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Abstract: We utilize relativistic quantum mechanics to develop general quantum field-theoretic
foundations suitable for understanding, analyzing, and designing generic quantum antennas for
potential use in secure quantum communication systems and other applications. Quantum antennas
are approached here as abstract source systems capable of producing what we dub “quantum
radiation.” We work from within a generic relativistic framework, whereby the quantum antenna
system is modeled in terms of a fundamental quantum spacetime field. After developing a framework
explaining how quantum radiation can be understood using the methods of perturbative relativistic
quantum field theory (QFT), we investigate in depth the problem of quantum radiation by a controlled
abstract source functions. We illustrate the theory in the case of the neutral Klein-Gordon linear
quantum antenna, outlining general methods for the construction of the Green’s function of a source—
receiver quantum antenna system, the latter being useful for the computation of various candidate
angular quantum radiation directivity and gain patterns analogous to the corresponding concepts
in classical antenna theory. We anticipate that the proposed formalism may be extended to deal
with a large spectrum of other possible controlled emission types for quantum communications
applications, including, for example, the production of scalar, fermionic, and bosonic particles, where
each could be massless or massive. Therefore, our goal is to extend the idea of antenna beyond
electromagnetic waves, where now our proposed QFT-based concept of a quantum antenna system
could be used to explore scenarios of controlled radiation of any type of relativistic particles, i.e.,
effectively transcending the well-known case of photonic systems through the deployment of novel
non-standard quantum information transmission carriers such as massive photons, spin-1/2 particles,
gravitons, antiparticles, higher spin particles, and so on.

Keywords: quantum antennas; quantum field theory; relativistic quantum mechanics; quantum
radiation; propagator; Green’s function; quantum engineering; quantum technologies; radiation
pattern

1. Introduction

The main objective of this paper is to develop conceptual, physical, and mathematical
foundations for quantum antenna theory based on a very broad approach to generic
quantum fields produced and consumed by source and sink systems separated in spacetime.
Quantum antenna technology is a recent emerging subfield within the larger and more
fluid research area often referred to as quantum engineering, quantum technologies, or
just quantum information processing. In particular, and within this subfield, we find that
the main intention behind the desire for developing a new “quantum antenna technology”
is to serve the needs of current and future quantum communication systems [1–4], where
information is transmitted using quantum states [5,6], regardless of whether digital data
are encoded as classical bits or qbits [1,7–10], with obvious applications to physical-layer
security [11–14]. However, the peculiar system known as “the quantum antenna” may
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also perform functions other than mere information transmission in wireless quantum
links, for example, quantum tomography, quantum state estimation, biophotonics, sensing,
molecular communications, space exploration, and other applications [13,15–26].

We believe that quantum antenna theory and technology may be viewed as an attempt
to synthesize three already established subfields: (1) classical antennas [27,28], (2) optical
nanoantennas [29,30], and (3) quantum emitters [29,31]. As such, a quantum antenna is
often confused with one of these three topics. For example, occasionally, laser sources
or photodiodes are treated as quantum antennas by some authors working in free space
optical communications. This is not what we understand by the term here. A laser source
could constitute a part of the q-antenna system, while a larger part, for example a terahertz
or an optical antenna [29,32], may serve as a secondary reflector as in nanoantennas [30]. In
addition, an atom emitting a photon after undergoing a transition from excited to ground
states is not considered an “antenna” in this paper. Instead, we propose the following
general definition:

Definition 1 (Antennas). By the term antenna, we follow classical antenna theory where the
antenna system is defined as an externally controlled spatiotemporal current distribution capable of
controlling the spatiotemporal properties of the radiation emitted by the antenna system.

It will be seen that the most salient point in this definition is the emphasis on the
following three features:

1. The source is a controllable current distribution function of both space and time.
2. Ultimately, the source current is externally controlled.
3. A spatiotemporal current distribution profile serving as a model for a quantum

antenna source can control the radiation proprieties in both space and time, and
usually for near- and far-field scenarios as well.

Hence, the existence of spatiotemporal, externally controlled source current distributions
capable of modifying its produced radiation in both space and time is the main content of
antenna theory.

Clearly enough, mainstream examples in quantum optics such as a laser source by
itself, or an isolated atom undergoing a spontaneous emission of light, do not fall under
a conceptual umbrella such as the one supplied by Definition 1, at least not naturally.
However, such conventional quantum optical sources may still serve as essential sub-
components of such systems. For example, probably, the most natural method to inject a
controlled time signal into a radiating nanostructure is through a modulated laser beam.
However, controlling the spatial distribution of the radiating current excited by this time
signal would require the use of additional methods and objects; for instance, an optical
antenna, or an engineered metamaterial, or an optimized array of point sources. Even
though the data to be transmitted are encoded into time signals, in general, the quantum
antenna system is much more complex than its time excitation method. There is a need,
then, to understand the complex and multifaceted nature of the spatiotemporal structure of
the radiation field emitted by a generic quantum system at a very broad level. This paper is
a contribution toward this goal.

The classical theory of controlled radiation has been extensively studied and developed
in applied electromagnetics [27,28,33–35]. On the other hand, the general theory of quantum
antennas has not been investigated in depth so far, in spite of the publication in recent years
of a number of reports and proposals about the subject, not restricted only to quantum
wireless communications but also involving other topics as well, e.g., see [15–21]. Some of
the main conceptual and philosophical hurdles that a viable theory of quantum antennas
need to overcome include, though by no means are restricted to, the following issues:

1. Understanding what is meant by quantum radiation.
2. Understanding the role played by particle emission dynamics in light of the wave-

particle duality characteristic of quantum phenomena.
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3. Understanding the complex role played by quantum fields, propagators, and Green’s
functions in quantum radiation.

4. Understanding the role played by many-particle states/interactions in quantum
radiation processes.

It should be noted that these conceptual and technical issues are still considered
difficult open research fields in both foundational and applied research as they have not
been resolved even within standard quantum field theory itself. For instance, it is still
not clear what the ultimate meaning of “particle” in quantum fields is [36,37]; questions
about the nature of quantum excitations in interacting field theories have been asked in
the past [38] and are still being investigated up to date [39]. Therefore, there is a need
to re-examine the subject of quantum antennas at a very general and fundamental level,
that of developing possible foundations for the topic that may help illuminate current
and future open theoretical problems on one hand, and to help devise and evolve new
genera of quantum systems and applications on the other hand. A viable candidate for
such foundational approach, we believe, is to formulate the entire problem of quantum
antennas and quantum radiation using a relativistic spacetime formalism (QFT in this case).

Our intended goals in the present article include a wide spectrum. Most of these
objectives are research related and can be classified as part of the emerging area of quantum
antenna theory within both quantum physics and quantum engineering. Yet, additionally,
other aspects in our work are pedagogical, relating to the wish to reach a wide multidisci-
plinary audience. We summarize these two flavors of our main goals as follows:

• Primary research objectives of the present article:

1. Generalizing the concept of antennas beyond acoustic and electromagnetic an-
tennas, the two concepts that have dominated the field so far, by demonstrating
how relativistic QFT can be used to formulate a single and unified concept of
“quantum radiators” valid for a large number of possible radiation processes
in nature.

2. Providing a concrete illustration of some of the potential algorithmic capabilities
of the spacetime formalism of quantum antennas by constructing various possible
candidates for radiation pattern functions and gains in the case of the quantum
(spin-0) Klein–Gordon q-antennas.

• Secondary (pedagogical) objectives of the present article:

1. Introducing new applications of fundamental theory (here relativistic quantum
mechanics) to different audiences, e.g., quantum engineering and quantum
technology research.

2. Introducing the subject of QFT in a self-sufficient manner by providing detailed
appendices explaining how relativistic quantum mechanics is formulated for an
audience familiar only with nonrelativistic quantum mechanics.1

This paper is organized as follows. In Section 2, the classical theory of antennas is
re-examined, and the comparison with the new, more general concept of quantum source
radiators is explored at the thematic level in order to prep the reader for the subsequent,
more technical quantum-field theoretic treatment. This is followed in Section 3 by a very
broad view on the theory of quantum radiators developed based on interacting quantum
mechanics, without much emphasis at this stage on the relativistic quantum field theoretic
scenario. The purpose is to map out the generic structure of the problem and to highlight
the distinction between linear and nonlinear quantum antennas. Starting from Section 4,
we narrow down our focus to the special but rich enough special case of the neutral Klein–
Gordon field linear quantum antenna, which appears to exhibit many of the salient features
of the general quantum antenna system. Then, the abstract formal and physical structure
of such a system is explicated in Section 5. To provide more concrete applications of the
theory, Section 6 presents a series of examples and constructions aiming at illustrating
how one may define radiation pattern measures such as directivity and gain (transmission)
coefficients in quantum antenna systems. Finally, we end up with conclusions.
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2. Antenna Theory: Classical and Quantum Radiation Scenarios

In analogy to classical antenna theory [27,35,40], we formally define a quantum antenna
in terms of the mathematical representation of a radiating source term as follows:

Definition 2 (Quantum Antennas). Within the context of relativistic quantum field theory, a
quantum antenna (q-antenna) J is an operator map of the form

J : J → Ψ, (1)

where Ψ is a quantum field system produced by the abstract source function

J : M4 → K, (2)

which maps the Minkowski spacetime M4 of special relativity to the set K = R (real numbers) or
K = C (complex numbers). We assume that the function J(x), x ∈ Ds ⊂ M4 is integrable over
any spacetime region Ds of interest. We further assume that the source J(x) is compactly supported;
i.e., cl{Ds} is compact where cl is the closure operator in the standard Euclidean topology on R4.

Physically, the main property of the q-antenna (source) function J(x) is that it controls
the quantum radiation Ψ(x), x ∈M4, emitted by the source system J(x), x ∈ Ds ⊂M4. The
generic configuration itself is shown in Figure 1. In fact, much of this paper will concentrate
on understanding the precise nature of how a generic source function J(x) can control the
spacetime structure of the quantum field emission Ψ(x) in applications characteristic of
the special context of an arbitrary quantum communication system (source-channel-detector
system). Thus, the article’s main scope is the theoretical foundations of the physical layer
of the quantum communication link structure, e.g., how a quantum state can be directed
to a given spacetime region through the choice of a proper abstract source function. The
particular discipline devoted to this problem is the area we dub quantum antenna theory,
which is a relatively new interdisciplinary research area.

Figure 1. The fundamental configuration of a quantum antenna communication system in spacetime.

Remark 1. It may be noted here that there is a similarity between the quantum communication
problem [7] and the quantum measurement problem in quantum physics [41–43]. The analogy is
manifested by the common underlying abstract structure shared by the two distinct processes of
communications and generalized quantum measurement [1,8]. Both involve a source of information
(often called quantum state preparation in QM), which is localized within a given spacetime region;
and a process of destructive consumption of the transmitted information, this time localized at a
receiver or detector located at a timelike-distant spacetime region [43,44]. The quantum receiver
system’s ultimate objective is to extract the maximum amount of information embodied in the
received quantum state in QM, or quantum field in QFT, through the judicious utilization of
optimized combinations of measurement operations and signal processing algorithms.
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Quantum antenna systems turn out to be considerably more complex to understand
and analyze than conventional antennas, where the latter antenna type is often approached
within the framework based on classical electromagnetism (and sometimes acoustics). A
reason behind this noticeable difference in complexity between the two theories might be
related to the fact that a proper and completely satisfactory understanding of quantum
interactions is ultimately based on relativistic QFT, which is inherently a many-particle
world picture. That is, in QFT, it is inconsistent to assume the possibility of a single-
particle-interaction configuration due to the inherent tension that this assumption will
bring with special relativity (SR) and other fundamental principles [38]. On the other
hand, a traditional classical antenna is essentially a “one-point physical process” in which a
generic source point x′ = (x′, t′) radiates into another arbitrary observation point x = (x, t),
where the total radiation is just the linear superposition of all contributions emanating from
all relevant individual non-interacting spacetime points [45].

The most obvious and rigorous way to understand the classical process of radiation
and reception of electromagnetic signals is through the two fundamental Green’s functions
of the antenna system, the source or current Green’s function F(x, x′, t− t′) [28,46–48], and
the radiation Green’s function G(x− x′, t− t′) [49–51]. These two are essentially defined via
their crucial superposition-like integral summation rules (A1) and (A2); see Appendix A,
where the Green’s function approach to classical antenna theory is briefly reviewed and
additional references are given.

However, when we next move toward examining the emerging theory of quantum
antenna systems, the natural question is whether this generalized structure of classical
antennas persists. It turns out that radiation formulas similar to the Green’s function-based
expressions (A1)–(A3), Appendix A, can not in general be maintained in the case of quantum
radiation. However, in this paper, we focus on ways to retain as much classical structure as
possible in the new quantum antenna theory. This turns out to be possible for the case of
linear quantum antenna systems, which will be investigated in details below.

To summarize, we find that the following general situation holds in antenna theory:

1. Classical electromagnetic radiation in free space or linear materials, when viewed
from the perspective of its ultimate source (external field), is inherently linear.2

2. On the other hand, quantum antennas involving higher-order processes (many-
particle interactions, n-point processes with n > 1, etc.) are intrinsically nonlin-
ear radiation problems (due to the many-body nature of interactions in quantum
field theory).

To be more precise, it can be shown that only first-order quantum radiation processes
may lead to linear operator radiation relations similar to (A1)–(A3). This is the process that
corresponds to what we call linear quantum antennas, which will be studied in more details
in this paper, while a more complete theory of relativistic nonlinear quantum antennas is
relegated to future publications. All other higher-order processes, which are ultimately due
to the many-body quantum interactions between source points, can be shown to lead to
nonlinear contributions to the total probability amplitude of the quantum radiation emitted
by the source system.

3. The General Theory of Quantum Antenna Systems
3.1. Preliminary Considerations

According to Definition 2, a q-antenna system consists of a spacetime source region Ds
together with a current source function defined on this region. The receiving q-antenna
is located in the compact spacetime region Dr. The overall spacetime configuration is
illustrated in Figure 1. To allow information transmission from the source to the receiver
regions, the two spacetime domains Ds and Dr must have timelike separation [53].3 For
simplicity, Ds and Dr as spacetime regions are assumed to be factorizable into the forms

Ds = Ss × Ts, Dr = Sr × Tr, (3)
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where Ss and Sr are the three-dimensional spatial subdomain components of the original
four-dimensional regions Ds,r satisfying

M4 ⊃ Ds,r ⊃ Ss,r ⊂ R3, (4)

while Ts,r ⊂ R is the “temporal component” (timelike slice) of the source/receive regions
Ds,r, respectively. Here, both Ds,r and Ts,r are assumed to be compact, i.e., Ds,r and Ts,r are
closed and bounded sets in the standard Euclidean metric space R3.4

Throughout this section, the quantum field φ(x) is allowed to refer to a general field
with possible spins 0, 1/2, 1, 2, etc., without worrying much about indices (in the next sec-
tions, we work only with scalar fields for simplicity). Moreover, any particular QFT under
consideration may itself be of the free (non-interacting) or interacting types. Interacting
field theories often require the use of perturbation theory in order to obtain practical results.
However, all information about the interacting system is conveniently encoded in the
propagator, which will be used extensively in our theory below.5 Therefore, for generality, in
this paper, we utilize the propagator concept as the fundamental mathematical carrier of
physical information about the generic quantum antenna system in spacetime.

3.2. A Generic Interaction Hamiltonian Description of Quantum Antenna Systems

Here, a high-level view on interacting field theory is provided. Note that a full
treatment of interacting field theories is outside the scope of the present paper, whose main
goal is to supply the reader with a minimal picture of how eventually quantum antenna
theory should be fully formulated when specific physical layouts, often described with
their own Hamiltonian, are introduced. On the other hand, starting from Section 4, we
work mainly with the scalar field theory (the Klein–Gordon theory) in order to illustrate
the general structure of quantum radiation with minimum knowledge of the full details of
matter–field interaction mechanisms. Readers interested in more information related to
specialized physical layouts may consult numerous other publications, for example those
quoted in the Introduction section of this paper.

We assume that all relevant quantum field operators can be described within one and
the same large enough combined Hilbert spaceH, which in the case of QFT is a Fock space
F . The total Hamiltonian operator of the system is written as

H = H0 + Hint, (5)

where H0 is the free Hamiltonian (non-interacting part that is usually solvable), while Hint
is the interacting Hamiltonian, which is a time-dependent operator that in turn can be
expanded into four basic component as follows

Hint = Hin + Hs + Hr + Hc. (6)

Here, we have the following three categories of interaction Hamiltonian terms:

1. Hin captures intrinsic interaction in the fundamental quantum field of the q-antenna
system, e.g., self interactions such as polynomial Lagrangian terms containing powers
of φ(x) larger than three such as the mainstream interacting φ4-theory [54,56,57].

2. The terms Hs and Hr describe, respectively, the interaction between the source and
the receiver antennas on one side and the fundamental quantum field φ(x) of the
q-antenna system on the other side. These interactions should be understood as
processes localized within their respective spacetime domains Ds and Dr.

3. Finally, the term Hc corresponds to channel interactions and couplings, e.g., coupling
of the excited quantum field φ(x) with scattering objects located within the effective
path of an excited quantum particle produced by the source and directed toward the
receiver.6

A couple of important observations on this decomposition of the interacting Hamilto-
nian are in order. First, to keep the discussion at the most general level, we assume that the



Foundations 2022, 2 257

intrinsic interacting Hamiltonian, if nonzero, is present all the time. That is, it becomes an
essential ingredient of the fundamental field φ(x) of the q-antenna system. In this sense,
the latter field is defined as precisely that quantum field corresponding to the Hamiltonian

Hφ = H0 + Hin. (7)

On the other hand, the source, receiver, and channel Hamiltonian terms are treated in
this theory as extrinsic interactions, i.e., external disturbances coupled to the fundamental
quantum field φ(x) associated with the Hamiltonian Hφ. As expected in quantum physics,
coupling often leads to nonlinear equations of motion [54]. In this sense, the uncoupled
fundamental field φ(x) is perturbatively transformed into a new coupled field φ′(x) with a
full Hamiltonian

Hφ′ = Hφ + Hs + Hr + Hc (8)

solved using perturbation Dyson or path integral expansions [55]. Following standard
conventions in QFT, we do not change the notation of the field but always use φ(x) while
clearly stating which Hamiltonian is being used (if needed). In addition, we will not label
Hamiltonians by their fields or spacetime arguments unless this is needed.

Remark 2. Sometimes, it is more convenient to group channel interactions Hc and intrinsic field
self-interactions Hin into one term

H′in = Hin + Hc. (9)

The reason is that there is indeed some similarity between the two types of interactions above. They
are both unrelated to the transmitter (source) and receiver terminals and can be considered then as
indigenous components of the q-antenna system field itself. However, there are also some differences,
since channel couplings are not the same everywhere but are localized at the scattering objects
themselves. On the other hand, self-interactions and also intrinsic mutual interactions captured
by the term Hin are generally “turned on” most of the time. Nevertheless, in some applications,
it might be useful to group Hin and Hc with each other under the rubric of scattering-based
interaction processes in order to distinguish them from transmitter and receiver types of interactions
(information source and sink).

Let us examine now how the source and the receiver terminals of the system may
interact. Working in the Schrodinger picture,7 Let the state of the source at the end of the
interaction interval Ts = [t′s, ts] be denoted by |J, Ds〉ts

. Here, J is a generic symbol for the
overall set of (classical) disturbances supported on Ds ultimately constituting our proposed
formal Definition 3 of the q-antenna current source system. Then, we may write

|J, Ds〉ts
= P(t′s, ts; J, Ds)|0in〉, (10)

where P(t′s, ts; J, Ds) is the interaction picture (Dirac) propagator (A18), which is reviewed
in Appendix D for more details. That is, the computation of this propagator is based on the
substitution HI = Hs into (A19). The special state labeled |0in〉 is the ground state of the
intrinsically interacting system, i.e., the state satisfying

(H0 + Hin + Hc︸ ︷︷ ︸
H′in

)|0in〉 = 0, (11)

where, as discussed above, we have here opted for generality by including all possible
wireless channel scattering effects captured by Hc with the field intrinsic self-interaction
Hamiltonian Hin. Then, the ground state |0in〉 represents both the (i) true or actual physical
initial state of the q-antenna system before interacting with the source J localized in the
spacetime domain Ds; and (ii) the final state reattained after finishing interaction with the
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receiver localized in the disjoint domain Dr. On the other hand, the bare ground state |0〉 is
the ground state of the free Hamiltonian H0 satisfying

H0|0〉 = 0. (12)

An exactly analogous general analysis can be conducted in order to understand the receiv-
ing q-antenna interaction problem. The latter is that concerned with what happens after
interaction with the detector during the time interval Tr = [t′r, tr], change in fields, states,
observation outcomes, etc.

3.3. The General Expansion Theorem of Quantum Radiation Fields

We now generalize the concept of quantum source in order to take into account
many-point interactions. Let us consider a generic quantum source located in the region
Ds ⊂M4.

Definition 3 (Generalized quantum antenna source). A generalized quantum source is de-
fined as a countable set of real-valued functions Jn of the form

Jn : Ds × Ds · · · × Ds︸ ︷︷ ︸
n times

→ R, n ∈ N, (13)

where Ds is compact. In other words, a generalized quantum antenna source is defined as the set

J = {Jn, n ∈ N} (14)

of all real-valued functions on all product spaces of Ds.

The motivations behind the apparently abstract definition are in fact the actual physical
relevance of all the functions Jn mentioned there. It turns out that J1 represents nothing but
a direct linear current source, while all higher-order sources Jn, n > 1, can be interpreted as
mutual interaction8 strength factors. To see this, we now present the following fundamental
theorem about quantum sources:

Theorem 1 (The q-antenna decomposition theorem). Let A(x) ∈ C be the probability am-
plitude of the observation (particle annihilation) of the quantum antenna field at a location x ∈M4.
Then, it follows that when expressed in terms of the generalized q-antenna source of Definition 3,
the amplitude A(x) can be expanded as

A(x) =
∞

∑
n=1

∫ n

∏
l=1

d4xl Gn(x, x1, . . . , xn)J(x1, . . . , xn), (15)

where all integrals are performed within the source region Ds. Here, J(x1, . . . , xn) is identified with
Jn in Definition 3. The set of functions Gn are (n + 1)-point Green’s functions where n is a labeling
superscript, not a power.

See Appendix E for some background to the decomposition theorem, where a general
discussion and additional references are given. A complete and rigorous treatment of
Theorem 1 is outside the scope of the present paper, since the proof is fairly lengthy though
relatively straightforward, and the details are not needed in order to understand linear
quantum antennas (the case mostly discussed in the remaining parts of this paper). A
general idea of the scope of the proof is briefly outlined in Appendix E.
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We discuss the physical meaning of Theorem 1. For clarity, let us rewrite the general
expression (15) as a sum of first-order term (linear radiation) and all higher-order terms:

A(x) =
∫

d4x1G1(x, x1)J(x1)
︸ ︷︷ ︸

Linear quantum radiation integral

+
∞

∑
n=2

∫ n

∏
l=1

d4xl Gn(x, x1, . . . , xn)J(x1, . . . , xn)

︸ ︷︷ ︸
Nonlinear quantum radiation higher-order integrals

.
(16)

The first term on the RHS represents conventional linear quantum radiation processes and
will be studied in detail in the remaining parts of this paper. It involves a usual quantum
source function J(x) (see Definition 2), with a two-point Green’s function G1(x, x′) serving
as a “system spacetime transfer function” of the antenna system (or “generalized impulse
response” using the terminology of signal processing and the engineering sciences). Note
that while A(x) is a complex probability amplitude the like of which is completely absent
in the classical world, radiation expressions analogous to the first term on the RHS of (16)
do possess some—at least formal—structural similarity to the classical radiation formula
(see Section 5.2 for an in-depth comparative analysis between different antenna types).

On the other hand, the remaining terms in (16) involve mutual source functions of
the form J(x1, . . . , xN). These are joint interaction terms describing coupling phenomena
among the generic points x1, . . . , xn ∈ Ds, n > 1, which may introduce mutual correlation
between some or all points of the source systems, which in turn are ultimately explainable
as many-body effects9 as illustrated by the following example.

Example 1 (Classical current source). In order to appreciate why the presence of joint
source functions signifies interactions, let us consider the well-known case of a classical
current source (i.e., the backreaction of the quantum field on the source is ignored) when
such source function J(x) is inserted into the Lagrangian of quantum field theory [14,62].
In that case, one may obtain an exact solution of the interaction problem. It turns out that
higher-order processes in this solution can be all expressed as simple direct multiplications
of the same source function J(x), i.e., we have:

Jn = J(x1, · · · , xn) = Πn
l=1 J(xl) = J(x1)J(x2)× · · · J(xn). (17)

Therefore, in such theory, the second term on the RHS of (16) looks like
∫

d4x1d4x2 G2(x, x1, x2)J(x1)J(x2), (18)

which is essentially nonlinear in the current source. In the more general case, when there is
a correlation between x1 and x2, the following condition holds:

J(x1, x2) 6= J(x1)J(x2). (19)

However, still even in this correlated latter case, one may expand the function J(x1, x2) in
Taylor series around the uncorrelated case J(x1, x2) = J(x1)J(x2) in order to understand
the general structure of the problem whose general form is now given by the second-order
process10

∫
d4x1d4x2 G2(x, x1, x2)J(x1, x2). (20)

Nevertheless, the message of this example is clear: A higher-order process, i.e., Jn with
n > 1, introduces nonlinear contributions to the total probability amplitude A(x) as
per (16).
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4. Linear Quantum Antenna Systems
4.1. Introduction

The conceptual, physical, and mathematical structure of quantum antennas will now
be further investigated in depth by focusing on the first term on the RHS of (16). This
restriction is motivated by the desire to keep the presentation as simple as possible. In
fact, most of the key concepts and structure to be developed in connection with the main
component of the quantum source, the function J1, can be adapted and also applied to
the higher-order components Jn, n > 1, although the details are lengthy. For example, a
radiation pattern could be constructed for each source mode function Jn similar to the
one to be given below (see Section 6), after which the various contributions of all such
terms are summed together in order to estimate the total radiation characteristics of the
source system.

Our approach is fundamentally based on the idea of propagators and Green’s functions
in field theory. Similar to the corresponding situation in QFT itself, the concept of Green’s
function is also fundamental in classical antenna theory [27,28,33,35,49,63,64]. There, one
finds that Green’s function connects the source (cause) with its produced radiation field
(effect), which is a fact that has been frequently exploited as a useful computational tool in
both classical electromagnetism [49,63–66] and quantum physics [54,55,67].

However, for quantum radiating systems to behave as antennas, one must track down
and separate from out of the total quantum system an ultimate terminal where a purely
classical—i.e., deterministic—source function is identified. Through such a source function,
the quantum source system may then allow for an external user control for the purpose of
sending information [10,13].11 For the purpose of this paper, we will show that QFT allows
the construction of a very natural and direct source model for q-antenna systems.

In order to simplify the presentation, we break down our method into several steps
as follows:

1. Construct a quantum source model resembling the point (infinitesimal source) in
classical antenna theory.

2. Using the previous quantum point source model, construct the quantum state ra-
diated by the q-antenna due to arbitrary continuous or discrete source distribution
(superposition principle).

3. Construct Green’s function of the q-antenna using the previous superposition integral.
4. Introduce and evaluate the q-antenna radiation pattern using Green’s function (mostly

in the momentum space representation).

References on the Green’s function approach to classical antenna theory can be found
in [28,46–48]. The infinitesimal source approach is developed in [68]. The momentum space
approach to electromagnetic theory and antennas is outlined in [69–73].

For maximum clarity, this program will be carried out throughout the remainder of
the present paper for the special case of a neutral Klein–Gordon field φ(x) (the standard
spin-0 scalar field theory, Section 4.2). In addition, and as already mentioned above, for
emphasis on simplicity, we focus on the linear quantum antenna case. In fact, the key
concepts introduced below through the Feynman propagator for the construction of a
quantum radiation pattern are essentially the same whether the radiation regime under
consideration is linear or nonlinear.

4.2. The Klein–Gordon Field Theory

In relativistic quantum field theory [38,54,55], everything takes place in the
four-dimensional Minkowski spacetime [51,53], denoted by M4, which is a linear vector
space endowed with a special metric, the Lorentz metric gµν, see Table A1 in Appendix B,
where the relativistic notation and key quantum formulas in the natural unit systems are
reviewed. (In what follows, we work in the natural unit systems where c, the speed of light,
and h̄, the Planck constant, are both reduced to unity (c = h̄ = 1); see Appendix C). Without
loss of generality, and as mentioned earlier, the q-antenna quantum field φ(x) is assumed to
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be that of scalar massive theories.12 To further simplify the mathematical manipulations, we
focus on the neutral massive Klein–Gordon field theory, which is outlined in Appendix F.
For massive particles (spin-0 particles in our scalar theory example), the dispersion rela-
tion (A27) governs the behavior of particles emitted when the q-antenna system is used in
applications such as quantum molecular communications. On the other hand, massless
(m = 0) particles models “scalar photons” or photons with polarization ignored, since in
this case, the Klein–Gordon equation reduces to the (scalar) wave equations.13 In general,
adding spin to the theory does not involve any major changes in the main conceptual ideas
related to q-antennas and hence will be left for future work.

We also further note that the field modal expansion (A26) is intrinsically Lorentz
invariant, even though the spectral integration performed there is carried with respect to
the non-Lorentz invariant volume measure d3x because the standard method of normalizing
factor has been already employed in our formulation.14 In other words, the spacetime
q-antenna theory developed here is fully relativistic. A breakdown of relativistic invariance,
as exemplified by choices of spatiotemporal decomposition (slicing) of the source or receiver
regions Ds,r, e.g., as in (3), can be introduced later as an external restriction enforced by
hand to simplify the calculations and the presentation.

4.3. An Elementary Model for Point Quantum Particle Excitation

In our model, a fundamental spacetime quantum field φ(x) is associated with the
q-antenna.15 We start by provisionally identifying φ(x) as the “quantum source field” of
the q-antenna system, i.e., the fundamental quantum field of the system directly produced
by the source J(x), x ∈ Ds. Roughly speaking, this terminology indicates that this quantum
field plays a double role:

1. It emits quantum particles (massive particles when m 6= 0 and scalar Klein–Gordon
particles when m = 0) at particular spacetime positions.

2. Once generated, the quantum field φ(x) would somehow “propagate” the quantum
particle in space and time.

Equivalently, we say that the quantum field φ(x) enjoys the double role of being both
the producer and propagator of the quantum radiation particle.

Next, let us hit the vacuum state |0〉 with the q-antenna source field φ(x′) operator;
i.e., we wish to excite a quantum particle at the position x′ = (t′, x′). Using (A26) and the
standard facts ap|0〉 = 0 and a†

p|0〉 = |p〉, we compute

φ†(x′)|0〉 =
∫

p∈R3

d3 p
(2π)3/2

eipµx′µ

(2ωp)1/2 |p〉. (21)

Therefore, we managed to set up a superposition of outgoing particles, i.e., radiation quanta
leaving the position x′ at time t′. This may explain why φ(x) was duped the quantum source
field of the q-antenna: The field literally “creates” many quantum particles radiating away
from the initial source location. (The latter source plays the role of the “initial state” in
quantum mechanics, though it should be noted that QFT does not use the same concept of
the state).

Furthermore, with the help of the expansion (21), we are now in possession of a
satisfactory understanding of the composition of the quantum states radiated by this point-
like quantum source: they are essentially superpositions of pure momentum states |p〉,
with scaling factors (momentum state excitation strength) given by the total factor of the
integrand of (21) multiplying each such momentum ket.16

Let us now compute how much probability amplitude there is in the new excited
q-antenna state (21) when an observer tries to measure the q-antenna’s radiation field’s
momentum. If the observation momentum eigenvalue is q, then we form the relativistic bra

〈q| = (2π)3/2(2ωp)
1/2〈q|, (22)
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through which one may estimate the amplitude A(q) by calculating the matrix element

A(q) := 〈q|φ†(x′)|0〉 =
∫

p∈R3

d3 p
(2π)3/2

eipµx′µ

(2ωp)1/2 〈q|p〉. (23)

Using the basic orthogonality relation between momentum eigenstate [57]

〈q|p〉 = δ(q− p), (24)

the integral (23) can be readily evaluated, yielding

A(q) = eiqµx′µ = ei(ωq−q·x′). (25)

This is a deceptively simple-looking relation, but it underlies a powerful structure that
enjoys considerable importance in the theory of q-antennas. From the engineering point of
view, the expression (25) may be shown to lead to the emergence of the classical antenna
array factor when moving into the quantum context, hence the ability to shape the quan-
tum radiation emitted by q-antennas using techniques borrowed from what is essentially
classical antenna theory.

From the physics point of view, (25) says that the complex probability amplitude
of finding the radiated particle emitted at the spacetime point x′ at the four-momentum
state |q〉 is simply exp

(
iqµx′µ

)
. Furthermore, the relation (25) also confirms the provisional

interpretation proposed above that the state φ†(x′)|0〉 may be viewed as a one-particle
quantum field excitation state “localized” at the spacetime point x′. The reason is that such
interpretations is reminiscent of the standard relation

〈p|x〉 = exp(ip · x) (26)

in nonrelativistic quantum mechanics, suggesting a “quasi-localization” of the particle’s
momentum state at x. From (25), we obtain Pr{q = q′} = 1 for any four-momentum
range q ∈M4. This is completely natural since, as in nonrelativistic quantum mechanics,
momentum eigenkets are maximally nonlocalized. Since we have just established that the
state φ†(x)|0〉 represents what, within QFT, corresponds to a pure one-particle momentum
state, total nonlocalizablity of the conjugate position parameter is expected. However,
note that in standard perturbative QFT, it is very difficult to mathematically describe the
complete localization of particles. For an in-depth discussion of this problem, see the
footnotes.17

4.4. The Feynman Propagator of Quantum Antennas

So far, we have succeeded in modeling the process in which a q-antenna emits a
particle at a specific spacetime point x′ = (t′, x′). We also explicated the momentum-space
composition of the emitted one-particle radiation state and found that it is comprised of a
superposition of multiple outgoing one-particle momentum states. Moreover, we estimated
the probability amplitude of measuring a certain (generic) momentum in this radiated
state. However, for practical applications, there is a need to actually compute the effective
coupling between the source on one side and generic observation spacetime points located
either in the near- or far-zone on the other side. To do so, we will make use of one of the
most powerful methods in QFT, the Feynman propagator [38,54,55,67]. Effectively, this will
also directly provide us with the two-point Green’s function G1(x, x′) of the q-antenna
system corresponding to the first term on the RHS of (15).

The importance of moving to a mathematical description based on propagators stems
from the fact that in QFT, one often finds that exciting the ground state at a specific
spacetime point does not automatically imply that the radiated particle will reach every
point in the far-zone with significant probability. To ensure that the quantum wireless or
molecular communication link’s receiver has access to the radiated particles with significant
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probability of detection, we need to compute the probability amplitude of measuring a
particle at a generic spacetime point x away from the source point x′. Since in QFT, there
are no measurement operators as in nonrelativistic quantum mechanics, we may model the
observer’s interactions with the receiver by the process of particle annihilation [38]. This is
one of the key ideas of quantum measurement in QFT to be adopted in this paper.

In order to mathematically implement this idea, we compute the two-point Green’s
function of the q-antenna system, which is defined as follows:

Definition 4 (The two-point q-antenna Green’s function). The q-antenna two-point (or one-
particle) Green’s function, denoted by Gq(x, x′), is defined as the probability amplitude of the process
that a particle created at the point x′ ∈ Ds in the source region, while the system was initially at the
ground state |0〉, will be annihilated at the later point x ∈ Dr in the receiver (detection, observation)
region, after which the q-antenna system will return again to the ground state.

Theorem 2. The correct relativistic expression for Gq(x, x′) is given by the formula

Gq(x, x′) = 〈0|T φ(x)φ†(x′)|0〉, (27)

where T is the time-ordering operator defined by (A17).

Proof. This follows directly from Definition 4, the quantum field expansion (A26) in terms
of creation and annihilation operators, and the definition of the time-ordering symbol (A17).
The time ordering operator is included in order to automatically deal with both particle
and antiparticle emission.18

Remark 3. Definition 4 is inspired by the propagator-based quantum field-theoretic formalism of
condensed matter physics, see in particular Mattuck’s elegant formulation in [60], which influenced
our approach here. The same quantity Gq(x, x′) is constructed in perturbative QFT as the funda-
mental tool for computing scattering cross-sections in experiments involving fundamental particle
interactions [38,54,67] and the ground state energy in many-body condensed matter physics [59–61].
In the expression (27), T , the time-ordering operator, is inserted in order to automatically ensure
that fields with later time components x0 are always placed to the left of earlier ones.

Theorem 2 provides a characterization of the q-antenna Green’s function expressed
directly in spacetime. However, in most applications of QFT, it is the momentum space
representation that often proves to be the most useful space to do calculations in.19 As will
become more evident below, this is also the case in q-antenna theory. We would like then
to derive an expression for the propagator in momentum space. In fact, this is a quite
straightforward process: taking the conjugate of (21), multiplying the result with (21), then
making use of the basic position-momentum eigenket orthogonality relation

〈q|p〉 = δ(q− p), (28)

the q-antenna Green’s function readily evaluates to

Gq(x, x′) =
∫

p∈R3

d3 p
(2π)3

e−ipµ(xµ−x′µ)

2ωp
. (29)

This spectral expansion of the q-antenna Green’s function is very important and will be
illustrated in several examples, while its structure is investigated in depth below.

Remark 4. It should be noted that in all momentum space integrals of the form (29), a rigorous
treatment would require that we place a step function of the form Θ(x0 − x′0) before the integral (or
integrand) in order to transition from the time-ordered form (27) to the final expression (29). Here,
we are effectively focusing on the causal or retarded radiation problem where it is understood that
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particles observed at x possess a clock time x0 that is later with respect to the spacetime creation point
x′, whose internal clock starts ticking at x′0; i.e., x0 > x′0 and Θ(x0 − x′0) = 1. If antiparticles
are to be included, this restriction is not needed. The advantage of using the Feynman propagator
(among many other things) is that it naturally and economically leads to a direct and efficient
computational formulation of the problem of quantum radiation, where no distinction between
particles and antiparticles is required, since the propagator (27) can handle both at the same time.

Remark 5. The integral representation of Green’s Function (29) can also be put in the following
(x, t)-form more suitable for future use in antenna theory:

Gq(x− x′, t− t′) =
∫

k∈R3

d3k
(2π)3

e−i|k|(t−t′)

2
√
|k|2 + m2

eik·(x−x′), (30)

where the dispersion relation (A27) was utilized. Moreover, the natural-unit replacement p→ k
from Table A1 was used. For the computational evaluations of Green’s functions in terms of special
functions, see Appendix H.

4.5. Generalization to Multiple Discrete and Continuous and Sources

Suppose that now, we apply the quantum source field again but at a different spacetime
point, say x′2, while we rename x′ in (21) as x′1. Furthermore, we note that each excitation of
the vacuum by a field φ(x′) localized at x′ can be controlled by some position-dependent
“scaling factor”, say J(x′). This is again the abstract source representation of the q-antenna
in the spirit of Definition 2. Then, the total quantum source field is

J(x′1)φ(x′1) + J(x′1)φ(x′2). (31)

Again, if we hit the vacuum state by this new operator, the radiated quantum state can be
written as

[J(x′1)φ(x′1) + J(x′2)φ(x′2)]|0〉 =
∫

p∈R3

d3 p
(2π)3/2

J(x′1)e
ipµx′µ1 + J(x′2)e

ipµx′µ2

(2ωp)1/2 |p〉, (32)

where we used (21). Physically, the expression (32) means that two clusters of outgo-
ing waves (quantum particles) are emitted, one emanating from the spacetime point
x′µ1 = (t′1, x′1), while the other cluster is directly radiated from x′µ2 = (t′2, x′2). In all cases,
note that the linearity of the quantum source field operator φ(x′), as manifested by the
expression φ(x′)|0〉 in (21), is the ultimate basis behind the applicability of the principle of
superposition in q-antenna systems.

It is straightforward to generalize the q-antenna’s radiation Formula (32) to the generic
scenario of an arbitrary number of N discrete point sources located at the spacetime points
x′n, each with its own excitation strength specified by J(x′n), n = 1, 2, . . . , N. This leads to
the expression

Jq(x′)|0〉 =
∫

p∈R3

d3 p
(2π)3/2

∑N
n=1 J(x′n)e

ipµx′µn

(2ωp)1/2 |p〉, (33)

where

Jq(x′) :=
N

∑
n=1

J(x′n)φ(x′n) (34)

is the effective (discrete) quantum source distribution operator.
It should become clear now how to generalize from discrete to continuous sources. Let

us expand the continuous classical current source function J(x′) in terms of a finite number
of spacetime (four-dimensional) Dirac delta functions δ(x′) as follows:

J(x′) =
N

∑
n=1

J(x′n)δ(x′ − x′n), (35)
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where the source domain Ds, the spacetime region upon which the source is supported, is
in this case the discrete set

Ds := {x′1, x′2, . . . , x′N}. (36)

Using the sifting property of the Dirac delta function, it is evident that (33) can be rewrit-
ten as

Jq(Ds)|0〉 =
∫

p∈R3

d3 p

(2π)
3
2 (2ωp)

1
2

∫

x′∈Ds
d4x′ J(x′)eipµx′µn |p〉, (37)

where the quantum source operator is given by the integral

Jq(Ds) :=
∫

x′∈Ds
d4x′ J(x′)φ†(x′). (38)

While (33) and (37) are formally equivalent in the special case of discrete sources, it is the
second form (37) that is needed for writing down the correct expression corresponding
to the continuous source case. Indeed, when the set Ds becomes dense (which implies
N → ∞), the relation (37) continues to hold.

Remark 6. In deriving (37), we implicitly assume that the order of the dx′- and d3 p- integrals can
be exchanged. This can be justified relatively easily when we impose the condition that Ds is compact,
which is an assumption we make throughout this paper that still covers most practical antenna
systems. The details of the rigorous proof are lengthy and will not be given. For a comprehensive
discussion of the rigorous mathematical theory behind representing integrals (continuum sums)
over quantum kets in QFT, see [54,55,67,79].

To summarize, we have managed so far to construct two fundamental types of quanti-
ties behaving as “sources” in q-antenna theory:

1. The classical source function

J(x′) : Ds ⊂M4 → R. (39)

2. The quantum source operator

Jq(Ds) : Ds → O, (40)

where
Ds := {D ⊂M4|D is open, cl(D) is compact in R4} (41)

is the set of all open subsets in the Minkowski spacetime M4 whose topological closure
is compact in R4. On the other hand, O is defined as the space of all operators acting
on elements of the Fock (occupation state Hilbert space representation [54,55]) space
of the q-antenna system.20

Remark 7 (The source design problem in quantum antenna theory). The classical source
J(x′) is needed in order to delimit the actual q-antenna configuration in spacetime. As in classical
antenna theory, an antenna source is considered known if its geometric support regions Ds is known
in addition to the value of the source J(x′) at each point x′ ∈ Ds. The situation is quite similar here.
The q-antenna designer is interested in obtaining bounds or information on both Ds and J(x′) in
order to attain certain radiation states. This is the design problem that is usually solved by means of
optimization methods.

Once the classical source J(x′) is fixed, one can employ (38) in order to immediately
construct the quantum source operator Jq, which depends (among other things) on the
geometrical and topological structure of the source support domain Ds.
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Remark 8. It should be noted that the operator Jq depends on the classical function J(x′) defined
on the entire spacetime regions Ds. Thus, formally speaking, one should write that operator as
Jq[Ds, J(x′)]. However, to simplify the presentation, this is avoided, since it should always be clear
from the context which specific classical source function J(x′) is involved with the quantum source
operator Jq.

The probability amplitude A(x) of receiving a particle/wave at the spacetime position
x can now be readily computed in exactly the same way we did with the point quantum
source at x′, i.e, the amplitude Gq(x− x′) in (27), simply by adding the various contributions
coming from all source points x′ ∈ Ds. The calculations are

A(x) = 〈0|T φ(x)Jq(Ds)|0〉 = 〈0|T φ(x)
∫

x′∈Ds
d4x′ J(x′)φ†(x′)|0〉

=
∫

x′∈Ds
d4x′〈0|T φ(x)φ†(x′)|0〉J(x′),

(42)

where (37) was employed in order to write down the second equality in (42). Note that
we assume that x and x′ are well separated from each other such that there is no overlap
between the observation spacetime region Dr and points x′ ∈ Ds in the source domain.
This allows as to freely move the time-ordering operator T so to obtain (with negligible
error) the third equality in (42) above, making our radiation formulas ultimately valid in
the exterior region of the q-antenna system.

Finally, with the help of (27), we arrive at our main q-antenna radiation amplitude
formula summarized by the following theorem:

Theorem 3. The probability amplitude of a continuous source q-antenna system J(x), x ∈ Ds ⊂
M4, where the closure of Ds is compact in R4, is given by the following superposition integral

A(x) =
∫

x′∈Ds
d4x′Gq(x− x′)J(x′), (43)

where Gq(x− x′) is the q-antenna Green’s function in Definition 4.

Remark 9. We may rewrite (43) in a form more familiar to antenna engineers by recruiting the
notation x = (t, x) and x′ = (t′, x′), viz., in the “(x, t)-format”, allowing us to restate (43) as

A(r, t) =
∫

x′∈Ss

∫

t′∈Ts
dt′ d3x′ Gq(x− x′, t− t′)J(x′, t′), (44)

where Ss and Ts are the spatial and temporal components of the four-dimensional spacetime source
region Ds; see (3). Thereby, we find that the spatial support domain of the q-antenna’s source system,
i.e., its spatial extension properties, is captured by Ss, while Ts is the time interval of the application
of the source.

Remark 10. The relation Ds = Ss × Ts holds locally in Ds. The reason is that for attaining wide
generality, we are already implicitly permitting Ds to posses a manifold structure in which, locally
speaking, each point x′ ∈ Ds is homeomorphic (topologically isomorphic) to Rd, d = 2, 3, 4. That
is, from the topological viewpoint, the source region Ds ⊂M4 can be said to be of type (0 + 1) for
q-antenna point sources; type (1 + 1) for one-dimensional sources such as wire or loop antenna; type
(2 + 1) for surface radiators; or full (3 + 1) type for volumetric sources; and so on.

Remark 11. Either one of the two expressions (43) or (44) may be used to express the probability
amplitude of receiving a particle at a specific location x = (t, x) when radiated by a source distribu-
tion written as either J(x′) or J(x′, t′). Both are Lorentz invariant, but the form (43) expresses that
more clearly. On the other hand, the form (44) may be utilized when a concrete frame of reference
(lab frame) is used such that an unambiguous decomposition of the source region Ds into spatial
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and temporal part can be made (this is in fact the case in most practical scenarios). Physically,
the radiation formulas (43) or (44) express quantum radiation by a source J(x) in terms of the
q-antenna Green’s function, which happens in this particular case to coincide with the Feynman
propagator of QFT.

5. On the General Structure of Radiation Processes in Linear Quantum
Antenna Systems

Before moving next to the construction of practical definitions for the q-antenna
directivity and gain patterns, we pause for a moment in order to provide a deeper insight
into the nature of quantum radiation in q-antenna systems based on the new q-antenna
Green’s function Gq(x− x′) whose main concept was introduced earlier via Definition 4.

5.1. The General Structure of the Quantum Antenna Propagator Process

If we insert (29) into (43), interchanging the order of integrals, the following spectral
(momentum-space) result is obtained.

Theorem 4. The momentum space probability amplitude A(q) in Theorem 3 can be expanded in
the spectral domain using the following integral formula:

A(x) =
∫

p∈R3

d3 p
(2π)3 2ωp

∫

x′∈Ds
d4x′ J(x′)eipµx′µ e−ipµxµ

. (45)

Here, the spectral integration is performed with respect to all real momenta p in R3.

Proof. In order to obtain (45), we assume that cl(Ds) is compact in R4 in order to make
sure that a needed interchange of limiting operations can be justified. The rest of the proof
is immediate.

The anatomy of the quantum radiation’s Green’s function’s spectral expansion (45)
is illustrated in Figure 2. The various fundamental sub-processes composing the overall
process of quantum radiation can be formally identified as follows:

1. We first must form the correct relativistic sum over all allowable momentum states.
This is accomplished by the Lorentz invariant integral operator

∫

p∈R3

d3 p
(2π)3

1
2ωp

. (46)

2. Each momentum state |p〉 will be summed over all possible source locations x′ ∈ Ds
in the source region via the integral operator

∫

x′∈Ds
d4x′. (47)

This step is also relativistic, since Ds ⊂M4 and d4x′ are Lorentz invariant.21

3. The next crucial step is to multiply by the factor exp
(
ipµx′µ

)
. This will trigger the

production of a quantum wave (particle) emanating from x′ and spreading radially
away from the point source.

4. Finally, in order to observe the radiation field at a distance, we multiply the wave
produced at x′ by a propagation factor exp

(
−ipµxµ

)
. This will guarantee that the

field has been effectively propagated and absorbed at the observation location x.
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Figure 2. The anatomy of the q-antenna’s propagator-based quantum radiation process.

Remark 12. It may be seen from the above algorithmic construction of the q-antenna propaga-
tor in the spectral domain that the problem of quantum radiation acquires a very intuitive and
concrete structure when viewed from the spectral (momentum space) domain’s perspective. This
observation will be exploited in Section 6 when we explore candidate expressions for the q-antenna
radiation pattern.

Remark 13. The probability amplitude A(x) can be seen as a superposition of “quantum plane
waves” each of the form exp

(
ipµxµ

)
. This is in fact somehow similar to the plane-wave (Weyl)

expansion of electromagnetic fields radiated by continuous sources [63,64,80–82]. As in the electro-
magnetic case, each point source will emit a continuum of plane waves (some of them are evanescent,
and the others are pure propagating), with wavevector/momentum specified by p and frequency
ωp. The total sum of all these waves will produce an effective field moving gradually away from
the source and approaching the far zone of the antenna by first going through the near zone. (The
evanescent mode character of the momentum space representation becomes directly visible when
we transform the above three-dimensional spectral integrals evaluated with respect to p ∈ R3 to
equivalent four-dimensional integrals now performed with respect to p ∈M4, see for example [57]).

5.2. Comparative Analysis of the Three Fundamental Types of Antennas

At this point, it is instructive to give a bird’s eye view on the various genera of antenna
theories available to us so far. Classical antennas (c-antennas) involve excitation with an
external electric field Eex, which in turn induces a current on the antenna via the current
Green’s function [28,46–48].22 This is illustrated in Figure 3a. Here, it is essential to note
that the “system input” is a classical field, while the “system output” is also the classical
radiated fields E and H. On the other hand, the quantum-optics approach to defining
quantum antennas, which is the one currently most often mentioned in connection with
applications to quantum communications [1,2,13], treats the input as a classical source
while the output is a quantum state |α(t)〉 [10,13,62,83]. This is illustrated in Figure 3b,
where the q-antenna current Green’s function Fq is still a classical function, just like the
induced radiating current Jq(x

′).
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external electric field Eex, which in turn induces a current on the antenna via the current
Green’s function [28,46–48].23 This is illustrated in Figure ??(a). Here, it is essential to note
that the “system input” is a classical field, while the “system output” is also the classical
radiated fields E and H. On the other hand, the quantum-optics approach to defining
quantum antennas, which is the one currently most often mentioned in connection with
applications to quantum communications [1,2,13], treats the input as a classical source
while the output is a quantum state |α(t)〉 [10,13,62,83]. This is illustrated in Figure ??(b),
where the q-antenna current Green’s function Fq is still a classical function, just like the
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Consider now the third type of antennas shown in Figure ??c. The input to the system
J(x′) (exactly like the previous two antenna types) is still a classical source, but now
the radiating source Jq(Ds) is an operator that can describe quantum particles emission
(quantum radiation) from within the q-antenna’s source spacetime region Ds. In fact, we
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where the q-antenna current Green’s function in this case is simply given by
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0, x′ /∈ Ds.
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Clearly, this is quite different from the two cases depicted in Figure ??a,b. In the
case Figure ??(c), captured by the expression (49), the current Green’s function itself is a
quantum field, i.e., an operator-valued function on spacetime. The source Jq reproduced by
the Green’s function superposition integral is also an operator. And the ultimate “output”
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the radiating source Jq(Ds) is an operator that can describe quantum particles emission
(quantum radiation) from within the q-antenna’s source spacetime region Ds. In fact, we
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Fq(Ds, x′) :=
{

φ†(x′), x′ ∈ Ds,
0, x′ /∈ Ds.

(49)

Clearly, this is quite different from the two cases depicted in Figure ??a,b. In the
case Figure ??(c), captured by the expression (49), the current Green’s function itself is a
quantum field, i.e., an operator-valued function on spacetime. The source Jq reproduced by
the Green’s function superposition integral is also an operator. And the ultimate “output”

(c) Relativistic-QFT approach to q-antennas.

Figure 3. The fundamental operational modes of c- and q- antennas. Both types requires a current
Green’s function (ACGF) F̄ [28] to connect classical excitation field Eex with a classical induced current
J. Note that in both c- and q-antennas, the induced currents Jc and Jq, respectively, are classical.
However, the difference resides mainly in the “output” or the radiation state, which is classical
(quantum) in c- (q-) antennas.

Consider now the third type of antennas shown in Figure 3c. The input to the system
J(x′) (exactly like the previous two antenna types) is still a classical source, but now
the radiating source Jq(Ds) is an operator that can describe quantum particles emission
(quantum radiation) from within the q-antenna’s source spacetime region Ds. In fact, we
may rewrite (38) in the revealing integral form

Jq(Ds) :=
∫

x′∈M4
d4x′Fq(Ds, x′)J(x′), (48)

where the q-antenna current Green’s function in this case is simply given by

Fq(Ds, x′) :=
{

φ†(x′), x′ ∈ Ds,
0, x′ /∈ Ds.

(49)

Clearly, this is quite different from the two cases depicted in Figure 3a,b. In the case
Figure 3c, captured by the expression (49), the current Green’s function itself is a quantum
field, i.e., an operator-valued function on spacetime. The source Jq reproduced by the
Green’s function superposition integral is also an operator, and the ultimate “output”
coming out from the relativistic QFT-based antenna system is the probability amplitude
A(q) of annihilating a particle at some generic observation point x ∈ Dr ⊂M4.

5.3. On the Causal Spacetime Structure of Radiation Emitted by Quantum Antenna Systems

In both special and general relativity, two events x and x′ with timelike distance,
i.e., |x− x′|2 > 0, can be causally connected [51,53,84]. This has a direct and obvious
implication for the general spacetime theory of q-antennas developed here.

1. Consider a point source case. Figure 4a indicates the future lightcone Cx′ of the event
located at x′, i.e., the apex of the cone in the spacetime diagram given therein. Since
we assume for simplicity that the operational principle behind our q-antenna-based
communication link’s receiver is based on the process of annihilating the radiated
particle at the observation point x, it follows that only receivers located inside the antenna
causal lightcone Cx′ can receive information from the point source.

2. For potential receivers located outside the antenna causal cone, it is not possible to
transmit information at all, unless one admits some superluminal mechanism to be
used for sending information, which is currently not accepted by majority of scientists.

These two observations above are enough to determine the causal structure of q-
antennas for the case of point sources. However, since arbitrary sources can be constructed
from assembling clusters of point sources, the argument can be expanded, as will be
shown next.
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For the case of continuous sources, the situation is qualitatively similar to the discrete
scenario discussed above, but the detailed content of the antenna’s causal domain becomes
somehow more complicated, since the situation strongly depends on the geometry of the
source region in the former case. In Figure 4b, we schematically illustrate the problem
when a generic continuous source J(x′) is applied in the spacetime region Ds ⊂M4. Since
any current source function J(x′) can be expanded into a continuous sum of point sources,
as per the sifting property of delta functions

J(x′) =
∫

x∈M4
d4x J(x)δ(x′ − x), (50)

one may then attempt to construct a causal lightcone for each point x′ ∈ Ds, which is again
denoted by Cx′ . A continuum of causal cones is shown in Figure 4b where all cones appear
to be aligned in parallel in spacetime because we ignore gravitational effects.

We now introduce the following construction of the antenna’s horizon causal structure,
which is valid for both classical and quantum antennas:

Definition 5 (The antenna causal domain). The antenna causal domain associated with a given
source region Ds, which we denote by C(Ds), is defined as simply the fusion (set-theoretic union) of
all individual causal cones Cx′ based on events located inside the source region x′ ∈ Ds. That is,
according to the recipe

C(Ds) :=
⋃

x′∈Ds

Cx′ . (51)

The part of C(Ds) that is solely due to future lightcones C+
x′ is called the antenna future causal

domain. Similarly, the components of C(Ds) due to contributions emanating from past lightcones
C−x′ lead to the antenna past causal domain. Then, we have

C+(Ds) :=
⋃

x′∈Ds

C+
x′ , C−(Ds) :=

⋃

x′∈Ds

C−x′ , (52)

and
C(Ds) = C+(Ds) ∪ C−(Ds). (53)

Note that the same constructions can be laid out for the receiving q-antenna case when the detector
is in the receive domain Dr.

Remark 14. Note that it is still possible to incorporate gravitation into our model, since the
effect of gravitational fields is mainly to tilt the lightcones locally, where the tilting is directly
determined by the gravitational potential/metric tensor gµν [41]. For applications of q-antennas
in deep space communications, these gravitational effects may have to be taken into account.
Consequently, the constructions provided by Definition 5 may become useful in astronomical and
cosmological applications of either classical or quantum antennas. That is especially true when the
large-scale structural impact of the gravitational field on a planned solar or even future interstellar
communication links is important.

Remark 15. The causal domain C(Ds) is a function of the source region Ds. Moreover, it should be
emphasized that in general, the antenna causal domain, as defined above, need not constitute a simple
cone in itself. In addition, in principle, the receivers located inside C(Ds) can receive information
transmitted by radiation emitted from inside Ds. On the other hand, noncausal receivers, e.g., see
some cases schematically depicted in Figure 4b, can never receive information from an antenna
system whose source is supported by the region Ds.

Overall, the analysis above has highlighted an organic interlinking of spacetime with
causality within the context of generic quantum communication systems utilizing quantum
antennas. This suggests the need to pay closer attention to the global (i.e., topological)
structure of spacetime domains when such future quantum technologies are incorporated
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in the analysis, design, and construction of long-distance space communication systems at
the solar, extra-solar, astronomical, or even cosmological scales.

Figure 4. The fundamental causal structure of the q-antenna radiation process. For simplicity, we
only show future lightcones.

6. Quantum Antenna Radiation Patterns: Basic Constructions
6.1. Introduction

In contrast to classical antennas, q-antenna systems are intrinsically stochastic. The ul-
timate goal of a candidate q-antenna theory is to supply rules and guidelines for estimating
probabilities of potential detection (reception) processes ideally enacted somewhere within
the near or far spacetime zones of the quantum sources. In conventional antenna theory, cer-
tain quantities are fundamental for analyzing and designing functioning actual devices able
to radiate power in real-life settings. These often include directivity, gain (preferably with a
measure of radiation efficiency), and the array factor [27,33,35]. As will be illustrated in this
section, it turns out that in q-antennas, there also exist close counterparts for many of the
conventional characterization measures/concepts already in use in -c-antennas. However,
there are also fundamental differences between c- and q-antennas in terms of the physical
interpretation and meaning of the results thus obtained since, clearly, electromagnetic and
quantum radiation are very distinct (though related) physical processes. For the purpose of
constructing working definitions for directivity and gain functions suitable for q-antennas,
we explore next some possible antenna radiation pattern constructions made available to
us by the relativistic QFT approach proposed above.

6.2. The Probability Law of Producing Radiated Quantum States

From the general rules of QFT [54,56,57], the probability of measuring a particle with
four-momentum q within the range Q′ ⊂M4 is given by the integral of the square of the
probability amplitude A(q):

Pr{q ∈ Q} = 1
α

∫

q∈Q′
d4q |A(q)|2 =

1
α

∫

q∈Q

d3q
(2π)3

|A(q)|2
2ωq

, (54)

where Q ⊂ R3 is the projection of Q′ ⊂ M4 onto R3, and we made use of (A34) to derive
the second equality in (54). The number α ∈ R+ is a normalization constant defined by (57)
inserted in order to ensure that the probability of any event is between 0 and 1.

Remark 16 (Relativistic normalization). In writing the second equality in (54), a delta function

δ(p2 −m2), p0 > 0, (55)

is included in the d4 p-integral (54), i.e., the mass shell condition expressed by the dispersion
relation (A27); see Appendix G for more details on this background.
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Remark 17 (Probabilistic normalization). The correct relativistic normalization of the four-
momentum kets |p〉 and |q〉, e.g., see relations such as (A38), which we have been already utilizing
from the outset, does not automatically ensure the required probability normalization condition

Pr{q ∈M4} = 1
α

∫

q∈M4
d4q|A(q)|2 = 1. (56)

The latter is in fact a consequence of the normalization in (54) by

α :=
∫

q∈M4
d4q|A(q)|2, (57)

whenever the integral converges.

The normalization condition (56) is not a consequence of the completeness relation
of the Lorentz momentum states (A38), but it should be enforced by hand in order to
extract useful probability statements from the theory [85]. However, it should be stressed
that the normalization integral (56) for the q-states is not convergent in the usual sense
since exact continuous momentum states such as |q〉 or |q〉 are unormalizable [52,54,86].
For more detailed information about the proper rigorous mathematical theories that can
deal with problems involving continuous states, see [37,55,67,79]. In practice, we seldom
need to directly compute continuous state representation, since one always works with
“discretized states”, where momentum or wavevectors are measured in a finite range [2,87].
The set of all such finite-range states is normalizable [54]. Therefore, whenever expressions
such as (56) are encountered, they should be understood in the above of sense of being
approximated by discrete sum after which the normalization to unity becomes correct.
Nevertheless, for some choices of A(q), for example the point source with A(q) = 1, the
integral (56) diverges regardless of whether one works with continuous or discretized state
representations. This is an example of the persistent and well-known problem of ultraviolet
(UV) divergences in QFT [38]. However, this problem is not a major issue in q-antenna
theory, since in practical settings, one often requires a smoothly switchable source. In such
types of source systems, the Fourier amplitudes of the spacetime source function decay fast
enough in momentum space in order to secure the convergence of infinite spectral integrals
such as (56). For in-depth discussion of this scenario backed by several examples taken
from the area of high-energy physics, see Coleman’s lectures [38].

We next give a few examples to illustrate this formulation.

Example 2 (General quantum source’s radiation probability law at a particular momen-
tum). First, we construct a suitable probabilistic representation of a point source radiation
function. Introduce the Euclidean ball

Q(q0, ε) := {q ∈ R3, |q− q0| < ε}, (58)

where q0 ∈ R3, while ε ∈ R+ is very small. (The norm | · | is that inherited from the
standard Euclidean metric on R3). The probability of measuring a momentum q in the ball
Q(q0, ε) is given by

Pr{q ∈ Q(q0, ε)} = 1
α

∫

p∈Q(q0,ε)

d3q
(2π)3

|A(q)|2
2ωq

' (4/3)πε3

α(2π)3
|A(q0)|2

2ωq0

=
ε3

12π2α

|A(q0)|2
2ωq0

, (59)

where (4/3)πε3 is the volume of the ball Q(q0, ε) centered at q0 with radius ε. Therefore,
the expression (59) gives the probability of measuring a momentum p = q0 after exciting
the ground state |0〉 of the q-antenna to a higher-energy state |q0〉. It is completely general,
regardless of how the vacuum state was excited.
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Example 3 (Point source quantum radiation probability model). Let us apply the rule (54)
to the single quantum source probability amplitude (25). By treating (25) as a special case
of (54), we find that for a point quantum source firing at the spacetime point x′, the
probability amplitude is A(q) = 1; hence, the total radiation probability is given by

Pr{q = q0} '
1
α

ε3

12π2ωq0

=
ε3

12π2α
√
|q0|2 + m2

, (60)

after using the dispersion relation (A27). Since the expression (60) depends only on the
amplitude of the momentum q0, not its direction, we conclude that the q-antenna with
a single scalar quantum source is an isotropic radiator since it radiates its various four-
momentum states |q〉 in the same manner in all directions. This is not very surprising, since
the quantum field of the q-antenna is scalar, and in classical antenna theory, a scalar point
source is also isotropic [27].

Remark 18. From the antenna viewpoint, the examples above suggest that the quantum state of the
q-antenna is inherently global and hence extendable everywhere. Therefore, we can not guarantee
that the q-antenna has effectively radiated into every spacetime point until a concrete measurement
process is performed at some position x, after which one may determine the probability of actual
detection there using the receive antenna model with the help of the q-antenna Green’s function in
Theorem 2. Such a process requires introducing a more sophisticated approach to measure probability
amplitudes when the observation point is included as a parameter in the system. This subject will be
taken up again in Section 6.4.

6.3. Constructing the Quantum Antenna Directivity Pattern

Our goal here is to estimate the directive properties of a continuous source J(x′) located
in the spacetime region Ds. The probability amplitude of measuring the four-momentum q
is denoted by A[q; J(x′), Ds] but will be abbreviated to A(q) whenever there is no confusion
about the source. Our main tool here is the following theorem.

Theorem 5. Consider a q-antenna system J(x), x ∈ Ds ⊂M4. Let the corresponding probability
amplitude be A(q). Then, the following formula holds:

|A(q)|2 = |J(q, ωq)|2, (61)

where J(q) is the spacetime Fourier transform of the radiating current source (A45).

Proof. See Appendix I.

Remark 19. Since there is a one-to-one (injective) mapping between the Lorentz four-momentum
states q ∈M4 and the conventional three-momentum vectors q ∈ R3 via the dispersion relation (A27),
we may just write A(q) instead of A(q, ωq).

Theorem 6. For the situation described in Theorem 5, the quantum radiation probability amplitude
can be expressed as:

Pr{k ∈ Q} = 1
α

∫

k∈Q

d3k
(2π)3

|J(k)|2
2ωk

, (62)

for a generic three-dimensional region Q ⊂ R3. Here, J(k) := J(k, ω) is the momentum space
Fourier transform of the source defined by (A45); see also Remark 19 on the reduced notation in
momentum space used here.

Proof. Use the probability law (54) in (61) and make the replacement q→ k.
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An immediate application of Theorem 6 is in expressing the total energy radiated by a
quantum source directly in terms of the classical source function J(x), as will be illustrated
through the next example.

Example 4 (Total radiated energy and momentum of a q-antenna in momentum space).
The total energy radiated by the antenna in a momentum space region Q ⊂ R3 can
be obtained by multiplying the probability of particle production in the infinitesimal
momentum space volume d3k by the particle’s energy, which is h̄ωk (or just ωk in natural
units), and then integrating. With the help of (62), this procedure yields:

E [Q] =
1
2

∫

k∈Q

d3k
(2π)3 |J(k)|

2, (63)

where E is the total energy. Similarly, the expected value of the total radiated momentum
can be estimated via the formula

P [Q] =
1
2

∫

k∈Q

d3k
(2π)3

|J(k)|2k√
|k|2 + m2

, (64)

where use was made of the fact that the momentum of the particle excitation associated
with the kth state is h̄k (or k in natural units).

Remark 20. It is interesting to note that the momentum space energy pattern of the q-antenna (63)
is similar to the energy directivity of a classical source in generic medium. For example, see how
general formulas of directivity for classical radiators were constructed recently in momentum space
for generic homogeneous nonlocal domains [71–73].

In order to put relation (62) into further practical use, we transform momentum
representations into spherical coordinates so we may obtain some information about the
directive properties of quantum radiating sources as illustrated by the following example.

Example 5 (Radiation angular directivity pattern of q-antennas in momentum space).
Let us express the wavevector k in terms of the spherical angular coordinates θ and ϕ by
using the standard transformation

k̂ = k̂(Ω) = x̂1 cos ϕ sin θ + x̂2 cos ϕ sin θ + x̂3 cos θ, (65)

where
Ω := (θ, ϕ), k̂(Ω) :=

k
|k| . (66)

Here, x̂i, i = 1, 2, 3, constitute a set of three mutually orthogonal Cartesian unit vectors.
The angles 0 < ϕ < 2π, 0 < θ < π determine the direction of the unit vector k̂, or
where the emitted quantum particle’s momentum p = h̄k is pointing in three-dimensional
space. Since physically and intuitively, one would expect that the directions in three-
dimensional position space along which momenta tend to maximally flow also correspond
to the directions toward which most of the particle ensemble’s energy and momentum are
directed, we may use Theorem 6 in conjunction with (66) to estimate the quantum source’s
directive properties in generic three-dimensional scenarios. A simple way to achieve this is
by re-expressing (62) using (65) and (66), resulting in

Pr{k ∈ [kmin, kmax], Ω ∈ Ω0} =
1
α

∫

k∈[kmin,kmax]

∫

Ω∈Ω0

dk dΩ
k2 sin θ

(2π)3

∣∣∣J
[
k, k̂(Ω)

]∣∣∣
2

2
√

k2 + m2
, (67)
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where
k := |k|, dΩ := dθdϕ. (68)

The angular set Ω0 in (67) is the three-dimensional (solid) angular sector inside where one
is interested in characterizing the radiating quantum antenna system.

Remark 21. It is important not to confuse k ∈ R+, defined by (68), with the four-vector
k = kµ ∈ M4 (Appendix B). In this section, we use the shorthand notation (68) in order to
simplify the presentation.

Inspired by the expression (67), we may then introduce the following definition of
momentum space directivity for quantum antennas:

Definition 6 (Quantum antenna directivity in momentum space). The momentum space
directivity of a q-antenna with source function J(x), x ∈ Ds is defined as the following angular
function

D(ϕ, θ; k) :=
1
αk

k2 sin θ

(2π)3

∣∣∣J
[
k, k̂(ϕ, θ)

]∣∣∣
2

2
√

k2 + m2
, (69)

where

αk :=
1

4π

∫

4π
dΩ

k2 sin θ

(2π)3

∣∣∣J
[
k, k̂(ϕ, θ)

]∣∣∣
2

2
√

k2 + m2
(70)

is a positive momentum-dependent probability noramalization constant.

Expressed in terms of the momentum-space-type directivity (69), the total probability
in (62) may be be put into the more compact form

Pr{k ∈ [kmin, kmax], Ω ∈ Ω0} =
∫

k∈[kmin,kmax]
dk

αk
α

∫

Ω∈Ω0

dΩD(ϕ, θ; k). (71)

The last expression explains the physical motivation behind Definition 6. Moreover, the
following two remarks explain more about the engineering background to directivity
concepts in antenna theory motivating the above definition itself.

Remark 22. It is evident then from (71) that for a given k̂, the function D(k, k̂) is the angular
probability density in the momentum space variable k. On the other hand, the mathematical
dependence of D(k, k̂) on the angles ϕ and θ provides information on how the emitted quantum
particles tend to flow along different directions in space. This is why D does indeed behave as a
momentum-space radiation pattern (probability per unit momentum per solid angle).

Remark 23. The positive number αk is inserted into (69) in order to ensure that the total probability
of radiation at all angles, evaluated at a single radial momentum value k, is equal to that of an
isotropic source.23 Intuitively, αk represents the total radiation angular density emitted by the
q-antenna, so the ratio D given by (69) is the relative radiation intensity along one direction with
respect to a standard isotropic source

D0 :=
P0

4π
, (72)

where P0 is the constant radiation angular probability of such an isotropic reference antenna whose
radiation angualr density is D0. That is, we have

∫

Ω∈4π
dΩD(ϕ, θ; k) = 4πD0, (73)

as expected from a typical directivity expression [35]. Physically, the ratio 4παk/α in (71) represents
the fraction of the total quantum radiation contained in a sphere with radius k in momentum space
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relative to the total radiation obtained by including contributions coming from all values of the
momentum magnitude k := |k|. The ability of a source to direct power along certain directions
is measured by angle-dependent generalizations of such total ratios. Then, Definition 6 of the
q-antenna directivity is a natural generalization of the corresponding definition in classical antenna
theory as traditionally presented in texts such as [27,35].

6.4. The Probability Law of Receiving Radiated Quantum States: Source-Receiver Coupling
Gain Estimation

Consider the configuration shown in Figure 5. The quantum antenna communication
system is characterized by the gain functional

G : X ×X → C, G = G[Js, Jr], (74)

which is a bilinear functional in the source and receiver currents Js(x′) ∈ X , x′ ∈ Ds,
and Jr(x) ∈ X , x ∈ Dr, respectively. Here, X is the space of real-valued functions on
the four-dimensional domains Ds,r ⊂ M4. The complex number G gives the probability
amplitude of information transmission (coupling amplitude) between source and receiver.
This gain plays the role of “transmission coefficient” or the “coupling coefficient” often
used in conventional electromagnetic communication systems, e.g., see [33,88]. From the
fundamental theory of quantum antennas developed above, we may easily deduce the
general expression of this functional by simply treating the receiver as a source with the
“quantum reverse” process of that of the transmitter, i.e., the dual of the transmitter problem,
e.g., by converting kets to bras, taking adjoints, complex conjugates, etc. Since for real
sources and receiver currents Jr,s(x′), the problem is fully reciprocal,24 we can immediately
write down the q-antenna system gain expression as follows:

G = 〈0|
∫

x∈Dr
d4x

∫

x′∈Ds
d4x′ Jr(x)T φ(x)φ†(x′)Js(x′)|0〉, (75)

where (43) was used to realize the transmitter, and a similar form was adapted for
the receiver.

Figure 5. Angular gain measurementconfiguration scenario for a generic quantum antenna source
system Js(x, t), x ∈ Ss, t ∈ Ts.

Example 6 (Construction of practical angular gain pattern in q-antenna systems). We
will use the general relativistic expression (75) in order to construct an angular expression
characterizing quantum radiation for possible use in practical settings. To do that, we
first need to break relativistic covariance in order to simplify the problem and facilitate
calculations. The most natural choice for a preferred frame is to use a coordinate system
at rest with either the lab frame of the transmitter or the receiver. We choose the source
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frame below. Consider a standard test receiver to be used for performing quantum mea-
surement on the radiation emitted by the source Js(x′, t′), where x′ ∈ Ss, and Ss is the
spatial support of the source region. The receiver spatial region is Sr, and its strength is
given by Jr(x, t). Both t′ and t′ will be measured with a single clock at rest in the source lab
frame. Let the test (receiver) current be reduced to a concentrated delta source

Jr(x) = Jr(x, t) = δ(x− xr)Jr(t), ∀ t ∈ Tr. (76)

That is, we measure the response at a sharp spatial location xr, while we impose the receiver
function restriction Jr(t) on the time measurement interval Tr. We can use (66) to express
the position vectors as

xr = |xr|x̂r(Ω), (77)

where the unit angle-only dependent unit vector x̂r is defined by

x̂r(Ω) :=
xr

|xr|
. (78)

By substituting the relations (76), (77), and (78) into the gain Formula (75), the following
angular expression is obtained:

G(Ω; |xr|) =
∫

x′∈Ss, t′∈Ts
d3x′dt′ Ga

q(Ω; |xr|, x′)Js(x′), (79)

where
Ga

q(Ω; |xr|, x′) :=
∫

t∈Tr
dt Gq(|xr|x̂r(Ω)− x′; t− t′)Jr(t), (80)

and the notation of (27) was used. The integral (80) can be computed numerically for
known current source distributions Js(x) by using the special functions representation of
the Feynman propagator Gq(x− x′) given in Appendix H.

Remark 24. We note that the q-antenna system gain Function (79) depends on the distance between
the source and the receiver in addition to the angles. In general, one studies the asymptotic behavior
of Ga

q(Ω; |xr|, x′) in the long distance limit |xr| → ∞, with the hope that this behaves as |xr|−n,
with n often a small integer (usually 1 or 2). From the asymptotic limits of the special functions used
in Appendix H, some possible relations could be derived using the bessel function large argument
approximation, which in turn then might be further utilized in order to eliminate the dependence on
the radial distance in the gain pattern (79). However, such detailed computational considerations
are outside the scope of this paper, which is mainly focused on the general fundamental theory.

7. Conclusions

We developed foundations for quantum antenna theory using the relativistic frame-
work of quantum field theory (QFT) with emphasis on the source–sink (transmitter–
receiver) model for potential applications to quantum communication systems. The QFT-
based q-antenna is the most general type of antenna systems because it includes both the
classical and quantum-optics-based q-antennas as special cases. In addition, relativistic q-
antennas can accommodate a wider range of physical processes, since the same theory may
deal with massive or massless particles and for different spins. These types of q-antennas,
the most general to date, appear to enjoy the distinction of exhibiting a current Green’s
function that is itself a quantum field, which we dubbed before the quantum source of
the antenna system, i.e., the field φ(x) as per (49). We have illustrated the theory mostly
with the specific example of the neutral Klein–Gordon field because of its simplicity and
importance for building the general solution to other, more complex problems. In particular,
we have shown how in the linear quantum antenna model, one may directly construct
quantum radiation directivity and gain measures that somehow resemble their counter-
parts in classical antenna theory. A future research based on the present theory would
proceed to construct more concrete radiation models for quantum fields such as the Proca
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field (massive electromagnetism), the Maxwell–Dirac field (quantum electrodynamics),
the graviton field (gravitational antennas), and possibly other types. Then, the present
paper attempted to provide a first sketch of a possible general theory that may blend all
these distinct phenomena, where our key idea was that relativistic QFT supplies precisely a
promising such unifying theoretical framework.
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Abbreviations
The following abbreviations are used in this manuscript:

QFT Quantum field theory
QM Quantum mechanics
SR Special relativity
c-antenna Classical antenna
q-antenna Quantum antenna
q-radiation Quantum radiation
q-state Quantum state
q-source Quantum source
c-source Classical source
EM Electromagnetic/Electromagnetics
ACGF Antenna current Green’s function

Appendix A. Classical Antenna Theory

Let the source or current Green’s function be the dyadic tensor F(x, x′, t− t′) [28,46–48,89].
The forward Green’s function is the standard retarded radiation Green’s function
G(x− x′, t− t′) [49]. Then, we have the following two fundamental relations [28,90]:

J(x, t) =
∫

S
d2x′ dt′ F(x, x′, t− t′) · Eex(x′, t′), (A1)

E(x, t) =
∫

S
d3x′ dt′G(x, x′, t− t′) · J(x′, t′), (A2)

where Eex(x, t) is the excitation electric field, J(x, t) is the radiating antenna current on its
compact surface S supporting the electromagnetic boundary conditions, and E(x, t) is the
radiated field. For simplicity, we assume perfect-electric conducting (PEC) antennas where
the magnetic field does not contribute to the current Green’s function. Another radiating
Green’s functions similar to G(x, x′, t− t′) is needed in expressions such as (A2) in order to
obtain the magnetic field B(x, t), which is always present in any radiation problem beside
the electric field; see [89–91] for more details and applications.

The relation (A1) captures the antenna’s fundamental Mode A, where a source field
Eex(x, t) produces a radiating current via the current Green’s function F(x, x′, t− t′), which
in turn generates the radiated fields E(x, t) and B(x, t) throughout the region exterior to the
surface S. To complete the antenna-based wireless communication system, a third Mode C,
where a receiving (Rx) antenna, placed at some distance from S, interacts with the radiated
field in order to produce an observable receive port current Jrx(x) by means of the formula

Jrx(x, t) =
∫

Srx
d2x′dt′ Frx(x, x′, t− t′) · E(x′, t′), (A3)
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where Frx(x, x′, t− t′) is the receive current Green’s function, which is generally different
from the transmit (Tx) current Green’s function F(x, x′, t − t′). The three relations and
Green’s functions in (A1)–(A3) fully describe the antenna system in classical electromag-
netic theory [92], with obvious generalization to magnetic field interactions included in
essentially the same logic [90].

Appendix B. The Relativistic Four-Vector Formalism

In special relativity, everything takes place in the four-dimensional Minkowski space-
time, denoted by M4, a linear vector space with a special metric, the Lorentz metric,
given by

gµν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


. (A4)

We follow the standard convention of denoting spacetime indices using Greek letters
µ = 0, 1, 2, 3, with the time-like component always given the 0th index and the space-
like part denoted by Roman letter. Four vectors with upper and lower indices are dual
vectors. The converse of the metric tensor gµν is gµν, i.e., gµνgµν = δν

µ, where δν
µ is the

Kronecker delta function. Note that summation over repeated indices is implied (the
Einstein repeated index convention). In general, we raise or lower indices by contracting
with the fundamental tensor in relations such as aµ = gµνaν or aµ = gµνaν. From this we
can see, for example, that a0 = a0, and ai = −ai. The dot product between two four vectors
aµ and bµ is defined as aµbµ := aµgµνbν = gµνaµbν. We also write this as a · b := aµbµ where
a and b stands for the four-vectors aµ and bµ. In particular, the all-important inner product
p · x between four-momentum pµ and spacetime position xµ, given by

p · x = pµxµ = ωt− k · x, (A5)

will be used frequently. Note that in M4, the proper “differential operators four-vectors”
are given by ∂µ = (∂/∂t,−∇) and ∂µ = (∂/∂t,∇). Table A1 provides a compact summary
of the main relativistic formulas.

Table A1. List of main basic relativistic relations in the Natural Units.

Quantity Expression

p (particle momentum) p = k
Ep (particle energy) Ep = ωp = ωk

Relativistic dispersion relation E2
p = p2 + m2

∂µ (four-vector differential operator) ∂µ = (∂/∂t,−∇)
xµ (position four-vector) xµ = (t, x)

kµ (relativistic wavevector) kµ = (ω, k)
pµ (photon four-momentum vector) pµ = (Ep, p) = kµ

gµν (Lorentz metric tensor) gµν = diag(1,−1,−1,−1)
pµxµ (four-vector inner product) pµxµ = gµν pµxν = ωt− k · x

Appendix C. Natural Units

In relativistic quantum field theory, it is customary to use a system of units in which
h̄ = 1, c = 1. Here, the action S is dimensionless. Mass, energy, wavevector, and momentum
have the same dimension, which is the inverse of the dimension of length and time:

[mass] = [energy] = [momentum] = [length]−1 = [time]−1. (A6)

Therefore, the physics of the world is reduced to measurements in two units, length and
time. Moreover, in four dimensions, the creation and annihilation operators have the
dimension of an inverse energy, i.e., [ap] = [a†

p] = [energy]−1.
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Appendix D. Dirac Interaction Picture

Consider a Hamiltonian H that can be written as

H = H0 + H′(t), (A7)

where H0 is the free Hamiltonian of the system (time-independent function), while H′(t) is
the interaction (time-dependent) Hamiltonian, which is usually assumed to be turned on at
a specific time point. In the Dirac picture, our goal is to decouple the free dynamics of the
system, i.e., that governed by a Hamiltonian of the form H = H0 (no interaction or H′ = 0),
from the pure interaction component, i.e., that which is solely due to the term H′ in the
actual full Hamiltonian (A7). Now, let us define the following time-dependent operator

OI(t) := eiH0tOSe−iH0t, (A8)

where OS is the Schrodinger picture (time-independent) operator. Differentiating (A8) with
respect to time, we obtain the Heisenberg equation of motion

i
d
dt

OI(t) = [O, H0]. (A9)

Therefore, the interaction picture operator OI(t) evolves in time according to the exact same
law corresponding to the case when the full Hamiltonian is just the free part, i.e., H = H0.

What about the evolution of the interaction picture state, which will be denoted by
ψI(t)? To find out, note that all different pictures, the Schrodinger, Heisenberg, and Dirac,
must agree on probability amplitudes. Therefore, for any two pairs of Schrodinger and
Dirac states ψS(t), ϕS(t), and ψI(t), ϕI(t), respectively, the matrix elements in both pictures
must be identical. Formally, we express this by the condition

〈ψS(t)|OS ϕS(t)〉 = 〈ψI(t)|OI(t)ϕI(t)〉 =
〈

ψI(t)e−iH0t
∣∣∣OSe−iH0t ϕI(t)

〉
. (A10)

Clearly, this implies that we should define the Dirac (interaction) state by

|ψI(t)〉 := eiH0t|ψS(t)〉. (A11)

To find out how this state evolves, we differentiate with respect to time, obtaining

i
d
dt
|ψI(t)〉 =

(
−H0 + i

d
dt

)
|ψS(t)〉 = H′|ψS(t)〉 (A12)

where we have made use of the Schrodinger equation

i
d
dt
|ψS(t)〉 = H|ψS(t)〉 (A13)

and the form (A7). Finally, using the definition (A11) of the interacting picture state, the
relation (A12) becomes

i
d
dt
|ψI(t)〉 = HI(t)|ψI(t)〉, (A14)

where the Dirac picture interacting Hamiltonian HI is given by

HI(t) := eiH0tH′(t)e−iH0t. (A15)

Let us summarize the main features of this Dirac picture:

1. In the Schrodinger picture, the state evolves in time according to the full Hamiltonian
while the operators are constant.

2. In the Heisenberg picture, the state is constant (time-independent), but the operator
evolves according to the full Hamiltonian.
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3. In the Dirac picture, both state and operators evolve with time. However, the time
evolution is decoupled into two distinct and independent components. First, all
interaction (Dirac) picture operators evolve according to the free Hamiltonian as per
the corresponding Heisenberg Equation (A9). Second, the Dirac state |ψI(t)〉 evolves
independently according to the dynamic Equation (A14).

Therefore, the main advantage of the Dirac picture is that we can concentrate on the
essential aspects of interaction as encoded in the Schrodinger-like dynamic Equation (A14).
In this equation, Schrodinger or Heisenberg states and operators can be obtained using the
usual transformation formula. On the other hand, note that operators in the Dirac picture,
including in particular the interaction Hamiltonian (A15), all evolve according to the free
evolution law (A9). In this case, this becomes

i
d
dt

HI(t) = [HI(t), H0], (A16)

which says that all quantum fields inside H′ are to be evolved under the free Hamiltonian
H0 in order to obtain the dynamics of HI(t).

Let us finally solve the dynamical evolution Equation (A14). To do so, introduce the
time-ordering symbol T defined by

T [A(t1)B(t2)] :=

{
A(t1)B(t2), t1 > t2,

B(t2)A(t1), t2 > t1.
(A17)

Then, the general solution of (A14) can be expressed in terms of the evolution operator
P(t2, t1), which evolves that initial state |ψ(t1)〉 to the final state |ψ(t2)〉 via the
operator relation

|ψI(t2)〉 = P(t2, t1)|ψI(t1)〉, (A18)

where

P(t2, t1) := T e−i
∫ t2

t1
dtHI(t). (A19)

The reader may verify that (A18) and (A19) indeed solves (A14) by direct substitution.
Note that all operators inside the ordered exponential symbol T commute with each other.

Appendix E. On the Background to Theorem

The complete and most general proof of Theorem 1 can be obtained by utilizing a
generalized framework, that of algebraic quantum field theory [37,78]. The expansion (15)
can be shown to be derivable from a suitable perturbative algebraic quantum field theory,
e.g., the recent approach [93]. The advantage of choosing such a method is that one does
not need to assume a concrete Lagrangian from the beginning but rather proceed to work
directly with algebras of quantum fields and then use the structure of these algebras
in order to construct the entire theory, including the quantum states themselves, which
are generated internally. However, since the mathematical details are extensive, the full
treatment will be presented in a separate paper. Nevertheless, note that special cases of
Theorem 1 have already appeared repeatedly in the literature, though in quite different
applications and within distinct contexts. For example, a special case of (15) seems to
have been discussed by Coleman in his analysis of perturbation calculations in scattering
theory [38]. Moreover, a less general form of the expansion (15), known as the Volterra
series, is often presented in several textbooks on QFT when discussing the evaluation of the
vacuum expectation persistence function in terms of the higher-point Green’s (correlation)
functions of the quantum field, e.g., see [38,54–58,67].
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Appendix F. The Neutral Klein–Gordon Field Theory

A massive neutral Klein–Gordon field with mass m can be fully captured by a real
scalar field φ(x) whose Lagrangian density is given by [38,54,56,75]

L(x) =
1
2

∂µ∂µφ(x) +
1
2

m2φ(x)2, (A20)

with the corresponding action integral being

S =
∫

d4xL(x). (A21)

The Euler–Lagrange equation of motion

δS
δφ(x)

= 0 (A22)

yields the field equation
∂µ∂µφ(x) + m2 = 0, (A23)

which is the relativistic wave equation of a particle the Klein–Gordon equation [38,75].
Note that within the framework of standard quantum field theory (QFT), fields are

promoted to operators expanded in terms of plane-wave modes of the form

operator× exp
(
−ipµxµ

)
, (A24)

where the “operator” is either creation a†
p or annihilation ap operator (for particles or

antiparticles). Note further that by convention, the plane wave

exp
(
−ipµxµ

)
= exp

[
−i(Ept− p · x)

]
(A25)

is taken to encode an incoming wave/particle with momentum p/wavevector k and en-
ergy Ep/frequency ω [38]. In the unified language of QFT, we say that the plane wave
encodes a particle/antiparticle in a pure momentum state p. Within this convention, the
energy/frequency of a particle/wave is always positive.25

By applying the canonical quantization algorithm [38] (see review in Appendix G), the
quantum field φ(x) may be expanded into a continuous sum of spacetime modes (plane
waves) as follows

φ(x) =
∫

p∈R3

d3 p
(2π)3/2

1
(2ωp)1/2

[
ape−ipµxµ

+ a†
peipµxµ

]
, (A26)

with the dispersion relation (in natural units)

Ep = ωp = ωk = +
√
|p|2 + m2 = +

√
|k|2 + m2. (A27)

The creation and annihilation operators a†
p and ap, respectively, obey the standard canonical

commutation relations

[ap, ap′ ] = 0, [a†
p, a†

p′ ] = 0, [ap, a†
p′ ] = δ(p− p′), (A28)

where δ is the Dirac delta function.

Appendix G. The Relativistic Field-Theoretic Canonical Quantization Algorithm

The general canonical quantization algorithm is shown in Algorithm A1, where we
leave the nature of the field (scalar, vector, spin type, tensor, etc.) unspecified. In what
follows, the detailed quantization algorithm applies to our main type of fields in this paper,
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i.e., the massive spin-0 scalar field φ(x). Recall that in nonrelativistic quantum theory, a
generic operator can be Fourier expanded in terms of creation and annihilation operators
a†

p and ap, respectively. For instance, a generic scalar quantum field φ(x) is expected to be
written as

φ(x) =
∫

p∈R3

d3 p
(2π)3

[
ape−ipµxµ

+ a†
peipµxµ

]
. (A29)

Unfortunately, clearly, this expression is not Lorentz invariant because of the use of the
non-Lorentz invariant integration measure d3 p. We review below how Lorentz-invariant
quantum states |p〉 may be redefined so that Fourier expansions like (A29) can be made
manifestly covariant.

In order to expand the quantum field into a proper continuum of plane-wave modes
of the form exp

(
±ipµxµ

)
, we will need to integrate over all four-vector momenta pµ, i.e.,

perform four-dimensional integrals over p and Ep (or equivalently k and ω). However,
for massive particles in general, and Proca waves in particular [94], there is a definite
relation between momentum/wavevector and energy/frequency, so the integral over d3 p
might appear at first sight to be essentially reducible to d3 p, while Ep is computed from
E2

p = p2 + m2. However, the problem is that the differential element d3 p is not Lorentz
invariant, so there is a need to automatically enforce Lorentz invariance in our quantization
rules. In this paper, we adopt the computationally efficient method of applying normalizing
factors to quantum states right from the beginning. The main idea is to produce Lorentz-
invariant momentum quantum states and use them to expand the quantum fields.

The essence of the method of normalizing factors is to perform a transformation of
the form ∫

p∈R3
d3 p −→

∫

p∈M4
d4 p (A30)

taking us from the non-Lorentz invariant space R3 to Minkowski space M4, where d4 p is
clearly invariant since p := pµ = (p0, p). However, note that the mass shell condition

p2 := pµ pµ = m2 (A31)

forces this integration to remain on the cone defined by equations of this type, i.e., a
four-submanifold embedded into M4 whose equation is (A31). Then, we may write

d4 p = d3 pδ
(

p2 −m2
)

Θ
(

p0
)

, (A32)

where Θ(·) is the Heaviside unit step function, which is inserted by hand in order to
prevent the appearance of negative energies. It can be shown that [38,76]

δ
(

p2 −m2
)

Θ
(

p0
)
= (1/2Ep)δ(E− Ep)Θ(Ep), (A33)

and hence, we conclude

∫

p∈M4

d4 p
(2π)3 =

∫

p∈R3

d3 p
(2π)3

1
2Ep

, (A34)

where the factor 1/(2π)3 was intentionally inserted in order to make the final integral
looks like an inverse Fourier transform (this inserted factor will be compensated for shortly
when we define the normalizing factors of the Lorentz-invariant state |p〉). Therefore, we
have managed then to reduce a four-dimensional integration in M4 into a regular volume
integral in R3. Note that by writing the RHS of in (A34) without δ(E− Ep)Θ

(
p0), it is to be

implicitly understood that – algorithmically speaking – every appearance of E or ω in the
various possible expressions placed to the right of the integral operator sign

∫
d3 p should

be automatically replaced by +Ep or +ωk.
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A Lorentz-invariant momentum state |p〉 should be constructed from the standard
three-vector momentum states |p〉, which obey the normalization rule

〈
p
∣∣p′
〉
= δ(p− p′). (A35)

The most obvious construction of the Lorentz-invariant momentum state then is

|p〉 := (2π)3/2(2Ep)
1/2|p〉. (A36)

For example, the inner product of such states is
〈

p
∣∣p′
〉
= (2π)3(2Ep)δ(p− p′). (A37)

The definition (A36) can be readily used to yield the desired Lorentz-invariant completeness
relation

1 =
∫

p∈R3

d3 p
(2π)3

1
2Ep︸ ︷︷ ︸

Lorentz measure

|p〉〈p|, (A38)

where 1 is the unity operator. The computational utility of the method of normalizing
factors stems from the fact that a completeness relation originally holding for all states
{|p〉, p ∈ M4} in the full four-dimensional Minkowski space is now reduced to carrying
out integration in the regular Euclidean space R3. However, the price to be paid for
such simplification is that a momentum-dependent factor 1/2Ep must be inserted into the
integrand of the reduced integral, which slightly complicates the evaluation of various
related expressions such as probability amplitudes.

Finally, we can create the Lorentz state by applying a new normalized creation operator
b†

p to the ground or vacuum state |0〉, i.e., |p〉 = b†
p|0〉 and bp|0〉 = 0. Based on (A36),

we expect
b†

p = (2π)3/2(2Ep)
1/2a†

p, bp = (2π)3/2(2Ep)
1/2ap. (A39)

The field expansion now, based on (A38), becomes

φ(x) =
∫

p∈R3

d3 p
(2π)3

1
2Ep

[
bpe−ipµxµ

+ b†
peipµxµ

]
, (A40)

which after using (A39) leads to

φ(x) =
∫

p∈R3

d3 p
(2π)3/2

1
(2Ep)1/2

[
ape−ipµxµ

+ a†
peipµxµ

]
. (A41)

Algorithm A1 The Canonical Quantization Algorithm (General Formulation).

1: Start with a Lagrangian density L.
2: Find the momentum density. From this knowledge, construct the Hamiltonian.
3: Promote the field and the corresponding momentum variables to operator-valued fields.

Apply the standard commutation relations.
4: Expand the quantum fields into sums of plane waves with creation and annihilation

operator amplitudes.
5: Evaluate the Hamiltonian operator in terms of the creation and annihilation operators

and put in in the normal ordering form.

Appendix H. On the Numerical Evaluation of the Propagator

For the scalar massive or massless field theory considered above, the Green’s
Function (29) can be evaluated in closed analytical forms after regulating the integral
by inserting small imaginary number iε at proper locations in the integrand in order to
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ensure convergence (causality consideration, e.g., see [54,55]). The final expressions are
given by [56]

Gq(x, x′) =





im
8π

H(2)
1 (m|x−x′ |)

m|x−x′ | , m 6= 0,
−1
4π2

1
|x−x′ |2−iε

, m = 0.
(A42)

Here, the distance |x− x′| is computed in Minkowski spacetime M4 with the metric tensor
gµν, i.e, the relation

|x− x′|2 = (t− t′)2 − |r− r′|2. (A43)

The Hankel function of the second kind H(2)
ν is defined as

H(2)
ν (x) := Jν(x)± iNν(x), (A44)

where Jν and Nν are the Bessel and Neumann functions, respectively [95,96].

Appendix I. Proof of Relation

Proof of Relation (61), when there is a source J(x′), x′ ∈ Ds, then the actual radiated
(quantum) state of the q-antenna system is obtained by applying the operator

∫

x′∈Ds
d4x′ J(x′)φ†(x′)

on the ground state |0〉 in order to create the following one-particle excited state
∫

x′∈Ds
d4x′ J(x′)φ†(x′)|0〉.

To measure the probability of having a four-momentum state |q〉 in the previous excited
q-antenna state, we compute the source probability amplitude A[q; J(x′), Ds] as follows:

A[q; J(x′), Ds]

:= 〈q|
∫

x′∈Ds
d4x′ J(x′)φ†(x′)|0〉 =

∫

p∈R3

d3 p
(2π)3/2(2ωp)1/2

∫

x′∈Ds
d4x′ J(x′)eipµx′µ〈q|p〉

=
∫

p∈R3

d3 p
(2π)3/2(2ωp)1/2 J(p)δ(q− p)(2π)3/2(2ωp)

1/2 = J(q)|q0=ωq
= J(q, ωq),

where
J(k) :=

∫

x∈Ds
d4x J(x)eikµx′µ =

∫

x∈R3
d3x

∫

t∈R
dt J(x, t)ei(ωt−k·x) (A45)

is the four-dimensional (Minkowski) Fourier transform in spacetime. The second line
in (A45) follows from using the momentum-space expansion of the source field φ(x′) given
by (A26), while in the third line, we used the normalized four-momentum state inner
product formula

〈q|p〉 = (2π)3/2(2ωp)
1/2δ(q− p), (A46)

then proceeded to evaluate the trivial resulting integral over a delta function.
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Notes
1 Other possible long-term aims behind the spacetime theory of q-antennas proposed below include the stimulation of fruitful

collaboration between theoreticians, especially those working on problems related to foundations, and applied quantum
physicists and engineers, whose attention is often more focused on algorithmic and physical-layer applications, e.g., quantum
communications, cryptography, computing, and so on.

2 Maxwell’s equations in vacuo are exactly linear [49,51]; a photon does not self-interact with itself [52]. As in classical antenna
theory, in the proposed quantum antenna theory given here, all nonlinearities are relegated to production of the source J(x) itself.
Well-known examples include gun diodes (microwaves) and laser devices (optics), where the diode itself is nonlinear but the
relation between the current or field as external source and the fields radiated into vacuum is linear. The physical nonlinear
processes behind the source function J(x) itself are outside the scope of the proposed theory.

3 Otherwise, relativistic causality would preclude information transfer [51]. In general, there is an agreement in the literature
that entanglement-based quantum communication links cannot transmit information at superluminal speeds even though the
quantum correlations between entangled states persists at spacelike separated terminals [2,4].

4 This is a realistic assumption in our model, in conformity with the common practical situation where typical classical or quantum
sources are supported by bounded spatial domains and radiate within a finite time interval while practical measurement times
are also bounded.

5 The propagators coincide with well-known Green’s functions in the case of free fields. For interacting field theories, the
propagators are not in general known, but viable approximations can be estimated using perturbation theory, in which the
free-field Green’s function is used as a fundamental building block in order to compute more complex higher-order interaction
processes [54–60].

6 By effective path, we just mean the spacetime trajectory in the Feynman’s path integral expansion of the propagator that contributes
most to the total probability amplitude, e.g., see [57].

7 Cf. Appendix D.
8 Interaction is a more general concept than quantum correlation, since two uncorrelated objects could interact, where in this case,

the interaction terms are just the multiplication of the strengths of each process while the two remain, at least stochastically
speaking, independent. An example illustrating this will be given shortly.

9 Nowadays, such many-body effects are approached in the modern literature on condensed-matter physics, e.g., through the
elaborate and elegant language of many-point correlation or Green’s functions in QFT [59–61].

10 In QFT, integrals such as (20) are handled using four-point Green’s functions of the form G(4)(x3, x4, x1, x2), where the latter is
called the four-point correlation (Green’s) function [54,55,57]. In our case, we just choose x3 = x4 = x, since x is the common
observation point of the receiving q-antenna system.

11 The realization of the need to eventually differentiate a purely classical source function from within any stochastic system
(including quantum systems) was originally proposed within the context of quantum optics in the 1960s [62].

12 For the purposes of illustrating the main ideas of q-antenna systems, this assumption simplifies considerably the presentation,
but the main ideas related to q-antennas are unchanged when more complicated field theories are considered such as spin-1 and
spin-1/2 theories.

13 For additional information on the physical processes modeled by a Klein–Gordon quantum field, see [74,75].
14 For a more detailed discussion of relativistic QFT, see [38,76].
15 The generation of φ(x) itself is not treated here for simplicity. However, note that computing the quantized fields of coupled

matter–field systems is a fairly well-developed area in the physics and engineering literature, mostly using the methods of
perturbation theory [38,54,55,67,77]. On the other hand, in this paper, our main focus is on how to deploy an already given or
generated quantum field φ(x) in order to construct the radiation pattern and the Green’s function of a q-antenna system for use
in applications in controlled radiation of quantum states.

16 When reworked in the full momentum space p ∈ M4, the integral (21) becomes even more interesting, both computationally
and conceptually, since one can show then that point source excitations lead to the production of virtual (off-mass-shell)
particles [38,57]. However, we will not make use of these expansions in the present paper though they are expected to play an
important role in developing the near-field theory of radiating quantum source systems.

17 The concept of particle localization in QFT is difficult both philosophically and mathematically, and several approaches have
been proposed in the literature so far, apparently with no universal agreement on the ontological status of particles in field
quantization. Such more advanced issues do not affect the practically oriented theory of quantum antennas developed in this
paper. For some in-depth discussion of localization in field theory, see [37,78].

18 Recall that in QFT, antiparticles are interpreted as particles moving backward in time [57,58].
19 Momentum space means either p ∈ R3 or p ∈ M4. In this paper, whenever the term momentum space is invoked, it is to be

understood that we will mostly work with the former version, i.e., in three dimensions.
20 In this paper, we do not consider the possible case of unbounded source domains such as infinite current sheets and lines.
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21 Cf. Appendix G.
22 Cf. Appendix A.
23 Indeed, this is how directivity is defined in classical antenna theory, e.g., see [35]. Note further that D in the LHS of (69) was

directly expressed in terms of the spherical angles ϕ, θ, in order to emphasize the spatial angular character of this momentum
space function. See [71,72] for more details about the momentum space approach to directivity.

24 See Coleman’s discussion of the generic detection process in high-energy physics as given in [38].
25 Indeed, negative energy/frequencies obtained as solutions to the massive particle dispersion equation E2 = p2 + m2 are often

reinterpreted as antiparticles and plane waves of the form exp
(
+ipµxµ

)
are taken to represent outgoing antiparticles with

momentum p and energy Ep [38].
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