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Abstract: In a dominance drawing Γ of a directed acyclic graph (DAG) G, a vertex v is reachable
from a vertex u if, and only if all the coordinates of v are greater than or equal to the coordinates of u
in Γ. Dominance drawings of DAGs are very important in many areas of research. They combine the
aspect of drawing a DAG on the grid with the fact that the transitive closure of the DAG is apparently
obvious by the dominance relation between grid points associated with the vertices. The smallest
number d for which a given DAG G has a d-dimensional dominance drawing is called dominance
drawing dimension, and it is NP-hard to compute. In this paper, we present efficient algorithms for
computing dominance drawings of G with a number of dimensions respecting theoretical bounds.
We first describe a simple algorithm that shows how to compute a dominance drawing of G from
its compressed transitive closure. Next, we describe a more complicated algorithm, which is based
on the concept of modular decomposition of G, and obtaining dominance drawings with a lower
number of dimensions. Finally, we consider the concept of weak dominance, a relaxed version of the
dominance, and we discuss interesting experimental results.

Keywords: multidimensional dominance drawings; efficient algorithms; decomposition into transi-
tive modules

1. Introduction

Dominance drawings of directed acyclic graphs (DAGs) are very important in many
areas of research, including graph drawing [1], computational geometry [2], and informa-
tion visualization [3], even in very large databases [4], just to mention a few. They combine
the aspect of drawing a DAG on the grid with the fact that the transitive closure of the
DAG is apparently obvious by the dominance relation between grid points associated with
the vertices. In other words, in a dominance drawing, a vertex v is reachable from a vertex
u if, and only if all the coordinates of v are greater than or equal to the coordinates of u in Γ.
Notice that it is not possible to find dominance drawings in two-dimensions for most DAGs.
The smallest number d for which a given DAG G has a d-dimensional dominance drawing
is called a dominance drawing dimension, and it is NP-hard to compute [5]. We denote by
dd(G) the dominance drawing dimension of G. In this paper, we present algorithms for
computing a k-dimensional dominance drawing of G, where k ≥ dd(G). Our algorithms
are efficient and based on various decomposition techniques.

An st-graph is a DAG with one source s and one sink t. Every DAG can be transformed
into an st-graph by adding a virtual source and connecting it to all the sources and by
adding a virtual sink and connecting all the sinks to it. In this paper, we assume, without
loss of generality, that every DAG is an st-graph. Let G = (V, E) be an st-graph. There are
linear-time algorithms for computing two-dimensional dominance drawings of st-graphs
that are planar (st-planar graphs) [6]. For non-planar st-graphs, more than two dimensions
are usually required. A k-dimensional (k ≥ 1) drawing of G is a drawing of G having k
dimensions that we denote by D1, . . . , Dk. For every h ∈ [1, k] and v ∈ V, Dh(v) is the
coordinate in the dimension Dh of v. In a k-dimensional dominance drawing of G, given
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any two vertices u, v ∈ V, Dh(u) ≤ Dh(v) for every h ∈ [1, k] if, and only if there exists a
directed path connecting u to v in G. In this paper, we assume that every path is a directed
path. Hence, from now on we omit the word “directed”.

The minimum k such that there exist a k-dimensional dominance drawing of G (its
dominance dimension) is dd(G). A partially ordered set (poset) is a mathematical for-
malization of the concept of ordering. Any partially ordered set P can be viewed as a
transitive DAG. The dimension of a poset is equivalent to the dominance dimension of
the corresponding st-graph and the results obtained for st-graphs and their dominance
drawing dimension transfer directly to partial orders and their dimension, and vice versa
(see [5] for a formal definition of poset and dimension of a poset). Hence, it follows that we
can talk about the known results for partial orders and for st-graphs with no distinction.

Testing whether an st-graph has a dominance dimension of two requires linear
time [7,8]. In particular, [7] gives a necessary and sufficient condition for the test, and [8]
presents the linear-time algorithm. It is NP-complete to decide whether dd(G) is greater
than or equal to 3 [5]. A linear-time algorithm that constructs two-dimensional dominance
drawings of upward planar graphs is described in [2] (see also [6]). We report the above
results in the following lemma:

Lemma 1. For any st-graph G, it is possible to decide in linear time if dd(G) = 2 [7,8], while it
is NP-complete to decide if dd(G) = k for any k ≥ 3 [5]. If G is upward planar, it is possible to
construct a two-dimensional dominance drawing of G in linear time [2].

Given a k-dimensional dominance drawing of a DAG G, it is possible to test the
existence of a path connecting any two vertices of G in O(k) time. DAGs are used to
represent information in databases. Computing dominance drawings of such DAGs having
a low number of dimensions would be important in practice. Unfortunately, most of the
existing algorithms for constructing dominance drawings require the input DAG to have
specific properties, for example, to be planar, as stated in Lemma 1. For this reason, a
relaxed version of dominance drawing, called weak dominance drawing, was introduced
in [9]. The “if and only if” condition of dominance becomes an “if” condition in the weak
dominance. This implies that the non-existence of a path between the two vertices is
guaranteed by finding a dimension D for which D(u) > D(v), but the existence of a path
is not guaranteed even if D(u) ≤ D(v) for all dimensions D of Γ. Hence, there is a falsely
implied path (fip) between u and v when there is no path between u and v, even though
D(u) ≤ D(v) for every dimension D of Γ. The existence of fips cannot be excluded since
the number of dimensions in a weak dominance drawing is typically significantly less than
dd(G).

Li, Hua, and Zhou considered high-dimensional weak dominance drawings in order to
obtain efficient solutions to the reachability query problem [10]. Their experimental results
show that their algorithms compute weak dominance drawings using few dimensions
and having few fips. Extending their work, Lionakis et al. [11] showed that, for the same
families of graphs considered in [10] and by using a number of dimensions similar to the
one used in [10], it is possible to compute dominance drawings (i.e., 0 fips).

The technique used in [11] is similar to the one described in Section 2 of this paper. The
computational time required to compute dominance drawings in [11] is still higher than
the one to compute weak dominance drawings [10]. However, these results suggest that a
possible direction for this line of research is to actually use directly dominance drawings
instead of weak dominance drawings.

This technique is based on the concept of compressed transitive closure, which is a
data structure introduced in [12] that can be used to answer any reachability query in O(1)
and requires O(kn) space, where k is a parameter less than or equal to n.

In Section 3, we present algorithms that compute dominance drawings with a reduced
number of dimensions, k, and show that k is a good upper bound of the dominance
dimension number of a DAG. These algorithms are based on a clever decomposition of
a DAG denoted by modular decomposition, where a module of a DAG G = (V, E) is a
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set of vertices M of the G having the same set of predecessor and successors in V \M. We
also show an interesting family of DAGs for which the number of required dimensions is
reduced to a small constant.

Next, we discuss the option of using weak dominance more extensively and close our
paper by presenting our conclusions and future research challenges.

2. Compressed Transitive Closure and Dominance Drawings

Let G = (V, E) be an st-graph with n vertices and m edges. Two vertices u, v ∈ V are
incomparable if there is no path from u to v or from v to u in G. The width of G, denoted
by f , is the cardinality of the largest set U ⊆ V such that, for every u, v ∈ U, u and v
are incomparable. Given any st-graph G, the following lemma describes well-known
relationships between its dominance dimension dd(G), number of vertices n, and width f .

Lemma 2. Let G be an st-graph, n be its number of vertices, and f be its width. The two following
inequalities hold:

(1) dd(G) ≤ n
2 [13,14];

(2) dd(G) ≤ f [14].

Let s and t be the source and sink of G. A chain of G is an ordered set of vertices
C ⊆ V such that, given any two vertices u, v ∈ C, u precedes v in the order of C if, and only
if there is a path from u to v in G. See, for example, Figure 1a, where C1 = {s, v3, v4, t} and
C2 = {s, v1, v2, v5, v6, t} are two chains of G.

Definition 1. A chain cover Sc of G is a set of chains of G having the following two properties:
(a) Sc is a partition of G \ {s, t};
(b) s and t are contained in every chain of Sc.

An antichain A is a set of vertices such that any pair of vertices v, w ∈ A is incompara-
ble. Notice that the maximum cardinality of an antichain is equivalent to the width of G.
Dilworth [15] proves that the minimum number of chains needed to cover all the vertices
of an st-graph G is equivalent to the maximum cardinality of the antichain G. We have the
following lemma:

Lemma 3. Let G be an st-graph with n vertices and let f be its width. The minimum cardinality
of a chain cover of G is f [15]. Additionally, it is possible to compute a chain cover of G with
cardinality f in O( f n2) time [16].

See Figure 1a, where Sc = {C1, C2} is a chain cover of graph G. Since f = |Sc| = 2, by
Lemma 3 Sc is a chain cover of G with minimum cardinality.

For the rest of this paper, we assume that G = (V, E) is an st-graph and we denote by
n, m, and f the number of vertices, the number of edges, and the width of G, respectively.
By Inequality (2) of Lemma 2, we have dd(G) ≤ f . In this section, we present a simple and
efficient algorithm to compute an f -dimensional dominance drawing of G. We first show
how to compute a data structure called the compressed transitive closure of G [12], and
then we show that this data structure can be easily used to obtain a dominance drawing.

The compressed transitive closure was presented in [12]. Given a chain cover of G of
size k, the compressed transitive closure is a set of n arrays of size k, each one associated to a
vertex of G. The compressed transitive closure is an efficient tool for answering reachability
queries that has low storage requirements and, as we are going to show later, it can be
computed in O(km) time if a chain cover Sc is given as an input, where k is the cardinality
of Sc.

As we are going to observe later, the compressed transitive closure can answer any
reachability query in O(1) time, and not O(k). Similarly, the dominance drawing described
in this section can be used to answer any reachability query in O(1) time. We show
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that if we see every array of the compressed transitive closure as the coordinates of the
corresponding vertex of G in an k-dimensional drawing Γ of G, then drawing Γ is a
dominance drawing of G.

Given a chain cover Sc of cardinality k, computing the compressed transitive closure
requires O(km) time. Since computing Sc having cardinality f requires O( f n2) time by
Lemma 3, we have that it is possible to compute an f -dimensional dominance drawing of
any DAG G in O( f n2) time. To the best of our knowledge, this is the first polynomial-time
algorithm to compute a dominance drawing of G in f dimensions.

Let Sc = {C1, . . . , Ck} be a chain cover of G. As we said before, we show that the
compressed transitive closure of G given Sc can be seen as a k-dimensional dominance
drawing of G. Before defining the compressed transitive closure, we introduce some
notation. By Property (a) of a chain cover, each vertex v of G \ {s, t} belongs to exactly
one chain, say Ci, of Sc. We denote v by (i, j) meaning that v is the jth vertex of chain
Ci ∈ Sc. A similar notation is also used in [12,16]. By Property (b) of a chain cover, s and t
belong to every chain of Sc, and we define s = (i, 0) and t = (i, |Ci|) for every i ∈ [1, k]. An
example is shown in Figure 1a. According to this notation, we have: v1 = (2, 1); v2 = (2, 2);
v3 = (1, 1); v4 = (1, 2); v5 = (2, 3); v6 = (2, 4); s = (1, 0) = (2, 0); t = (2, 5) = (1, 3).

s

v1

v2v3

v4

v5

v6

t

C2

C1

G

Sc = {C1, C2}
(a)

s → As =

v1 → Av1 =

v2 → Av2 =

v3 → Av3 =

v4 → Av4 =

v5 → Av5 =

v6 → Av6 =

0 0

2 1

2 2

1 3

2 5

3 3

3 4

t → At = 3 5

D1(v3)

D2(v3)

(b)

v1

v2

v5

v6
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D2

s
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4

t

1 2 3
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Figure 1. (a) A chain cover Sc = {C1, C2} of G, where: C1 = {s, v3, v4, t} and C2 = {s, v1, v2, v5, v6, t}.
We have: s = (1, 0) = (2, 0); v1 = (2, 1); v2 = (2, 2); v3 = (1, 1); v4 = (1, 2); v5 = (2, 3); v6 = (2, 4);
t = (1, 3) = (2, 5). (b) The compressed transitive closure of G given Sc. (c) The drawing Γ(G, Sc).

As we said before, the compressed transitive closure of G given a chain cover
Sc = {C1, . . . , Ck} of G is a data structure that can answer any reachability query in
O(1) time that can be computed in O(km) time and that requires O(kn) space. More pre-
cisely, it is a set of n arrays of integers of size k so that every vertex u of G is assigned to the
reachability array Au, and the following property holds:

Property 1 (Reachability Property [12]). Let u be any vertex of G and Au be its reachability
array. For any vertex v = (p, q) of G there exists a directed path from u to v if, and only if
Au[p] ≤ q.

In other words, vertex u′ = (p, Au[p]) is the vertex having the lowest position in Cp
so that there is a path from u to u′. Consequently, there is a path from u to a vertex v ∈ Cp
if, and only if the position q of v = (p, q) in Cp is not lower than the position Au[p] of
u′ in Cp. Notice that if u = v, then the directed path exists and it is the empty path and,
consequently, u = (p, q) = (p, Au[p]).

Figure 1b shows the compressed transitive closure of G given the chain cover Sc = {C1, C2}
shown in Figure 1a. Concerning s and t, we have: s = (1, 0) = (2, 0) and As[1] = As[2] = 0;
t = (1, 3) = (2, 5), At[1] = 3, and At[2] = 5. Regarding the other vertices, for example, vertex
v1, we have v1 = (2, 1) and Av1 [2] = 1. Vertex v4 is the vertex having the lowest position
in C1 so that there exists a directed path π = {(v1, v2), (v2, v4)} from v1 to v4. Additionally,
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v4 = (1, 2). The value in position 1 of the reachability array of v1 equals the position of v4 in C1
and, consequently, Av1 [1] = 2.

We now present the algorithm to compute the compressed transitive closure [12]. The
input is an st-graph G = (V, E) and a chain cover Sc = {C1, . . . , Ck} of G. The output is
the reachability array Au for every u ∈ V, that is, the compressed transitive closure of G
given Sc. Algorithm 1 has two steps: the Initialization and the Update.

Algorithm 1 Compressed transitive closure computation.

? Input: An st-graph G = (V, E) and a chain cover Sc = {C1, . . . , Ck} of G
? Output: The array Av for every v ∈ V.
• Initialization: For any u = (i, j) ∈ G and h ∈ [1, k]: If h = i, v given as Au[h] = v;
else, Au[h] = t, where t is the sink of G.
• Update: Compute a topological order T of G. For every l = n, . . . , 1:
1. Let u = (i, j) be the vertex so that T(u) = l;
2. Let u1, . . . , uc be the vertices so that (u, w) ∈ E for any w ∈ {u1, . . . , uc};
3. For every w ∈ {u1, . . . , uc} and every h ∈ [1, k]: Au[h] = min{Au[h], Aw[h]}.

Observe that the above algorithm requires O(kn) time, since, for every vertex of the
graph, you compute k operations. See the Step Update 3. We now show that if we use the
reachability array Au as the coordinates of u in a k-dimensional drawing of G for every
vertex u, then we obtain a dominance drawing. See Algorithm 2.

Algorithm 2 CC-Draw (Chain Cover Draw).

? Input: An st-graph G = (V, E) and a chain cover Sc = {C1, . . . , Ck} of G
? Output: A k-dimensional drawing Γ of G.
• Compute the compressed transitive closure of G given Sc.
• Compute k-dimensional drawing Γ of G having dimensions D1, . . . , Dk such that, for
every h ∈ [1, k] and for every u ∈ V, Dh(u) = Au[h].

We denote by Γ(G, Sc) the output of Algorithm 1 when G and Sc are given to the
algorithm as an input. Refer to Figure 1. Figure 1c depicts the two-dimensional dominance
drawing of G computed by using the chain cover Sc = {C1, C2} depicted in Figure 1a.
The compressed transitive closure of G given Sc is depicted in Figure 1b. For example,
Av3 = [1, 3] and, consequently, D1(v3) = 1 and D2(v3) = 3.

Two vertices are placed in the same position in Γ(G, Sc) if Dh(u) = Dh(v) for every
h ∈ [1, k]. In a drawing of a graph, two distinct vertices are never placed in the same
position by definition. The following lemma shows that two vertices are never placed in
the same position in Γ(G, Sc) and that, consequently, Γ(G, Sc) is a drawing of G.

Lemma 4. Let Sc be a chain cover of G and let u and v be any two distinct vertices of G. Vertices
u and v are not placed in the same position in Γ(G, Sc).

Proof. Let Sc = {C1, . . . , Cl}, u = (i, j), and v = (p, q). Suppose first that u and v belong
to the same chain, that is, p = i. In this case, u = (i, j) and v = (i, q). In addition, j 6= q
since u and v are two distinct vertices. We have Di(u) = Au[i] = j and Di(v) = Av[i] = q.
It follows that Di(u) 6= Di(v) and that, consequently, u and v are not placed in the same
position in Γ(G, Sc). Suppose that u and v belong to two distinct chains, that is, p 6= i. We
have Di(u) = Au[i] = j, Dp(u) = Au[p] and Di(v) = Av[i], Dp(v) = Av[p] = q. Consider
the two vertices u′ = (p, Au[p]) and v′ = (i, Av[i]). Suppose by contradiction that the
vertices u and v are placed in the same position in Γ(G, Sc). In this case, Di(u) = Di(v)
and Dp(u) = Dp(v) and, consequently, j = Av[i] and Au[p] = q. Hence, u′ = (p, Au[p]) =
(p, q) = v and v′ = (i, Av[i]) = (i, j) = u. By the Reachability Property, u′ and v′ are the
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vertices having the lowest position in Cp and Ci so that there exist a directed path from u
to u′ and from v to v′, respectively. Since u = v′ and v = u′, it follows that there is a path
connecting v to u and there is another path connecting u to v. It implies that there must be
a cycle that contains v and u in G, which is a contradiction. It follows that u and v are not
placed in the same position in Γ(G, Sc).

Notice that if u and v were placed in the same position, not only Γ(G, Sc) could not be
considered a drawing of G, but also Γ(G, Sc) would not have the property of a dominance
drawing. Indeed, in this case Dh(u) ≤ Dh(v) and Dh(v) ≤ Dh(u) for every h ∈ [1, k] and,
consequently, the property of the dominance drawing would imply the existence of a path
from u to v and a path from v to u and, consequently, the existence of a cycle in G.

The following theorem shows that drawing Γ(G, Sc) is a dominance drawing of G and
that it can be computed in O(km) time.

Theorem 1. Let G be an st-graph with n vertices and m edges and Sc = {C1, . . . , Ck} be a chain
cover of G. We have that Γ(G, Sc) is a k-dimensional dominance drawing of G. Additionally, given
a chain cover Sc, Γ(G, Sc) can be computed in O(km) time.

Proof. The fact that computing Γ(G, Sc) requires O(km) time is a direct consequence of the
fact that given Sc as input, the compressed transitive closure of G given Sc can be computed
in O(km) [12]. We now prove that Γ(G, Sc) is a k-dimensional dominance drawing of G.
Let u = (i, j) and v = (p, q) be any two distict vertices of G. By Lemma 4 u and v are not
placed in the same position in Γ(G, Sc). We prove that Dh(u) ≤ Dh(v) for every h ∈ [1, k]
if, and only if there is a path connecting u to v. If Dh(u) ≤ Dh(v) for every h ∈ [1, k], then
Dp(u) ≤ Dp(v). Since Dp(u) = Au[p] and Dp(v) = Av[p] = q, we have Au[p] ≤ q and, by
the Reachability Property, there is a directed path from u to v. It remains to show that if
there exists a directed path from u to v then Dh(u) ≤ Dh(v) for every h ∈ [1, k]. Suppose
by contradiction that there exist h ∈ [1, k] so that Dh(u) > Dh(v). Since Dh(v) = Av[h] and
Dh(u) = Au[h], we have Av[h] < Au[h]. We denote by v′ the vertex (h, Av[h]). Note that by
the Reachability Property there is a path connecting v to v′. Since by hypothesis there is a
path from u to v, there is a path connecting u to v′. On the other hand, since Av[h] < Au[h],
by the Reachability Property we have that there is no path from u to v′. A contradiction.
Hence, Dh(u) ≤ Dh(v) for every h ∈ [1, k].

By Lemma 3 computing Sc = {C1, . . . , Ck} so that f = k requires O( f n2) time. Hence,
the following theorem is a consequence of Lemma 3 and Theorem 1.

Theorem 2. Let G be an st-graph with n vertices and m edges and let f be its width. It is possible
to compute an f -dimensional dominance drawing of G in O( f n2) time.

3. Transitive Modules and Dominance Drawings

Let G be an st-graph. In this section, we first discuss the concept of transitive module
of G, which is a module of the transitive graph of G. Second, we present Lemma 5, which
shows a bound for dd(G) not higher than the bounds of Lemma 2. In Section 3.1 we present
an algorithm computing dominance drawings respecting the bound of Lemma 5 and in
Section 3.2 we discuss its time complexity. The algorithm of Section 2 is simpler than the
one described in Section 3.1. On the other hand, as we show in Section 3.3, there exists
graph for which the dominance drawings computed by the algorithm of Section 3.1 have
O(n) less dimensions with respect to the dominance drawings computed by the algorithm
of Section 2.

A module M of G is a non-empty subset of V such that either |M| = 1 or, for any
two vertices v1, v2 ∈ M and any vertex u ∈ V \M: (v1, u) ∈ E if, and only if (v2, u) ∈ E;
(u, v1) ∈ E if, and only if (u, v2) ∈ E. The congruence partition CP of V is a partition of
V into modules. The quotient graph G/CP is the graph obtained from G by merging the
nodes of each module of CP. For a given module M ∈ CP, we denote by µ the vertex
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representing M in G/CP. Figure 2a shows an st-graph G and a congruence partition
CP = {M1, . . . , M14} of it. Figure 2b shows the quotient graph G/CP.

M 1
M 2 M 3

M 5
M 4

M 6

M 8

M 7

M 9

M 11

M 10

M 12 M 13
M 14

(a)

µ1
µ2 µ3

µ5 µ4

µ6

µ8

µ7
µ9

µ11µ10

µ12 µ13µ14

(b)

M 1

M 2

M 3

M 4

(c)

µ4

µ1

µ3µ2

(d)

Figure 2. (a) An st-graph G and congruence partition CP = {M1, . . . , M14} of it. (b) The quo-
tient graph G/CP. (c) Graph G depicted in (a) and a transitive congruence partition CP =

{M1, M2, M3, M4} of it that is not a congruence partition. (d) The transitive quotient graph G/CP.

In this paper, we use the concept of transitive module, transitive congruence partition,
and transitive quotient graph of G, defined as a module, a congruence partition, and a
quotient graph of the transitive closure graph G∗ of G. This concept is also used in [17],
but there they simply call “module” a transitive module.

Formally, a transitive module M∗ of G is a non-empty subset of V such that either
|M∗| = 1 or, for any two vertices v1, v2 ∈ M∗ and any vertex u ∈ V \M∗: there is a path
connecting v1 to u if, and only if there is a path connecting v2 to u; there is a path connecting
u to v1 if, and only if there is a path connecting u to v2. A transitive congruence partition
C∗P of G is a partition of G into transitive modules. The transitive quotient graph G/C∗P is
the graph obtained from G by merging the nodes of each transitive module of C∗P. For a
given module M∗ ∈ C∗P, we denote by µ∗ the vertex representing M∗ in G/C∗P.

Notice that every module of G is also a transitive module of G. Hence, the concepts
of transitive module, transitive congruence partition, and transitive quotient graphs are a
generalization of the concept of module, congruence partition, and quotient graph. For
the rest of the paper, since we are going to talk only about transitive modules, transitive
congruence partition, and transitive quotient graph, we will omit the symbol “∗” in the
notation in order to simplify our presentation. Figure 2c shows the st-graph G depicted in
Figure 2a and a transitive congruence partition CP = {M1, M2, M3, M4} of G that is not a
congruence partition. Figure 2d shows the transitive quotient graph G/CP.

The modular decomposition of G is a tree describing a decomposition of G based into
modules of G. The root of the tree is the module M = V, containing all the vertices of
G, and the leaves of the tree are the singleton modules, where every singleton contains
a vertex of G. The children of every non-leaf node M of the tree are the module of G
contained in M and that are not contained in any other module contained in M.

The modular decomposition can be computed in O(m) time and it requires O(n)
time to obtain a congruence partition and the correspondent quotient graph of G from a
modular decomposition of G. For further details about modular decomposition see [18].
Computing a transitive congruence partition of G requires O(nm) time, since we can obtain
it by computing a congruence partition of the transitive closure graph of G.

Let CP = {M1, . . . , Mh} be a transitive modular decomposition of G and let Gi =
(Mi, Ei), where Ei is the subset of edges of E that are incident to two vertices of Mi. The congru-
ence dimension of G given CP is the value cd(G, CP) = max{dd(G1), . . . , dd(Gh), dd(G/CP)}.
Since each Gi is a subgraph of G and G/CP is obtained from G, one might consider that
dd(G) ≥ cd(G, CP). In [19] it is proved that cd(G, CP) is an upper bound to dd(G).

Lemma 5. For every st-graph G and any transitive congruence partition CP of G, the following
relation holds: dd(G) ≤ cd(G, CP) [19].
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For example, refer to Figure 2c, that depicts a graph G and its transitive congru-
ence partition CP = {M1, M2, M3, M4}. We have that G/CP, G1, G3, and G4 are up-
ward planar and that G2 has width equal to 2. Hence, by Lemma 1 and Inequality (2)
of Lemma 2, dd(Gi) ≤ 2 for every i ∈ 1, 4 and dd(G/CP) ≤ 2. Hence, cd(G, CP) =
max{dd(G1), . . . , dd(G4), dd(G/CP)} ≤ 2 and, by Lemma 5, dd(G) ≤ 2. Since G does not
contain a Hamiltonian path, dd(G) > 1. It follows that dd(G) = 2. Figure 4b shows a
two-dimensional dominance drawing of G.

In Section 3.1 we show an algorithm to compute dominance drawings with the bound
stated in Lemma 5. More formally, we describe an algorithm to compute a dominance
drawing Γ(G, Sdd) of any st-graph G having q = cd(G, CP) dimensions given the set of
a q-dimensional dominance drawing Sdd = {Γ0, Γ1, . . . , Γh} of the graphs G0, G1, . . . , Gh

associated to a transitive congruence partition CP of G, where G0 = G/CP. In Section 3.2
we discuss the time complexity of the algorithm.

3.1. Algorithm 2 (Proof of Lemma 5)

Let CP = {M1, . . . , Mh} be a transitive congruence partition of G. Assume that, for
any two vertices u and v so that u ∈ Mj and v ∈ Mi, if there is a path connecting u to
v in G, then j ≤ i. It is possible to compute a labeling so that the above propriety holds
by: Computing a topological sorting T of the vertices of the st-graph G/CP (which is the
quotient graph); setting i equal to the topological number of µi, T(µi), for any transitive
module Mi ∈ CP. Note that the two transitive congruence partitions depicted in Figure 2a,c
(where the one of (a) is also a congruence partition) have a labeling with this property.

We denote graph G/CP by G0 = (V0, E0). Let Sdd = {Γ0, Γ1, . . . , Γh} be an ordered
set of q-dimensional dominance drawings so that, for every i ∈ [1, h], Γi is a q-dimensional
dominance drawing of Gi. We prove that given Sdd, it is possible to obtain a q-dimensional
dominance drawing of G. Then, since dd(Gi) ≤ cd(G, CP) for every i ∈ [0, h] by definition
of congruence dimension, the proof of Lemma 5 is a direct consequence of the fact that it is
possible to set q = cd(G, CP). See, for example, Figure 3 that depicts the drawings Γ0, . . . , Γ4

for the graph depicted in Figure 2c with transitive congruence partition CP = {M1, . . . , M4}.
The transitive quotient graph G0 is depicted in Figure 2d.

Notice that, given any dominance drawing Γ of G with q′ < q dimensions of a graph,
it is possible to obtain a dominance drawing with q dimensions of the graph by adding
to Γ q− q′ dimensions and by assigning to all the vertices of G the same position in the
new dimensions. Hence, the assumption that all the drawings in the set Sdd have the same
number of dimensions, q, is without loss of generality.
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Figure 3. The drawings Γ0, . . . , Γ4 for the graph G depicted in Figure 2c with transitive congruence
partition CP = {M1, . . . , M4}. The transitive quotient graph G0 = G/CP is depicted in Figure 2d.

We now show Algorithm 3, which computes a q-dimensional dominance drawing Γ(G, Sdd)
of G. The algorithm consists of two steps, presented in detail in Sections 3.1.1 and 3.1.2.
We now give an overview of the algorithm.
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Algorithm 3 CP-Draw (Congruence Partition Draw).

? Input: An st-graph G = (V, E) and Sdd = {Γ0, Γ1, . . . , Γh}
? Output: A h-dimensional drawing Γ(G, Sdd) of G.

Step 1: Compute a q-dimensional drawing Γ0 of G0 (different from Γ0) having dimensions
D0

1, . . . , D0
q (see Figure 4a). We denote Γ0 by skeleton drawing (see details in Section 3.1.1).

Step 2: Compute a drawing Γ(G, Sdd) (see Figure 4b) by using, for every vertex v ∈ Mi, the
coordinates of µi in the skeleton drawing Γ0 and of v in Γi in order to set the coordinates of
v in Γ(G, Sdd) (see details in Section 3.1.2).

In Section 3.1.2 we prove that Γ(G, Sdd) is a q-dimensional dominance drawing.

3.1.1. Details of Step 1 of Algorithm 2: Preparing the Skeleton Drawing Γ0

We first introduce some notation. Let Di
p be the pth dimension in drawing Γi ∈ Sdd and

maxi
p a number so that Di

p(v) ≤ maxi
p for every v ∈ Gi, where i ∈ [1, h] and p ∈ [1, q]. For

every µi ∈ G0, we define the set Ui
p to be the subset of V0 so that, for any µj ∈ V0, µj ∈ Ui

p if,
and only if one of the two following cases holds: (α) D0

p(µ
j) < D0

p(µ
i); (β) D0

p(µ
j) = D0

p(µ
i)

and j < i (i.e., µj is not reachable from µi according to the labeling defined at the beginning
of the section). Notice that the two cases never hold for µi and that, consequently, µi 6∈ Ui

p.

Let shi f ti
p = ∑µj∈Ui

p
maxj

p.

Refer to Figure 3 for an example of the notation maxi
p, Ui

p, and shi f ti
p defined above.

The values shi f ti
1, for i ∈ [1, 4], are computed as follow.

• i = 1: U1
1 = ∅, since neither Case (α) nor Case (β) holds for µ2, µ3, and µ4. Hence,

shi f t1
1 = ∑µj∈U1

1
maxj

1 = 0.

• i = 2: U2
1 = {µ1}, since Case (α) holds for µ1 and neither Case (α) nor Case (β) holds

for vertices µ3 and µ4. Hence, shi f t2
1 = ∑µj∈U2

1
maxj

1 = max1
1 = 1.

• i = 3: U3
1 = {µ1, µ2}, since Case (α) holds for µ1 and µ2 and neither Case (α) nor

Case (β) holds for vertex µ4. Hence, shi f t3
1 = ∑µj∈U3

1
maxj

1 = max1
1 + max2

1 = 1 + 3 =

4.
• i = 4: U4

1 = {µ1, µ2, µ3}, since Case (α) holds for µ1 and µ2 and Case (β) holds for µ3.

Hence, shi f t4
1 = ∑µj∈U4

1
maxj

1 = max1
1 + max2

1 + max3
1 = 1 + 3 + 2 = 6.

Let Γ0 be a q-dimensional drawing of G0 having dimensions D0
1, . . . , D0

h so that, for
every i ∈ [1, h] and every p ∈ [1, q], D0

p(µ
i) = D0

p(µ
i) + shi f ti

p.

Refer to Figure 4a that depicts the drawing Γ0 given Γ0, Γ1, Γ2, Γ3, Γ4 of Figure 3.
Consider dimension D0

1. Recall that shi f t1
1 = 0, shi f t2

1 = 1, shi f t3
1 = 4 and shi f t4

1 = 6, as

showed in the illustration of Figure 3 above. We have: D0
1(µ

1) = D0
1(µ

1) + shi f t1
1 = 0;

D0
1(µ

2) = D0
1(µ

2) + shi f t2
1 = 1 + 1 = 2; D0

1(µ
3) = D0

1(µ
3) + shi f t3

1 = 2 + 4 = 6; D0
1(µ

4) =
D0

1(µ
4) + shi f t4

1 = 2 + 6 = 8.

3.1.2. Details of Step 2 of Algorithm 2: Computing a Dominance Drawing Γ(G, Sdd) of G

We construct a q-dimensional drawing Γ(G, Sdd) of G having dimensions D1, . . . , Dq

as follows: For every vertex v ∈ G, where v ∈ Mi, and for every p ∈ [1, q], we set
Dp(v) = D0

p(µ
i) + Di

p(v).
Refer to Figure 4b that depicts the drawing Γ(G, Sdd) given Γ0, Γ1, Γ2, Γ3, Γ4 of Figure 3

and Γ0 of Figure 4a. Consider dimension D1 and vertices a ∈ M1, b ∈ M2, c ∈ M3, and
d ∈ M4, also depicted in Figure 3. We have: D1(a) = D0

1(µ
1) + D1

1(a) = 0 + 1 = 1;
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D1(b) = D0
1(µ

2) + D2
1(b) = 2 + 2 = 4; D1(c) = D0

1(µ
3) + D3

1(c) = 6 + 1 = 7; D1(d) =

D0
1(µ

4) + D4
1(d) = 8 + 1 = 9;
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Figure 4. (a) The skeleton drawing Γ0 given Sdd = {Γ0, . . . , Γ4}, where drawings Γ0, . . . , Γ4 are
depicted in Figure 3. (b) The correspondent drawing Γ(G, Sdd).

Notice that, since q can be equal to cd(G, CP) and since Γ(G, Sdd) is a q-dimensional
drawing of G, in order to prove Lemma 5 it is sufficient to show that drawing Γ(G, Sdd) is
a dominance drawing of G.

Let u and v be two vertices of G. We prove that there is a path connecting u to v if, and
only if Dp(u) ≤ Dp(v) for every p ∈ [1, q]. Suppose u ∈ Mj and v ∈ Mi, where j, i ∈ [1, h].
We distinguish two cases. In the first case u and v belong to the same transitive module,
that is, i = j, and in the second case u and v belong to two different transitive modules,
that is, i 6= j.

In the first case, i = j, since Γi is a dominance drawing, we have that there is a path
connecting u to v if, and only if Di

p(u) ≤ Di
p(u) for every p ∈ [1, q]. We also have that,

for every p ∈ [1, q], Di
p(u) ≤ Di

p(u) implies Dp(u) ≤ Dp(u) since Dp(u) = c + Di
p(u) and

Dp(v) = c + Di
p(v), where c = D0

p(µ
i). Hence, there is a path connecting u to v if, and only

if Dp(u) ≤ Dp for every p ∈ [1, q].
For the rest of the proof we consider the second case, that is, i 6= j. Suppose that

there is a path connecting u to v in G. We prove that Dp(u) ≤ Dp(v) for every p ∈ [1, q].
Observe that a path from u to v always implies a path from µj to µi in G0 and, since Γ0 is a
dominance drawing of G0, we have the following relation:

D0
p(µ

j) ≤ D0
p(µ

i). (1)

Since there is a path from µj to µi then, according to the labeling of the transitive modules
based on the topological ordering of G0 introduced at the beginning of the section, we have
j < i. Relation (1) implies U j

p ⊆ Ui
p. By Relation (1) and j < i we have that either Case (α)

or Case (β) holds for µj and that µj ∈ Ui
p. Hence, U j

p ∪ {µj} ⊆ Ui
p and consequently we

have the following relation:
shi f tj

p + maxj
p ≤ shi f ti

p. (2)

We have Dp(u) = D0
p(µ

j) + Dj
p(u) = D0

p(µ
j) + shi f tj

p + Dj
p(u) ≤ D0

p(µ
j) + shi f tj

p + maxj
p,

since maxj
p is by definition the maximum value of a coordinate in the pth dimension of
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drawing Γj. By Relation (1) D0
p(µ

j) + shi f tj
p + maxj

p ≤ D0
p(µ

i) + shi f tj
p + maxj

p. By Rela-

tion (2) D0
p(µ

i) + shi f tj
p + maxj

p ≤ D0
p(µ

i) + shi f ti
p. Hence, Dp(u) ≤ D0

p(µ
i) + shi f ti

p =

D0
p(µ

i) ≤ D0
p(µ

i) + D0
p(v) = Dp(v). This implies that Dp(u) ≤ Dp(v) for every p ∈ [1, q].

Suppose that Dp(u) ≤ Dp(v) for every p ∈ [1, q]. We prove that there is a path
connecting u to v in G. We first prove the following claim.

Claim 1. Let u and v be two vertices of G so that u ∈ Mj and v ∈ Mi. For any p ∈ [1, q], if
Dp(u) ≤ Dp(v) then D0

p(µ
j) ≤ D0

p(µ
i).

Proof. We have Dp(u) = D0
p(µ

j) + Dj
p(u) = D0

p(µ
j) + shi f tj

p + Dj
p(u) and Dp(v) =

D0
p(µ

i) + Di
p(v) = D0

p(µ
i) + shi f ti

p + Di
p(v). Hence, since Dp(u) ≤ Dp(v), D0

p(µ
j) +

shi f tj
p + Dj

p(u) ≤ D0
p(µ

i) + shi f ti
p + Di

p(v). Therefore, we have the following relation:

D0
p(µ

j) + shi f tj
p − shi f ti

p + Dj
p(u) ≤ D0

p(µ
i) + Di

p(v). (3)

Suppose for a contradiction that D0
p(µ

j) > D0
p(µ

i). It implies Ui
p ⊆ U j

p. Additionally,

it implies that Case (α) holds for µi and that µi ∈ U j
p. We have Ui

p ∪ {µi} ⊆ U j
p and

consequently shi f ti
p + maxi

p ≤ shi f tj
p. It follows that:

maxi
p ≤ shi f tj

p − shi f ti
p (4)

Substituting in Relation (3) the result of Relation (4) we have D0
p(µ

j)+maxi
p +Dj

p(u) ≤
D0

p(µ
i) + Di

p(v). Since Di
p(v) ≤ maxi

p, we have D0
p(µ

j) + maxi
p + Dj

p(u) ≤ D0
p(µ

i) + maxi
p.

It follows that D0
p(µ

j) + Dj
p(u) ≤ D0

p(µ
i) and, consequently, D0

p(µ
j) ≤ D0

p(µ
i), which is a

contradiction. It follows that D0
p(µ

j) ≤ D0
p(µ

i).

In order to conclude the proof of Lemma 5 we present the following argument. Since
by hypothesis Dp(u) ≤ Dp(v) for every p ∈ [1, q], by Lemma 1 D0

p(µ
j) ≤ D0

p(µ
i) for every

p ∈ [1, q]. Since Γ0 is a dominance drawing of G0 by hypothesis and since D0
p(µ

j) ≤ D0
p(µ

i)

for every p ∈ [1, q], then there is a path connecting µj to µi in G0. Therefore, there is a path
connecting any vertex of Mj to any vertex of Mi in G and, consequently, there is a path
connecting u to v in G.

We proved that for any two vertices u and v of G we have that there is a path from
u to v if, and only if Dp(u) ≤ Dp(v) for every p ∈ [1, q]. Hence, drawing Γ(G, Sdd) is a
q-dimensional dominance drawing of G. Since q is equal to cd(G, CP).

3.2. Complexity Analysis

In the previous section we showed an algorithm to compute dominance drawing
with the bound stated in Lemma 5. In this section we do a worst-case analysis of the time
complexity required to compute the dominance drawing Γ(G, Sdd).

Denote by O(t1) the time required to compute the transitive congruence partition CP of
G and by O(t2) the time required to compute the set of q-dimensional dominance drawings
Sdd = {Γ0, Γ1, . . . , Γh} of graphs G0, G1, . . . , Gh. Given Sdd, it is possible to compute the
values maxi

p and shi f ti
p for every p ∈ [1, q] and every i ∈ [1, h] in overall O(qn) time.

Hence, the time required to compute Γ(Sdd) is O(t1 + t2 + qn). Therefore, we have the
following theorem:

Theorem 3. Let G be any st-graph and let CP be a transitive congruence partition. Let O(t1) be the
time to compute CP and O(t2) be the time to compute the set of q-dimensional dominance drawings
Sdd = {Γ0, Γ1, . . . , Γh}, where q = cd(G, CP). Then, it is possible to compute a q-dimensional
dominance drawing of G in O(t1 + t2 + qn) time.
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We now give examples of possible values of t1 and t2. Recall that computing a
congruence partition requires O(m) [18]. It is possible to compute a transitive congruence
partition CP in O(nm) by computing a congruence partition of the transitive closure graph
of G. Hence, it is possible to have t1 = nm. Let f i be the width of Gi for every i ∈ [0, h].
If we compute the drawings Γ0, Γ1, . . . , Γh by using the algorithm described in Section 2,
then, by Theorem 2, t2 = f ′n2, where f ′ = max{ f 0, . . . , f h}. Notice that f ′ ≤ f and that, in
this case, by the theorem, it is possible to compute an f ′-dimensional dominance drawing.
We have t2 = n if all the graphs G0, G1, . . . , Gh are upward planar [2]. We summarize the
result for the special cases described in the above paragraph with the following corollary.

Corollary 1. It is possible to compute a f ′-dimensional dominance drawing of G in O(nm + f ′n2)
time, where f ′ ≤ f .

3.3. A Comparison between the Algorithms

In this section we show that by using the algorithm described in this section it is
possible to compute dominance drawing with O(n) less dimensions with respect to the
ones that we can compute by using the algorithm in Section 2.

Let H be an st-graph with n vertices, source s, sink t, and having a transitive congru-
ence partition CP = {M1, . . . , Mh}, where: M1 = {s}; for i ∈ [2, h− 2], Hi is a 3× 3 crown
graph; Hh−1 is a set containing O(n) incomparable vertices. See Figure 5a, where h = 4.

Let f be the width of H. We have f = O(n), since Mh−1 is a set containing O(n)
incomparable vertices. Additionally, it is well known that the 3 × 3 crown graph has
dominance dimension higher than 2, see for example [9]. Therefore, dd(Hi) > 2 for every
i ∈ [2, h− 2] and dd(H) > 2. According to Lemmas 1 and 2 the best-known upper bound
for dd(H) is n

2 .
The graphs H0, H1, Hh−1, Hh, where H0 = H/CP, are upward planar. Hence, dd(Hi) =

2 for every i ∈ {0, 1, h − 1, h} by Lemma 1. For every i ∈ [2, h − 2], the width of Hi

is 3 and, since dd(Hi) > 2, we have dd(Hi) = 3 by Inequality (2) of Lemma 2. Hence,
cd(H, CP) = max{dd(H0), . . . , dd(Hh)} = 3. By Lemma 5 and by dd(H) > 2 we have
dd(H) = 3, which is optimum.

It is possible to construct the three-dimensional dominance drawings Γi of Gi, for
i ∈ {0, 1, h − 1, h}, by Lemma 1 and by adding a third dimension as described at the
beginning of Section 3.1. For every i ∈ [2, h − 2], it is possible to construct the three-
dimensional dominance drawing Γi of Gi by Theorem 2. Hence, given CP, it is possible to
construct Sdd = {Γ0, . . . , Γh} and the three-dimensional dominance drawing Γ(H, Sdd) of
H as described in the proof of Lemma 5. Figure 5b depicts, for every v ∈ H, the values
D1(v), D2(v), D3(v) associated to the dimensions D1, D2, and D3 of the drawing Γ(H, Sdd),
where graph H is depicted in Figure 5a.
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Figure 5. Illustration of the example described in Section 3.3.

4. A Discussion on Weak Dominance Drawings

In this section we discuss the concept of weak dominance drawings, which is a
generalization of the concept of dominance drawing. We point out the reason why it was
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introduced and we show two recent papers showing that this concept can be very useful
in practice.

Given two vertices u and v of a DAG G, checking if there exists a directed path from u
to v is denoted by reachability query. The problem of answering efficiently to reachability
queries is widely studied in the literature. See, for example [10,17,20]. See also the following
two very recent papers [21,22] and see [23] for a survey.

Dominance Drawing is a concept that can be very useful for answering reachabil-
ity queries, that is, checking the existence of a path connecting two vertices in graph
databases.Recall that given a dominance drawing of a DAG G having k dimensions, it
is possible to answer to a reachability query very efficiently in O(k) time by using O(kn)
space. By using some clever strategy, as for the algorithm described in Section 2, the time
can also be O(1), that is, independent of the number of dimensions.

Computing dominance drawings of DAGs having a low number of dimensions
would be important in practice. Unfortunately, most of the existing algorithms obtaining
dominance drawings require the input DAG to have specific properties, that is, to be
planar, as stated in Lemma 1. The algorithms that we presented so far avoid this problem,
since no restriction on the input graph is given. On the other hand, the computational
time required to compute dominance drawings is still not linear. For example, for the
algorithm described in Section 2 computes f -dimensional dominance drawings in O( f n2)
time, where n and f are the number of nodes and the width of G, respectively. When the
number of vertices is very large, computing such drawings can be prohibitively expensive.
By using heuristics for the computation of (sub-optimal) chain covers we can make the
algorithms faster. Another possibility is to relax the concept of dominance. As we are going
to observe in the rest of this section, this direction was studied by several authors.

The concept of weak dominance, a relaxed version of dominance, was introduced
in [9]. The “if and only if” of dominance becomes an “if” in weak dominance. Namely, in a
weak dominance drawing Γ of a DAG G = (V, E), two vertices u, v ∈ V are incomparable
in G if there exists two dimensions D and D′ such that D(u) < D(v) and D′(v) < D′(u).
Unfortunately, u and v can be incomparable while D(u) ≤ D(v) for any dimension D of
Γ. In this case there is a falsely implied path (fip) between u and v. Clearly, any DAG G
admits a k-dimensional weak dominance drawing for any integer k. For example, any
topological order of the vertices of G is a one-dimensional weak dominance drawing of G.
In [24] it is studied an interesting variation of the weak dominance drawing problem.

Given a weak dominance drawing Γ, if there are two dimensions D and D′ of Γ such
that D(u) ≤ D(v) and D′(u) ≥ D′(v), then u and v are incomparable. This computation
requires O(k) time. Otherwise, more expensive computations are needed to check weather
there is a path connecting u and v. For example, a Breadth First Search (BFS) would take
O(n + m) time per search. Minimizing the number of fips minimizes the number of BFS
operations required by the drawing and, consequently, the average time required for a
reachability query. Notice that minimizing the number of fips is NP-hard [9,25]. The
weak dominance drawings were recently used to construct compact representations of the
reachability information in databases [4,10].

Interesting experiments on algorithms computing weak dominance drawings are
presented in [4,10]. They show that by using weak dominance drawings, it is possible to
answer reachability queries more efficiently with respect to previous results. In [10] they
use weak dominance drawing with more than two dimensions in order to have less fips
and they show that even by using few dimensions, that is, by using almost linear space, it is
possible to improve the results significantly. Extending [10], Lionakis et al. [11] show that,
for the same families of graphs considered in [10] and by using a number of dimensions
similar to the ones used in [10], it is possible to compute dominance drawings (i.e., 0 fips).

The technique used in [11] is similar to the one described in Section 2 of this paper. The
computational time required to compute dominance drawings in [11] is still higher than
the one to compute weak dominance drawings [10]. However, these results suggest that a
possible direction for this line of research is to actually use directly dominance drawings
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instead of weak dominance drawings. In fact, in Section 3 we presented algorithms that
compute dominance drawings with a reduced number of dimensions with respect to the
ones presented in Section 2, and consequently in [10,11].

5. Conclusions and Open Problems

In this paper, we reviewed some mathematical results on dominance drawings of
DAGs and their dimension, and presented an efficient algorithm that, for every st-graph G
with width f , constructs an f -dimensional dominance drawing. As far as we know, these
are the most efficient algorithms to construct dominance drawings for any input DAG with
a number of dimension that is described by the theoretical bounds.

We used the concept of congruence dimension cd(G, CP) of G given a transitive
congruence partition CP of G, and we presented an efficient algorithm to compute a
dominance drawing of G in cd(G, CP) dimensions. The congruence dimension cd(G, CP) of
G is a better upper bound of the dominance dimension of G. Indeed, we showed that there
exists a family of graphs so that for every graph H of the family the best-known upper
bound of dd(H), according to Hiraguchi’s Theorem (Inequality (1) of Lemma 2), was n

2 and
we proved that, according to Lemma 5, dd(H) = 3.

Notice that the number of dimensions used by a dominance drawing may be large,
and the algorithm to compute it requires O( f n2) time. Therefore, it may be prohibitive for
very large data sets as the ones used recently by the database community. There are three
ways to approach these problems from theoretical and practical points of view:

• Use a relaxed version of dominance drawing called weak dominance drawing, see [9].
The existence of fips cannot be excluded since the number of dimensions in a weak
dominance drawing is typically significantly less than dd(G). Hence, computing
such drawings with few fips is central to any approach involving weak dominance
drawings. Recall that minimizing the number of fips is NP-hard [9,25]. Additionally,
using more dimensions in a weak dominance drawing reduces the number of fips. It
would be interesting to experimentally study this tradeoff.

• Explore heuristics in order to compute dominance drawings of DAGs in “almost linear
time”, even if they need a higher number of dimensions. This would be another inter-
esting research direction given the high complexity required by current algorithms.

• Finally, an interesting theoretical open problem is to find algorithms that construct
dominance drawings of similar quality as the ones computed by the current algorithms
(that require O( f n2) time) but in less time, or prove a non-trivial lower bound for
this construction.
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