of the electromagnetic medium, the region D ⊂ R3 in (11),
be bounded. Corresponding to (1), a similar operator equation in the frequency domain
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representing the most general form of a nonlocal electromagnetic medium can be posited,
namely

R(r; ω) = Lω{F(r; ω)}, (20)

where the nonlocal medium linear operator is itself frequency dependent. For simplicity,
and as stated before, whenever it is understood from the context that the material response
operator is formulated in the frequency domain, all dependencies on ω appearing in its
formal expression will be removed.

We are going to propose a change in the mathematical framework inside which
electromagnetic nonlocality is usually defined. This will be done in two stages:

• Initially, in the present Section, we introduce the rudiments of the main physics-based
microtopological structure associated with nonlocality in continuum field theories,
but without delving into considerable mathematical details. The aim is to familiarize
ourselves with the minimal necessary physical setting and how it naturally gives
rise to a more refined picture of the nonlocal material domain compared with the
traditional (and much simpler) topological structure of local electromagnetism based
on spacetime points.

• In the second stage, treated in Section 5, a more careful mathematical picture is devel-
oped using the theory of topological fiber bundles. We eventually show (Section 5.3)
that the physics-based (in this case the electromagnetic) nonlocal operator (20) can be
reformulated as a Banach bundle map (homomorphism) over the three-dimensional
space of the material domain under consideration. Some computational examples and
applications are provided in the later Sections, e.g., see Section 7.

The key conceptual idea behind the entire theory presented here is that of the topological mi-
crodomains associated with the field theory of nonlocal continua, e.g., the electromagnetism
of continuous media, which we first develop thematically in the next Section 4.2 before
moving subsequently to the more rigorous and exact topological formulation of Section 5.

4.2. The Concept of Topological Microdomains in Nonlocal Continuum Field Theories

In conventional frequency domain local electromagnetism, the boundary-value prob-
lem of multiple domains is formulated as a set of coupled partial differential equations or
integro-differential equations interwoven with each other via the appropriate intermaterial
interface boundary conditions dictating how fields change while crossing the various spa-
tial regions inside which the equations hold [28,40,41]. This has been traditionally achieved
by taking up the electromagnetic response function K(r, r′; ω) as an essential key ingredient
of the problem description, which traditionally has been exploited in two stages: First, the
constitutive relations would enter into the governing equations in each separate solution
domain. Second, the constitutive relations themselves are used in order to construct the
proper electromagnetic boundary conditions prescribing the continuity/discontinuity be-
havior of the sought field solutions as they move across the various interfaces separating
domains with different material properties.

Unfortunately, it has been well known for a long time that it is not possible to formulate
a universal electromagnetic boundary condition for nonlocal media, especially for the case
of spatial dispersion. This will be discussed later with more details in Section 8, but also
see the discussion around additional boundary conditions (ABC) in Appendix A.1. For
now, we concentrate on gaining a deeper understanding of the generic structure of spatial
nonlocality in continuum field theories.

Consider the microdomain structure depicted in Figure 2. A key starting observation
is how nonlocality forces us to associate with every spacetime point (r, t), or frequency
space point (r; ω), a topological neighborhood of r, say Vr, such that r ∈ Vr. For now, let us
assume that the spatial material domain D 3 r is just an open set in the technical sense of
the topology of the Euclidean space R3 inherited from the standard Euclidean metric [59].
By restricting D to be open, we avoid the notorious problem of dealing with boundaries or
interfaces between such (possibly overlapping) open sets. That is, the topological closure
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of D, denoted by cl(D), is excluded from the domain of nonlocality. Let D be the maximal
such topological neighbored for the problem under consideration.6 We now associate with
each point r a “smaller” open set Vr where the following holds:

∀ r ∈ D, ∃Vr ⊂ D such that r ∈ Vr, and Vr is open. (21)

Note that the assumed openness of D makes the above construction technically possible.
We will call the proposition (21) the principle of nonlocal microdomain generation. It formally
captures the main content of the structure of nonlocality at the microscopic level. In
Section 7, a practical example taken from nonlocal semiconductor metamaterials will be
investigated in depth in order to illustrate the applicability of (21).

Kn(r, r′)Km(r, r′)

Dn
Dm

Vr1

r1

Vr2

r2

Figure 2. The microtopological structure of nonlocal metamaterial systems includes more than just
the three-dimensional spatial domainsDn, n = 1, 2, . . . It is best captured by classes V(Dn) composed
of various open sets Vr ⊂ Dn based at each point r ∈ Dn. On every such subset a vector field is
defined, representing the external field excitation field. The collection of all vector fields on a given
set Vr gives rise to a linear topological function space F (Vr). The topologies consisting of the base
spaces Dn, the nonlocal microdomains Vr, and the function spaces F (Vr), collectively give rise to a
total “macroscopic” topological structure (superspace) that is considerably more complex than the
base spaces Dn.

Now, instead of considering fields like R(r) and F(r) defined on the entire maximal
domain of nonlocality D (which can grow “very large”) we propose to reformulate the
problem of nonlocal continua as a topologically local7 structure by exploiting the fact that the
physics of field–matter interactions gives the field response at location r due to independent
excitation fields essentially confined within a “smaller domain” around r, namely the open
set Vr.8

Furthermore, if the response at another different point r 6= r′ is needed, then a new,
generally different, “small” open set Vr′ will be required. That is, in general we allow that

Vr 6= Vr′ (22)

even though it is expected that typically there should be some overlap between these two
small local domains of electromagnetic nonlocality in the sense that

Vr ∩Vr′ 6= ∅, (23)

especially if the nonlocality radius |r− r′| is small.
The following fundamental collection of “smaller” sets, where a metric scale character-

izing “smallness” is not implied, written as

{Vr, r ∈ D}, (24)

will be dubbed nonlocal microdomains, or just microdomains in short. A possible precise
definition is given next.
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Definition 1 (Nonlocal microdomains: the physics-based scenario). Consider a material
domain D with the associated nonlocal response function K(r′, r). We define the (physics-
based) nonlocal microdomain Vr ⊂ D, labeled by r ∈ D, as the interior of the compact9

support of K(r′, r). The support itself is defined by the standard formula

supp K(r′, r) := clD{r′ ∈ D,
∥∥K(r′, r)

∥∥ 6= 0}, (25)

where ‖·‖ is a suitable tensor norm, for example the matrix norm.10 The topological closure
operator clD is here taken with respect to the total material space D where the latter is
viewed as a topological space on its own.

Remark 5 (Microdomain topology). By Definition 1 above, the nonlocal microdomain Vr
is always open. It can be shown that the collection of open sets {Vr, r ∈ D} induces a
topology on the total space occupied by the nonlocal material (the details are omitted since
they are lengthy though straightforward.) In what follows, this topology will be referred
to by the term microdomain topology. The set of physics-based nonlocality microdomains
(microdomains for short), as constructed in Definition 1, explicate the fine microtopological
structure of nonlocal electromagnetic domains at a spatial scale different from that of
the (topologically “larger”) material domain D itself and are fundamental for the theory
developed in this paper.

Remark 6 (Discrete topology in local continua). In local media, the microdomains topol-
ogy reduces to the trivial discrete topology

{{r}, r ∈ D} (26)

since the external field interacts only with the point r at which it is applied and hence

Vr = {r} (27)

holds as the “smallest” possible topological microdomain in that rather special case. There-
fore, the microdomain topology is interesting only for the case of physics-based nonlocality,
e.g., the scenario of EM microdomains discussed in more details in the examples and
applications below. In particular, from the point of view of this article, local metamaterials
are not topologically interesting.

4.3. Construction of Excitation Field Function Spaces on the Topological Microdomains of
Nonlocal Media

After enriching the MTM domain D with the finer topology of nonlocality microdomains
Vr, r ∈ D, we wish to equip this total medium with additional mathematical structure based
on the physics of field–matter interaction. Consider the set of all sufficiently differentiable
vector fields F(r) defined on Vr, r ∈ D. This set possesses an obvious complex vector space
structure: for any two complex numbers a1, a2 ∈ C, the sum

a1F1(r) + a2F2(r)

is defined on Vr whenever F1(r) and F2(r) are, while the null field plays the role of the
origin. In what follows, we will denote such function spaces by F (Vr) or just F if it is
understood from the context on which material spatial domains the fields are defined.

Remark 7 (The excitation field function space and Sobolev spaces). It is possible to equip
F (Vr) with a suitable topology in order to measure how “near” to each other are any two
fields defined on Vr, e.g., see [59,62,63]. Therefore, in this manner F (Vr) acquires the
structure of a topological vector space [59]. In particular, it can be made a Sobolev space, where
the latter is not only a Banach space (normed space), but also a Hilbert space (inner product
space) [64–66].
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The detailed construction of a Sobolev space on a given microdomain is not needed
for what follows in this paper, but can be found in the literature, including the references
quoted in this Remark 7.

4.4. The Global Topological Structure of Nonlocal Electromagnetic Material Domains: First Look

In light of the analysis above, each microdomain Vr induces an infinite-dimensional
linear function space (Sobolev space) F (Vr) indexed by the position r ∈ D, with the
corresponding topology being essentially determined by the geometry of Vr. On the other
hand, this latter geometry is obtained from the physics of field–matter interaction in nonlocal
media. Consequently, the physical content of nonlocal materials is encoded at the level of
the topological microstructure encapsulated by the following formal scheme:

D 3 r
Physical Data−−−−−−−−−−−−−−→

Physics-Based Nonlocality
Vr

Mathematical Data−−−−−−−−−−→
Sobolev Space

F (Vr) (28)

Let us first identify the main relevant collections of subsets needed in order to understand
the formal set-theoretic structure of the problem. We begin by

V(D) := {Vr ⊂ D
∣∣ r ∈ D, Vr is open}, (29)

as the class of physics-based nonlocal microdomains (Definition 1). On the other hand, it is
also possible to introduce the useful construction

G[V(D)] := {F (Vr)
∣∣ r ∈ D,F (Vr) is a Sobolev function space}, (30)

as a convenient class into which we collect all the function spaces of excitation fields on
each nonlocality microdomain Vr as spanned by the position index r ∈ D (see Remark 7
for the construction of each such function space.) It follows then that (28) can be neatly
captured by the ordered triplet

D× V(D)× G[V(D)]. (31)

We wish now to unpack this compact structure in a careful, step-by-step manner, proceeding
as follows:

1. Each open domain in D ⊆ R3 will by assigned a distribution V(D) of open sets Vr, i.e.,
the physics-based nonlocality microdomains topology defined in Section 4.2, see in
particular Definition 1 and Remark 5. Physically, it expresses the fine microtopological
structure of nonlocal continua, e.g., electromagnetic material nonlocality.

2. The structure V(D) is solely determined by the physics of field–matter interaction.
A concrete example explicitly illustrating how the detailed physical content of the
underlying process contributes to the construction of V(D) will be given in Section 7.

3. We further emphasize that the various sets Vr ∈ V(D) constitute an open cover of D,
that is, we have

D =
⋃

r∈D
Vr. (32)

In this way, the model can accommodate excitation fields F(r) applied at every point
in r ∈ D.

4. The decomposition of the material domain D into smaller building blocks exemplified
by (32) is fundamental for computational topological models of nonlocal MTMs. For
example, in Section 7 we will exploit this expansion in order to construct a topological
coarse-grained model for inhomogeneous nonlocal semiconductor metamaterials.

5. Finally, the topology V(D) induces the “function superspace” G[V(D)] (30) defined
as a class of function spaces F (Vr), r ∈ D,, where each vector field acts on one
microdomain element Vr chosen from the topology V(D).
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Remark 8 (Topology, physics, and multiple scales). It is interesting to observe how, within
the framework proposed above, some sort of delicate constructive “division of labor” is
seen to emerge into the picture, where a fruitful interaction between physics and mathemat-
ics generates the various required multiscale topological microstructures characteristic of
nonlocality in continuum field theories. This is also the source of some potential difficulties
hidden in the formal set-theoretic structure (31). Indeed, we will next try to smooth out the
differences between the two main substructures V(D), which is principally controlled by
physics, on one side, and G[V(D)], which is dominated by purely mathematical considera-
tions. One way to achieve a resolution of this philosophical tension between the physical
and mathematical is by developing the entire theory of the set-theoretic structure (31) in
a form that can encode all of its main substructures within a single, rich enough “meta-
structure”: the Banach vector bundle superspace (see Section 5 for the detailed construction).

As can be seen from Remark 8, there is indeed some strong motivation to search for
alternative formulations of physical theory in complex and rich systems such as nonlocal
material continua, where there exists multiple spatial topological scales. It will be seen that
the superspace theory appears to provide some form of rare direct and transparent unity
between physics and topology in this regard. In order to reach there, gradual, step-by-step
changes in the conventional formulation of continuum field theory will be introduced. We
now begin to look into such a reformulation, starting with a straightforward one.

4.5. A Reformulation of the Nonlocal Continuum Response Function

It is now possible to provisionally construct the nonlocal continuum response function
by working on the fundamental topological domain structure (31) instead of the global
domain D, the later being the favored arena of conventional continuum field theory that
we would like to ultimately move beyond. Again, for concrete expressions, the special
case of electromagnetic theory will be presupposed but it should always be kept in mind
that the mathematical structure of the theory is quite general and applies to all nonlocal
continuum field theories governed by an abstract material response function model, such
as the one discussed in Section 3.

We start by noting that the response field R(r) can be re-expressed by the map

R : D× V(D)→ C3, (33)

where the codomain is taken to be C3 because the electric or magnetic response functions
D or B, respectively, are complex vector fields in the frequency domain.11 The value of the
EM nonlocal response field due to excitation field F(r) applied at a microdomain Vr can be
computed by means of

R(r; ω) =
∫

Vr
d3r′ K(r, r′; ω) · F(r′; ω). (34)

Although (34) may appear at first sight to be only slightly different from (11), the underlying
difference between the two formulas is significant. In essence, the construction of the EM
response field R(r) via the map (33) amounts to topological localization of electromagnetic
nonlocality, since in the latter case, the EM response function K(r, r′; ω) is no longer allowed
to extend globally onto “large and complicated material domains.” Indeed, with the
recipe (34) only the response to “small”–or more rigorously topologically local12—domains,
namely the microdomains Vr, is admitted. On the other hand, in order to find the response
field R(r) everywhere in D, one needs to use sophisticated topological techniques to extend
the response from one point to another until it covers the entirety of D. This local-to-global
extension application of differential topology is discussed in detail in Section 5.3 and again
briefly in Appendix A.11.

In such a manner, it becomes possible to provide an alternative, more detailed expli-
cation of the behavior of the medium at topological interfaces (boundary conditions in
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nonlocal metamaterials are treated–provisionally–in Section 8) and also explore the effect
of the topology of the bulk medium itself on the allowable response functions and the
production of non-trivial edge state, with obvious applications to emerging areas such as
nonlocal metamaterials.13

5. The Fiber Bundle Superspace Formalism in the Field Theory of Generic
Nonlocal Continua

Here, an outline of the direct construction of a fiber (Banach) bundle over an entire
(global) nonlocal generic material domain is given, where our purpose is to attach to every
point r ∈ Ui a fiber Fi, actually a vector space in our case. The contents of this section are
the most technically advanced in this paper. Readers interested in applications may skim
through Sections 5.1 and 5.2, skip Section 5.3, then move directly to Section 6 for a general
summary of the fiber bundle algorithm. Concrete computational models are outlined in
Section 7 using a practical nonlocal model, while additional remarks and discussions about
current and future uses of the theory are provided in Appendixes A.3 and A.11. However,
even readers not fully familiar with the differential manifold theory will benefit from
reading the present technical section, because we strive to illustrate the physical intuition
behind the various mathematical computations and steps therein.

5.1. Preparatory Step: Promoting the Material Domain D to a Manifold D
In order to investigate in depth the fundamental physico-mathematical constraints

imposed on nonlocal continua, the domain D, which we have working with so far as the
main total spatial space of the material, should be upgraded in complexity to the higher
level of a differential manifold, the latter which posses a quite rich and sophisticated structure
that allows performing calculus and geometrical reasoning simultaneously [26,57,62,63,68].
There are several reasons why this is highly desirable:

1. It provides a natural and obvious generalization of the basic structure (31) from the
mathematical perspective.

2. Engineers often need to insert metamaterials into specific device settings, hence the
shape of the material becomes highly restricted. It is therefore important to develop
efficient tools to deal with variations of geometric and topological degrees of freedom
and how they could possibly impact the design process.

3. Applied scientists and engineers are often interested in deriving fundamental limitation
on metamaterials, e.g., what are the ultimate allowable response–excitation relations or
constitutive response functions possible given this material domain topology?

4. Sophisticated full-wave electromagnetic numerical solvers prefer working with local
coordinates in order to handle complicated shapes, even if a global coordinate system
is sometimes available, making the deployment of the three-manifold structures for
describing the material domain D useful.

5. In topological photonics and materials [11], most applications seem to focus on lower-
dimensional states of matter like those associated with quantum Hall effects and
edge states (surface waves).14 There, new phenomena appear at material structures
where the base space (material domain D) is a two-surface, which is best described
mathematically as a differential two-manifold.

For all these reasons, it is desirable to strive to furnish the domain D with the most general
and flexible mathematical apparatuses available to us, which, in this case, amounts to
equipping the material/metamaterial spatial domain with a smooth manifold structure.

We quickly illustrate how this can be accomplished. If we denote byD a three-manifold
(three-dimensional smooth manifold), then, since D ⊂ R3, there is a natural differential
structure defined on D, inherited from the ambient three-dimensional Euclidean space itself.
(Throughout this paper, such differential three-manifold structure will be presupposed as
the de facto space for the total, i.e., largest, material space.)
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Following the standard theory of smooth manifolds, let

(Ui, φi) (35)

be a countable collection of charts (an atlas), labeled by

i ∈ I ⊂ N, (36)

where I is an index set. Together, the devices (35) and (36) can equip D ⊂ R3 with a
differential three-manifold structure. For simplicity, we will refer to the points of the
manifold D by r, i.e., using the language of the global (ambient) Euclidean space R3.
Symbolically, by adding a differential manifold structure, we effected the transformation

D Insert a smooth manifold structure−−−−−−−−−−−−−−−−−−−→
Introduce a differential atlas

D (37)

This well-known construction [26,57,63] constitutes the differential atlas on D, which will
be used in what follows.

5.2. Attaching Fibers to Generic Points in the Nonlocal Material Manifold D

Our current goal is to attach a vector fiber (a linear function space in this case) at every
point r ∈ D, namely the function space F (Vr) introduced in Section 4.3. It turns out that
accomplishing this requires finding suitable “compatibility laws” dictating how coordinates
change when two intersecting charts Ui and Uj interact with each other, which is typical in
such types of constructions [26]. In particular, we will need to later find the law of mutual
transformation of vectors in the fibers F (Vφi(r)) and F (Vφj(r)). Here, the expression

F
(

Vφi(r)

)
(38)

means the fiber space attached to the point whose coordinates are φi(r), i.e., the function
space where all functions are expressed in terms of the language of the ith chart (Ui, φi(r)).

In this connection, the major technical problem facing us is a mathematical one induced
by the physics of the situation. We first isolate and describe the main problem by the
following brief technical resume:

Since the differential structure associated with charts

{(Ui, φi(r)), i ∈ I, }

can be fixed by essentially mathematical considerations alone, while the collection of
microdomains

V(D) = {Vr, r ∈ D}

is solely determined by the physics of electromagnetic nonlocality (See Remark 3 and
Section 4), there is no direct and simple way to determine and express the vector transfor-
mation

F (Vφi(r)) −→ F (Vφj(r)),

because several different coordinate patches other than Ui and Uj, belonging to the
differential three-manifold D atlas, might be involved in geometrically building up the
microdomain Vr.

The above technical problem will be solved in Section 5.3 by using the technique of partition
of unity borrowed from differential topology [26,57,62]. It will allow us to split up each full
microdomain Vr into several suitable sub-microdomains (details below), which can be later
joined up together in order to give back the original EM nonlocality microdomain Vr.

For now, we start by recalling that the microdomain structure represented by the
collection V(D) = {Vr, r ∈ D} is an open cover of the manifold D. Therefore, and since the
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material domain manifold D possesses a countable topological base [59], it contains a locally
finite open cover subordinated to V(D) [26,57].15 This implies that an atlas (Ui, φi), i ∈ I,
with diffeomorphisms

φi : Ui → R3, (39)

describing the differential structure of the manifoldD exists such that the elements {Ui, i ∈ I}
constitute the above mentioned locally finite subcover subordinated to the microdomains
collection V(D). Moreover, the images φi(Ui) are open balls centered around 0 in R3 with
finite radius a > 0 (henceforth, such balls will be denoted by Ba) [26].

In this way, the physics-based open cover set V(D) provides a first step toward the
construction of a complete topological description of the physics-based nonlocal microdomain
structure. The reason is that the coordinate patches (Ui, φi), i ∈ I, are subordinated to the
microdomains {Vr, r ∈ D} [26].

It is also known that there exists a partition of unity associated with the D-atlas
(Ui, φi), i ∈ I, constructed above summarized by the following lemma [26,57,62,63,68]:

Lemma 1 (Partition of Unity). There is a collection of functions

ψi : Ui ⊂ D → R (40)

satisfying the following requirements:

1. ψi(r) ≥ 0 and each function is Cp, p ≥ 1.16

2. The support of ψi(r), denoted by supp ψi, is contained within Ui, that is, the condition

supp ψi ⊂ Ui, (41)

holds. Recall that the support is defined as the (topological) closure of the set

{r ∈ D|ψi(r) 6= 0}. (42)

See for example [30,68,69].
3. Since the open cover Ui, i ∈ I, is locally finite, at each point r ∈ D, only a finite number

of Ui will intersect r.
4. Let the set of indices of those intersecting Uis be Ir. Then we require that

∑
i∈Ir

ψi(r) = 1, (43)

where the sum is always convergent because the set Ir is finite.

Remark 9. It can be shown that the sets

φ−1
i (Ba/3), i ∈ I, (44)

where Ba/3 is a standard Euclidean ball centered at the origin with radius a/3, already
cover D [57]. Moreover, the closure

cl{φ−1
i (Ba/3)} (45)

may be taken to constitute the support of ψi(r), while [26,57,70]

r /∈ supp{ψi(r)} =⇒ ψi(r) = 0. (46)

The partition of unity functions ψi can be computationally constructed using standard
methods, most prominently the bump functions, see [57,71] for details.
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The motivation behind the deployment of the partition of unity technique and how it
immediately arises in connection with our fundamental EM nonlocal structure should now
be clear. We have found that the following three-step process is natural:

1. Initially, the physics-based collection of sets

V(D) = {Vr, r ∈ D},

for example, the EM nonlocal microdomain structure based on each point r in the
nonlocal metamaterial D, is obtained using a suitable physical microscopic theory or
some other procedure.17

2. Introduce a differential atlas
(Ui, φi(r)), i ∈ I,

on the smooth manifold D subordinated to V(D) and representing the nonlocal
material domain under consideration.

3. Finally, the same atlas is linked to a set of functions ψi(r) (partition of unity) that
can be recruited as “topological bases” in order to expand any differentiable field
excitation function into sum of individual sub-fields defined on open subsets of the
material domain D (see Section 5.3).

The three-step process outlined above is summarized in Figure 3, illustrating how to progres-
sively construct micro-coordinate systems allowing one to see through increasingly smaller
spatial scales in the fundamental characterization of electromagnetic material nonlocality.

Nonlocal
microdomain

structure
V(D)

Differential
atlas φi :
Ui → R3

Partition
of unity

ψi : Ui → R

Figure 3. The three-step process of constructing micro-coordinate representations of material non-
locality starting from the nonlocal microdomain set and ending with the partition of unity on the
material continuum’s superspace.

The key idea to be developed next is that both the base manifold D and the nonlocal
physics-based microdomains Vr are described locally (in the topological sense18) by the
same collection of charts, namely (Ui, φi(r)), i ∈ I. This will permit us to construct a direct
unified description of both the base manifold D and its fibers, i.e., the linear topological
function spaces F (Vr), the latter being the model of the physical electromagnetic fields
exciting the nonlocal material D.

The construction of a fiber bundle superspace for nonlocal electromagnetic materials
will be completed in two steps:

• Step I: Construct a tailored fiber bundle based on the partition of unity charts (Ui, φi(r))
introduced above.

• Step II: the original physical structure (31) is recovered by gluing together various
sub-microdomain Ui ⊆ Vr of each EM nonlocal microdomain Vr.

We start with Step I, while we leave the more complicated Step II to Section 5.3.
Consider the (Ui, φi(r)), i ∈ I, as our atlas on the three-manifold D introduced in

Section 5.1. At each point r ∈ Ui, we attach a linear topological space F (Ui) defined as the
Sobolev space

Wp,2(Ui), p ≥ 1, (47)

of functions on the open set Ui, i.e., we write

∀ i ∈ I, F (Ui) := {ψi(r)F(r), r ∈ Ui, is in the Sobolev space Wp,2(Ui)}, (48)

where F(r) is a suitable Cp,2 vector field.
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Remark 10 (Sobolev Spaces). For the precise technical definition of the infinite-dimensional
Sobolev function space Wp,2(Ui), see [64,65]. Appendix A.5 provides some additional
information on the literature. Section 4.3 gives a simplified intuitive definition of the
physics-based function space Fi, in particular see Remark 8. The intricate details of the
theory of such Sobolev function spaces will not be needed for our immediate purposes in
what follows (compare with Remark 11).

Physically, the multiplication of the global excitation field F(r) by ψi(r) in constructions
like (48) above and (50) below effectively “localizes” (in the topological sense) the field
into a smaller compact subdomain, namely the support of the “topological localization
basis function” ψi(r) itself. Moreover, because the Cp-functions ψi(r) have compact supports
satisfying the inclusion restrictions

supp{ψi} ⊂ Ui, i ∈ I, (49)

it follows that F (Ui) is effectively a local Sobolev space on Ui [66]. Alternatively, it is also
possible to seek different constructions, such as the one captured by the following remark.

Remark 11. We may define a less complicated function space on Ui using the following
construction:

∀ i ∈ I, F ′(Ui) := {ψi(r)F(r), r ∈ Ui, is an element of a Cpsup-norm function space}, (50)

where the Cp-sup-norm is defined by

||ψi(r)F(r)|| := supr∈supp{ψi}[ψi(r)F(r)]. (51)

In the case of F ′(Ui), one may further consider only Cp-vector excitation fields F(r). A
choice of which linear function space to work with depends on the particular application
under consideration. In what follows, we further simplify our notation by writing Fi
instead of F (Ui) whenever the partition of unity’s differential atlas’ coordinate patches Ui
are used.

5.3. Direct Construction of Bundle Homomorphism as Generalization of Linear Operators in
Electromagnetic Theory

We now demonstrate how the material constitutive relations in conventional (local)
continuum theory may be absorbed into a new structure, the bundle homomorphism, which
is the most natural generalization of linear operators in local electromagnetism taking us
into the enlarged stage of the generic nonlocal medium’s superspace formalism. In the
future, these bundle homomorphisms may be discretized using topological numerical
methods, e.g., see [72]. In what follows, we focus on the rigorous exact construction using
the technique of partition of unity, which allows computations going from local to global
domains.19

5.3.1. The Basic Definition of the Nonlocal Material, (or Continuum, Metamaterial (MTM),
etc.), Banach (Fiber) Bundle Superspace

The initial step in formally defining the proposed nonlocal MTM bundle superspace is
the following disjoint union construction:

Definition 2 (Preliminary Definition of the Bundle Superspace). Let the material contin-
uum’s superspace be denoted byM, which is also called the total bundle space. We define
this space as the disjoint union of all spaces Fi of the form:

M := { (r,Fi)| ∀i ∈ I, r ∈ Ui ⊂ D}. (52)
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Associated withM is a surjective map

p :M→ D, (53)

which “projects” the fiber onto its corresponding point in the base manifold D, i.e.,
p((r,F )) := r.

Remark 12 (Other constructions of bundle spaces). In mainstream literature, the fiber
bundle concept is often approached in a manner slightly differently from that of Definition 2.
Indeed, the fiber ofM at r ∈ D is defined as the set p−1(r), but provided the map p is already
given as part of the bundle’s initial data. However, in this paper, we construct the bundle
data starting with the physics-based topological structure (31).

Remark 13 (Fiber Projections and Local Isomorphisms). The map p is called the projection
of the vector bundleM onto its base space D. Moreover, from now on, we will also use the
notation Fr to denote the fiber p−1(r). By construction, it should be clear that

∀i ∈ I : p−1(r) = Fi ⇐⇒ r ∈ Ui. (54)

From the topological viewpoint, the material continuum superspaceM manifests itself
locally as a product space in the form

Ui ×Fi. (55)

In other words, the map p should behave locally as a conventional projection operator; i.e.,
in a local domain Ui, the material’s total bundle spaceM is isomorphic to Ui ×Fi, and
p(Ui ×Fi) should be isomorphic to Ui. Symbolically, we have:

M∼=locally Ui ×Fi, p(Ui ×Fi) ∼=locally Ui, (56)

for all i ∈ I, and where ∼=locally means local topological (in this case also smooth) isomor-
phism.20

In order to complete the specification of the nonlocal material continuum superspace,
we next construct the linear function space Xi defined by

∀ i ∈ I, Xi :=
{

ψi

[
φ−1

i (x)
]
F
[
φ−1

i (x)
]

is an element of a Sobolev space for all x ∈ Ba

}
, (57)

which is the Sobolev space of Wp,2(Ba) functions on the Euclidean 3-ball Ba. Here, each
function is defined with respect to the local coordinates

x := φ−1(r), r ∈ Ui. (58)

In fact, it should be straightforward to deduce from the above that there exists maps

τi : p−1(Ui)→ Ui × Xi, (59)

for all i ∈ I, that are isomorphisms (diffeomorphism in our case), where such diffeomorphism
may be expressed by

∀i ∈ I : p−1(Ui) ∼= Ui ×Fi. (60)

We also add that the fact of (59) actually playing the role of such an isomorphism would
naturally follow from the respective definitions of the spaces Fi and Xi, as specified by (48)
and (57), and from the proposition that each φi is a diffeomorphism from Ui into R3 (or,
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equivalently, to the unit 3-ball Ba with radius a instead of R3.) Furthermore, note that by
construction the diffeomorphism τi satisfies

proj1 ◦ τi = p, (61)

where proj1 is the standard projection map defined by proj1(x, y) := x. Finally, if we restrict
τi to p−1(r), the resulting map

τi|p−1(r) : p−1(r)→ {r} × Xi (62)

is a (linear) topological vector space isomorphism from Fr to Xi; namely, we have

∀i ∈ I, r ∈ Ui : Fr ∼= Xi. (63)

Remark 14. The charts (Ui, τi) are called trivialization covering of the vector bundle M.
They provide a coordinate representation of local patches of the vector bundle. (The
global topology of the bundle, however, is rarely trivial [62].) Since here all maps are
Cp smooth, τi are also called smooth trivialization maps. The complete derivations of the
diffeomorphism (60) and the topological vector space isomorphism (63) are straightforward,
but lengthy, and the full proofs are omitted.

Consider now two patches Ui and Uj with Ui ∩Uj 6= ∅. By restricting τi and τj to
Ui ∩Uj, two diffeomorphisms

τi : p−1(Ui ∩Uj)→ (Ui ∩Uj)× Xi,

τj : p−1(Ui ∩Uj)→ (Ui ∩Uj)× Xj,
(64)

are obtained, which together imply in turn that

(Ui ∩Uj)× Xi
∼= (Ui ∩Uj)× Xj, (65)

or, equivalently, the following expected Banach space isomorphism:

Xi
∼= Xj, (66)

In particular, it can be shown that the composition map

τj ◦ τ−1
i : (Ui ∩Uj)× Xi → (Ui ∩Uj)× Xj (67)

possesses the simple form
τj ◦ τ−1

i (r, F) = (r, g(r)F), (68)

with the following formal structure:

∀ r ∈ Ui ∩Uj, F ∈ Xi, ∃g ∈ L(Xi, Xj), (69)

where the abstract vector linear space

L(Xi, Xj) (70)

is defined as the space of all linear operators [26]

g : Xi → Xj (71)

on Banach vector spaces. In particular, g(r) is a Cp-Banach space isomorphism.
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Remark 15. In the mathematical literature, the smooth maps τj ◦ τ−1
i are called the vector

bundle transition maps. They are essential technical tools for computing global data by
starting from local data then gluing them together. For example, they will be used in
Sections 5.3.2 and 5.3.3 as part of the toolbox needed in the process of generalizing local
information into global domains.

We have now succeeded in directly constructing a specialized smooth Banach vector
bundle (M,D, τ, p) consisting of the nonlocal material continuum’s total fiber bundle
spaceM, the material domain’s base three-manifold D, a set of smooth trivialization charts
τi, i ∈ I, and a projection map p. The base manifolds D itself is described by a differential
atlas (Ui, φi), also associated with the partition of unity (Ui, ψi), i ∈ I as per our discussion
in Section 5.2 above. This incredible increase in the complexity of the mathematical space of
nonlocal continuum field theory; that is, the transition from spacetime (or space–frequency)
as the configuration space to a a larger superspace, here the fiber bundle space (which might
be time- or frequency-dependent), is a direct expression of the very significant complexity
and richness of the physics of nonlocal field theory in general.

As will be seen in the next Section 5.3.2, it is possible to demonstrate yet another
remarkable departure from conventional theory where the concept of linear operator, as such,
a fundamental structural object in the mathematical and computational physics of local
continuum field theories [65], is found to be generalizable to the concept of homomorphism,
which is essentially topological in nature.

5.3.2. The Nonlocal Material Continuum Fiber Bundle Homomorphism

At this point, we need to describe how the evaluation process of the response field (33)
may be formulated within the new enlarged framework of the fibered superspace M.
The most obvious method is to introduce a new vector bundle with the base space being
the same base space D, but with the fibers now taken as the complex Hilbert space C3.
This is a well-known vector bundle, which we denote by R, and dub the range vector
bundle. Formally, the structure of this vector bundle is expressed by the ordered quadruple
(R,D, τ′, p′), where τ′ and p′ are the range bundleR’s smooth trivialization and projection
maps, respectively. On the other hand, the source vector bundle is taken asM.

As a preparation for introducing the concept of the nonlocal continuum homomor-
phism, let us recap and comment on the overall physical process of exciting a material
nonlocal continuous domain D as follows:

1. The continuum itself is mathematically modeled as a Banach bundle superspaceM
instead of its conventional differential manifold representation D. The response of
the medium is to be sought at some point r ∈ D.

2. The bundle superspaceM encompasses an additional structure compared toD, namely
a distinct copy of a linear function space attached at each point r ∈ D. This is nothing
but the fiber p−1(r), which is a Banach space of functions defined on the region Ui.
This function space can be intuitively understood as a rigorous and exact model of
the excitation field F(r) when the latter is restricted to (topologically localized at) the
physics-based nonlocal domain Ui.

3. It should be noted that in local continuum field theory, e.g., conventional electromag-
netism in normal temporally dispersive media, each one of the subdomains Ui, i ∈ I,
is essentially one point r ∈ D. Therefore, in the case of local continua, the excitation
field F is there found to be preferably defined as acting on the conventional space D
instead of being a section of a Banach bundle superspaceM.

4. A vector bundle homomorphism (to be formalized in Definition 3) will map one
element of this fiber function space, namely, the particular excitation field F(r), r ∈ Ui,
to its value in the range vector bundleR. For the case of electromagnetic field theory,
the latter may be taken as a vector space fiber isomorphic to C3 with a copy of this
fiber attached to each r ∈ D.
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We turn now to a precise definition for convenient maps between bundle superspaces.
Formally, we may directly use the standard concept of homomorphism in fiber bundle
theory, adapted to our purposes in the following manner [57,68]:

Definition 3 (Bundle homomorphism). A smooth bundle homomorphism over a com-
mon base space D shared between the two vector bundles M and R is defined by the
(smooth) map:

L :M→R (72)

satisfying p′ ◦ L = p. Moreover, the restriction of L to each fiber p−1(r) induces a linear
operator on the corresponding vector space of that fiber. In effect, the following diagram

M R

D
p

L

p′

is commutative.

Remark 16. Because the nonlocal material continuum’s superspaceM and its range fiber
bundleR both share an identical base manifold D, the action of the homomorphism L as
a bundle map is effectively reduced to how it interacts with each fiber p−1(r) by acting
on the latter as a standard vector space linear operator. Therefore, a large portion of
the conventional linear algebra and computational methods extensively deployed in the
mathematical and numerical apparatus of local continuum field theory, such as nonlinear
functional analysis [65], Hilbert space methods [64], and the Finite Element Method [75],
may be reused as “sub-algorithms” within the larger, more general formalism of nonlocal
continuum field theory proposed in this paper.

Now, since the Banach space Xi is isomorphic to p−1(r), we may assemble the homo-
morphism L by specifying its local expression in each topological subdomain Ui ⊂ D of
the open cover {Ui, i ∈ I}. In particular, we define the local action using the source and
range bundles’ trivialization maps τi and τ′i by the intuitively obvious formula:

τ′i ◦ Lω ◦ τ−1
i : Ui × Xi → Ui ×C3, (73)

with
τ′i ◦ Lω ◦ τ−1

i := (r,Li,ωF), F ∈ Xi, (74)

where
Li,ω : Xi → C3 (75)

is the linear operator defined by

Li,ω(∗) =
∫

Ui

d3r′ K(r, r′; ω) · (∗), (76)

in which ‘*’ stands for an element of the smooth Banach function space Xi.
Therefore, within the frequency domain formulation of this paper, the operator L will

leave every point in the base space D unchanged while mapping each smooth function
on Ui (component of the total electromagnetic excitation field, see below) into its complex
vector value in C3 at r ∈ Ui. Physically, Li models a (topologically) localized “piece” of the
global electromagnetic material operator mapping excitation fields F(r) to response fields
R(r), where the entire physics here is restricted to the physics-based nonlocal subdomain
Ui. The global operator itself is assembled by gluing together these small pieces using the
partition of unity technique, as we endeavor to show next.
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5.3.3. Computing Global Data Starting from Local Data

The final step is tying up together the fundamental source Banach bundle superspace
M, range bundle R and the nonlocal microdomain physics space (31). The essential
ingredients of the physics of nonlocal field–matter interaction are encoded in the geometrical
construction of the collection of microdomains V(D) = {Vr, r ∈ D}, and the excitation
fields F(r) defined on them, i.e., the sets V(D) and the (excitation) function spaces G(D)
combined together in one space, the superspaceM.

So far, the vector bundle homomorphism L introduced above (Definition 3) can
handle excitation fields supported on the open sets Ui, i ∈ I. However, the latter sets are
mathematical fundamental building blocks, or “set-theoretic atoms”, deployed in order
to formally construct the source vector bundle superspaceM. The question that will be
addressed presently is the following one:

How can we extend the description of the nonlocal continuum’s response operators
starting from excitation fields defined locally to excitation fields applied on the entire
physical cluster of nonlocal microdomains {Vr, r ∈ D)?

As mentioned before, it is the partition of unity (Ui, ψi), i ∈ I, what will make this expansion
of the topological formulation technically feasible.

To see this, let us consider an electromagnetic field F(r) interacting with a nonlocal
medium extended over the manifold D. Our goal is to compute the response field R(r);
that is, at point r. Let us recall what the fundamental idea of EM nonlocality is: in order
to compute the nonlocal material continuum’s response at one point r, one must know
the excitation field in the entirety of an open set Vr. This set Vr is one of these nonlocal mi-
crodomains composing D as per (29). Moreover, such Vr is also a topological neighborhood
of its continuous index point r ∈ D (cf. Section 4.2). However, in general this microdomain
will change depending on the position r. The goal now is to find R(r) using the vector
bundle map L defined by (72) starting from the data:

1. Region Vr;
2. Vector field F(r) acting on Vr.

To accomplish this, we exploit the properties of the partition of unity functions ψi (Lemma 1)
for expanding the excitation field F(r) over all patches Ui covering Vr, resulting in

F(r′; ω) = ∑
i∈Ir

ψi(r′)Fi(r′; ω), (77)

where (43) was used. The truncated function Fi is equal to F(r) only if r ∈ Ui and zero
elsewhere, i.e., we have

Fi(r′; ω) :=
{

F(r′; ω), r ∈ Ui,
0, r /∈ Ui.

(78)

Recall that according to Lemma 1, the set Ir is defined as the collection of indices i ∈ I of all
Ui having the point r in their common set intersection; by construction, this index set Ir is
always finite.

The main idea behind our construction should now become clear: while each truncated
sub-field Fi fails to be differentiable (it is not even continuous), the multiplication by ψi(r)
fixes this problem. In fact, each function

ψi(r′)Fi(r′; ω) (79)

is a smooth component of the total excitation field F with support fully contained inside the
coordinate patch Ui; that is, we have

supp{Fi} ⊂ Ui. (80)
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Consequently, the vector bundle map constructed in (72) can be applied to each such
component field. From (73)–(75) and (77), the following can be deduced:

R(r; ω) = ∑
i∈Ir

Li,ω [ψi(r′)Fi(r′; ω)]. (81)

Finally, using (76), we arrive at our main superspace map theorem:

Theorem 1 (global superspace bundle map). For the fiber bundle superspaceM of the
nonlocal continuum whose differential manifold representation is D and the nonlocal
continuum response function (tensor) K, the response and excitation fields R and F can be
related to other other via the global bundle (superspace) map:

R(r; ω) = ∑
i∈Ir

∫
Ui

d3r′ K(r, r′; ω) · ψi(r′)Fi(r′; ω), (82)

where ψi, i ∈ I, are the partition of unity basis functions subordinated to the D-atlas
(Ui, φi), i ∈ I.

Physically, Theorem 1 states that the nonlocal continuum’s source bundle (superspace)
M, the range bundle R, and the nonlocal response superspace map L, together, supply
the fundamental formal scaffold upon which the material domain’s response to generic
excitation field, when the latter field operates on arbitrary configurations of nonlocality
microdomain, can be constructed. By aggregating all of those physics-based microdomains
constituting the topological microstructure of nonlocal processes in material continua, the
main field-theoretic structures of the medium may be couched, computed and reformulated
in the richer language of this more general superspace framework belonging to the Banach
fiber bundle M instead of the position space D of conventional spacetime extensively
used in local field theories. At this stage of our formulation, the vector bundle formalism
of nonlocality becomes essentially complete, where the connection between the purely
mathematical fiber superspace and the physical microdomain structures is secured by
Theorem 1, especially the Formula (82).

6. Interlude: The Nonlocal Continuum Fiber Bundle Superspace
Algorithm—Summary and Transition to Applications

We review and summarize here the salient features of the fiber bundle superspace
construction, carefully developed above, by explicitly outlining the algorithm implicit in
the various detailed derivations of the previous sections. Our main objective in this short
transitional section is to highlight again the fact, already discussed above, which is that our
superspace formalism is based on estimating the physics-based nonlocality microdomain
set V(D) = {Vr, r ∈ D} associated with the nonlocal continuum D. These data can be
obtained only through physical theory and/or measurement. However, once available, the
construction of the fibered space proceeds in a computationally well-determined manner.
We first summarize the algorithm then provide few additional preparatory remarks before
moving to the more detailed and concrete computational examples of Section 7.

In Figure 4, we show two distinct points r1, r2 ∈ D and their associated microdomains
Vr1 and Vr2 , respectively. From the locally finite subcover {Ui}i∈I subordinated to V(D) =
{Vr, r ∈ D} we highlight two sets

Ui ⊆ Vr1 , Uj ⊆ Vr2 , (83)

where in general it is allowed that

Vr1 ∩Vr2 6= ∅, Ui ∩Uj 6= ∅, (84)
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as could be inferred from a glance at the Figure itself. For the partition of unity (Ui, ψi)i∈I ,
which is subordinated to the open cover {Ui}i∈I , we also highlight the two compact sets

Si := supp{ψi(r)}, Si := supp{ψi(r)}, (85)

forming the support of the corresponding partition of unity functions.

Figure 4. An example illustrating the various topological microstructures involved in modeling
a generic nonlocal material. The microdomains Vr1 , Vr2 ∈ V(D) are open sets and belong to the
nonlocal microstructure of the MTM D. The open sets Ui and Uj are the corresponding coordinate
sets and partition of unity functions {ψi}i∈I ’s domains subordinated to Vr1 and Vr2 , respectively. The
compact sets Si and Sj are defined by Si := supp{ψi(r)} and Si := supp{ψi(r)}.

The nonlocal material continuum’s superspace algorithm itself is summarized in
Algorithm 1. Once the microdomain dataset V(D) is given, the construction proceeds
automatically using the partition of unity basis functions (Ui, ψi)i∈I . The latter may be com-
puted directly in terms of the standard bump functions, see [57,68,71], and also Remark 9.

Because of the fundamental importance of the physics-based nonlocality microdomain
structure V(D), Section 7 will be entirely devoted to the explication of a quantitative
practical example illustrating the origin of these microdomains in the concrete setting of a
real-life advanced material system, including how the microdomain topology itself may be
estimated in practice. In the subsequent sections Section 8 and Appendixes A.3 and A.11,
we also explore the usefulness of the superspace homomorphism construction developed
in Section 5 for reformulating boundary-value problems in the nonlocal continuum field
theories of mathematical physics, besides also providing some hints and additional remarks
on other current and future applications.

Algorithm 1 The nonlocal continuum fiber bundle algorithm.

1. Start with a physics-based microdomain structure V(D) = {Vr, r ∈ D}.
2. The open cover V(D) of D induces a locally finite subcover {Ui}i∈I subordinated to V(D). It is then automatically

equipped with the differential structure of the manifold D, generating the differential atlas (Ui, φi)i∈I .
3. The subcover {Ui}i∈I is equipped with a partition of unity function set {ψi}i∈I , producing the partition of unity

(Ui, ψi)i∈I .
4. Generate an appropriate Banach/Sobolev/Hilbert space Xi attached to each point r ∈ D using constructions, such

as (57).
5. Declare D the base manifold of the fiber bundle. Construct the bundle spaceM using

M := {(r, Xi)|∀i ∈ I, r ∈ Ui ⊂ D}. (86)

6. Construct the projection map p :M→ D through the operation (r, Xi)→ r.
7. Use (68) to transform vector from one fiber (function) space to another.

7. Applications to Advanced Materials: Nonlocal Inhomogeneous Semiconductors
7.1. Introduction

A concrete example involving spatially-dispersive isotropic media is considered in this
Section, where the intention is to provide an outline of how the intricate fiber bundle type
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topological fine structure (the topology of microdomains attached to each point explored
above as developed in detail in Section 5 and summarized in Section 6) may be estimated in
actual practice. The contents of the example given below are rather detailed, and that is for
two main reasons. First, in spite of the fact that nonlocal metamaterials are not proposed
here for the first time, the author’s experience indicates that there is still a general lack of
appreciation of the subject in the large community, where most research on “metamaterials”
concentrate on temporally-dispersive media. Because of that, we provide a very detailed
example, including reintroducing some of the well-known physics of semiconductors (in
some of the appendices) in order to make the presentation complete and self sufficient.
Second, the detailed example to be found below is itself novel. The estimation of the
microdomain nonlocal structure in inhomogeneous semiconductors seems to be achieved
here for the first time. Therefore, it is a topic that could be treated not merely as an
example illustrating the more general and abstract superspace theory developed in the
earlier sections, but possibly as a stand-alone contribution to semiconductor materials and
their physics. However, the main intention behind the inclusion of this highly-technical
physical example continues to be the illustration of the fundamental superspace formalism.
More detailed examinations of nonlocality in semiconductor metamaterials belong to a
more specialized literature than the current article, whose main topic is the mathematical
physics of nonlocal continuum field theories.

7.2. A Topological Coarse-Grained Model for Inhomogeneous Nonlocal Material Domains

A review of the homogeneous medium model of spatial dispersion is provided in
Appendix A.6. Below, we describe a method that can help transitioning from the generic
form (A3), valid for homogeneous nonlocal domains, to the inhomogeneous medium situa-
tion developed throughout this paper where nonlocality cannot be captured by a simple
global dependence of the dielectric function on k. However, instead of working with the
full nonlocal function K(r, r′), an alternative simplified model is proposed which we entitle
the topological coarse-grained model. The idea is as follows. Consider a global material domain
D, which is an open three-manifold, say an open subset of R3 that may be either simply
connected or disconnected.21 The material is nonlocal and inhomogeneous. At each point
r ∈ D, a microdomain, i.e., and open set Vr ⊂ D, is assigned. The medium is locally isotropic
and homogeneous in the sense that within each microdomain we can describe the response
to an external field excitation E by means of a relation similar to (34), namely:

D(r; ω) = ε0

∫
Vr

d3r′ K(r− r′; ω) · E(r′; ω). (87)

That is, the only difference between (87) and (34) is that, in the former, we use the correct
form of homogeneous nonlocality K(r − r′; ω) instead of K(r, r′; ω). Moreover, we have
put the proper response and excitation fields D(r) and E(r) and inserted the free space
permittivity ε0.

Fundamentally speaking, each material microdomain is now described by a spatially-
dispersive model of the form (87). The “topological atoms” of nonlocality, namely the sets
Vr, spanned by the continuous index r ∈ D, are each a spatially-dispersive “medium” on
its own. As will be seen later in this section, the idea of the locally–spatially-dispersive
nonlocal semiconductor system is to build an inhomogeneous metamaterial that goes beyond
spatial dispersion by assembling a more general form of nonlocality using the spatially-
dispersive material “atoms” Vr. In such systems, the engineered metamaterial is only
locally spatial dispersive. On the other hand, at a larger spatial scale it does not follow the
standard spatial dispersion law, but rather appears to belong to a more complicated class
of nonlocal continua which, we believe, are best mathematically described using the fiber
bundle superspace formalism of Section 5.

It may be seen then that as a topological coarse-grained process, the original inho-
mogeneous nonlocal medium, ultimately described by the material tensor K(r, r′; ω), is
sub-decomposable into “small topological cells”, the microdomains Vr, r ∈ D, such that
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each “topological cell” or “atom” would in itself behave like a homogeneous nonlocal
isotropic subdomain, hence may be described by (87), where the material tensor in that
case takes the (topologically) locally correct form (A3). This can be considered a quasi-local
model (also sometimes called locally spatially dispersive), where the global domain, electro-
magnetically speaking, is nonlocal, while, on the other hand, seen at the scale of a small
region (cells) it would more or less behave like a typical electromagnetic local medium, see,
for example, the discussion of some special cases of complex nonlocal crystals in [76].

Remark 17. We remind the reader again about the subtle difference between mathematical
nonlocality and physics-based nonlocality, a distinction at the conceptual level that will
become quite visible throughout this section. The term local is used in this paper in two
senses. The first sense is the physical one in which local is set against physical nonlocality,
which includes spatial dispersion (EM local/nonlocal.) On the other hand, in topology, a
local property is that which holds in a small open neighborhood of a given point, in our
case the topological microdomain Vr. The distinction between the two technical senses of
the same term should always be clear from the context. In the few cases when there is a
risk of confusion, we say topologically local to emphasize the second meaning above from
EM local. (see also Remark 3 and Section 3.3).

Our key objective now is to first develop a simple estimation of the “size” of the
nonlocal microdomains Vr. To do so, some metric methods must be introduced. An
attractive approach would be to approximate the topology of the nonlocal metamaterial
system using arrays of various spheres, and then use this array in order to obtain the
topological content of the microdomain structure described in Section 4.

Let us illustrate the main ideas with a simple example first. Consider a point r1, which
provides a label for one of the micro cells, we may deploy for creating a coarse-grained
model for the inhomogeneous medium. To be more specific, let us construct the topological
open ball defined by

B(r, ar) :=
{

r ∈ R3∣∣ d(r, r′) < ar

}
, (88)

where ar ∈ R+ is a number quantifying the smallness of this “nonlocality ball” centered
at r′, while d is the distance metric. The number ar will be determined later based on the
actual physics of the problem.

Next, the fine-grained topological microdomain structure can be constructed by aggre-
gating all these balls in order to produce a coarse-grained of the overall inhomogeneous
nonlocal material domain D. The choice of the shape of the microdomain Vr as a sphere
B(r, ar) defined by (88) is justified by our earlier assumption that the material is (topolog-
ically) locally isotropic. However, note that globally electromagnetic processes need not
behave as they do in isotropic domains.

In Figure 5, a diagrammatic depiction of the two local and global processes is provided
where we illustrate:

1. The proposed topological coarse-grained model utilizing the set of balls Vr, r ∈ D
(left).

2. The conventional paradigm where the unit cells are non-overlapping (right).

As can be seen from the diagram, in the topological approach, there exists an open set
(microdomain) Vr attached to each point r ∈ D such that nearby microdomains may overlap
with each other; i.e., in such case the set

∪r1,r2∈D [Vr1 ∩Vr2 ] (89)

is not necessarily empty. On the other hand, the conventional approach to coarse-grained,
depicted in Figure 5 (right), involves subdomains like V′r1

and V′r2
that are non-overlapping,

leading to a grid-like structures or “tile covering up” of the material domain D where in
general no holes are left.
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In both approaches, it should be noted, we find that each type of the two subdomains,
whether Vr or V′r , was already assumed to be homogeneous. The disadvantage of the
conventional approach is that any abrupt change in the electromagnetic properties of the
material, experienced when transitioning between two neighboring subdomains through
their interface region, often requires imposing a suitable “boundary condition” at this
geometric interface in order to obtain an accurate computational assessment of the physics.
On the other hand, this problem does not exist in the topological approach, illustrated in
Figure 5 (left), because the microdomains are allowed to overlap, where common regions
between overlapping microdomains are treated correctly using the partition of unity basis
functions as described in Section 5.3.

Figure 5. Topological coarse-grained model for an inhomogeneous nonlocal material domain D (left)
in comparison with a conventional coarse-grained process (right). The topological microdomains
constitute an open cover of the domain in the sense that D =

⋃
r∈D Vr, which is the obvious general-

ization of (32). Note how the topological approach allows overlapping microdomains, e.g., between
microdomains Vr2 and Vr3 . The technique of the partition of unity will take care of electromagnetic
data “repeated” in such regions of overlap by assigning proper weights that always sum to unity at
each point in r ∈ D.

7.3. Resonant Nonlocal Semiconductor Domains and the Nonlocal Exciton-Polariton Model

A concrete application of the topological coarse-grained algorithm proposed in
Section 7.2 is now in order. The specific nonlocal metamaterial is a semiconductor with
dielectric function exhibiting a single strong resonant exciton transition at the frequency
ω = ωe. We first examine in detail the nonlocal exciton–polariton model to be used below.
For a review on the physics of exciton–polariton interactions in solids, see Appendix A.7.

A polariton is simply a “photon living inside a dielectric medium”. The quantum of
an electromagnetic wave inside a dielectric domain is often called polariton instead of
photons (sometimes polaritons are called “dressed photons”). An exciton–polariton is a
polariton coupled with a mechanical exciton, e.g., an electron-hole pair. The latter should be
distinguished from other types of polaritons such as phonon-polaritons defined as polaritons
coupled with phonons, the quantum of lattice vibrations [37].

It is well known from quantum theory that near resonance, the dielectric function of
such semiconductor materials may be approximated by the formula [16,77–80]:

ε(k, ω) = ε0 +
χ

k2 − γ2(ω)
, (90)

where
χ = 4π

αm?
e ωe

h̄
, γ2(ω) =

m?
e

h̄ωe

(
ω2 −ω2

e + iωΓ
)

. (91)

Here, h̄ is the reduced Planck constant, while α serves as the oscillator strength.22 The
effective mass of the exciton is denoted by m?

e .23. On the other hand, the exciton lifetime τe is
defined by

τe :=
2π

Γ
, (92)
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hence, Γ can be thought of as the exciton decay or relaxation rate. We emphasize that any
dependence of Γ and the oscillator strength α on k is ignored in the excitonic model (90).

In Appendix A.7, the physical origin of nonlocality in the semiconductor is revisited,
where it is traced to the quantum mechanical energy–momentum relations of exciton–
polaritons. In order to actually see significant nonlocal physics taking place in the excitonic
material system described by (90), the following sufficient condition may be imposed:

Γ� h̄k2

2m∗e
. (93)

It can be shown that under such Γ-bound, the kinetic energy term in (A12) can induce
significant nonlocal effects in (90). One way to realize nonlocal (spatially dispersive)
semiconducting metamaterials is to operate with intrinsic semiconductors satisfying (93)
by keeping the temperature low and the material pure (undoped) [83].

The model described by (90) and (91) can be viewed as a natural generalization
of the local Lorentz model widely utilized to model temporal dispersion in solids and
plasma [77,79]. It represents the simplest nonlocal resonant model with a single strong
resonance at a characteristic frequency, here ω = ωe. All other off-resonance excitonic
transitions are gathered into the background dielectric constant ε0 for simplicity. For
frequencies well below ω � ωe, the exciton–polariton behaves essentially like a photon
propagating in a medium with background permittivity ε0. For ω � ωe, we again recover
photons but usually with a background described by ε∞, the high-frequency limit of
permittivity. In general, the difference between the static and high-frequency permittivities
is quite small in the sense that

|ε0 − ε∞| � ε0. (94)

Hence, for simplicity, in this example the two permittivities are treated as identical (ε0 ' ε∞)
since we are interested in the EM response around a single excitonic resonance while in
fact the oscillator strength α in (90) is small. One consequence of this assumption is that
the splitting between longitudinal and transverse modes can be neglected. Indeed, since
the longitudinal and transverse frequencies ωL and ωT are related to each other via the
relation [16]

ω2
L

ω2
T
=

ε0

ε∞
, (95)

then the assumption (94) is equivalent to neglecting the longitudinal–transverse splitting

ωL,T := |ωL −ωT| (96)

in the sense that
ωL,T � ωT. (97)

A consequence of this is the near equality of the longitudinal and transverse frequencies,
which allows us to considerably simplify the mathematical treatment.24 In addition, as-
suming that the oscillator strength α in (90) is nearly the same for both the longitudinal
and transverse part of the response function, then it follows that we need only work with
a single scalar response function, namely the form (90) itself instead of the more general
tensorial Formula (A3).25

Nonlocal effects associated with the model (90) emerge from the quantum mechan-
ical nature of exciton–polariton interactions and the need to enforce conservation of en-
ergy/momentum as discussed in Appendix A.7, leading to the strong dependence on k
observed in (90). There is yet another physical explanation of nonlocality. Within the regime
of the large exciton mass limit

m∗e → ∞, (98)

the kinetic energy term in (A12) drops out and the excitonic dielectric function (90) becomes
local. This is why spatial dispersion is sometimes referred to as the “finite-mass model”,
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with some suggestions that the origin of nonlocality in this case is the inertial effects of the
exciton [79].26 In what follows, we assume that the effective mass of the exciton is always
finite and positive:

0 < m?
e < ∞. (99)

However, it should be noted that since excitons are collective excitations of solids [84,85],
they may have negative mass [86]. While this will not be pursued here, the negativity of
the excitonic mass may be exploited in order to further design and control the EM behavior
of nonlocal MTMs constructed using excitonic semiconductors.

In order to gain a deeper insight into the various resonance structures of the exciton–
polariton response function (90), we rewrite it in the equivalent form

ε(k, ω) = ε0 +
χ/k2

e
k2/k2

e + 1−ω2/ω2
e − iωΓ/ω2

e
, (100)

where

ke :=
2π

λe
=

√
m?

e ωe

h̄
(101)

is called the exciton wave number. The wavelength λe is a fundamental resonance spatial
scale, which we will refer to as the exciton wavelength and is given by

λe =
1

2π

√
h̄

m?
e ωe

. (102)

For example, with h̄ωe = 2.5 eV and m?
e = 0.9mel, where mel is the electron mass, the

exciton wavelength λe is around 0.0293 nm, which is the same order of magnitude of
interatomic spacing. The excitation field wavelength λ is at least one order of magnitude
larger. Later we will show typical values for the topological microdomain radius ar.

There are several fundamental spatial and temporal scales involved in the process
of describing the generic nonlocal metamaterial domain D. The excitation field E(r) itself
introduces its own temporal excitation period

T :=
2π

ω
, (103)

in addition to a purely spatial scale (wavelength) measured by the formula

λ :=
2π

k
. (104)

On the other hand, the excitonic transition as such is associated with the fundamental
(temporal) transition period

Te :=
2π

ωe
, (105)

while a fundamental spatial scale

λe :=
2π

ke
(106)

can be unambiguously linked to the exciton at the same time. Table 1 gives a summary of
all these parameters with their meaning explicitly stated. Moreover, it will be demonstrated
later that the radius of a topological microdomain Vr, which is based at a generic position
r ∈ D, can be given by a special Formula (120). Nonlocality arises from the delicate
interplay between all these different spatial and temporal scales. In what follows, we
will emphasize their relative roles in determining the rich nonlocal microstructure of the
material domain, while introducing quantitative calculations.



Foundations 2022, 2 54

Table 1. A summary of the various spatial and temporal scales involved in understanding and
designing generic nonlocal metamaterials with exciton–polariton resonance-type of nonlocality.

Scale Type Meaning Formula

λ spatial excitation field wavelength λ = 2π/k
λe spatial exciton wavelength 2π/ke
ar spatial microdomain radius 1/|γ′′|
T temporal excitation field period 2π/ω
τe temporal exciton lifetime 2π/Γ
Te temporal exciton period 2π/ωe

Armed with this typology of spatial and temporal scales, we are now better positioned
to understand the resonance structure associated with the exciton–polariton nonlocal
dielectric function (100). Figure 6 illustrates two cases of resonance where the value of
the dielectric function is examined with respect to variations in the excitation field wave
number k (or equivalently the wavelength λ). In order to focus on nonlocality, we only
plot the nonlocal part of the total response, which is found here to be proportional to the
dielectric residue

ε(k, ω)− ε0. (107)

As we may infer from Figure 6, a strong resonance takes place when the ratio

k
ke

=
λe

λ
(108)

becomes comparable in magnitude to the quantities remaining in the denominator of (100).
That is, the spatial resonance condition is

k2

k2
e
+ 1− ω2

ω2
e
∼ ωΓ

ω2
e

. (109)

However, the condition (109) holds only if the imaginary part of the denominator of (100),
i.e., the quantity ωΓ/ω2

e , is relatively small. Otherwise, since k and ke are real, the ratio
k/ke can never lead to strong resonance when the relaxation rate Γ is sufficiently large.
Another way to say the same thing is the following: strong spatial resonances, whose main
origin is nonlocality, can take place either when dissipation is small, or when the exciton
lifetime is long enough. The latter scenario of long exciton lifetime is characterized by
the condition

ωΓ
ω2

e
�
∣∣∣∣1− ω2

ω2
e

∣∣∣∣. (110)

In such case, it is evident that the appropriate spatial and temporal sufficient conditions
needed to secure nonlocal resonance are mutually related by the simple relation

k2

k2
e
≈ ω2

ω2
e
− 1. (111)

From this, it can be inferred that nonlocal resonances generally occur only for ω/ωe > 1.
In Figure 6 (left), we can see that for the above-resonance condition of ω/ωe = 1.5, the
nonlocal domain possesses a spatial resonance at roughly λ ≈ λe. On the other hand,
if we operate the material at larger frequency ω/ωe = 2.5, i.e., well above the exciton
transition frequency, then spatial resonances may occur only at values of the excitation field
wavelength λ that are considerably smaller than the exciton wavelength λe.

Finally, we add that when the nonlocal response is plotted as function of ω instead of k,
resonance structures similar to Figure 6 are obtained under the condition (110) since in that
case (111) approximately holds. In general, we would expect that for the best operation of
the designed nonlocal MTM (maximal nonlocal response), the operating frequency should
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be selected to be as close as possible to the exciton transition frequency, i.e., we would like
to maintain the material design condition

ω

ωe
≈ 1, (112)

which is needed since, in general, the excitonic relaxation rate Γ is never exactly zero and,
hence, the condition (110) seldom holds otherwise for all frequencies.

Figure 6. The nonlocal spatial resonance structure of the exciton–polariton dielectric response
as a function of the excitation field wave number k. The normalized response function
(ε(k, ω)− ε0)/(χ/ke)2 is plotted, where the dashed line is the absolute value, the solid line rep-
resents the real part, while the dotted line is the imaginary part. For both figures, Γ/ωe = 0.01.
(Left) ω/ωe = 1.5. (Right) ω/ωe = 2.5.

7.4. Quantitative Estimation of the Electromagnetic Nonlocality Microdomain Structure in the
Exciton-Polariton Dielectric Model

In the spatial domain, the dielectric function can be obtained by computing the inverse
Fourier transform

ε(r− r′; ω) = F−1
k {ε(k, ω), (113)

where F−1
k is the converse of the forward Fourier transformation defined by (17). We will

need the following inverse Fourier transform relation (proved in Appendix A.9):

F−1
k

{
χ

k2 − γ2(ω)

}
=

χ

4π

eγ′′(ω)|r−r′ |e−iγ′(ω)|r−r′ |

|r− r′| , (114)

where

γ′ = −
√

m?
e

2h̄ωe

√
(ω2 −ω2

e) +

√
(ω2 −ω2

e)
2 + (ωΓ)2, (115)

γ′′ = −
√

m?
e

2h̄ωe

√
−(ω2 −ω2

e) +

√
(ω2 −ω2

e)
2 + (ωΓ)2. (116)

Hence, by substituting (100) into (113) and using (114), we arrive at

ε(r− r′; ω) = ε0δ(r− r′)︸ ︷︷ ︸
local response

+ εNL(r− r′; ω).︸ ︷︷ ︸
nonlocal response

(117)

The first terms in the RHS of (117) provides the background local response of the medium.
On the other hand, all nonlocal effects are relegated to the second term in the RHS of (117):

εNL(r− r′; ω) :=
αm?

e ωe

h̄
e−iγ′(ω)|r−r′ |

|r− r′| eγ′′(ω)|r−r′ |, (118)
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which is nothing but the Green’s function of the electromagnetic semiconductor material
system under investigation.

The Green’s function (118) is the most fundamental physical quantity needed for
the construction of the microdomain structure D of the nonlocal medium. It has some
similarity with the scalar free-space Green function for radiation fields, i.e., spherical waves
of the form:

exp(ik|r− r′|)
|r− r′| . (119)

However, there are notable differences:

1. First, we note that (118) exhibits strong dispersive behavior due to the dependence of
γ′ and γ′′ on frequency per their Formulas (115) and (116).

2. Second, the presence of a spatially-decaying exponential factor of the form exp(γ′|r− r′|)
makes the Green function εNL(r− r′; ω) highly attenuating in spite of the fact that
this attenuation is not mainly due to thermodynamic losses.

Indeed, as can be seen from (90), dissipation is controlled by the exciton lifetime τe, or,
equivalently, the decay rate Γ. Dissipation decreases as the lifetime increases, i.e., when
Γ is small. Figure 7 illustrates some examples where we plot both γ′ and γ′′ as functions
of frequency. The frequency-dependent behavior observable there strongly depends on
Γ/ωe, i.e., the ratio between the relaxation frequency and the excitonic transition frequency.
For ratios as small as Γ/ωe = 0.1, the intensity of attenuation per unit length γ′′ is nearly
constant for ω > ωe, while it assumes higher values for frequencies below the ωe as can
be seen from Figure 7a. This is consistent with a “high-pass filtering behavior” typical
for this type of resonance phenomena, where waves are often excited with frequencies
slightly larger than the cutoff threshold at ωe. For the propagation constant γ′ at the same
relaxation-to-exciton transition ratio Γ/ωe, Figure 7b shows that it becomes nearly straight
line. Such behavior, when combined with nearly constant per-unit-length attenuation,
represents negligible dispersion effects. On the other hand, when Γ/ωe increases, we begin
to see strong dispersion effects, manifested by non-constant per-unit-length attenuation
and nonlinear phase-delay relations.

In fact, the attenuation process described by the per-unit-length rate γ′′ is not merely
an expression of dissipation, but is also the signature of nonlocality in exciton–polariton
semiconductor materials. The medium response weakens as the distance from the source
increases, while the characteristic length scale of this nonlocality radius is found to be
solely controlled by γ′′. Figure 8 illustrates the real part of the dielectric function Green’s
function (118). The ability of the excitonic semiconducting medium to respond to spatially
distant sources is graphically illustrated by its dielectric profile’s functional spread around
the origin |r− r′| = 0. The size of the nonlocal domain is then directly reflected by the
rapidity of the decay of the Green’s function (118) as one moves away from r′, which is the
origin here.

Figure 7. Frequency dependence of γ′′ (a) and γ′ (b) for several values of the exciton decay
rate Γ. Here, m?

e = 0.9me, where me is the electron mass. The exciton transition frequency is
ωe = 3.7977× 1015 rad/s (h̄ωe = 2.5 eV).
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Figure 8. (a) Comparison between the real parts of the long-range decay of the excitonic nonlocal
domain Green function εNL(r− r′) with and without the full spatial dependence, including the
exponential short-range decay factor exp(γ′′|r− r′|) for γ′ = 1 nm−1 and γ′′ = 2 nm−1. (b) Fre-
quency dependence of ar, the radius of the topological microdomain B(r, ar) centered at some
generic point r in the nonlocal excitonic material domain D for several values of the exciton life-
time Γ−1. Here, m?

e = 0.9me, where me is the electron mass. The exciton transition frequency is
ωe = 3.7977× 1015 rad/s (h̄ωe = 2.5 eV).

7.5. The Locally-Homogeneous Model of Nonlocal Semiconducting Domains

Quasi-inhomogeneous, also known as smoothly-inhomogeneous or locally spatially
dispersive nonlocal media, are some of the simplest possible prototypes of general (inhomo-
geneous) nonlocal materials where the spatial dispersion model ε(k), with a dependence
on only one spatial spectral variable k, is found to be not adequate for the mathematical
description of the physics of the nonlocal system [76,87]. In contrast, one would need
the considerably more complex spectral functions of the form ε(k, k′), which are three-
dimensional spatial Fourier transformations of generic nonlocal response functions like (3)
or (10). In general, there has been quite few investigations aimed at going beyond spatial
dispersion in homogeneous media. Examples include inhomogeneous plasma, such as
those in controlled-fusion reactors [88], cold collisionless magnetoplasma [88], the electro-
dynamics of nanostructures [89–92], and incommensurately-modulated superstructures in
insulators [76,93].

Here, we will analyze a simple inhomogeneous model of semiconductors experienc-
ing exciton–polariton transitions as outlined above. The EM nonlocal model is locally-
homogeneous in the sense that around each point r ∈ D there exists a topologically-local
neighborhood, namely the microdomain Vr, inside which the medium can be modeled as
a homogeneous and spatially dispersive domain for all r ∈ Vr (i.e., the second mention
of “locally” here means topological nonlocality, see Remarks 3 and 17). It should be noted
though that for maximum generality, we allow for variations in the spatial dispersion
model to take place from one microdomain Vr to another.

We now wish to estimate the size of each nonlocality microdomain with the help of the
exponential law in (118). Let us first expand the homogeneous model treated in Section 7.3
to the inhomogeneous setting of the present discussion, where currently we need to allow
that at each point r ∈ D, the parameters of the original exciton–polariton model (100)
would all become generally functions of the position. That is, in this more general case, one
should write γ′(r), γ′′(r), ωe(r), α(r), m?

e(r), etc, where it is understood that the medium’s
microscopic composition may change from one position to another.

The main formula for computing the size (radius) of the topological microdomain
balls Vr = B(r, ar) can be easily given by the following expression:

ar '
1

|γ′′(r)| . (120)
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Roughly speaking, the radius given by (120) quantifies the spatial extension of that charac-
teristic phenomenon of field localization entailed by the presence in the medium Green
function (118) of exponential factors like exp(−|γ′′|r′). Using the formula (116), the rela-
tion (120) becomes:

ar =

√√√√√ 2h̄/m?
e(r)ωe(r)

1− ω2

ω2
e(r)

+

√(
ω2

ω2
e(r)
− 1
)2

+ Γ2(r)
ω2

e(r)
ω2

ω2
e(r)

. (121)

This expression (121) is illustrated with some basic examples as given in Figure 8b for
various values of the crucial parameter Γ/ωe. When this ratio between the relaxation rate
and the exciton transition frequency is small, the size of the EM nonlocality domain will
increase due to the weakening of the corresponding nonlocality-based attenuation (field
localization or confinement) processes. Conversely, one may control the size of each EM
nonlocality microdomain Vr by modifying the ratio Γ(r)/ωe(r) evaluated at that position.
This may provide a path toward an experimental realization of generalized nonlocal MTMs
with controlled microtopological structures. In order to give a view on the numerical values
of this structure, Table 2 provides some relevant microdomain data computed by means of
the expression (121).

Table 2. Topological microdomain data at a generic position r ∈ D. The exciton transition frequency
is fe = 23,862 THz (h̄ωe = 2.5 eV), while m?

e = 0.9me. For the left table, Γ/ωe = 2× 10−5.

f (THz) ω/ωe ar (µm) Γ/ωe ω/ωe ar (µm)

19,090 0.8 0.0003 0.00002 1.01 2.5834
21,476 0.9 0.0004 0.00020 1.01 0.2583
23,862 1.0 0.0582 0.00200 1.01 0.0259
26,248 1.1 7.6670 0.02000 1.01 0.0028
35,793 1.5 13.7174 0.02000 1.01 0.0028
47,724 2.0 15.9382 2.0000 1.01 0.0002
59,655 2.5 16.8674 20.000 1.01 0.0001

Remark 18. The approximation (120), strictly speaking, is not compatible with Definition 1
since the latter is based on assuming that the material response kernel possesses a compact
support. However, for all practical purposes, a decaying exponential can be taken to
approximate the behavior of a function with compact support. Nevertheless, in a more
careful future treatment it is always possible to modify the exact Definition 1 in order to
incorporate the decaying-exponential response kernel as another valid example of effective
physics-based nonlocality mathematically realized by a topologically-localized function.
An elementary discussion of some possible such modifications is given in Appendix A.10.

8. Application to Fundamental Theory: Electromagnetic Boundary Conditions in the
Fiber Bundle Superspace Formalism

Armed with the general superspace formalism of nonlocal continua (Section 5) and
the detailed practical example illustrating the theory (Section 7), we now turn to a brief
reexamination of a topic in fundamental theory: the role of boundary conditions in nonlocal
continuum field theories. The well-known tension between nonlocal electromagnetism and
intermaterial interfaces has been already mentioned several times above. Here, we provide
some application of the fiber bundle theory of Section 5, aiming at elucidating the nature of
this tension, and we suggest some possible new formulation of the problem.

The natural starting point is Figure 2, where a zoomed-in topological picture based
on the general structures explicated in Section 4 is given. The focus now is on the interface
between two generic nonlocal domains Dn and Dm. In traditional local electromagnetism,
the constitutive relation material tensor Kn is usually exploited to deduce conditions
dictating how various electromagnetic field components behave as they cross the Dn/Dm
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intermaterial interface. However, even if each response function Kn/m(r, r′) was to be
treated as one belonging to a spatially dispersive domain, i.e., replacing it by Kn/m(r− r′),
the presence of a boundary between two distinct material profiles completely destroys the
translational symmetry of the structure on which the very rigorous derivation of the specific
spatially-dispersive nonlocal response tensor Kn/m(r− r′) was originally based.

The breakdown of translational symmetry in inhomogeneous crystal configurations
was very clearly identified and explained by Agranovich and Ginzburg [16], together with
several proposals for a solution of such unusual electromagnetic problem. For example,
because it is evident that close to the intermaterial interface the response tensor of each
medium, when seen from its own side while approaching the boundary, must be reverted
back to the most general nonlocal form, namely Kn/m(r, r′) instead of Kn/m(r− r′), it was
then proposed that one may use the former, more general, functional form, but only within
a “thin transitional layer” that includes the intermaterial interface, yet while additionally
extending, along some necessarily “ambiguous distance”, into the depths of the two
material domains Dn and Dm on both sides of the boundary. Outside this fuzzy region, a
gradual transition, or a continuously changing profile (a tapered channel), is introduced to
proceed from the most general forms Kn/m(r, r′), valid in the vicinity of the intermaterial
interface, to the special spatially dispersive forms Kn/m(r− r′), which are more accurate
the further one goes away from the material boundary, where the latter response tensor
functions are considered characteristic of “bulk” homogeneous material domains [16].

Another proposal is to keep using everywhere spatial dispersion profiles of the form
Kn(r− r′), but introduce specialized additional boundary conditions (ABCs) at the intermate-
rial interface based on each particular problem under consideration. Although this latter
approach is both mathematically and physically inconsistent (due to the breakdown of
symmetry caused by the presence of intermaterial interfaces), it nevertheless remains pop-
ular because—at least in outline—nonlocal electromagnetism is thereby held up in a form
as close as possible to familiar local electromagnetic theory methods, especially numerical
techniques, such as finite element method (FEM) [44], method of moment (MoM) [46], and
finite difference time-domain method (FDTD) [45], i.e., established full-wave algorithms
where it is quite straightforward to replace one boundary condition by another without
essentially changing much of the code.27

Nevertheless, both approaches discussed above require considerable input from the
microscopic theory, mainly to determine the tapering transition region in the case of the first,
and the ABCs themselves in the second. That motivated the third approach, called, the
ABC-free formalism, where the relevant microscopic theory was utilized right from the
beginning in order to formulate and solve Maxwell’s equations. For example, in [50,53],
a global Hamiltonian of the matter-field system is constructed and Maxwell’s equations
are derived accordingly. In [38], the rim zone (field attached to matter) is investigated
using different physical assumptions to understand the transition from nonlocal material
domains to vacuum going through the entire complex near-field zone. In [89], the symmetry
group of carbon nanotubes was exploited to construct a set of Maxwell’s equations in
nonlocal nanoscale problems without using a homogenized electromagnetic field-based
boundary condition.

We believe that the main common conclusion from all these different formulations is
that in nonlocal electromagnetism it is not possible in general to formulate the electromagnetic
problem at a fully phenomenological level. In other words, microscopic theory appears to be in
demand more often than in the case of systems involving only local materials. However,
since all existing solutions use the traditional spatial manifold D as the main configuration
space, the question now is whether the alternative formulation proposed in this paper, the
extended fiber bundle superspace formalism, may provide some additional insights into
the problem of why nonlocal continuum field theory cannot be formulated in general for
inhomogeneous domains as in the local version of that theory.

We provide a provisional elucidation of the topological nature of field theory across
intermaterial interfaces by noting that, in Figure 2, it is not only the behavior of the fields
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F(r) in the two domains that is mostly relevant, but also the entire set of local topological
microdomains Vr clustered on both sides of the interface inside the material domains. More
specifically, we attach a great importance to how these microtopological domains, together with
the corresponding set of excitation fields that are applied on them, would behave as they move across
the boundary. In general (set-theoretic) topology, boundaries are defined fully in terms of the
behavior of open sets [58,59].

We now build on this key set-theoretic topological concept in order to illustrate how
the problem of nonlocal inhomogeneous continuum field theory may be reformulated
through the superspace formalism developed in Section 5. First, Figure 9 provides a finer or
more structured picture of the topological content of Figure 2 based on replacing the spaces
Dm and Dn by the corresponding Banach bundle superspacesMm andMn, respectively.
The thick horizontal curved lines represent the base spaces Dm and Dn, while the wavy
vertical lines stands for the fiber spaces Xm and Xn attached at each point r ∈ Dn/m in the
corresponding base manifolds. The double discontinuous lines at the “junction” of the
two base spaces Dm and Dn indicate the joining together of the two vector bundlesMm
andMn.

Dm

Dn

XnXm

Interface between
the nth and mth domains

Dm � Dn ⇒ Xm � Xn

fiber superspace boundary condition

p−1(r) (fiber at r)

r

Figure 9. An abstract representation of the topological fiber bundle superspace structure behind
Figure 2.

It should become clear now that since the two nonlocal material domains possess
an extra structure, namely that of the individual copies of the fibers, each a linear vector
Banach space attached to every point in the base space, we must also indicate how the
various elements belonging to the Banach function spaces, i.e., the fields defined on the
microdomains Vr in Figure 2,28 would behave as they cross the boundary separating the
two material domains Dm and Dn. One obvious way to do this is to introduce a bundle
homomorphism between the two vector bundlesMm andMn over the interface submanifold
∂Dmn separating Dm and Dn. This mathematical object is similar to the nonlocal response
map L introduced by (72).

The motivation behind introducing this bundle homomorphism is to serve as a “bound-
ary condition operator” acting on the fiber bundle superspacesMm andMn instead of the
conventional spaces Dm and Dn always used in local continuum field theories. We will not
go here into a detailed construction of such a new fiber bundle super-operator. Instead, we
provide some additional remarks to illustrate the broad outline of the key idea behind our
proposal. A more detailed investigation of the intermaterial interface homomorphism will
be given somewhere else.

In continuum field theories, the formal expression of the traditional boundary condi-
tion applied to the two materials’ Dn and Dm base spaces (spacetime, space–frequency, or
space differential manifolds) will be summarized by the symbolic formula

Dm � Dn (122)

in order to highlight that in such traditional formulation, it is the direct geometric relations
between the individual material manifolds that usually holds the center stage. For example,
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the electromagnetism of continuous media, is usually spelled out in the more specific
space-limit form:

lim
r→∂Dmn

{Fm(r)− Fn(r)} = Γb1 [Fm(r), Fn(r)],

lim
r→∂Dmn

{Rm(r)− Rn(r)} = Γb2 [Rm(r), Rn(r)],
(123)

where ∂Dmn is the boundary between Dm and Dn. Here, Γb1 and Γb2 are “base space
boundary functions”, which are not universal, but whose detailed expressions depends on
the concrete content of the field theory and the material system under consideration.

On the other hand, in the superspace formalism of nonlocal metamaterials and con-
tinua, it can be seen that the various elements belonging to each fiber space Xn/m attached
at the point r ∈ Dn/m of the base manifolds, i.e., the excitation field functions operating
on the microdomains Vr, r ∈ Dn/m, are to be mapped onto each other via an expression of
the form:

Xm � Xn : lim
r→∂Dmn

(Xm − Xn) = Γ f [Xm, Xn]. (124)

Here, Γ f is a new “fiber superspace boundary function”. The full formulation of (124) is
considerably more complex than the local field-theoretic case of (122) and (123) due to the
fact that, additionally, the boundary condition quantity Γ f must be also proven compatible
with the detailed corresponding fiber bundle structures of the materials involved. Con-
sequently, for the field theoretic treatment of complex nonlocal continuum systems, the
global topology of the metamaterial superspacesMm andMn will have to be assessed and
utilized in the process of formulating a generalized “superspace boundary condition” of
the form (124).

We summarize our main provisional view on the status of boundary conditions in the
nonlocal field theory of inhomogeneous continua as follows:

• The existence of extra or additional structures in the fiber bundle superspace approach
to nonlocality in complex continua forces on us the need for introducing additional
boundary conditions or information coming from the microscopic topological structure
of the corresponding material superspaces.

• The fiber bundle superspace formalism of nonlocal metamaterials appears to be able to
capture the intricate processes taking place inside and across various nonlocal material
domains joined together through interfaces.

• This is achieved by providing an efficient apparatus to topologically encode some of
rich and complex physics of field–matter interactions via the construction of appropri-
ate infinite-dimensional function spaces (Banach space fibers) attached at each point
of the materials’ base manifold.

• It is suggested that the relations between those additional fiber spaces are in fact
what should be mainly taken into account while formulating boundary conditions
for nonlocal continuum field theories, hence not merely the conventional relations
involving only spatial interfaces between the material base manifolds as has been
usually the practice in local field theories.

However, despite the fact that the full mathematical formulation of the proposed fiber
bundle boundary condition homomorphism (124) is beyond the scope of this paper, it
is hopped that the initial insight provided in this section can at least clarify the subject
and stimulate further researches into the fundamental theory of nonlocal continua and
metamaterials. Additional possible applications are given in the Appendixes A.3 and A.11.

9. Conclusions

We provided a general theoretical and conceptual investigation of nonlocal contin-
uum field theories that aimed to achieve several goals. First, the subject was revisited
from a new perspective, with the intention of introducing it not only to mathematical
and theoretical physicists, but also invite a wider audience, including engineers, material
scientists, chemists, applied physicists, and applied mathematicians. The various essential
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ideas behind nonlocality in material continua were put under new light with the help of
an abstract field-response model developed in three dimensions. Next, the fine-grained
topological microstructure of nonlocal metamaterials was explicated in detail. We intro-
duced the concept of physics-based nonlocality microdomains, demonstrating how the
latter regions present an important structural topological feature of the physics of nonlocal
media. Afterwards, it was proved using differential topology that a natural fiber bundle
structure, serving as a “source (excitation) superspace”, can be constructed. The material
source fiber bundle superspace, or the material superspace in short, was shown to possess
all of the required properties of a standard fiber bundle yet while faithfully reflecting the
physics of nonlocal microdomains. Eventually, and using the technique of partition of unity,
it was proved that the fiber bundle superspace can be deployed for the purpose of con-
structing and computing the complete nonlocal material response function over arbitrary
microdomain configurations. This was accomplished by building a bundle homomorphism
to replace the well-known, but now inadequate, material tensor linear operators commonly
utilized in local continuum field theories, for instance, conventional electromagnetism.
This new homomorphism can be viewed as a generalization of the linear operators of the
various classical boundary-value problems of mathematical physics. It is hoped that in
the future this homomorphism may be “topologically discretized” using suitable methods
borrowed from other advanced fields such as algebraic topology, computational topology,
and global analysis. The new fiber bundle superspace formulation suggested that nonlocal
continuum field theories could be reformulated in an alternative way compared with the
prevailing existing methods. Most importantly, nonlocality in material continua forces us to
introduce an entire array of infinite-dimensional Banach spaces attached to every point in
the conventional three-dimensional base space inside which the material is conventionally
defined. This extra or additional fiber structure provides a natural explanation of why tra-
ditional boundary conditions often fail to account for the physics of nonlocal metamaterials.
Moreover, the fiber bundle theory opens the door for several new applications, including
the ability to understand the deep connection between topology and field theories, e.g.,
electromagnetism, in engineered artificial media. Overall, the author proposes that future
research in metamaterials will gradually require more extensive collaboration between
engineers and mathematicians in order to explore in full the deep consequences of this
organic topology/electromagnetism relation.
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Appendix A

Appendix A.1. Survey of the Literature on Nonlocal Metamaterials

Appendix A.1.1. Introduction

We first provide a non-exhaustive and selective review of the development of nonlocal
electromagnetic materials research. More information and proposals regarding engineering
applications are given in Appendix A.3, where additional references can be found. The main
propose behind this literature overview is to suggest that the area of nonlocal metamaterials
research might be approached as an approximately coherent field of investigation, i.e., more
than just being merely a technical sub-discipline selected from within the sciences of metals,
semiconductors, plasma, periodic structures, metasurfaces, etc. In fact, one of the main
objectives of this paper is to demonstrate that a unified theoretical treatment of the entire
subject is mathematically possible (the superspace formalism.) However, one needs to
be convinced first of the presence of substantial past researches into this area. Hence,
convincing readers not familiar with the topic about the long and very rich history of
investigations into various nonlocal phenomena in material systems is one of the objectives
of this Appendix.
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Appendix A.1.2. Historically Important Examples

Some of the physical phenomena that cannot be understood using local electromag-
netic theory include spatial dispersion effects [83], extreme negative group velocity and
negative refraction [52,94], new diffraction behavior in optical beams [95], superconductiv-
ity [96], natural optical activity [16,97,98], non-Planck equilibrium radiation formulas in
nonlocal plasma [99]. Outside electromagnetism but within wave phenomena, there also
exists processes that cannot be fully accounted for through simple local material models,
for instance, we mention phase transitions, Casimir force effects [100], and streaming bire-
fringence [9]. By large, spatial dispersion has attracted most of the attention of the various
research communities working on nonlocal electromagnetic materials. Indeed, few book-
length researches on spatial dispersion already exist in literature, most notably [14–16,83].
We provide additional remarks on the history of spatial dispersion in Appendix A.2.

Appendix A.1.3. General Theories of Nonlocal Continua

The majority of the published research on nonlocal media and nonlocal electromag-
netism tend to focus on applications and specialized materials (see the majority of the
references quoted below). Few exceptions include investigations attempting to approach
the subject at a more general level. For example, from the perspective of general thermody-
namics, see [8,9]. A unified perspective inspired by condensed-matter physics, especially
plasma physics, can be found in [47]. Within nanoscale electrodynamics, nonlocality
was treated broadly as an essential feature of microscopic interactions at the nano- and
mesoscopic scales [50,53]. Some of the topics reexamined within the framework of a
general nonlocal field–matter interaction theory include the applicability of optical reci-
procity theorems [101–104], energy/power balance [105], quantization [106–108], operator
methods [87], extension of spatial dispersion to include inhomogeneous media [76], and
alternative formulations of spatial dispersion in terms of the Jones calculus [109].

Appendix A.1.4. Semiconductors, Metals, Plasma, Periodic Structures

The bulk of the available literature on nonlocality is concentrated in the very large area
of general field–matter interactions. There already exists a well-attested body of research
on nonlocality in metals based on various phenomenological approaches, e.g., see [110] for
a general review. Nonlocality has also been extensively investigated in dielectric media, for
example semiconductors [83,111]. A comprehensive recent review of nonlocality in crystal
structures is provided in [112], which updates the classic books [16,55]. Moreover, numer-
ous researches conducted within condensed-matter physics and material science implicitly
or explicitly assume that nonlocality is essentially based on microscopic (hence quantum)
processes, and develop an extensive body of work where the spatially dispersive dielec-
tric tensor is deployed as the representative constitutive material relation [37,38,50,53,54].
On the other hand, one can also treat nonlocality without resort to spatial dispersion
by modeling certain classes of material media as periodic structures [113], e.g., photonic
nanocrystals [114], where the susceptibility tensor is derived from the symmetry of the
overall structure [37,89,115] or from the lattice dynamics approach [92,116].

Appendix A.1.5. Boundary Conditions in Nonlocal Metamaterials

For solving nonlocal problems, several methods have been proposed in order to deal
with the notorious problem of the lack of exact universal nonlocal response models at the in-
termaterial interface between a nonlocal domain and other media. The so-called additional
boundary condition (ABC) approach adjoins new boundary conditions to the standard
Maxwell’s equations in order to account for “additional waves” excited at the interface,
which otherwise would not be explicable by the standard local theory alone [16]. However,
it must be noted that without exception all ABC formulations are inherently model-specific
since each boundary condition model presupposes a particular type of nonlocal media,
or simply just postulates specific ABCs based on their ease of use in applications, e.g.,
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see [55,56,80,117–119]. We note that such ABC formalisms are not inevitable since there
exists several boundary-condition free formulations, e.g., see [50,53,89].29

Appendix A.1.6. Computational Techniques

For performing full-wave field analysis in the presence of nonlocal materials, a number
of discretization strategies have been proposed. For example, an FDTD-based method was
suggested to deal with metallic spatially dispersive objects [120]. The formulation, dis-
cretization, and solution of surface integral equations for nonlocal plasmonic materials were
also attempted in [121,122], where the reduction of the electromagnetic problem to a finite-
matrix form was achieved using the RWG basis functions. Moreover, specialized methods
were proposed for various possible scenarios involving nonlocal field–matter interactions,
such as nonlocal dielectric profile retrieval from measurable data [123], iterative solutions
of nonlocal wave equations [124,125], applications of the derivative expansion method
to nonlocal plasma analysis [126], application of Kramers–Kronig relation method [127],
application of the Pade approximation to homogenization [128].

Appendix A.1.7. Novel Systems and Devices with New Electromagnetic Behavior

The idea of exploiting nonlocality to design and develop a new generation of meta-
materials (MTMs) exhibiting novel EM behavior has also received a revival in recent
years [32,47,129], though the basic concept in itself is not completely new, going back to
at least the 1980s and possibly earlier [16]. Recent examples of research focused in expli-
cating nonlocal behavior to harness the associated new physics include spatial dispersion
in photonic crystals [130], wire media [131–134], semiconductor nanoparticles [135–138],
optically nonlinear liquids [139], hyperbolic metamaterials [140], layered dielectric-metal
structures [141,142] and thin films [143], plasma-based metamaterials [144–146], quan-
tum wells [147], soliton interactions with matter [148–153], superconducting films [154]
and circuits [155], plasmonic devices and structures [156–158], nanocubes [159], cloak-
ing [160], Chern metamaterials [161] and superconductors [162], dispersion management
profiles [52,163], biomedical applications in materials [164], nonlocal antennas [165,166],
and nonlocal uniaxial metamaterials [167]. Due to the practical importance of this area of
research, we provide additional information in Appendixes A.3 and A.11.

Appendix A.1.8. Homogenization

Numerous homogenization theories for nonlocal MTMs, where averaging operations
are considered over multiple spatial scales, have been reported in the literature, e.g.,
see [133,168–171]. We note that the subject of estimating the effective electric and magnetic
properties of electromagnetic metamaterials, with or without nonlocality, is enormous
and it is beyond the scope of this paper to even summarize the main papers in the field.
Nevertheless, it is curious to note that until fairly recently, most publications have tended
to focus on non-spatially-dispersive media; hence, local scenarios are still dominant in the
area of advanced artificial material systems. This situation has began to change in the last
few years, and nowadays an increasing number of reports appear to move from the old
opinion that “spatial dispersion is a bug” to the more positive and fruitful perspective that
nonlocality may provide pathways to novel physical behavior that can be exploited for
various applications in metamaterial system design. However, we also note that progress
in this second direction, where nonlocality is embraced rather than being treated with
suspicion, has been generally slow.

Appendix A.1.9. Topological Materials and Photonics

A particularly interesting direction of research in nonlocal media is the recent subject of
topological photonics. The main idea was inspired by previous researches in Chern insulators
and topological insulators [10], where the focus has been on electronic systems. There, it
has already been observed that the nonlocal behavior of the fermion wave function may
exhibit a rather interesting and nontrivial dependence on the entire configuration space of
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the system, in that case the momentum space (the wave vector k space). In addition to the
already established role played by nonlocality in superconductors, quantum Hall effects
are among the most intriguing physically observable phenomena that turned out to depend
fundamentally on purely topological aspects of the electron wave function [96]. The major
themes exhibited by electrons undergoing topological transition states include topological
robustness of the excited edge (surface) states moving along a two-dimensional interface
under the influence of an external magnetic fields. More recently, it was proposed that the
same phenomenon may apply to photons (electromagnetism) [172], where the key idea is
to use photonic crystals to emulate the periodic potential function experienced by electrons
in fermion systems. However, since photons are bosons, transplanting the main theme of
topological insulators into photonics is not trivial and is currently generating a great atten-
tion, see for example the extensive review article [11], which provides a literature survey of
the field. One of the most important applications of topological photonics is the presence
of “edge states”, which are topologically robust unidirectional surface waves excited on
the interface between two metamaterials with topologically distinct invariants. Since edge
states are immune to perturbations on the surface, they have been advocated for major new
applications where topology and physics become deeply intertwined [173]. Topology can
also be exploited to devise non-resonant metamaterials [174] and to investigate bifurcation
transitions in media [175]. Another different but related exciting subject illustrating the
synergy between topology, physics, and engineering is non-Hermitian dynamics, especially
in light of recent work related to the origin of surface waves [176,177], which is now being
considered as essentially non-trivial topological effect. In Appendix A.11, the subject of
topological photonics is taken up again but from the viewpoint of applications.

Appendix A.2. On the History of Spatial Dispersion in Crystal and Plasma Physics

Historically, spatial dispersion had been under the radar since the 1950s, especially in
connection with researches on the optical spectra of material domains [77,78,178]. However,
the first systematic and thorough treatment of the subject appeared in 1960s, prominently in
the first edition of Ginzburg’s book on plasma physics, which was dedicated to electromag-
netic wave propagation in plasma media. The second edition of the book, published in 1970,
contained a considerably extended treatment of the various mathematical and physical
aspects of the electromagnetism of spatially dispersive media [14]. Spatial dispersion in
crystals had been also investigated by Ginzburg and his coworkers during roughly the
same time [179–181]. The book [83] contains good summaries on spatial dispersion research
up to the end of the 1980s. More recently, media obtained by homogenizing arrays of wires,
already very popular because of their connection with traditional (temporal) metamaterials,
are known to exhibit spatial dispersion effects, though many researchers ignore that effect
to focus on temporal dispersion [182–184]. Other types of periodic or large finite arrays
composed of unit cells like spheres and desks also exhibit spatial dispersion effects [185].
Nonlinear materials with observable nonlocality have also been investigated in the opti-
cal regime [186]. More recently, much of the resurgence of interest in spatial dispersion
can be traced back to the observation that nonlocal phenomena cannot be ignored at the
nanoscale level [187], especially in problems of low-dimensional structures, such as car-
bon nanotubes [89,91,92,188] and graphene [189,190]. The subject was also introduced at a
pedagogical level for applications involving current flow in spatially dispersive conductive
materials, such as plasma and nanowires [191].

Appendix A.3. Some Further Engineering Applications of Nonlocal Metamaterials

The purpose of this Appendix is to provide a sample of some other current and future
possible applications of nonlocal metamaterials based on the author’s own experience,
which may serve as a supplementary text to be read in conjunction with the general survey
of Appendix A.1.
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Appendix A.3.1. Communications Systems and Information Transmission

Nonlocal metamaterials offer a very wide range of potential applications in wireless
communications and optical fibers. The basic idea is to introduce specially engineered
nonlocal domains either as part of the communication channel (e.g., optical fibers, plas-
monic circuits, microwave transmission lines) [189], or as a control structure integrated
with existing antennas [129,192]. Spatial dispersion was also used as a method to engineer
wave propagation characteristics in material domains, e.g., see [193] for applications to
high-efficiency modulation of free-space EM waves. A general linear partial equation
explicating how spatial and temporal dispersion can be jointly exploited to produce zero
distortion (e.g., constant negative group velocity) was derived and solved in [52]. The main
idea originated from the fact that one of the main sources of distortion in communication
systems is that due to non-constant group velocity vg := ∇kω [194,195]. Since vg is a
strong function of the dependence of the material response tensor K(k, ω) on both k and ω,
dispersion management equations can be derived for several applications. For example, it was
proved in [52] that in simple isotropic spatially dispersive media with high-symmetry, one
may obtain exact solutions where the group velocity is constant at an entire frequency band.
This happens because while strong temporal dispersion is present (which alone causes
strong distortion), incorporating optimized spatially dispersive profiles leads to complete
compensation (cancellation) of distortion, resulting in essentially a distortion-free commu-
nication channel. There are enormous potentials of research into this new exciting area.
The reason is that most practical realizations of nonlocal metamaterials involve complex
material response tensors, where the relevant mathematics of dispersion engineering is still
underdeveloped (and in fact underappreciated by researchers), which implies that, to the
best of our knowledge, relatively very little has been done in this emerging field so far.

Appendix A.3.2. Electromagnetic Metamaterials

While this paper attempts to analyze and understand the general structure of non-
locality in generic field theories of continuous media, we have already mentioned above
that artificial media, better known nowadays as metamaterials systems, could provide
one of the most direct paths toward building new functional advanced materials and
also providing models to further explore nonlocality both experimentally and numerically.
As early as the 1960s, it was proposed that EM nonlocality can be exploited to produce
materials with very unusual properties. For example, in [16], negative refraction materi-
als were noted as one possible application of spatial dispersion where the path toward
attaining this goes through controlling the direction of the group velocity vector. Since in
nonlocal media, power does not flow along the Poynting vector [14], new (higher-order)
effects were shown to be capable of generating arbitrary group velocity profiles by carefully
controlling the spatial and temporal dispersion profiles. Overall, the ability of spatial
dispersion to induce higher-order corrections to power flow is a unique advantage enjoyed
by nonlocal metamaterials exhibiting weak or strong spatial dispersion in addition to
normal dispersion. This extra spatial degrees of freedom provided by nonlocality was
researched, reviewed and highlighted in many publications, including, for example, works
such as [32,47,115,129,134,141,163,175,184,196].

Appendix A.3.3. Near-Field Engineering, Nonlocal Antennas, and Energy Applications

Another interesting application of nonlocality in electromagnetic media is near-field
engineering, a subject that has not yet received the attention it deserves. It was observed
in [129] that a source radiating in homogeneous, unbounded isotropic spatial dispersive
medium may exhibit several unusual and interesting phenomena due to the emergence of
extra poles in the radiation Green’s function of such domains. Both longitudinal and trans-
verse waves are possible (dispersion relations), and the dispersion engineering equations
relevant to finding suitable modes capable of engineering desired radiation field patterns
are relatively easy to set and solve. For example, by carefully controlling the modes of the
radiated waves, it is possible to shape the near field profile, including total confinement of
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the field around the antenna even when losses is very small, opening the door for applica-
tions like energy harvesting, storage, and retrieval in such media [197]. The direct use of
especially-engineered nonlocal metamaterials, however, has been explored only for simple
materials so far and mainly at the theoretical level [32]. However, the increasing importance
of energy localization [198] at both the level of numerical methods [199] and the device
level applications [200], suggest the need to reconsider the role played by nonlocality in
complex media.

On the other hand, away from the source region, the subject of far-field radiation
by sources embedded into nonlocal media was investigated previously by some authors
within the context of plasma domains [104]. Recently, it has been systematized into a
general theory for nonlocal antennas with media possessing an arbitrary spatial dispersion
profile [25,165,166,192]. However, no general theory exists for nonlocal media, which are
inhomogeneous. The superspace formalism proposed in this paper may help stimulate
research into this direction in order to overcome the limitations of the existing theory of
nonlocal antenna systems.

Appendix A.4. On the Concept of Superspace

The concept of superspace is not new, and has been proposed several times in both
physics and mathematics. For a brief but general view on the definition of superspaces,
see [201]. For example applications, various superspaces have been proposed as funda-
mental structures in quantum gravity [202,203], which are frequently infinite-dimensional.
Superspace concepts are also now extensively researched in quantum field theory and the
standard model of particle physics, e.g., see [204–206]. In general, dealing with topics such
as supergravity, supersymmetry, superfields, superstrings, and noncommutative geometry
often requires the use of one superspace formalism or another [204]. In mathematics and
mathematical physics, where the concept itself originated, a notable recent example of the
superspace concept includes sheaves, which are used in differential and algebraic topology
and algebraic geometry and have numerous applications in physics [30,207,208].

In this paper, the superspace concept has very little to do with applications to super-
symmetry or supergravity, such as the examples mentioned above (and many others we
do not mention.) Instead, our use of the concept is more aligned with the mathematical
practice of extending one space by embedding it into a larger superspace as in the schema:

Space
embedding−−−−−−→

injection
Superspace. (A1)

In other words, the embedded space is injected as a substructure into the (larger) embedding
superspace. The key interest behind the formula superspace-as-embedding (A1), of course,
goes beyond mere set-theoretic inclusion. We are not here trying simply to say that
Space ⊂ Superspace, which would be devoid of mathematical substance. Instead, the main
motivation behind the superspace construction (A1) is that the embedded Space becomes
a substructure attached to or placed within the larger, embedding “container”, which is
here superspace.

The most important thing to note here is that the latter superspace acquires a more
coherent and fundamental status than the former. Eventually, Space becomes nothing but a
mere “substructure” or “index space” of the more originary mother space that we originally
called superspace. Strangely, with time, superspaces tend to become so familiar and basic
to the degree one begins to call them regular spaces, while the original Space fades into
oblivion. This last observation regarding the ontological primacy of the superspace concept
over space can be best seen from the converse generative schema:

Superspace
de-embedding−−−−−−−−→

projection
Space. (A2)
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Here, we recover the original space through a projection operation by which a de-embedding
of the superspace substructure, the interior placeholder occupied by space, is achieved by
projecting the mother space, the superstructure, superspace, onto the substructure, space.
It is really the purely formal structural relation dictating how sub- and super-structures
are organized within a common unifying global schema what is at stake in such type of
superspace theories, i.e., not just the simple set-theoretic inclusion of one space into another.

Both operations, the injection (A1) and projection (A2) are necessary to fully under-
stand the idea of superspace in general. However, in practice, usually only one of them is
emphasized on the expense of the other. It is rare to find in superspace theories that both
projection and injection operations are allotted the same ontological status. For instance, in
the fiber bundle approach adopted in the present paper, space is recovered (or generated)
from the fundamental superspace through the projection map of the mother fiber bundle,
which will send each fiber into its “representative point” in the base manifold. In this
manner, regular space may be seen as if it was actually generated or “produced” by the more
primordial superspace mother structure [18,209].

A specific example more related to the subject of nonlocal MTMs is the original super-
space concept introduced earlier for the analysis of deformed crystal [210] and subsequently
utilized for fundamental investigations of EM nonlocality in incommensurate (IC) super-
structures in insulators [76]. Such modulated-structure materials possess spaces with
dimensions greater than spacetime [211]. Nevertheless, for fairly concrete models one may
exploit group theory to construct finite-dimensional (dimension > 4) approximations of
them. The general theory of superspace formalisms in quasi-periodic crystals is presented
in [212]. Other examples from condensed-matter physics where superspace methods where
applied include mesoscopic superconductivity [213].

Appendix A.5. Guide to the Mathematical Background

We provide a brief overview on how to read the mathematical portions of this paper
and where to find detailed references that might be needed in order to expand some of the
technical proof sketches provided in the main text. We emphasize that in this paper only
the elementary definitions of

1. Differential manifolds,
2. Banach and Sobolev spaces,
3. Vector bundles, and
4. Partition of unity

that are needed in order to understand the mathematical development. Here, we briefly
go over the principal ideas behind each one of these four key mathematical topics listed
above, providing also additional references for readers interested in learning more about
the required background. The current Appendix is not intended as a complete review;
some familiarity with all four elementary mathematical topics listed above is required for a
complete understanding of the technical proofs and constructions found in Section 5.

Appendix A.5.1. Topology on Smooth Manifolds

A differential manifold is a collection of fundamental “topological atoms” each composed
of an open set Ui and a chart φi(x), which serves as a coordinate system, basically an
invertible differentiable map to the Euclidean space Rn. That is, locally, every manifold
looks like a Euclidean space with dimension n. When the differentiable map is smooth, the
differential manifold is called smooth manifold. The collection of open sets Ui, i ∈ I, where
I is an index set, covers this n-dimensional manifold. Since some of these open sets are
allowed to overlap, the crucial idea underlying the concept of the differential manifold
is that over the common intersection region Ui ∩ Uj, there exists a smooth reversible
coordinate transformation function mutually relating the two coordinates of the same
abstract point when expressed in the two (generally different) languages belonging to
the topological atoms Ui and Uj. Note that the key concept of topology is how to propagate
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information from the local to the global levels. In this sense, differential manifolds present
elementary structure allowing us to rigorously conduct this process using the efficient
apparatus of the differential calculus. Note that only the elementary definition of smooth
manifolds is required in this paper, which can be found in virtually any book on differential
or Riemannian geometry, e.g., see [26,30,57,62,65,70,204,214].

Appendix A.5.2. Banach and Hilbert Spaces

A Banach space is a vector space equipped with a norm satisfying the standard prop-
erties that a generic norm should have (namely, being positive, being zero only for the
null vector, scale linearity, and the triangle inequality [215].) Most importantly, Banach
spaces are also required to be topologically complete in the sense that every Cauchy sequence
converges to an element in the space itself. In this way, no “holes” are left in the space
thus defined, hence one may deploy a Banach space in order to do analysis on operators
as in solving differential equations or the analysis of numerical methods. A Hilbert space
is a Banach space equipped with an inner product. An important fact to remember about
Banach and Hilbert spaces is that when they are employed to model function spaces (as in
this paper), they most often lead to intrinsically-infinite dimensional vector spaces [30].

Appendix A.5.3. Banach and Hilbert Manifolds

A straightforward process of combining Banach or Hilbert spaces with differential
manifolds leads to the concept of Banach or Hilbert manifold, which are prominent ex-
amples of infinite-dimensional manifolds. A Banach/Hilbert manifold is simply a differ-
entiable/smooth manifold that is locally isomorphic to a Banach/Hilbert space instead
of the regular n-dimensional Euclidean space R3 invoked in the basic definition of an
n-dimensional manifold. The isomorphism itself can be either differentiable or smooth,
where a suitable derivative operator, such as the Fréchet derivative, may be defined on
Banach/Hilbert spaces, leading to the resulting Banach/Hilbert manifold itself being either
a differentiable or smooth infinite-dimensional manifold. A Banach/Hilbert manifold is
then an intrinsically infinite-dimensional manifold. An elegant formulation of the theory
of Banach manifolds can be found in Lang’s text [26]. Applications of this theory in the
general fields of analysis and geometry can be found in textbooks on global analysis, e.g.,
see [70,216]. In general, much of the theory of n-dimensional manifolds carry over un-
changed into the case of infinite-dimensional manifolds. However, there exists some subtle
technical differences, which are carefully highlighted in [214].

Appendix A.5.4. Sobolev Spaces

The most economic approach to constructing Sobolev spaces is to define them as Hilbert
spaces consisting of (Lebesgue) square integrable functions that posses “generalized deriva-
tive”, a concept in itself technical but straightforward. For the basic definition of Sobolev
spaces and their applications to partial differential equations in mathematical physics and
finite-element method in engineering, we recommend [65]. The subject of Banach mani-
folds is less commonly treated in the literature on Sobolev spaces than finite-dimensional
manifolds. For a very readable account on the functional analytic background to the use of
Sobolev spaces, see [65], while [64] provides information on the applications of Sobolev
spaces in the analysis of linear partial differential equations. The generalization of the the-
ory of Sobolev spaces into the wider setting of functions defined on differential manifolds
is tackled in [66] (with applications to nonlinear functional analysis).

Appendix A.5.5. Vector Bundles

The quite general structure known as fiber bundles, of which vector bundles are famous
special cases, are now standard topics in both mathematics (topology, geometry, differen-
tial equations), theoretical physics (quantum field theory, cosmology, quantum gravity),
and applied physics (condensed-matter physics, many-body problems). On the major
importance of vector and fiber bundles within the overall area of modern fundamental
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physics, see [30,204,208]. In quantum field theory, gauge field theories use vector bundles
as essential ingredients in the standard model of particle physics [18,30]. The increasing
importance of methods based on quantum field theory in applications to condensed-matter
physics has contributed into making knowledge of fiber bundle techniques useful and more
widespread in physical and engineering research than originally anticipated; e.g., see the
area of the Berry phase and the associated gauge connection [11,96]. The key idea behind
the vector bundle is to attach an entire vector space to every point on a base manifold. To be
more specific, consider a differential manifold D serving as the base manifold. Each copy
of the vector space that is attached to a point in this base space will be called the fiber at that
point. The standard tangent space of a smooth manifold is the most obvious example of such
vector bundles. However, more complicated structures than finite-dimensional tangent
spaces can also be captured by a suitable vector bundle concept. In this paper, we have
shown that physics-based nonlocality in material continua can be modeled, very naturally
in the mathematical sense, by considering the Banach space of all excitation fields acting on
the microdomains indexed by a point in the material configuration space (base space). The
fiber bundle superspace formalism may then be seen as a highly efficient and economic
apparatus available for encoding, storing, and processing a large amount of topological
and geometrical data pertinent to the problems of nonlocality in physics and engineering
since fiber bundles lend themselves easily to complex calculations. Readable technical
descriptions of vector bundles can be found in [30,57,63,70].

Appendix A.5.6. Additional Remarks on the Use of Sobolev Spaces in the Fiber Bundle
Superspace Formalism

In Section 4, we introduced Sobolev space over the open domain D instead of simply
operating with the more generic Banach space. The reason behind our decision to invoke the
more specialized (and technical) structure of a Sobolev space was mainly to actually simplify
the technical development and in anticipation of future work on the superspace formalism.
Indeed, in this paper, the fiber bundleM is referred to just as Banach bundle, not Sobolev
bundle for the reason that all our essential results and insights apply to the more general
concept of Banach space, which contains Sobolev spaces as a special case. In fact, Sobolev
spaces are easier to work with in problems involving integro-differential equations such
as nonlocal continuum field theory. Nevertheless, we only used the elementary definition
of Sobolev space itself in Section 5, not its advanced properties. In particular, none of the
other technical properties of Sobolev spaces are needed in the paper. Nevertheless, since in
the future the material bundle spaceM is expected to be employed in order to construct
solutions of Maxwell’s equations in new form (i.e., in superspace instead of conventional
spacetime), Sobolev spaces are projected to play the most important role since they have
proved very efficient in analysis and the theory of partial differential equations [64].

Appendix A.5.7. Partition of Unity Techniques

In analysis and differential topology, the title the partition of unity lemma refers to a
somehow rather technical tool used by topologists and analysts in order to help propagate
information from the local to the global setting. They were found to be quite handy and
easy to apply. The main theorem (Lemma 1) permits us to move from one topological
“atom” to another by “gluing” them together using smooth standard domain-division
functions. The technique was stated and used only toward the end of Section 5 in order to
justify expansions, such as (77) and can be skipped in first reading of the paper. Partition of
unity is usually taught in all topology and some geometry textbooks, e.g., see [26,57,63,70].
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Appendix A.6. The General Electromagnetic Model of Nonlocal (Spatially-Dispersive)
Isotropic Domains

One of the simplest—yet still demanding and interesting—nonlocal media is the spe-
cial case of isotropic, homogeneous, spatially-dispersive, but optically inactive domains [14].
In this case, very general principles force the generic expression of the material response
tensor to acquire the concrete form [13,15,16]:

K(k, ω) = KT(k, ω)(Ī− k̂k̂) + KL(k, ω)k̂k̂, (A3)

where
k := |k|, k̂ := k/k, (A4)

and k is the wave vector (spatial-frequency) of the field. The first term in the RHS of (A3)
represents the transverse part of the response function, while the second term is clearly
the longitudinal component, with behavior captured by the generic functions KT(k, ω) and
KL(k, ω), respectively.30 The tensorial forms involving the dyads k̂k̂, however, are imposed
by the formal requirement of the need to satisfy the Onsager symmetry relations in the
absence of external magnetic fields [16]

Using a proper microscopic theory, ultimately quantum theory, it is possible in general
to derive fundamental expressions for the transverse and longitudinal components of
the response functions in (A3) [14–16,37,38,50]. These forms are often obtained in the
following way:

1. First, fundamental theory is deployed to derive analytical expressions for KT(k, ω; r′)
and KL(k, ω; r′).

2. Afterwards, depending on the concrete values of the various physical parameters that
enter into these expressions, e.g., frequency, temperature, molecular charge/mass/spin,
density, etc., the obtained analytical expressions are expanded in power series with
the proper number of terms.

3. The expression of the dielectric tensor function is then put in the form of either a
polynomial or rational polynomial in k.

A concrete example is given in Section 7.3 to illustrate the use of such physics-based
dielectric functions for the case of exciton–polariton-based semiconductor materials.

Appendix A.7. Origin of Electromagnetic Nonlocality in Excitonic Semiconductors

Appendix A.7.1. Review of the Semiconductor Physics of Excitons

Very early in the history of condensed-matter physics, excitons were introduced by
Frenkel [84,85], and further developed by other researchers, such as Wannier [217]. In the
late 1950s, excitonic phenomena were transplanted into a central stage in the framework
of light-matter interaction through the concept of exciton–polariton [178], which will be de-
fined below. Pekar [178], Ginzburg [77], and others [79,119,218,219] affirmed the nonlocal
approach to exciton–polariton materials by explicitly highlighting the strong impact of
spatial dispersion near excitonic resonances. The subject of excitons is vast and multidisci-
plinary. For extensive treatments covering various applications in physics, chemistry, and
technology, see [16,55,86,220–222].

In order to understand the particular nonlocal model to be presented in Section 7.3, let
us first briefly explain the relevant physics of exciton–polariton interactions and why they
can lead to strong nonlocal response. In a direct-band gap semiconductor the minimum of
the conduction band is aligned along the maximum of the valance band, allowing electronic
transitions from lower (unexcited) to excited bands upon interaction with external EM
fields. For insulating semiconductors of the II-VI and III-V groups, exciton transitions occur
in the visible or near-ultraviolet range of the electromagnetic spectrum. By engineering the
material/metamaterial parameters, these transition frequencies can be shifted.

It should be noted that in contrast to metals and plasma, no free charged carriers are
assumed to exist in the material. An electron exiting the valance band after the absorption
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of an external photon will leave behind a hole, which acts as an independent quasiparticle
that can travel throughout the material in the form of a collective excitation [84,85,223,224].
The exciton is defined as a coupled pair composed of the two bound states of the electron
and hole. Here, both electrons and holes must be understood as “dressed” particles (quasi-
particles) with effective mass and charge different from those of the bare (noninteracting)
particle [225]. We may apply the Bohr model to the exciton (electron-hole pair) with simple
modifications that can be summarized by the following procedure:

1. The electron mass must be replaced by the reduced exciton mass

mr :=
melmh

mel + mh
, (A5)

where mel and mh are the electron and hole masses, respectively.
2. The numerical values of mel and mh are determined by the curvature of the conduction

and valance bands, respectively, and, hence, they follow from accurate quantum
mechanical calculations of the band structure, see for example [55,226,227].

3. Due to the screening of Coulomb attraction by the dielectric medium, the effective
electron charge e− = −e should be replaced by e−/

√
ε0, where ε0 is the static dielec-

tric constant.

From this, it follows that the exciton binding energy Eb is given by

Eb =
mre4

2h̄2ε2
0

. (A6)

Therefore, the total energy needed to create an exciton state is given by

h̄ωe = Eg − Eb, (A7)

where Eg is the semiconductor band gap energy. In most applications, the binding energy
Eb is in the order of meV, while Eg is usually few eV. That is, the energy needed to create an
exciton is slightly less than the band gap energy and typically we have

Eb � Eg. (A8)

However, it is recommended to include binding energy in some applications for accurate
calculations to help explaining the fine structure of measured excitonic transitions.

Appendix A.7.2. A Simple Explanation of How Nonlocality Emerges in the
Excitonic Semiconductor

They key to the origin of nonlocality is the scenario when the excitation photon has an
energy h̄ω that is greater than the minimum exciton energy (A7). In the case where

h̄ω > h̄ωe, (A9)

the excess energy will be transformed into kinetic energy. Due to the conservation of
momentum, the wave vector of the exciton is equal to the photon wave vector k and, hence,
the exciton kinetic energy Ekinetic

e is given by

Ekinetic
e =

h̄k · h̄k
2me

, (A10)

where
me := mel + mh (A11)
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is the translational mass of the exciton in the effective-mass approximation [217]. Conse-
quently, the total exciton energy Ee is given by [228]

Ee(k) = h̄ωe(k) = h̄ωe +
h̄2k2

2me
. (A12)

Consequently, the exciton frequency ωe(k) acquires a novel dependence on k, which is
mainly due to the kinetic energy term in expression (A12). It is precisely such dependence
that eventually leads to the emergence of electromagnetic nonlocality in semiconductors
around excitonic resonances when photons couple with excitons. In other words, away
from the excitonic transition regime, the effective dielectric function of the semiconductor
exhibits only the typical dependence on ω (normal or temporal dispersion.)

Appendix A.8. An Alternative Intuitive Derivation of the Dielectric Model (90) and the Quantum
Origin of Nonlocality in Excitonic Semiconductors

The model (90) itself may be intuitively derived as follows. A generic oscillator model
is the one having the following well-attested Lorentzian expression:

1
ω2

e −ω2 − iΓω
. (A13)

This Lorentzian form models a large number of physical processes in nature, from lattice
vibrations to electronic transitions and numerous many others [13,15,37,229]. Substituting
the wave vector-dependent ωe expression (A12) into the above Lorentzian form (A13), the
dielectric function formula (90) can be immediately obtained when we keep only quadratic
terms of k. For a more careful quantum mechanical derivation, see [16,54,86].

Appendix A.9. Computation of the Inverse Fourier Transform (114)

We start from the standard Fourier transform pair

F−1
k

{
χ

k2 − γ2(ω)

}
=

χ

4π

e−iγ(ω)|r−r′ |

|r− r′| , Im{γ(ω)} < 0, (A14)

where the spatial Fourier transform is defined by (17). The condition

Im{γ(ω)} < 0 (A15)

is due to the physical requirement that fields do not grow exponentially in passive do-
mains [13]. We also have written |r− r′| instead of |r| in anticipation of the fact that the
inverse Fourier transform will produce a Green function.

Our main task now is to make a proper choice of the correct sign when performing
the square root operation

√
γ2. Let us write

γ2 = Re
{

γ2
}
+ i Im

{
γ2
}

. (A16)

From (91), we have

Re
{

γ2
}
=

m?
e

h̄ωe

(
ω2 −ω2

e

)
, Im

{
γ2
}
=

m?
e

h̄ωe
ωΓ. (A17)

On the other hand, γ also can take the form

γ(ω) = γ′(ω) + iγ′′(ω), (A18)

where both γ′ and γ′′ are real. The goal now is to derive expressions for γ′ and γ′′ in terms
of Re

{
γ2} and Im

{
γ2} with the correct sign since the square root is a many-one function.
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To accomplish this, we use the following elementary theorem: let x, y, a, b ∈ R. Then
the square root of x + iy is given by√

x + iy = ±(a + ib), (A19)

where the following expressions hold

a =

√
x +

√
x2 + y2

2
, b =

y
|y|

√
−x +

√
x2 + y2

2
. (A20)

Substituting (A17) into (A20), the following is obtained

a =

√
m?

e
2h̄ωe

√
(ω2 −ω2

e) +

√
(ω2 −ω2

e)
2 + (ωΓ)2, (A21)

b =

√
m?

e
2h̄ωe

√
−(ω2 −ω2

e) +

√
(ω2 −ω2

e)
2 + (ωΓ)2. (A22)

Here, we used the calculation

y/|y| = Im
{

γ2
}

/|Im
{

γ2
}
| = ωΓ/|ωΓ| = 1, (A23)

which follows from the fact that ω, Γ > 0.
It remains now to find the correct signs. From (A14), the condition

γ′′ = Im{γ(ω)} < 0 (A24)

must be satisfied. Therefore, we choose the negative sign in (A19). The final expressions be-
come γ = −a, γ′′ = −b, and after inserting γ′ and γ′′ into (A14), the required relation (114)
is obtained.

Appendix A.10. On Extending Definition 1 to Noncompact Regions

The localization of the physics-based nonlocality microdomains estimated using the
formula (121) is based on approximating the exact mathematical definition of the topologi-
cal microdomain (Definition 1) by response kernel functions possessing spatial decaying
exponential behavior as in (114). It might be advisable then to provide a modification of
Definition 1 taking into account the noncompact setting, which is the scenario more often
encountered in physical applications.

Definition A1 (Nonlocal Microdomains: The Noncompact Case). Consider a material
domain D with the associated nonlocal response function K(r′, r). Assume further that the
following bound holds: ∥∥K(r′, r)

∥∥ ≤ A exp
(
−a
∣∣r− r′

∣∣), (A25)

for all r′ ∈ D, where a and A are some positive numbers. (Here, ‖·‖ is as in Definition 1).
The form (A25) is called the exponentially-decaying nonlocal kernel response function. We
define the effective (physics-based) nonlocal microdomain Vr ⊂ D, labeled by r ∈ D, as the
open ball

{r′ ∈ D,
∥∥K(r′, r)

∥∥ < A exp(−1)}, (A26)

where A is as defined in (A25). In other words, an effective onlocality microdomain of this
type, such as the one in Definition 1, is still locally compact.

Remark A1. The physical meaning of the ball (A26) is that it effectively approximate the
spatial region where most of the “energy” of the response is concentrated, hence providing
a physical means to estimate practical microdomain physical problems, since the Coulomb
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interaction and other types of molecular forces are long range forces and, hence, cannot
be described by an exact compact support such as the one originally introduced in the
Definition 1.

Remark A2. It is straightforward to modify Definition A1 to include other forms of decay
functions weaker than the exponential form. For example, we may replace the exponential
in (A25) by a decaying function 1/rn, where n is a suitable positive integer. Obvious
modifications of the ball (A26) can then be subsequently made to construct the nonlocality
microdomain.

Appendix A.11. Possible Applications of the Superspace Formalism to Fundamental Methods in
Metamaterials Research

Appendix A.11.1. Estimating Fundamental Limitations on Nonlocal Metamaterials

Fundamental continuum response maps, such as L (72), can be completely refor-
mulated in a different setting, that of the space of vector bundle sections [57,62,70]. The
latter topic, the theory of sections, is an extremely well-developed subject in mainstream
differential topology. In fact, in some cases the electromagnetic response field function
R(r) itself may be obtained by working directly with the source bundle superspaceM.
For example, under some conditions, this can be achieved by replacing each fiber Xi by
Xi ×C3. In this way, the entire nonlocal response problem reduces to understanding how
vector bundle sections interact with the topology of the underlying base manifold D. There
is a large literature in differential topology and geometry focused on this latter technical
mathematical problem, especially how local information can be transported from one place
to another in order to extend local structures into global ones [26,57,63].

The author believes that by starting from local data in a given nonlocal metamaterial
domain, e.g., the global shape of the device, the distribution of topological holes, etc, one
may then use existing techniques borrowed from differential topology, e.g., the theory of
characteristic classes, to determine allowable EM response functions that are in principle
permissible at the global level. Engineers are typically interested in acquiring in advance the
knowledge of what the best (or worst) performance measures obtainable from specific topolo-
gies are. Hence, reformulating the electromagnetism of nonlocal metamaterials in terms of
vector bundles could be of help in this respect since it opens a pathway, within metamaterials
research, toward a synergy between general topology, physics, and engineering.

Appendix A.11.2. Numerical Methods

Traditional full-wave numerical methods are sometimes deployed in order to deal
with nonlocal EM materials, often using the additional boundary conditions framework, in
spite of the latter’s lack of complete generality.31 At the heart of the traditional approach to
numerical methods in local electromagnetism is the concept of operators between linear
spaces. However, by reformulating the source space of field–matter interaction in terms
of a Banach bundle, it should be possible to reformulate Maxwell’s equations to act on
this extended geometric superspace instead of the conventional spacetime framework. As
an alternative to the concept of the linear operator of classical mathematical physics and
numerical methods, we now have the much more general and richer concept of bundle
homomorphism developed in Section 5. Some of the advantages anticipated from such
reformulation include

1. The ability to resolve the issue of generalized boundary condition (already discussed
in Section 8).

2. Since every point belonging to a fiber superspace is in itself a smooth function defined
on an entire material sub-microdomain, by building a new system of discretized
recursive equations approximating the behavior of electromagnetic solutions living in
the enlarged superspacesM and R one may anticipate arriving at a deeper under-
standing of the physics of nonlocality. The reason is that the topology of the nonlocal
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interaction regime is explicitly encoded into the geometry of the new expanded solution
superspaceM itself. Characterizing this geometry is then possible through a suitable
discrete approximation of the interior microtopological content of the superspace
(fiber bundle) structure itself; i.e., not just at the “exterior” parts often found in the
boundary conditions of classical local field continuum theories, but also “going inside”
the problem space as such.

3. It is also possible that such numerical methods may emerge as more computationally
efficient and broader in applicability than the conventional methods rooted in local
electromagnetism. One reason for this is that the Banach vector bundle formulation
introduced in this paper is quite natural and appears to reflect the underlying physics
of nonlocal metamaterials in a direct manner. From our general experience in nu-
merical methods, “natural operations” tend to translate into numerical methods with
better convergence, sensitivity, and robustness.

As directly related to the three possible advantages of the superspace formalism discussed
above, we also add that in recent years the subject of computational topology has gained mo-
mentum, where some researchers are now building new numerical methods by exploiting
the topological structure of the problems under considerations, e.g., see [72,230]. The fiber
bundle superspace formalism of this paper might provide a way to link research done in
electromagnetic and non-electromagnetic nonlocal materials with such advances in the
computational and applied mathematical sciences.

Appendix A.11.3. Topological Photonics

One of the main applications of the proposed vector bundle formalism is that it
opens the door for a new way to investigate the topological structure of materials. It has
already been noted that the nonlocal EM response is essential in topological photonics,
e.g., see [11,161] and also Appendix A.1. Indeed, since in topological photonics the wave
function of bosons, usually the Bloch state, is examined over the entirety of momentum
space (usually the Brillouin zone), then it is the dependence of the EM response on k what
is at stake, which naturally brings in nonlocal issues. But now since by using our theory we
can associate with every nonlocal material a concrete fiber bundle superspace reflecting
the rich information about the multiscale topological microdomain structure and the
global shape of the material plus the impact of the boundaries separating various material
domains, it is natural to examine whether a topological classification of the corresponding
fiber bundles may lead to a new way to characterize the topology of materials other than the
Chern invariants used extensively in literature. The advantage of the superspace approach
in this case is that the complicated topological and geometrical aspects of the boundaries
and inhomogeneity in nonlocal media can be encoded very efficiently in the local structure
of the material fiber bundle. Using standard techniques in differential topology [62], it
should be possible to propagate this local information to the global domain (the entirety
of the system), for example by computing suitable fiber bundle topological invariants like
its homology groups [70]. Our approach is then a “dual” to the standard approach since
we work on an enlarged configuration space (spacetime or space–frequency), while the
mainstream approach operates in the momentum space of the wave function.

Notes
1 The author would like to thank one of the anonymous reviewers for suggesting this connection.
2 This is argued in detail in [32]. In particular, the recently-introduced current Green’s function of electromagnetic devices was

inspired by finding a Green’s function structure similar to that corresponding to nonlocal media [33–36].
3 See Appendixes A.1 and A.2 for the literature review.
4 For a brief discussion of some possible engineering applications of metamaterials, see Section A.3.
5 Cf. Section 3.3.
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6 If D asymptotically grows into an unbounded region, then the problem reduces to that of homogeneous unbounded domain
(bulk media), well treated in the basic literature on spatial dispersion. Clearly, in this paper, we are not interested in such a
topologically trivial problem.

7 Cf. Remark 3.
8 This is well known from the quantum theory of nonlocality [16,38,50], but concrete examples illustrating this behavior will be

given in Section 7.
9 This compactness of the response kernel’s support cannot be proved in general, but is very plausible on physical grounds

(causality considerations). Therefore, we posit such compactness as an axiomatic feature of all physically-realizable causal
nonlocal continuum field theories. However, see Appendix A.10.

10 For some possible definitions of matrix norms, see for example [60,61].
11 In this section and the one to follow, we do not worry much about the details of the electromagnetic model and for simplicity

assume that only one vector field F acts as excitation and one response field R is induced. More complex media like bi-anisotropic
domains and others [67] may also be treated within this formulation. For example, if two response fields are needed, the codomain
in (33) can be simply changed to C6.

12 Cf. Remark 3.
13 See the discussion of nonlocal and topological metamaterials applications in Appendix A.3.
14 Cf. Appendix A.1.
15 See [59,68] for the full technical definition of subordinated cover. A collection of subsets of a topological space is said to be locally

finite, if each point in the space has a neighborhood that intersects only finitely many of the sets in the collection. What we need
here is that there exists some i and r such that Ui is inside Vr, i.e., Ui ⊆ Vr where r ∈ Ui.

16 The function space Cp is comprised of the set of real functions that are continuously differentiable p-times [62,69].
17 See Section 7 for one possible method and examples.
18 Cf. Remark 3.
19 The discretization of the nonlocal MTM bundle homomorphism itself is outside the scope of the present work and will be

addressed elsewhere.
20 On the technical difference between local and global topological isomorphisms, especially in differential topology, see [62,73,74].
21 For instance, by introducing holes into a simply-connected domain in order to make the latter disconnected.
22 The numerical value of α may be different for transverse and longitudinal excitation fields.
23 In the effective-mass approximation, a simple way to estimate the exciton mass m?

e is via the relation m?
e = mel + mh, i.e., the sum

of the effective electron and hole masses introduced in Appendix A.7. However, it must be noted that this relation is far from
being universal, e.g., it should be modified when there are strong interactions [81,82]

24 In typical crystal materials, the ratio ωL,T/ωT is already about 10−3 [16,55].
25 It should be noted that there is no loss of generality here. The computational model to be presented shortly allows the estimation

of the nonlocal microdomain topology based on a generic model of the form (90). If εL and εT are not identical, then the same
procedure can be applied to each one of them separately.

26 There is a nice parallelism here with temporal dispersion where the latter is known to arise from the inertial effects of electrons in
interaction with radiation fields [37].

27 This is more obvious in FEM or FDTD than MoM.
28 Cf. Section 5.2.
29 Cf. Section 8.
30 Even for isotropic materials, the response tensor K remains a tensor. This is due to the manner in which the equivalent dielectric

function is defined using the Fourier transform instead of the conventional multipole approach, e.g., see [16,32,37].
31 Cf. Section 8 and Appendix A.1.
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