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Abstract: Preferentially expressed antigen in melanoma (PRAME) is a cancer testis antigen (CTA) that
is selectively expressed in certain somatic tissues, predominantly in the testis, and is overexpressed
in various cancers. PRAME family proteins are leucine-rich repeat proteins that are localized in the
nucleus and cytoplasm, with multifaceted roles in immunity, during gametogenesis and in the overall
reproduction process. It is a widely studied CTA and has been associated with the prognosis and
therapeutic outcomes in patients with epithelial and non-epithelial tumors. PRAME has also been
studied extensively as a therapeutic target. Moreover, it has been found to play a role in most of
the well-known cancer hallmarks. Interestingly, the role of PRAME in tumorigenesis is paradoxical.
Over the last decade, PRAME has garnered substantial interest as a target for immunotherapy. There
are multiple clinical trials and pre-clinical studies targeting PRAME alone or in combination with
other tumor antigens. This review article is an attempt to update our knowledge and understanding
of the context-dependent oncogenic functions of PRAME in various carcinomas, and the current
immunotherapeutic strategies, challenges, and perspectives on developing newer strategies to target
PRAME for a better outcome.
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1. Introduction

PRAME is a cancer/testis antigen (CTA) that stands for “preferentially expressed
antigen in melanoma”, also known as CT130 (cancer testis antigen 130), MAPE (melanoma
antigen preferentially expressed in tumors), and OIP-4 (Opa-interacting protein 4). It was
first characterized in 1997 as a tumor-associated antigen in cells isolated from a melanoma,
and it encodes the epitope presented by the human leucocyte antigen (HLA)-A24 [1].
Later, it was identified in a yeast two-hybrid screen for proteins that bind outer membrane
proteins of pathogenic bacteria [2].

PRAME belongs to the CTA gene family and encodes a membrane-bound protein
recognized by T lymphocytes [3]. PRAME can be detected in many human malignancies,
apart from its expression in the testes and limited expression in ovaries, adrenals, and
endometrium. It is reported to be absent or have a low expression in most normal tissues;
however, it is expressed not only in solid tumors, but also in leukemia cells [4]. Genome-
wide demethylation in male germline cells leads to high expression of PRAME in the
testes [1]. It has been reported that the PRAME gene is hypermethylated in normal tissues
but hypomethylated in most malignant cells. The PRAME gene encodes a membrane-
bound protein and causes autologous cytotoxic T-cell-mediated immune responses [1,5].
High levels of PRAME are found in different malignancies [6]. A recent systematic im-
munohistochemical study of >5800 epithelial and non-epithelial tumors conducted by the
National Cancer Institute showed that PRAME was expressed in the testis and proliferative
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endometrium among normal tissues [7]. A new study reported >50% of PRAME-positive
lesions in a number of epithelial tumors [7].

Hanahan and Weinberg have clearly laid down the concept of cancer hallmarks in
their milestone article, “Hallmarks of Cancer: The Next Generation” [8]. These hallmarks
currently comprise ten capabilities acquired by cancer cells during the development of
human tumors, including sustaining proliferative signaling, evading growth suppressors,
resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating
invasion and metastasis, genome instability, inflammation, reprogramming of energy
metabolism, and evading immune destruction [8]. PRAME plays a pivotal role in multiple
cellular processes, including some of the cancer hallmarks. PRAME is not only an oncogenic
molecule, but it also serves as an immunotherapeutic target. In recent years, there have been
a lot of studies showing the oncogenic and immunogenic potential of PRAME in various
cancer types. Despite clinical trials targeting PRAME, the lack of understanding on various
aspects of PRAME biology poses the greatest challenge. There is a considerable amount
of heterogeneity among different PRAME isotypes that has made it difficult to determine
the specific function, clinical relevance, and suitability of PRAME as a therapeutic target
in different cancers. Therefore, it is important to understand its expression patterns and
molecular functions to accurately determine its potential use as a biomarker and therapeutic
target. In this review article, we discuss the roles of PRAME in different cancer hallmarks,
list its accountability as a biomarker, attempt to summarize therapeutic strategies that
target PRAME in human cancers, and provide new perspectives on how novel approaches
are required for better outcomes for PRAME-targeted therapies in the clinic.

2. Structure and Function of PRAME
2.1. Structure

The PRAME gene is located on chromosome 22 (22q11.22) [9] within the human
immunoglobulin lambda gene locus [10], which contains a large number of VL gene
segments that encode light chains during B cell development. This locus also contains
several other non-immunoglobulin genes. The NCBI database annotates five PRAME
mRNA transcripts ranging from 2.1–2.7 kb in length (2141, 2162, 2197, 2220, 2776 bases);
the two shortest transcripts were the most abundantly expressed in testis and leukemia cell
lines [11]. At least 17 different PRAME mRNAs have been reported, the largest of which
is a 3329 base transcript that is clearly detectable in cancer cell lines such as K562, Hela,
and HL60. Each of the major transcripts contains six exons, with four containing a coding
sequence, and all encode an identical polypeptide of 509 amino acids and 15 distinct GT-AG
introns [10]. There are 14 transcripts or splice variants of PRAME [12]. There are differences
in the 5′ ends of these transcripts, indicating the existence of alternative transcription start
sites. Moreover, the strong promoter activity in reporter assays is shown by the sequence
around the proximal transcription start site, including exon 1a and the first intron of the
PRAME gene (−165 to +365), thereby supporting the idea of alternative transcription start
sites [11]. Out of the five validated PRAME transcripts, four contain unique 5′ untranslated
regions (5′ UTRs), similar to that found in other primates. This suggests that these sequences
may have a significant role in regulating PRAME expression in response to metabolic or
developmental signals. The duplication rate of cancer testis antigen genes suggests roles
in chemo-sensing, reproduction, or immunity [13]. The computer-predicted structure of
PRAME from AlphaFold project as found in the Protein Data Bank (PDB) is shown in
Figure 1A, and the .pdb file used to create a ball-and-stick model using biorender.com is
shown in Figure 1B. [14].
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Figure 1. (A) Structure of PRAME. Predicted structure of PRAME (UniprotKB- P78395) adapted 

from Protein Data Bank (PDB) AlphaFold project, version 2. Color coding shows the model 
Figure 1. (A) Structure of PRAME. Predicted structure of PRAME (UniprotKB- P78395) adapted
from Protein Data Bank (PDB) AlphaFold project, version 2. Color coding shows the model confi-
dence: dark blue, very high (pLDDT > 90); light blue, confident (90 > pLDDT > 70): yellow, low
(70 > pLDDT > 50); orange, very low (pLDDT < 50) https://www.rcsb.org/structure/af_afp78395f1
(accessed on 26 July 2023) [12,14]. (B) The computed structure of PRAME in a ball-and-stick model
with color coding according to sequence as obtained from .pdb file using www.biorender.com (ac-
cessed on 26 July 2023).

https://www.rcsb.org/structure/af_afp78395f1
www.biorender.com
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2.2. Structure Determines Function

The PRAME protein consists of 509 amino acids, with a molecular mass of 57.89 kDa.
Members of the PRAME family of proteins contain leucine-rich repeat (LRR) domains,
sharing structural similarity with Toll-like receptors and localized in the nucleus and
cytoplasm with various roles in germ cells [9,13,15]. The main functions of the PRAME
family proteins include germline development, mainly the maintenance of embryonic stem
cell pluripotency, development of primordial germ cells, and differentiation/proliferation
of spermatogenic and oogenic cells [15]. These are also enriched in cytoplasmic organelles,
such as rough endoplasmic reticulum, centrioles, Golgi vesicle, and germinal granules and
are involved in the formation of the acrosome and sperm tail during spermiogenesis. The
PRAME family genes remain transcriptionally active in the germline throughout the whole
life cycle and are crucial for gametogenesis, with some members having specificity to either
male or female germ cells, while others take part in the gametogenesis of both [15].

2.2.1. Differentiation

PRAME has been reported to function as a transcriptional repressor, inhibiting retinoic
acid signaling through the retinoic acid receptors RARA, RARB, and RARG. It prevents
retinoic-acid-induced cell-proliferation arrest, differentiation, and apoptosis (Figure 2).
PRAME interacts with the RARA holoreceptor (via the ligand-binding domain) in a retinoic-
acid-dependent way and recruits EZH2 to the promoter of RA target genes, thus repressing
RAR signaling [16].

PRAME was first described as a dominant repressor of retinoic acid signaling, and be-
ing bound to the retinoic acid holoreceptor α (RARA), it recruits EZH2 to the promoter and
acts as a co-repressor of RARE target genes, thus suppressing RA-induced differentiation,
growth arrest, and apoptosis [16].

PRAME mRNA expression was found to increase with CML disease progression and
was detected in late-chronic-phase CML patients before tyrosine kinase inhibitor (TKI)
therapy. It was also associated with poorer therapeutic responses and ABL tyrosine kinase
domain point mutations. PRAME protein expression inhibited granulocytic differentiation
only in leukemia cell lines that differentiate along this lineage after all-trans retinoic acid
(ATRA) treatment [17]. However, PRAME overexpression in normal hematopoietic progen-
itors inhibited myeloid differentiation in the presence and the absence of ATRA, and this
phenotype was rescued when PRAME was knocked down in primary CML progenitors.
This study suggested that PRAME expression causes inhibition of myeloid differentiation
in certain myeloid leukemias, and that its function is lineage- and phenotype-dependent,
in turn indicating that PRAME is a candidate for both prognostic and therapeutic applica-
tions [17].

2.2.2. Protein Degradation

PRAME is a chromatin-associated protein that is enriched at nuclear factor Y (NFY)
target genes, in physical association with Elongin and Cullin-2 proteins [18]. It is the
substrate-recognition component of a Cul2-RING (CRL2) E3 ubiquitin-protein ligase com-
plex that mediates the ubiquitination (Figure 2) of truncated MSRB1/SEPX1 selenoproteins
produced by failed UGA/Sec decoding for degradation [18,19]. The CRL2 (PRAME) com-
plex is recruited to epigenetically and transcriptionally active promoter regions bound
by nuclear transcription factor Y (NFY) and likely has a role in chromatin regulation [18].
PRAME contains a nuclear localization signal, with seven putative nuclear receptor (NR)
boxes with the LXXLL consensus sequence enabling it to interact with nuclear recep-
tors [20,21]. However, a large proportion of endogenous PRAME protein is observed in the
cytoplasmic compartment in different cell lines [9,22].

2.2.3. Immune Target

In addition, PRAME also consists of HLA-specific epitopes, which are presented by
MHC-class I molecules to the CD8+ T cells, thus eliciting an immune response against
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PRAME+ tumors [23,24] (Figure 2). Downregulation and deletion of PRAME has been
reported to be correlated with decreased immune cell infiltration and a cold tumor microen-
vironment in various cancers [24,25]. The immunomodulatory roles of PRAME have been
discussed in this review in a later section.
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Figure 2. Functions of PRAME. (Top left). PRAME binds to RARα holoreceptor and acts as a
corepressor to block transcription of RARE target genes involved in cell-cycle arrest, differentiation,
and apoptosis; (right) PRAME is a part of the Cullin2-based E3 ligase complex that binds to its target
proteins (shown in dark purple) and ubiquitinates them for proteasomal degradation; (bottom left)
PRAME has HLA-specific epitopes that are presented by MHC class I and II molecules to activate
CD8+ and CD4+ T cells, thus eliciting an immune response. Images have been adapted from various
articles in the literature [16,18,23,24,26–29]. Created with www.bioRender.com (accessed on 26 July
2023).

3. Regulation of PRAME Expression

Mainly epigenetic events regulate the expression of CTAs, such as PRAME, through
mechanisms including DNA methylation of several promoter regions [11,30,31]. In fact, a
correlation between hypomethylated CpG dinucleotides in TAA (tumor-associated antigen)
promoters (i.e., MAGE, GAGE or PRAME) and their overexpression has been found in
cancer cell lines and tissues. In CML, PRAME expression is regulated by promoter hyper-
methylation [11,30,32]. Another study in AML has shown 5-azacitidineinduces PRAME
overexpression in blast cells from patients with no effect on CD34+ cells from healthy
donors [33]. Studies have suggested that AML1-ETO and BCR-ABL fusion proteins may
play a role in the upregulation of PRAME [5,34]. SOX9 has been reported to repress PRAME
expression [35]; however, no correlation has been reported between expression of PRAME
and SOX9 in CML patient samples [17].

www.bioRender.com
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In melanoma cells, PRAME expression was found to be upregulated by MZF1 in coop-
eration with DNA hypomethylation [36]. In another study, the downregulation of miR-211
correlated with the upregulation of PRAME mRNA/protein expression in 7 melanoma cell
lines, indicating that miR-211 might be involved in the regulation of PRAME [37]. PRAME
was found to act as a downstream factor of SOX17 and LIN28 in PGC, GCNIS, and semino-
mas, thus regulating pluripotency and suppressing somatic/germ cell differentiation [38].
In prostate cancer, PRAME was found to be a downstream target of miR-421 that inhibits
PRAME expression by binding to its 3′-untranslated region (UTR) [39]. Regulated by up-
stream molecules, PRAME exerts its biological functions via the regulation of downstream
targets in cancer [6]. In a recent study on laryngeal squamous-cell carcinoma samples,
HDAC5 was identified as an upstream regulator of PRAME expression [40]. The proteins
and micro-RNAs known to regulate PRAME expression at the transcription level are shown
in Figure 3.
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Figure 3. Regulation of PRAME gene expression. PRAME is regulated by upstream molecules
binding to the promoter, such as SOX17, SOX9, LIN-28, MZF1, miR-211, and miR-421. The PRAME
gene has at least six exons as shown in colored boxes as Exon 1 through Exon 6. Created with
www.bioRender.com (accessed on 26 July 2023).

4. Role of PRAME in Different Cancer Hallmarks
4.1. Proliferation

Knockdown of PRAME expression by RNA interference in retinoic acid (RA)-resistant
human melanoma was shown to restore retinoic acid receptor (RAR) signaling and re-
sensitize cells to the antiproliferative effects of RA in vitro and in vivo [16]. PRAME
knockdown was found to reduce cell proliferation, activate p53-mediated apoptosis, and
increase cyclin p21 expression in vitro and in vivo in hepatocellular carcinoma (HCC) [41].
PRAME knockdown also significantly suppressed proliferation and colony formation and
led to G1 cell-cycle arrest in U-2OS cells, suggesting the important role it plays in cell
proliferation and disease progression in osteosarcoma [42]. A study on cervical cancer
showed that PRAME promoted proliferation, migration, and invasion in cells and reduced
apoptosis and G0/G1 cell-cycle arrest by activating the Wnt/β-catenin pathway [43]. A
study identified PRAME target genes using CHIP-seq and found that it regulates the Cdk8
and Cdkn2d genes in ESCs after retinoic acid treatment (18). Cdk8 is a cyclin-dependent
kinase that maintains embryonic stem cells and tumor cells in an undifferentiated state (19),

www.bioRender.com
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while Cdkn2d (cyclin-dependent kinase inhibitor 2D) is a member of the INK4 family of
cyclin-dependent kinase inhibitors that generally regulate the G1-to-S phase transition (20).

On the contrary, a study revealed that the knocking down of PRAME promotes breast
cancer cell proliferation and inhibits apoptosis in vitro and in vivo, indicating that PRAME
might play the role of a tumor suppressor in breast cancer [44].

4.2. Invasion and Metastasis

Overexpression of PRAME increased the migratory and invasion potential of cervical
cancer cells in vitro and in vivo [43]. PRAME was found to be aberrantly hypomethylated
and activated in class 1 and class 2 uveal melanomas and associated with an increased risk of
metastasis in both classes [45]. In another study, silencing of PRAME significantly reduced
cell migration, without any significant effect on epithelial-to-mesenchymal transition.
Knocking down PRAME did not change the protein expression of the EMT markers E-
cadherin and Vimentin, or transcription factors Snail, Twist, and Zeb1. BT549 cancer
cells exhibited more invasive behavior though Matrigel but not collagen I, accompanied
by an increase in MMP-2 and MMP-9, in the absence of PRAME. Moreover, enlarged
nuclei were observed after PRAME silencing, which is a well-known characteristic of
advanced/metastatic malignancy [46]. Interestingly, one study has shown that inhibition
of PRAME promotes the invasion of breast cancer cells [44]. Therefore, PRAME might have
different roles in localized versus metastatic disease, thus requiring different treatment
strategies for each disease setting.

PRAME silencing in head-and-neck squamous carcinoma (HNSCC) cells, followed
by co-incubation with RA, decreased in vitro migration and induced apoptosis [47]. In
neuroblastoma, inhibiting the cleavage of the ALK-extracellular domain led to decreased
migratory potential and metastasis in vitro and in vivo, with the downregulation of several
genes, including PRAME. Whether downregulation of PRAME had any causal relationship
with the observation is yet to be elucidated [48].

In contrast to the above, PRAME knockdown enhanced the migration and invasion of
lung cancer cells. Genes involved in cell migration, including MMP1, CTGF, CCL2, and
PLAU, were upregulated in PC9 cells with PRAME knockdown. Analysis of clinical data
from TCGA showed that expression of MMP1 correlated with the stage, recovery, and
modality of lung cancer patients. PRAME was reported to be a tumor suppressor in lung
adenocarcinoma via downregulation of E-cadherin and MMP1-mediated migration, thus
leading to the prevention of EMT [49].

4.3. Epithelial-to-Mesenchymal Transition

PRAME acts as a tumor promoter in triple-negative breast cancer (TNBC) by increas-
ing cancer cell motility through EMT gene reprogramming. PRAME-overexpressing cells
showed an upregulation of 11 genes (SNAI1, TCF4, TWIST1, FOXC2, IL1RN, MMP2,
SOX10, WNT11, MMP3, PDGFRB, and JAG1) and downregulation of 2 genes (BMP7 and
TSPAN13) [50]. PRAME was found to facilitate proliferation, invasion, migration, and
epithelial–mesenchymal transition of laryngeal squamous-cell carcinoma (LSCC) cells and
promote tumor growth in vivo, at least partially by activating PI3K/AKT/mTOR path-
ways [40]. A new study showed that PRAME expression can be induced by Gas6/Axl/MAPK,
which induces the expression of EMT-associated genes, cell motility, and RA-independent
interaction with nuclear proteins in HCC [51].

Interestingly, silencing PRAME significantly increased bone metastasis and induced
osteolytic lesions in an in vivo lung cancer model. There was a positive correlation between
PRAME and E-cadherin expression supporting the notion that PRAME has a similar role in
EMT as E-cadherin [49].
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4.4. Genomic Instability

A new study in uveal melanoma has shown that PRAME is predominantly expressed
in spermatogonia during meiotic cross-over in coordination with genes that lead to DNA
double-strand break (DSB) repair [52]. It also showed that PRAME expression in somatic
cells upregulates genes involved in meiosis, chromosome segregation, and DNA repair,
induces DNA DSBs, telomere dysfunction, and aneuploidy, and alters cohesion complexes
in both neoplastic and non-neoplastic cells. Uveal melanoma cells with increased PRAME
expression become susceptible to PARP1/2 inhibition, suggesting an increased dependence
on compensatory base excision repair pathways [52]. Therefore, PRAME also induces
genomic instability as a part of its tumorigenic function.

4.5. Deregulating Cellular Energetics

PRAME has emerged as an important component of the retinol pathway that is
known to regulate cell proliferation, differentiation, apoptosis, and vertebrate develop-
ment [16,53]. Studies suggested that PRAME contributes to oncogenesis by interfering with
all-trans retinol (vitamin A) pathway metabolism and its active metabolites, such as retinal,
β-carotene, all-trans retinoic acid (ATRA), and 9-cis- and 13-cis-retinoic acids, together
known as retinoids. Retinoids and their potential as a therapy have been investigated
extensively in cancer [54,55]. Among the three isoforms of RARs, RAR-β is known to
have tumor-suppressive effects in epithelial cells [10]. As mentioned before, PRAME is
a dominant repressor of RAR signaling and prevents ligand-induced receptor activation
upon binding to RAR in the presence of RA. Hence, cancer cells with PRAME overex-
pression acquire a survival advantage, enabling them to escape RA-induced cell growth
arrest. Moreover, PRAME might also promote malignant differentiation of CD44+/CD24
or ALDH1A1+cancer-initiating cells (CICs) in HSNCC [13,14,27]. Hence, it is plausible that
resistance to RA associated with PRAME overexpression provides an advantage not only to
malignant cells, but also to precancerous cells [10,14]. Most importantly, all three of the ma-
jor proteins involved in RA metabolism, including ALDH1A1, RAR-β, and PRAME, were
reported to be overexpressed in HNSCC [27,47]. In addition, co-expression of ALDH1A1
and PRAME was also reported in CICs [47].

4.6. Apoptosis and Chemoresistance

In a study on Hodgkin’s lymphoma (HL), DNA microarray analysis of cells after
PRAME knockdown showed downregulation of known anti-apoptotic factors. PRAME-
silenced cells had increased retinoic acid signaling with the expression of the retinoic
acid metabolizing cytochrome P450 (CYP26B1), a transcriptional target of retinoic acid
signaling [56]. The same study showed that 5′-azacytidine (5AC) treatment increased
PRAME expression and concomitantly increased resistance of these cells to cytotoxic drugs.
After knocking down PRAME in a chemo-resistant, high-PRAME-expressing cell line (L-
428), an increased sensitivity to cisplatin, etoposide, and retinoic acid was observed [56].
PRAME expression was reported to confer resistance to RA-induced proliferation arrest
and apoptosis by repressing expression of the endogenous RAR target genes, including
RARβ and p21 [16].

When PRAME was knocked down in HCC cells, there was increased activation of
p53-mediated apoptosis and increased cyclin p21 expression, with a higher proportion
of cells in the G0/G1 stage. PRAME overexpression was shown to reduce apoptosis by
inhibiting p-p53and Bcl2-mediated apoptosis. Studies with a tumor xenograft in nude
mice also found that knockdown of PRAME inhibited tumorigenesis and vice versa [41].
Another study showed that the PRAME/EZH2 complex is able to repress TRAIL expression
in a cancer-specific manner in chronic and acute myeloid leukemia [57]. When RA binds to
the retinoic acid receptor (RAR), it recruits a coactivator complex to the RARE sequence in
the TRAIL promoter and induces gene expression. In cancer cells, the aberrant presence of
PRAME recruits EZH2 to the RAR complex, which induces trimethylation of H3K27. and
epigenetically represses TRAIL gene expression [57]. Analysis of the Oncomine Research
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Platform database showed that PRAME overexpression in solid tumors like breast and
kidney cancers and lung and prostate melanomas and sarcomas was accompanied by a
decreased expression of TRAIL [58]. In urothelial cancer, overexpression of PRAME is
correlated with a poor response to chemotherapy [59].

Interestingly, a study on leukemia showed that overexpressing PRAME in KG-1
and K562 leukemia cell lines led to downregulation of S100A4 and upregulation of p53,
and it significantly induced apoptosis and decreased proliferation in vitro. Upregulation
of S100A4 inhibits PRAME-induced p53 upregulation. Silencing PRAME in K562 cells
led to upregulation of S100A4 and downregulation of p53, and it significantly increased
proliferation in vitro [60].

4.7. Immune Evasion

Evidence suggests that PRAME expression has implications in the regulation of the
immune response. PRAME contains 21.8% (iso)leucine residues and is a leucine-rich repeat
(LRR) family protein. It shares structural similarities with Toll-like receptors (TLR3, TLR4)
that are widely known to play an important role in antimicrobial immune responses [9].
In addition, in leukemia cell lines, PRAME expression was found to be rapidly induced
by the activation of signaling pathways related to infection and inflammation [61]. The
immunogenic properties of PRAME can be used to stimulate the anti-tumor response by
CD8-positive T lymphocytes.

PRAME has been investigated extensively over the last decade as a target for im-
munotherapy. Expression of PRAME in tumors has been shown to elicit spontaneous
humoral and cellular immune responses. Vaccines and adoptive T cell therapies targeting
PRAME have shown favorable safety and efficacy in inducing potent immune responses
in tumors [29,62,63]. However, the role of PRAME in immune evasion has also been re-
ported. For example, in dedifferentiated liposarcoma and leiomyosarcoma tumors, PRAME
expression was found to be associated with reduced expression of antigen presentation
molecules, which are considered a common mechanism of immune escape [64–67]. Fur-
thermore, PRAME expression in dedifferentiated liposarcomas correlated with reduced
expression of programmed death ligand-1 (PD-L1) [68]. This suggests that treatment with
PD-L1/PD-1 inhibitors may not be beneficial in tumors that overexpress PRAME as a
result of decreased target expression. Additionally, a study showed that overexpression
of PRAME was associated with characteristics indicative of immune evasion, for instance,
reduced numbers of antigen-presenting CD163+ and CD68+ macrophages, and increased
expression of the CD47 receptor (known as the “don’t eat me” receptor) on tumor cells [69].
A recent study showed that PRAME expression was found to be associated with worse
survival in the TCGA breast cancer cohort, particularly in immune-unfavorable tumors.
MDA-MB-468 breast cancer cells with overexpression of PRAME inhibited T cell activation
and cytolytic potential, which was partly restored by silencing PRAME [70]. Additionally,
PRAME knockdown reduced the expression of several immune checkpoint receptors and
their ligands, including PD-1, LAG3, PD-L1, CD86, Gal-9, and VISTA [65–67,70]. PRAME
knockdown induced similar levels of cancer cell killing as anti-PD-L1 atezolizumab treat-
ment. PRAME can suppress the expression and secretion of multiple pro-inflammatory
cytokines, as well as mediators of T cell activation, differentiation, and cytolysis [70].

Figure 4 attempts to summarize the role of PRAME in eight hallmarks of cancer and
its potential mechanism.
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5. PRAME as a Biomarker

PRAME is expressed in >90% of melanomas. A study compared PRAME expression
in thin metastasizing and non-metastasizing melanomas and nevi from patients. This study
also found diffuse PRAME staining in >75% of epidermal and dermal melanocytic lesions
and identified 58.6% of thin melanomas but did not distinguish between metastasizing and
non-metastasizing melanomas [71]. PRAME expression was uniform in more than 67%
in situ and invasive melanomas, whereas most severely dysplastic compound nevi (SDN)
(81.0%) showed a gradient decreasing with depth. The study also found that PRAME
expression is not a prognostic biomarker in melanomas ≤1.0 mm [71]. A recent study
showed positive/diffuse PRAME expression (89.6%) in most malignant melanomas; how-
ever, 96.1% of nevi did not express PRAME diffusely [72]. p16 was consistently expressed
in nevi (98.0%). PRAME had 89.6% sensitivity and 96.1% specificity for melanomas versus
nevi. It was found to be unlikely that a PRAME+/p16− melanocytic lesion will also be
a nevus, and most nevi were PRAME−/p16+. This study clearly showed that PRAME
and p16 expression can be used to distinguish between melanocytic nevi and malignant
melanomas [72]. A study of a Chinese cohort revealed that PRAME could be used as a
marker to diagnose melanoma, and a lack of PRAME expression indicates clear cell sarcoma
(CCS) in a suspected case; however, molecular confirmation of EWSR1 rearrangement is
necessary for diagnosis [73]. Another study analyzed 2915 melanocytic lesions in a Polish
cohort and reported that PRAME expression may be an ancillary marker to support the
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diagnosis of melanoma, but the accuracy may be lower in spitzoid neoplasms [74]. Fur-
thermore, increased PRAME expression was found to correlate with the Ki-67 proliferation
index and mitotic rate; however, PRAME was not an independent prognostic marker for
cutaneous melanoma. PRAME and Ki-67 were found to be useful as ancillary tools to
distinguish benign from malignant melanocytic lesions [75].

A study of 103 breast tumor samples found that PRAME expression correlated sig-
nificantly with unfavorable disease outcomes for patients, for both disease-free survival
and overall survival times from diagnosis. Moreover, for patients who received adjuvant
chemotherapy, PRAME-expressing tumors had significantly shorter relapse-free survival
compared to those without PRAME expression [76]. In a study with 295 primary breast
cancer patients, PRAME expression levels were found to correlate with increased rates of
distant metastases and decreased overall survival, irrespective of whether they received
adjuvant chemotherapy. PRAME was an independent marker of reduced metastasis-free
interval in patients not having received adjuvant chemotherapy. PRAME expression was
associated with tumor grade and negative estrogen receptor status. This showed that
PRAME expression is a prognostic marker for clinical outcomes of breast cancer, inde-
pendent of traditional clinicopathological markers [77]. Recently, an in silico study on
the Cancer Genome Atlas (TCGA) and Breast Invasive Carcinoma (BRCA) dataset led to
recognition of a basal-like specific gene signature composed of 11 potential unfavorable
prognostic biomarkers, including PRAME [78]. PRAME was classified as a switch gene that
significantly correlates with poor overall survival in patients with basal-type breast cancer.
These data suggest that PRAME could serve as a prognostic biomarker and/or therapeutic
target in TNBC [78].

High PRAME expression was found to be correlated with worse overall survival
in medulloblastoma [79]. A study showed PRAME expression in 93% of 94 patients
with primary neuroblastoma and in 100% of patients with advanced disease. PRAME
expression was significantly associated with both higher tumor stage and the age of patients
at diagnosis [80]. A recent study with >5800 epithelial and non-epithelial tumors showed
expression of PRAME in 61% of neuroblastomas [7]. PRAME has been shown to be
highly expressed in childhood acute leukemia [81], both acute myeloid leukemia (AML)
and acute lymphoblastic leukemia (ALL) [82] and could be a useful marker to monitor
minimal residual disease [81,83,84]. A recent study in AML showed PRAME expression
in the majority of patients and it was correlated with the FAB subtype M5, cytogenetic
unfavorable risk groups, and AMLs arising from myelodysplasia [85]. In another recent
study, a total of 42 samples from an Indian cohort that comprised of 22 AML, 14 ALL, and
6 other forms of leukemia showed that PRAME was highly expressed in 27 (64.28%) AL
patients compared to the lowest expression in healthy individuals. There was no correlation
between the PRAME gene expression and clinical parameters [86].

Interestingly, various studies have suggested that increased PRAME expression can
correlate with a favorable outcome and treatment response in hematological malignan-
cies [81,87–90]. A study of 125 patients with acute promyelocytic leukemia enrolled in the
Spanish PETHEMA-96 (n = 45) and PETHEMA-99 (n = 80) clinical trials had interesting re-
sults. PRAME expression in acute promyelocytic leukemia (APL) patients was significantly
higher than in patients with non-M3 acute myeloid leukemia and in healthy controls [87].
Moreover, patients with high-PRAME-expressing APL had a favorable outcome. The 5-year
relapse-free survival was higher in patients with >100-fold PRAME expression. PRAME
levels in samples at remission had no difference with those in normal controls, while
samples at relapse overexpressed PRAME. Low PRAME expression defined a subgroup of
patients with a short relapse-free survival in APL, showing that PRAME could be useful as
a surrogate marker [87].

Overexpression of PRAME in multiple myeloma (MM) was found to be higher in
patients with an MM duration of more than 1 year and if they were pre- treated (85%)
than in new cases (46.67%). PRAME expression tended to be associated with activity
of LDP in blood serum [91]. Another study analyzed PRAME expression levels in MM
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patients during high-dose chemotherapy, followed by auto-SCT [92]. PRAME expression
was found in 68% of primary MM patients, which did not correlate with tumor mass
but significantly decreased after three cycles of vincristine and doxorubicin (VAD). High
PRAME expression was associated with an unfavorable prognosis [92]. In another study,
PRAME overexpression was found to significantly correlate with a lower 1-year progression-
free survival rate compared with low PRAME expression (20.0% vs. 88.9%) [93]. Patients
with deletion of the PRAME gene had a significantly higher frequency of lambda light-
chain expression than those with no deletion. Therefore, PRAME gene copy number
variation (CNV) occurs in multiple myeloma, and PRAME overexpression in plasma cells
might be an adverse prognostic factor for progression [93]. Another study found that
both methylation and copy number variation regulate PRAME expression in MM and in
patients with no homozygous deletion, PRAME expression is regulated by methylation.
Overexpression of PRAME in the bone marrow was found to be an adverse prognostic
factor for progression-free survival in patients treated with non-bortezomib-containing
regimens [94].

PRAME was found to be overexpressed in Hodgkin’s lymphoma (HL) (115/166, 69%),
diffuse large B cell lymphoma (DLBCL) (104/319, 33%), follicular lymphoma (FL) (13/166,
8%), and mantle-cell lymphoma (MCL) (14/180, 8%) [95]. HL showed a significant correla-
tion with treatment outcome, but other B cell lymphoma subtypes did not. Interestingly,
Hodgkin Reed Sternberg (HRS) cells devoid of PRAME expression indicated significantly
shorter overall survival and disease-specific survival. Results from this study suggested that
crosstalk between CXCL13 in the microenvironment and CXCR5 on HRS cells contributes
to the maintenance of tumors in PRAME-negative HL [95]. A recent study by the same
group above showed that in diffuse large B cell lymphoma (DLBCL), recurrent deletion of
PRAME gene was found to be associated with poor outcomes [24]. PRAME-deleted tumors
were associated with cold tumor microenvironments and displayed increased cytotoxic T
cell immune escape. Moreover, PRAME downregulation strongly correlated with somatic
EZH2 Y641 mutations [24]. Genes regulated by PRC2 were repressed in isogenic lymphoma
cell lines with PRAME-KO. PRAME was found to directly interact with EZH2 as a negative
regulator [24]. Interestingly, a study on 160 patients with diffuse large B cell lymphoma
(DLBCL) showed that higher PRAME expression is significantly correlated with a shorter
progression-free survival (PFS) and had a trend toward shorter overall survival (OS). Pa-
tients with high PRAME expression also tended to have lower responses to chemotherapy,
indicating that PRAME could serve as a prognostic biomarker for R-CHOP (rituximab plus
cyclophosphamide, doxorubicin, vincristine, and prednisolone) therapy [96].

Analysis of 13 cell lines and clinical samples of esophageal squamous-cell carcinoma
(ESCC) showed that PRAME is overexpressed in ESCC tissues and significantly associated
with shorter disease-specific survival and hematogenous recurrence but had no correlation
with overall recurrence. This indicated that PRAME is a potential biomarker for predicting
hematogenous recurrence in ESCC after radical treatment and may be useful in improving
the clinical outcome [97]. A recent study analyzed the oncogenic role of PRAME using
57 pairs of laryngeal squamous-cell carcinoma (LSCC) tumor tissue samples and showed
that PRAME was overexpressed in the LSCC patients and correlated with the TNM staging
and lymphatic metastasis [40].

A study with HCC tissues indicated that PRAME might function via DR5 RA-responsive
elements and independent mechanisms and that PRAME expression is a novel prognostic
marker in HCC patients [98]. In another study, PRAME expression was significantly higher
in HCC tissues, compared to normal adjacent tissues, and was positively correlated with
alpha fetoprotein levels and tumor size. Furthermore, PRAME expression was associated
with AJCC stage and was reported to be a potential biomarker of poor prognosis for 5-year
overall survival and a therapeutic target in HCC [41].

A study on Taiwanese NSCLC patients showed that PRAME expression was more
frequent in squamous-cell carcinomas than in adenocarcinomas [99]. The rates of PRAME-
positive tumors and its association with clinico-pathologic characteristics in East and
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Southeast Asian NSCLC patients showed that it may be a promising antigen-specific
immunotherapeutic target [100]. Interestingly, another study reported that PRAME is
downregulated in lung adenocarcinoma and lung bone metastasis compared with normal
human lungs [49]. Silencing PRAME decreased the expression of E-Cadherin and promoted
proliferation, invasion, and metastasis of lung cancer cells by regulating many critical genes
involved in cell migration, including MMP1, CCL2, CTGF, and PLAU. Increased survival
probability was found in patients with low MMP1 expression. Therefore, in this case,
PRAME was found to prevent invasion and metastasis of lung adenocarcinoma in animal
models [49].

PRAME was found to be expressed in many primary and metastatic uveal melanomas
and about half of the metastatic UMs co-expressed PRAME and HLA class I. Expression
of PRAME was associated with clinico-pathological parameters like an increased largest
basal diameter, ciliary body involvement, and amplification of chromosome 8q [101]. The
12CpG sites near the PRAME promoter were found to be aberrantly hypomethylated,
and PRAME was activated in class 1 and class 2 uveal melanomas and associated with
increased metastatic risk in both classes [45]. A recent retrospective case control study
aimed to identify dermoscopic features that are uniquely associated with the presence of
three genes associated with melanoma, including PRAME in the stratum corneum [102].
Asymmetry of color was found to be a significant predictor of PRAME expression and
with other genes associated with different pigmentation patterns, the results suggested that
these dermoscopic features may improve evaluation and management of pigmented skin
lesions [102].

PRAME expression was found in five osteosarcoma cell lines and in more than 70%
of osteosarcoma patient specimens, with high PRAME expression found to be associated
with poor prognosis and lung metastasis [42]. A recent study on osteosarcoma confirmed
that PRAME expression has no relation with disease evolution. However, it showed that
PRAME expression is a good biomarker that may lead to detect circulating tumor cells or
molecules for early diagnosis of metastasis [103]. A recent study of 350 cases showed that
PRAME expression is not accurately specific but can be useful in diagnostic applications in
soft tissue tumors [104].

PRAME expression was significantly increased in most epithelial ovarian carcinoma
(EOC), irrespective of stage and grade, compared to normal ovaries. Interestingly, PRAME
mRNA expression was associated with improved survival in the high-grade serous carci-
noma (HGSC) subtype. PRAME promoter DNA hypomethylation correlated with increased
PRAME expression and was very frequent in both types of ovarian cancer. PRAME protein
expression showed no correlation with EOC clinicopathology or survival [89]. PRAME was
reported to be associated with survival and as a potential prognostic factors for patients
with stage III serous ovarian adenocarcinomas [105,106].

Microarray analysis comparing the gene expression profiles of six clinical myxoid
liposarcoma samples and three normal adipose tissue samples showed upregulation of
PRAME in myxoid liposarcoma. High expression of PRAME was significantly correlated
with tumor diameter, the occurrence of tumor necrosis, higher histological grade, advanced
clinical stage, and poor prognosis [68].

A study on head-and-neck squamous carcinoma (HNSCC) cell lines showed that
PRAME was overexpressed in tumor cells but not in normal keratinocytes (HaCaT cells).
PRAME overexpression in HNSCC tissue specimens correlated with the conventional
parameters of poor prognosis, such as a large tumor size, high tumor grade, and lymph
node involvement. In addition, PRAME was found to be overexpressed in HNSCC patients
with an advanced disease (stages III and IV) [47]. Therefore, these data suggested that over-
expression of PRAME in HNSCC could potentially serve as a biomarker of poor outcome
and as a future therapeutic target [47]. A recent study in mucosal melanoma of the head
and neck region showed that PRAME expression could be used for the accurate diagnosis
of head-and-neck melanocytic tumors. Furthermore, high expression (≥60%) of PRAME
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was associated with specific sites (nasal cavity/nasal septum/turbinates nasopharynx, and
the maxillary sinus), nodular histotype, and female sex [107].

In a panel of bladder tumors from 350 patients, 20% was found to express PRAME
that also responded poorly to chemotherapy [59]. A recent meta-analysis of 14 original
studies with 2421 patients showed that the PRAME expression was significantly associated
with tumor stage and positive lymph node metastasis. Overexpression of PRAME posi-
tively correlated with poor disease-free survival, progression-free survival, metastasis-free
survival, and overall survival [108].

Another study showed that a high PRAME expression level in follicular lymphoma
patients had a negative prognostic value only in the presence of parameters determining
high FLIPI-1 and FLIPI-2 risk. PRAME expression level and FLIPI-1/FLIPI-2 values together
enabled the most reliable prediction of early mortality in follicular lymphoma patients [109].

A study on seminomas reported that PRAME expression was higher in seminomatous
germ cell tumor of the testis (GCTT) than in nonseminomatous GCTT. Germ cell neoplasia in
situ (GCNIS) and the uninvolved background testis also expressed high PRAME expression,
with no differences between cases associated with seminomatous and nonseminomatous
GCTT [110]. In the uninvolved background testis, PRAME expression was observed in
spermatogonia (80%) and primary spermatocytes (15%), with scattered positive secondary
spermatocytes and spermatids (5%). There was a strong positive correlation between
age and PRAME for GCTT but not for GCNIS and the uninvolved background testis.
Additionally, PRAME was not associated with dimension and pT stage, but was associated
with the latter in the uninvolved background testis [110].

Table 1 lists the reports of PRAME as a biomarker in different cancers, the cohort
with which the study was carried, the frequency of its expression, and its correlation with
clinicopathological parameters.

Table 1. Diseases with PRAME as a potential biomarker.

Cohort PRAME Detection
Frequency Disease Clinico-Pathological Parameters References

Egyptian 20–40% Acute lymphoblastic
leukemia

Correlated with increased overall and
disease-free survival and lower relapse. [88]

German 40–60% Acute myeloid leukemia

Positively correlated with increased
overall and disease-free survival and
negatively correlated to the white blood
cell count at diagnosis.

[81,90]

Dutch, Irish 27–53% Breast cancer

Independent marker for poor
disease-free and overall survival and
distant metastases, correlates with
negative estrogen receptor status.

[76,77]

Chinese 80–90% Cervical cancer Associated with increased proliferation
and migration in CC cells. [43]

30–40% Chronic myeloid
keukemia

Canadian,
Japanese

Deleted in >13% of
tumors in the Canadian
cohort

>30% overexpressed in
the Japanese cohort

Diffuse large B cell
lymphoma

Deletion of PRAME was associated with
decreased overall and disease-free
survival in the Canadian cohort.
PRAME overexpression was correlated
with shorter progression-free and overall
survival, and decreased response to
chemotherapy in the Japanese cohort.

[24,96]

Japanese 87% tumor tissues Esophageal cancer Shorter disease-specific survival and
hematogenous recurrence. [97]
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Table 1. Cont.

Cohort PRAME Detection
Frequency Disease Clinico-Pathological Parameters References

Russian 42–86% in lymph node,
bone marrow and blood Follicular lymphoma

Higher Ki-67 activity and larger tumor
mass. Survival parameters were worse
with high PRAME expression levels.
Combination of both high
FLIPI-1/FLIPI-2 risk and high PRAME
expression level determines extremely
unfavorable prognosis.

[109]

Polish >75% in HNSCC tissues
and lymph nodes

Head-and-neck squamous
carcinoma

Correlates with the tumor grade, size,
nodal involvement, and the clinical
status of HNSCC patients.

[47]

Chinese, Japanese 27–60% Hepatocellular carcinoma
Correlated with high Ki-67 activity, AJCC
stage, tumor size, metastasis, invasion,
poor overall survival.

[41,98]

Turkish 10–69% Hodgkin’s lymphoma Correlated with shorter disease-free
survival and overall survival. [111]

Taiwanese,
East and Southeast
Asian

>30%
>50%

Non-small-cell lung
carcinoma

Increased in squamous-cell carcinomas
compared to adenocarcinomas in all
cohorts, as well as in smokers compared
to non-smokers in the East and Southeast
Asian cohort.
No correlation with survival in the
Taiwanese cohort.

[99,100]

Roman, Brazilian >80% Medulloblastoma No significant association. [79,112]

American,
German 80–90% Melanoma

No prognostic significance in thin
melanoma.
PRAME+/p16- melanocytic lesion is
unlikely to be a nevus but most nevi
were PRAME-/p16+.

[71,72]

Chinese, Russian 20–68% Multiple myeloma Correlated with lower progression-free
survival, unfavorable prognosis. [91–94]

German >90% Neuroblastoma Correlated with higher tumor stage and
the age of patients at diagnosis. [80]

Chinese >68% Osteosarcoma Associated with poor prognosis and lung
metastasis. [42,103]

Swedish, Norwegian,
Chinese 60–90% Ovarian cancer

Associated with overall survival,
disease-free survival, grade, stage,
metastasis.

[89,105,106,113]

German >40% Renal cell carcinoma Associated with unfavorable prognosis. [114]

Italian >70% Testicular cancer Associated with seminomas. [110]

Danish >20% Urothelial cancer Correlated with high grade and stage
and poor response to chemotherapy. [59]

6. PRAME as a Target for Immunotherapy

PRAME and other CTAs have been utilized as therapeutic targets for over a decade [28].
The restricted expression of (1) PRAME in certain somatic tissues, (2) overexpression in
cancer tissues, (3) immunomodulatory potential, and (4) negligible expression on immune
cells make it a suitable candidate to target with immunotherapy. PRAME is overexpressed
in both solid tumors and hematological malignancies [7]. Multiple pre-clinical and clinical
trials have taken place over the last decade that target PRAME alone or in combination
with other molecules in different cancers across the world.

One research group generated a polyclonal antibody (membrane-associated PRAME
antibody 1, MPA1) against an extracellular peptide sequence of PRAME and demonstrated
targeting it in vivo by radiolabeling MPA1 with zirconium-89 (89Zr-DFO-MPA1), which
showed a high specific uptake in PRAME expressing hematological tumors [115]. In a study,
60 patients were treated with different doses of PRAME as an immunotherapeutic vaccine,
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and no dose-limiting toxicity was reported. Adverse events included mostly injection site
reactions or fever. All patients had detectable quantities of anti-PRAME antibodies after
four immunizations. Patients also showed PRAME-specific CD4-positive T cells at a dose
of 500 µg [116].

Despite PRAME being an intracellular antigen, novel approaches have been developed
to target it using a chimeric antigen receptor (CAR) construct that encodes a targeting do-
main based on T cell receptor (TCR) mimic antibodies that target the peptide-HLA complex.
The antibody sequence from a previously designed TCR mimic (mTCR) antibody named
Pr20, which recognized the PRAME ALY peptide in the complex with HLA-A∗02 and
verified expression of PRAME, was used [117]. CAR T cells (PRAME mTCRCAR T) were
developed to be tested against primary samples from patients with AML and AML cell lines
expressing PRAME. PRAME mTCRCAR T cells showed target-specific, HLA-mediated
in vitro activity in OCI-AML2 and THP-1 cell lines, HLA-A2 cell lines expressing PRAME,
and in primary AML patient samples and in vivo cell-derived xenograft models. In addi-
tion, the cytolytic activity of PRAME mTCRCAR T cells was enhanced by the treatment
of the target cells with IFN-γ, as it increases PRAME expression [117,118]. Genetically
modified T cells with a PRAME-specific TCR (SLL TCR T cells) were used to target medul-
loblastoma cells. SLL TCR T cells efficiently killed medulloblastoma HLA-A*02+ DAOY
cells and primary HLA-A*02+ medulloblastoma cells. In addition, SLL TCR T cells helped
control tumor growth in an orthotopic mouse model of medulloblastoma. An inducible
caspase-9 (iC9) gene was introduced in frame with the SLL TCR to prevent unexpected
T-cell-related toxicity, and this safety switch triggered prompt elimination of the T cells [79].

In tumors with PRAME expression, treatment approaches like PRAME-targeted im-
munotherapy as a vaccine (acellular PRAME vaccine, PRAME pulsed dendritic cells (DCs)),
including adoptive T cell therapy, antibody therapy/chimeric antigen receptor-T cell ther-
apy, hold great promise. In a recent study, twenty AML patients in first complete remission
ineligible for allo-HSCT were treated with an autologous RNA-loaded mature dendritic cell
(mDC) vaccine expressing WT1 and PRAME. This vaccine was well tolerated, with mild
and transient reactions in the injection site. A total of 55% of patients remained in complete
remission, while 4 of 6 relapsing patients achieved complete remission after salvage ther-
apy and underwent allo-HSCT. The vaccine also increased five-year long-term survival to
75% [119]. Strategies that employ histone deacetylase inhibitors and demethylation agents
also seem plausible. In the future, combination therapy combining PRAME vaccines or
antibodies, or adoptive T cell therapy and retinoids, could be used in undifferentiated solid
tumors.

A hostile tumor microenvironment (TME) poses the greatest challenge for treatment
of solid tumors with immunotherapy as it adversely affects the health and persistence of
T cells. In a recent study, combining a PRAME-specific T cell receptor (TCR) alongside a
chimeric PD1-41BB receptor, consisting of the extracellular domain of PD-1 and the intra-
cellular signaling domain of 4-1BB, converting an inhibitory pathway into a co-stimulatory
pathway, was introduced into T cells, and this enhanced IFN-γ secretion by the CD8+ T
cells, improved their cytotoxic capacity, and prevented exhaustion upon repetitive chal-
lenge with tumor cells in vitro, keeping the safety profile unaltered. In addition, a single
dose of TCR-Ts co-expressing PD1-41BB was sufficient to eliminate a resistant melanoma
xenograft [120].

Many articles have put forth a comprehensive review on PRAME and other CTA-
based immunotherapeutic strategies in various cancers [29,121–124]. A number of im-
munotherapy strategies targeting PRAME are currently under clinical trials with the aim
of eliciting non-toxic and long-lasting anti-tumor immune responses. Efforts in PRAME-
based immunotherapies have focused on cancer vaccines and adoptive T cell therapies, as
summarized in Table 2. To summarize the results of these clinical studies, PRAME could be
a target for therapy for lymphoma, neuroblastoma, Wilms’ tumor, and other solid tumors
for which PRAME expression was found to correlate with poor prognosis across cohorts.
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Table 2. Clinical trials with PRAME as the immunotherapy target.

NCT Number and Name Disease Treatment Start Year Publication

NCT01333046, ACTAL

Hodgkin’s lymphoma,
non-Hodgkin’s
lymphoma,
Hodgkin’s disease

Multi TAA T cells (NY-ESO-1, MAGEA4,
PRAME, Survivin and SSX), and
Azacitidine

2012 [125]

NCT02203903, RESOLVE

Relapsed/refractory
hematopoietic
malignancies
(ALL, AML, CML,
MDS)

Multi TAA T cells (WT1, PRAME, and
Survivin) 2015 [126]

NCT02239861,
TACTASOM Rhabdomyosarcoma Multi TAA T cells (NY-ESO-1, MAGEA4,

PRAME, Survivin, and SSX) 2015 NR

NCT02291848, TACTAM Multiple myeloma Multi TAA T cells (NY-ESO-1, MAGEA4,
PRAME, Survivin, and SSX) 2015 NR

NCT02475707, STELLA Leukemia, ALL Multi TAA T cells (WT1, PRAME, and
Survivin) 2016 NR

NCT02494167, ADSPAM AML, MDS Multi TAA T cells (WT1, NY-ESO-1,
PRAME, and Survivin) 2016 [127]

NCT02743611, BP-011 AML, MDS, uveal
melanoma BPX-701 and Rimiducid 2017 NR

NCT02789228, REST

Solid tumors (Wilms’
tumor, neuroblastoma,
rhabdomyosarcoma,
adenocarcinoma, and
esophageal cancer)

Multi TAA T cells (WT1, PRAME, and/or
Survivin) 2016 [128]

NCT03093350, TACTIC Breast cancer Multi TAA T cells (NY-ESO-1, MAGEA4,
PRAME, Survivin, and SSX2) 2017 [129]

NCT03192462, TACTOPS Pancreatic cancer Multi TAA T cells (NY-ESO-1, MAGEA4,
PRAME, Survivin, 2018 [130]

NCT03503968,
CD-TCR-001

High risk myeloid and
lymphoid neoplasms MDG1011 2018 NR

NCT03652545, REMIND Brain tumor
TAA,

Multi TAA T cells (WT1, PRAME, and/or
Survivin) 2018 NR

NCT03686124 Solid tumor

Autologous PRAME-targeting
TCR-engineered T cells
ACTengine® IMA203/IMA203CD8 as
monotherapy or in combination with
nivolumab

2019 NR

7. Conclusions and Future Perspectives

A number of CTAs had made it to the priority-ranked list of cancer vaccine target anti-
gens based on predefined and pre-weighted objective criteria in a study conducted by the
National Cancer Institute in 2009 [131]. A total of 75 representative antigens were selected
for comparison and ranking based on their (i) therapeutic function; (ii) immunogenicity;
(iii) role in oncogenesis; (iv) specificity; (v) expression level and percent of antigen-positive
cells; (vi) stem cell expression; (vii) number of patients with antigen-positive cancers;
(viii) number of antigenic epitopes; and (ix) cellular location of antigen expression. Al-
though, none of the 75 antigens satisfied all of the parameters required to be an ideal cancer
antigen, 46 were immunogenic in clinical trials and 20 of them had suggestive clinical
efficacy in the category of “therapeutic function”. PRAME did not make it to the list;
however, MAGEA3, NY-ESO-1, MAGEA1, OY-TES1, SP17, XAGE1, and PAGE-4 came up
in the top antigen’s list [131], reinforcing the significance of CTAs as a therapeutic target
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in various cancers. PRAME is also an important tumor antigen with different oncogenic
functions, and therefore targeting it holds promise as a therapy.

The function of PRAME in tumor progression is complex and context-dependent [24].
In most cases, PRAME expression drives tumorigenesis, and in some cases, PRAME
overexpression can reduce malignancy [22]. This kind of dual nature of a cancer antigen is
not new and has been seen before in a few other genes, such as MUC1 and TGF-β [132–134],
in which they act as either tumor suppressors or promoters in a context- and tissue-
dependent manner. There is controversy over the function of PRAME in leukemic cells
due to conflicting reports in the literature. Numerous studies on solid malignancies have
reported that high PRAME expression correlates with advanced-stage disease and poor
survival, whereas in pediatric acute leukemia, overexpression of PRAME was reported to
predict good outcomes [81,88,90]. Therefore, age might be one of the parameters that affect
PRAME function in leukemia. Therefore, further molecular characterization of the cells
with age as a variable is needed to conclude whether PRAME can be a good biomarker of
prognosis. The function of PRAME varies according to different cell lineages and depends
on the different genetic or epigenetic mechanisms of the specific tumor tissue. Due to
its paradoxical role of both promoting and inhibiting tumorigenesis, direct inhibition of
PRAME function may not prove to be therapeutically beneficial eventually. Therefore, it is
important to classify tumor tissues, subtypes, stages, and genetic signatures in a clinical
setting, in which PRAME functions solely as an oncogene and can be targeted for a better
outcome. It has also been seen in multiple studies that the expression of PRAME and its
correlation with clinico-pathological features varies with cohorts worldwide. Therefore,
cohort comparison is also important in developing a PRAME-based anti-tumor therapy on
a large scale.

PRAME makes an attractive target for cancer therapy due to the following main
reasons:

(1) Its restricted expression in the testis, ovaries, and endometrium and overexpression in
a number of cancer tissues, including 80–90% of primary and metastatic melanoma [9],
27–53% breast cancers [53], >90% neuroblastomas [53,80], 40–60% acute myeloid
leukemia (AML) [82,90], 20–40% acute lymphoblastic leukemia (ALL) [9,82], 20–50%
myeloma [53], and 30–40% chronic myeloid leukemia (CML) [53,135];

(2) It has the ability to elicit T-cell-mediated immune response.

PRAME expression was also found in the stem cells of CML [136], indicating that
targeting PRAME could abolish the cancer-initiating, resistant cell population, although this
needs to be investigated in other cancers. Monoclonal antibodies (mAbs) have shown anti-
tumor efficacy in the clinic against various cancers [137,138]. However, a major drawback
of currently available mAbs is that they exclusively bind to cell-surface and extracellular
antigens, while many of the aberrantly expressed proteins in cancer, including PRAME, are
intracellular.

PRAME being an intracellular membrane protein [9,22,61] makes it impossible to
target using traditional antibodies that are usually directed at cell-surface antigens, and
currently it cannot be inhibited using small molecules, thus making it undruggable. There-
fore, most studies with PRAME-based immunotherapy have focused on utilizing circu-
lating PRAME-specific T cells and engineering of antigen-specific T cell receptor (TCR)
T cells [29]. Nevertheless, a number of research groups have investigated the efficacy of
different strategies to target PRAME. Following proteasomal processing, the PRAME pep-
tide ALYVDSLFFL (ALY) (amino acid 300–309) is presented as HLA-A*02:01 molecules for
recognition by the TCR on the surface of cytotoxic T cells [23,139,140]. In one study, a fuco-
sylated Fc form (Pr20M) of a TCR mimic (TCRm) human IgG1 antibody called Pr20, which
recognizes the cell-surface ALY peptide/HLA-A2 complex and binds to PRAME+HLA-A2+
cancers, was found to trigger antibody-dependent cellular cytotoxicity (ADCC) against
PRAME+HLA-A2+ leukemia cells and was therapeutically effective against xenograft
models of human leukemia in mice. In some tumors, IFN-γ treatment significantly in-
creased Pr20 binding, mediated by induction of the immunoproteasome catalytic subunit



Int. J. Transl. Med. 2023, 3 352

β5i [139]. Several groups have demonstrated the ability to generate ALY/HLA-A2-specific
CD8+ cytotoxic T lymphocytes (CTLs) that can specifically lyse PRAME+HLA-A2+ tumor
cells and are reactive against primary leukemia [141–143], suggesting that this epitope is
presented and can be a promising target for immunotherapy. Clinical trials also provide
evidence that patients vaccinated against PRAME can develop PRAME-specific CTLs [144]
and helper T cells [145]. However, there are several challenges to develop cellular and
vaccine-based strategies. CTL-based therapies are patient-specific and often require rig-
orous manipulation before reinfusion, while vaccines may not be effective and responses
are unpredictable, depending on the patient’s immune status [146]. Additionally, the im-
munoproteasome generally favors cleavage after hydrophobic residues, which generates
peptides that can fit into the groove of HLA-I [147,148]. Several antigens are restricted to a
specific proteasome form, and more knowledge on this can help to determine promising
immunotherapy strategies against these targets [149].

Targeting PRAME with immunotherapy in combination with ATRA was also shown to
be promising in retinoid-resistant oral carcinoma [121]. In addition, immunotherapy using
circulating antigen-specific T cells and engineered T cells expanded ex vivo has gathered
attention since it does not directly rely on the patient to actively generate a huge repertoire
of antigen-specific immune cells and has been shown to elicit durable response rates across
malignancies [150].

The use of PROteolysis TArgeting Chimeras (PROTACs) to degrade oncogenic proteins
has emerged as a potential therapeutic strategy over the last decade [151]. PROTACs
are heterobifunctional molecules that comprise of one ligand that binds to a protein of
interest (POI) and another that binds to an E3 ubiquitin (E3) ligase, connected via a linker.
PROTACs recruit the E3 ligase to the POI and lead to proximity-induced ubiquitination and
degradation of the POI by the ubiquitin proteasome system (UPS). PROTACs have been
developed efficiently to degrade a wide range of cancer targets against a variety of tumor
types [151]. Therefore, PROTACS could be developed using PRAME-targeted antibody
sequences as a promising strategy to eliminate the oncogenic properties of the latter.
However, in immunologically active tumors with overexpression of PRAME, degrading it
might be a trade-off with limiting immune infiltration into the tumor microenvironment.
On the contrary, immunologically cold tumors with PRAME overexpression may have a
better outcome on PRAME degradation, where having PRAME as an immunological target
was intrinsically not useful. Therefore, it is imperative to study the expression pattern and
precise role of PRAME and its interaction with the microenvironment in different tumors
in order to develop targeted therapies.
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