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Abstract: Depression is a prevalent and debilitating disease worldwide. This pathology is very
complex and the lack of efficient therapeutic modalities, as well as the high rates of relapse, makes
the study and treatment of depression a global healthcare challenge. Thus, an intense investiga-
tion of this disease is crucial and urgent. In this study, we focused on hydrogen peroxide and
corticosterone-induced stress on SH-SY5Y and HT-22 cells. Additionally, we aimed to study the
potential attenuation of these induced stress with the exposure of both cells to mirtazapine and
L-tryptophan, focusing on cell viability assays (MTT and Neutral Red) and reactive oxygen species
production assays (DCFDA fluorescence). Taken together, our results indicate that mirtazapine
and L-tryptophan counteract the cellular stress induced by hydrogen peroxide but not by corticos-
terone, revealing a potential role of these agents on oxidative stress relief, highlighting the role of
serotonergic pathways in the oxidative stress present in depressed individuals. This study allows
the investigation of depression using cellular models, enabling the screening of compounds that
may have potential to be used in the treatment of depression by acting on cellular mechanisms
such as oxidative stress protection.

Keywords: depression; corticosterone; hydrogen peroxide; mirtazapine; L-tryptophan; oxidative
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1. Introduction

Depression is a worldwide prevalent disease that represents a major healthcare
concern. This disease is characterized by several symptoms that include sad mood and
lack of energy. In extreme cases, depression may even lead to death by suicide. There are
several molecular mechanisms involved in the pathology of this disease, making its study
a complex challenging task. Indeed, the resistance to the several available treatments
and the high rates of relapse highlight the importance of the investigation of this disease
and its associated therapies [1,2]. Thus, simpler, faster, and reproducible methodologies
of investigation are extremely important to be implemented, such as cellular studies, that
enable the study of molecular mechanisms associated with depression’s pathophysiology
at the cellular level, sparing animal studies at the initial stages of investigation. To
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implement this kind of study, it is important to focus on specific biomarkers/hallmarks
associated with depression [3]. Thus, in this study, we focused on hydrogen peroxide
(H2O2) and glucocorticoid (particularly corticosterone) induced stress.

H2O2 promotes the generation of oxidative stress in the cells by increasing the over-
all reactive oxygen species (ROS) levels. These species cause oxidative DNA damage,
dysfunction of the mitochondrial membrane potential, and apoptosis [4]. In depression,
the role of oxidative stress is widely recognized and contributes to disease progression
and increase in pro-inflammatory pathways and abnormal neuronal signaling [5,6]. In-
deed, depressive individuals usually present high levels of oxidative stress markers
and low levels of antioxidant defenses. For example, malondialdehyde (a product of
lipidic damage caused by ROS) and 8-hydroxy-2-deoxyguanosine (a product originated
by oxidation of DNA’s guanine) levels are increased in depressed patients, compared
to healthy controls. Additionally, levels of antioxidant defenses such as superoxide
dismutase and ascorbic acid are typically impaired in depressed individuals [6,7]. Re-
garding glucocorticoid (particularly corticosterone and cortisol) induced stress, the role
of these compounds is also widely recognized in this disease. Indeed, glucocorticoids are
key components in the stress response, connected with the hypothalamus-hypophysis–
adrenal (HPA) axis [8,9]. Dysfunctions of this axis relate to depression, and chronic levels
of glucocorticoids lead to HPA axis dysfunction, promoting stress responses such as high
inflammation levels, cellular damage, and depressive phenotypes [10]. Based on these
evidences, some studies include these compounds as stress/depression inducers [11–22].

In opposite, antidepressants such as mirtazapine are used in the context of the
therapy of depression. This drug is an antagonist of adrenergic α2, and the serotonergic
5-HT2 and 5-HT3 receptors [23], and was previously reported as a good candidate for
the reversal of H2O2 stress induction in the cells by mechanisms such as DNA damage
and reduction of the expression of pro-apoptotic proteins such as Bax [19,22]. Taking
into account the influence of mirtazapine in serotonergic pathways (widely recognized
as important to the context of depression [24]), the complementary incorporation of
L-tryptophan as a potential stress reverser in this study is based on the fact that this
amino acid is the precursor of serotonin (5-HT) synthesis and may influence the activity
of serotonergic pathways [25].

In this work, we aimed to study the induction of HT-22 and SH-SY5Y cellular stress
by applying H2O2 and corticosterone to these cells. HT-22 cells are mouse hippocampal
neuronal cells, whereas SH-SY5Y are a human neuroblastoma cell line. These cells are
good models to study neuronal processes, being used in the research of depression
and other neuropsychiatric disorders, enabling the study of these diseases at a molecu-
lar/cellular level [3]. Indeed, several studies report the use of these cell lines in the study
of molecular mechanisms involved in depression [26–29]. After applying H2O2 and cor-
ticosterone to these cells, we aimed to study the potential reversion/attenuation of these
responses with the exposure of both cell lines to mirtazapine and L-tryptophan, focusing
on cell morphology, cell viability, and ROS assays. In sum, our main findings evidence
that both mirtazapine and L-tryptophan can counteract the harmful effects caused by
H2O2 but not by corticosterone, revealing that these agents may have an important
protective role in oxidative stress. This highlights the role of serotonergic pathways in
the oxidative stress present in depression. Our study enables the investigation of depres-
sion at the cellular level, leading to the possibility to a future screening of compounds
that may be used in the treatment of depression in the context of mechanisms, such as
oxidative stress protection.

2. Materials and Methods
2.1. Materials

Dulbecco’s modified Eagle’s medium (DMEM; cat. no. FG0415) and fetal bovine
serum (FBS; cat. no S0615) were obtained from Millipore Sigma (Merck KGaA, Darmstadt,
Germany). Penicillin/streptomycin (cat. no. P4333), thiazolyl blue tetrazolium bromide
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(MTT; cat. no. M5655), neutral red solution (cat. no. N2889), corticosterone (cat. no.
27840), hydrogen peroxide (30%; Perhydrol™; cat. no. 1.07209), L-tryptophan (cat. no.
T0254), and 2′,7′-dichlorofluorescin diacetate (DCFDA; cat. no. D6883) were purchased
from Sigma-Aldrich (Merck KGaA, Darmstadt, Germany). Mirtazapine (cat. no. 19994)
was obtained from Cayman Chemical Company (Ann Arbor, MI, USA).

2.2. Cell Culture

SH-SY5Y cell line was obtained from American Type Culture Collection, (Manassas
VA, USA), whereas HT-22 cells were gently provided by Professor Ana Cristina Rego’s
group (University of Coimbra, Coimbra, Portugal). Both cell lines were incubated at
37 ◦C (95% air, 5% CO2), and cultured in DMEM, supplemented with 10% FBS and
1% penicillin (1000 U/mL)/streptomycin (10 mg/mL). These are adherent cell lines,
subcultured when confluences of 75–80% were obtained. Before each new assay, both
cell lines were trypsinized (0.25% trypsin-EDTA), centrifuged (5 min., 800 and 1100 rpm
for HT-22 and SH-SY5Y, respectively; Hettich, Tuttlingen, Germany), and seeded at a
density of 1.0 × 105 cells/mL (SH-SY5Y cells) and 1.5 × 104 cells/mL (HT-22 cells) in
96-well plates (200 µL/well).

2.3. Cell Treatments

Mirtazapine and hydrogen peroxide were prepared as previously described [22].
Corticosterone and L-tryptophan were dissolved in DMSO (or methanol) and sterilized
water, respectively (0.1% and 1% in cell culture medium, respectively). For corticosterone
alone, the concentrations tested in the cells ranged between 100 µM and 500 µM and the
vehicle was composed of 0.1% DMSO in cell culture medium. For L-tryptophan alone
(0.1 nM–100 µM), the vehicle was composed of 1% sterilized water in culture medium.
For L-tryptophan combinations with hydrogen peroxide and corticosterone, vehicles were
composed of, respectively, 1% sterilized water and 0.1% methanol/1% sterilized water in
cell culture medium. Finally, for the mirtazapine/corticosterone combinations, vehicles
were composed of 0.2% DMSO in cell culture medium. All the treatments were tested for a
period of 48 h after the cell attachment. For the DCFDA assay, all the treatments were also
tested after 1 h, 3 h, 6 h, and 24 h of contact with the cells.

2.4. Cell Morphology Visualization

Leica DMI6000 B Automated Microscope (Leica, Wetzlar, Germany) was used to
observe and capture images of SH-SY5Y and HT-22 cells after all the treatment conditions
(48 h), previously to cell viability assays.

2.5. MTT and Neutral Red Assays

Cellular viability after exposure to the different treatments (48 h) was evaluated
by performing MTT and neutral red (NR) assays. Briefly, these two assays evaluate
cell viability, using a different approach. Indeed, MTT assay measures the metabolic
activity of the cells through the enzymatic conversion of the tetrazolium to formazan
crystals by dehydrogenases present mainly in the mitochondria. On the other hand,
NR accumulates in the lysosomes of viable cells, but not in the non-viable cells. Thus,
these two assays evaluate different organelles (mitochondria and lysosomes). For the
MTT assay, after discarding the culture medium, MTT (0.5 mg/mL in PBS; 100 µL/well)
was added to the cells, following a period of 3 h of incubation (37 ◦C). Then, MTT
was discarded and 100 µL of DMSO was added to each well. Lastly, 570 nm absorbance
values were extracted from the automated microplate reader (Tecan Infinite M200, Zurich,
Switzerland). For the NR assay, after discarding the culture medium, NR medium (1:100
in DMEM; 100 µL/well) was added to the cells, following a period of 3 h of incubation
(37 ◦C). After that, the cells were washed in PBS (150 µL/well), and 150 µL of NR destain
solution (50% of 96% ethanol, 49% deionized water and 1% glacial acetic acid) was added
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to each cell well. Finally, absorbance values (540 nm) were obtained in the automated
microplate reader described above.

2.6. DCFDA Assay

Intracellular oxidative activity was evaluated by DCFDA assay. After cell adhesion
(24 h), cells were incubated with 100 µL/well of 100 µM DCFDA, dissolved in PBS for
30 min before exposure to the drugs. At the end of the incubation period, the supernatant
was rejected, and the cells were incubated with the test compounds for 1 h, 3 h, 6 h,
24 h, and 48 h at 37 ◦C. Finally, the fluorescence was obtained using a fluorescence plate
reader (SpectraMax Gemini EM Microplate Reader, Molecular Devices, San Jose, CA, USA),
485 nm excitation and 530 nm emission.

2.7. Statistical and Data Analyses

The results were expressed as mean ± SEM of, at 2–6 independent experiments.
Statistical analyses between each vehicle and treatments (for each time) were carried out
with two-away ANOVA (for DCFDA assays) or one-away ANOVA (for cell viability as-
says), followed by Dunnett’s multiple comparisons test. The differences were statistically
significant when p < 0.05. Statistical analyses, graphical construction, and calculations of
IC50 values were carried out using software GraphPad Prism 8 (San Diego, CA, USA).

3. Results
3.1. Effect of Hydrogen Peroxide on SH-SY5Y and HT-22 Cellular Viability

To evaluate the effect of H2O2 as a cellular stressor on the HT-22 cell line, this com-
pound was added to these cells in concentrations ranging from 50–300 µM, for a period
of 48 h. After that, cell viability values were obtained using MTT (Figure 1A) and NR
assay (Figure 1B), as described in the Section 2. Morphological changes in the cells were
also captured (Figure 2A–D). Additionally, the concentration-response curves (Figure S1)
and half-maximal inhibitory concentrations (IC50) values were determined. In our pre-
vious work, we also evaluated the effect of H2O2 on the viability of SH-SY5Y neuroblas-
toma cells, obtaining a half-maximal inhibitory concentration (IC50) value of 132 µM [22]
(Figures 1C,D and S1), as well as morphological changes on SH-SY5Y after exposure to
crescent concentrations of H2O2 (Figure 2E–H).

Proceeding to the analysis of the results, it is possible to conclude that H2O2 de-
creased both HT-22 and SH-SY5Y cellular viability, in a concentration-dependent manner,
as evidenced in both MTT, NR, and morphology assays (Figures 1, 2 and S1). For SH-
SY5Y, we previously obtained an IC50 value of 132 µM [22] and for HT-22 cells, we
obtained IC50 values of 111 µM (MTT assay) and 98 µM (NR assay) (Figure S1). Taken
together, these results support the stress effect of H2O2 on both cell lines.

3.2. Effect of Mirtazapine on SH-SY5Y and HT-22 Cellular Viability

After studying H2O2 on the viability of both SH-SY5Y and HT-22 cells, we also studied
the effect of the antidepressant mirtazapine on the viability of these cells. To perform this
experiment, mirtazapine was added to HT-22 cells in concentrations ranging from 0.01 µM
to 20 µM, for a period of 48 h. Cellular viability results were obtained by MTT (Figure 3A)
and NR assays (Figure 3B), as described in the Section 2. Morphological observations
were also carried out (Figure 4A–C). Previously, we also performed this experiment with
SH-SY5Y cells [22] (Figures 3C,D and 4D–F).
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of 3–6 independent experiments, expressed as the percentage of the vehicle (100%). Statistically sig-
nificant * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001 vs. vehicle. 

 
Figure 2. Representative images (100 × total magnification) of HT-22 and SH-SY5Y cells after incu-
bation of increasing concentrations of H2O2. Cells were treated with (A,E) vehicle (0.1% sterilized 
water) (B,F) H2O2 50 μM, (C,G) H2O2 150 μM, (D,H) H2O2 300 μM. 
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denced in both MTT, NR, and morphology assays (Figures 1, 2 and S1). For SH-SY5Y, we 
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Figure 4. Representative images (100 × total magnification) of HT-22 and SH-SY5Y cells. Cells were
treated with (A,D) vehicle (0.1% DMSO) (B,E) mirtazapine 0.01 µM, (C,F) mirtazapine 20 µM.

Our results reveal that mirtazapine, a clinically used antidepressant, was not toxic to
the cells in any of the concentrations tested, being a good stress reverser for SH-SY5Y cells
(as described previously [22]) and, potentially, to HT-22 cells. Taken together, these results
demonstrate that mirtazapine does not lead to a decrease in cell viability in both cell lines,
evidenced in both viability and morphological assays (Figures 3 and 4), and may be used
as a stress reverser in the proposed cellular model of stress.
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3.3. Effect of Mirtazapine Combined with Hydrogen Peroxide on SH-SY5Y and HT-22
Cellular Viability

To understand the effect of the combination of mirtazapine with H2O2 on SH-SY5Y and
HT-22 cell viability, mirtazapine was added to the cells in concentrations of 0.01–20 µM, since
there was no significant toxicity in these concentrations, for both cells. H2O2 was added to
the cells at a fixed concentration of 132 µM for SH-SY5Y cells and 105 µM for HT-22 cells
(representing the mean of the obtained IC50 values, respectively), for 48 h, and cell viability
values were obtained by MTT assay, as described in the Section 2. Both drugs were applied to
the cells in a simultaneous way. Figure 5B represents the obtained results for HT-22 cells. For
SH-SY5Y cells, the results were previously reported [22] and are represented in the Figure 5A.
Additionally, morphological analysis was also carried out (Figure 6).

Int. J. Transl. Med. 2022, 2, FOR PEER REVIEW  8 
 

 

 
Figure 5. Effect of 48 h-incubation of (A) 132 μM of H2O2 and (B) 105 μM of H2O2, in combination 
with 0.01–20 μM of mirtazapine, determined by MTT methodology. The results represent the mean 
± SEM of 3–6 independent experiments, expressed as the percentage of the vehicle (100%). Statisti-
cally significant ** p < 0.01 and **** p < 0.0001 vs. vehicle. 

 
Figure 6. Representative images (100 × total magnification) of HT-22 and SH-SY5Y cells after incu-
bation of H2O2 in combination with mirtazapine. Cells were treated with (A,D) vehicle (0.1% 
DMSO/0.1% sterilized water), (B) mirtazapine 0.01 μM + H2O2 105 μM, (C) mirtazapine 20 μM + 
H2O2 105 μM, (E) mirtazapine 0.01 μM + H2O2 132 μM, (F) mirtazapine 20 μM + H2O2 132 μM. 

Analyzing the obtained results for both cell lines, it can be observed that mirtazapine, 
at all the tested concentrations, was able to alleviate the decrease in the cell viability 
caused by H2O2. This effect was more pronounced in SH-SY5Y cells (Figure 5A) but was 
also notorious in HT-22 cells (Figu0re 5B). These results support the antidepressant activ-
ity of mirtazapine, highlighting the capability of this compound to counteract the harmful 
effects of H2O2 on the cells.  

3.4. Effect of Corticosterone on SH-SY5Y and HT-22 Cellular Viability 
To study the effect of another cell stressor on HT-22 and SH-SY5Y cell lines, corti-

costerone was applied to the cells in concentrations ranging from 100–500 μM, for 48 h. 
After that, cell viability values were obtained using MTT (Figure 7A,C) and NR assays 
(Figure 7B,D), as described in the Section 2. Additionally, morphological changes in the 

Figure 5. Effect of 48 h-incubation of (A) 132 µM of H2O2 and (B) 105 µM of H2O2, in combination
with 0.01–20 µM of mirtazapine, determined by MTT methodology. The results represent the
mean ± SEM of 3–6 independent experiments, expressed as the percentage of the vehicle (100%).
Statistically significant ** p < 0.01 and **** p < 0.0001 vs. vehicle.

Int. J. Transl. Med. 2022, 2, FOR PEER REVIEW  8 
 

 

 
Figure 5. Effect of 48 h-incubation of (A) 132 μM of H2O2 and (B) 105 μM of H2O2, in combination 
with 0.01–20 μM of mirtazapine, determined by MTT methodology. The results represent the mean 
± SEM of 3–6 independent experiments, expressed as the percentage of the vehicle (100%). Statisti-
cally significant ** p < 0.01 and **** p < 0.0001 vs. vehicle. 

 
Figure 6. Representative images (100 × total magnification) of HT-22 and SH-SY5Y cells after incu-
bation of H2O2 in combination with mirtazapine. Cells were treated with (A,D) vehicle (0.1% 
DMSO/0.1% sterilized water), (B) mirtazapine 0.01 μM + H2O2 105 μM, (C) mirtazapine 20 μM + 
H2O2 105 μM, (E) mirtazapine 0.01 μM + H2O2 132 μM, (F) mirtazapine 20 μM + H2O2 132 μM. 

Analyzing the obtained results for both cell lines, it can be observed that mirtazapine, 
at all the tested concentrations, was able to alleviate the decrease in the cell viability 
caused by H2O2. This effect was more pronounced in SH-SY5Y cells (Figure 5A) but was 
also notorious in HT-22 cells (Figu0re 5B). These results support the antidepressant activ-
ity of mirtazapine, highlighting the capability of this compound to counteract the harmful 
effects of H2O2 on the cells.  

3.4. Effect of Corticosterone on SH-SY5Y and HT-22 Cellular Viability 
To study the effect of another cell stressor on HT-22 and SH-SY5Y cell lines, corti-

costerone was applied to the cells in concentrations ranging from 100–500 μM, for 48 h. 
After that, cell viability values were obtained using MTT (Figure 7A,C) and NR assays 
(Figure 7B,D), as described in the Section 2. Additionally, morphological changes in the 

Figure 6. Representative images (100× total magnification) of HT-22 and SH-SY5Y cells after incubation
of H2O2 in combination with mirtazapine. Cells were treated with (A,D) vehicle (0.1% DMSO/0.1%
sterilized water), (B) mirtazapine 0.01 µM + H2O2 105 µM, (C) mirtazapine 20 µM + H2O2 105 µM,
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Analyzing the obtained results for both cell lines, it can be observed that mirtazapine,
at all the tested concentrations, was able to alleviate the decrease in the cell viability caused
by H2O2. This effect was more pronounced in SH-SY5Y cells (Figure 5A) but was also
notorious in HT-22 cells (Figu0re 5B). These results support the antidepressant activity of
mirtazapine, highlighting the capability of this compound to counteract the harmful effects
of H2O2 on the cells.

3.4. Effect of Corticosterone on SH-SY5Y and HT-22 Cellular Viability

To study the effect of another cell stressor on HT-22 and SH-SY5Y cell lines, corti-
costerone was applied to the cells in concentrations ranging from 100–500 µM, for 48 h.
After that, cell viability values were obtained using MTT (Figure 7A,C) and NR assays
(Figure 7B,D), as described in the Section 2. Additionally, morphological changes in the
cells were also captured (Figure 8). The concentration-response curves (Figure S2) and
half-maximal inhibitory concentrations (IC50) values were also determined.

It is possible to observe that corticosterone decreased both HT-22 and SH-SY5Y cell
viability, in a concentration-dependent manner, as evidenced in MTT, NR, and morphology
assays (Figure 7, Figure 8 and Figure S2). This effect of corticosterone was clearly more
evidenced in HT-22 cells than in SH-SY5Y cells. Indeed, for HT-22 cells, we obtained
IC50 values of 41 µM (MTT assay) and 31 µM (NR assay), whereas for SH-SY5Y cells, we
obtained IC50 values of 236 µM (MTT assay) and 408 µM (NR assay) (Figure S2).
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It is possible to observe that corticosterone decreased both HT-22 and SH-SY5Y cell 
viability, in a concentration-dependent manner, as evidenced in MTT, NR, and morphol-
ogy assays (Figures 7, 8, and S2). This effect of corticosterone was clearly more evidenced 

Figure 8. Representative images (100 × total magnification) of HT-22 and SH-SY5Y cells after
incubation of increasing concentrations of corticosterone. Cells were treated with (A,E) vehicle (0.1%
DMSO) (B,F) corticosterone 100 µM, (C,G) corticosterone 300 µM, (D,H) corticosterone 500 µM.

3.5. Effect of Mirtazapine Combined with Corticosterone on SH-SY5Y and HT-22
Cellular Viability

Aiming to study the effect of the combination of mirtazapine with corticosterone on
SH-SY5Y and HT-22 cellular viability, this drug was added to the cells in concentrations of
0.01–20 µM for both cells, whereas corticosterone was added to the cells in a fixed concen-
tration of 236 µM for SH-SY5Y cells and 35 µM for HT-22 cells (representing the obtained
IC50 value for SH-SY5Y cells by MTT assay, and the mean of the IC50 values for HT-22 cells,
obtained by MTT and NR assays). After a period of exposition of 48 h, cellular viability values
were obtained by MTT assay (Figure 9). Once again, both drugs were applied to the cells
simultaneously. Morphological analysis was also carried out (Figure 10).
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Figure 10. Representative images (100 × total magnification) of HT-22 and SH-SY5Y cells after incu-
bation of corticosterone in combination with mirtazapine. Cells were treated with (A,D) vehicle (0.2%
DMSO), (B) mirtazapine 0.01 µM + corticosterone 35 µM, (C) mirtazapine 20 µM + corticosterone 35 µM,
(E) mirtazapine 0.01 µM + corticosterone 236 µM, (F) mirtazapine 20 µM + corticosterone 236 µM.

Our results reveal that for SH-SY5Y cells, mirtazapine was not able to alleviate the harm-
ful effects of corticosterone. Indeed, the combination of mirtazapine and corticosterone led to
even more cell viability decrease, compared to corticosterone alone (Figures 9A and 10D–F).
Regarding HT-22 cells, mirtazapine was also not able to alleviate the harmful effects of cor-
ticosterone (Figures 9B and 10A–C). However, in HT-22 cells, the effects of the combination
of mirtazapine with corticosterone did not differ from corticosterone alone, contrasting with
SH-SY5Y cells. Taken together, these results demonstrate that mirtazapine was not able to
counteract the harmful effects of corticosterone on the cells.

3.6. Effect of L-Tryptophan on SH-SY5Y and HT-22 Cellular Viability

To explore the potential of L-tryptophan to attenuate H2O2 or corticosterone-induced
stress on both cell lines, L-tryptophan was added to the cells in concentrations ranging from
0.1 nM to 100 µM for 48 h. Cellular viability results were determined by MTT (Figure 11),
as described in the Section 2. Morphological observations were also carried out (Figure 12).
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Figure 11. Effect of 48 h-incubation of 0.1 nM-100 µM of L-tryptophan on the viability of (A) SH-SY5Y
cells and (B) HT-22 cells, determined by MTT methodology. The results represent the mean ± SEM of
three independent experiments, expressed as the percentage of the vehicle (100%).



Int. J. Transl. Med. 2022, 2 492
Int. J. Transl. Med. 2022, 2, FOR PEER REVIEW  12 
 

 

 
Figure 12. Representative images (100 × total magnification) of HT-22 and SH-SY5Y cells after incu-
bation of increasing concentrations of L-tryptophan. Cells were treated with (A,D) vehicle (1% ster-
ilized water) (B,E) L-tryptophan 0.1 nM, (C,F) L-tryptophan 100 μM. 

Analyzing the obtained results for both cell lines, we can conclude that like mirtazap-
ine, L-tryptophan was not toxic to the cells in any of the concentrations tested, being a 
potential stress reverser for both HT-22 and SH-SY5Y cells. In sum, these results demon-
strate that L-tryptophan does not lead to a decrease in cell viability in both cell lines, evi-
denced in both viability (Figure 11) and morphological assays (Figure 12), and may be 
used as a stress reverser in the proposed cellular model of stress, such as mirtazapine.  
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Viability 

Next, to understand the effect of L-tryptophan combined with H2O2 on SH-SY5Y and 
HT-22 cellular viability, this amino acid was added to the cells in concentrations of 0.1 
nM–100 μM. Once again, H2O2 was added to the cells at a fixed concentration of 132 μM 
for SH-SY5Y cells and 105 μM for HT-22 cells, for a period of incubation of 48 h, and cell 
viability was obtained by MTT assay (Figure 13). Morphological analysis was also carried 
out for both cell lines (Figure 14). 
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incubation of increasing concentrations of L-tryptophan. Cells were treated with (A,D) vehicle (1%
sterilized water) (B,E) L-tryptophan 0.1 nM, (C,F) L-tryptophan 100 µM.

Analyzing the obtained results for both cell lines, we can conclude that like mirtaza-
pine, L-tryptophan was not toxic to the cells in any of the concentrations tested, being a
potential stress reverser for both HT-22 and SH-SY5Y cells. In sum, these results demon-
strate that L-tryptophan does not lead to a decrease in cell viability in both cell lines,
evidenced in both viability (Figure 11) and morphological assays (Figure 12), and may be
used as a stress reverser in the proposed cellular model of stress, such as mirtazapine.

3.7. Effect of L-Tryptophan Combined with Hydrogen Peroxide on SH-SY5Y and HT-22
Cellular Viability

Next, to understand the effect of L-tryptophan combined with H2O2 on SH-SY5Y
and HT-22 cellular viability, this amino acid was added to the cells in concentrations of
0.1 nM–100 µM. Once again, H2O2 was added to the cells at a fixed concentration of
132 µM for SH-SY5Y cells and 105 µM for HT-22 cells, for a period of incubation of 48 h,
and cell viability was obtained by MTT assay (Figure 13). Morphological analysis was also
carried out for both cell lines (Figure 14).
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Figure 13. Effect of 48 h-incubation of (A) 132 µM of H2O2 and (B) 105 µM of H2O2, in combination
with 0.1 nM–100 µM of L-tryptophan, determined by MTT methodology. The results represent the
mean ± SEM of three independent experiments, expressed as the percentage of the vehicle (100%).
Statistically significant **** p < 0.0001 vs. vehicle.
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Figure 14. Representative images (100 × total magnification) of HT-22 and SH-SY5Y cells after incu-
bation of H2O2 in combination with L-tryptophan. Cells were treated with (A,D) vehicle (1% steri-
lized water), (B) L-tryptophan 0.1 nM + H2O2 105 μM, (C) L-tryptophan 100 μM + H2O2 105 μM, (E) 
L-tryptophan 0.1 nM + H2O2 132 μM, (F) L-tryptophan 100 μM + H2O2 132 μM. 

Analyzing the obtained results, we can conclude that L-tryptophan, at all the tested 
concentrations, was able to alleviate the decrease in the cellular viability caused by H2O2, 

especially notorious in SH-SY5Y cells (Figures 13A and 14 D–F). Regarding HT-22 cells, 
this effect was not so pronounced such as in SH-SY5Y cells. Nevertheless, it is possible to 
observe a tendency of stress alleviation by L-tryptophan, especially evidenced in Figure 
14A–C. Together, these results evidence that L-tryptophan is a good candidate to coun-
teract the harmful effects of H2O2 on the cells, especially SH-SY5Y cells.  
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Figure 14. Representative images (100 × total magnification) of HT-22 and SH-SY5Y cells after
incubation of H2O2 in combination with L-tryptophan. Cells were treated with (A,D) vehicle (1%
sterilized water), (B) L-tryptophan 0.1 nM + H2O2 105 µM, (C) L-tryptophan 100 µM + H2O2 105 µM,
(E) L-tryptophan 0.1 nM + H2O2 132 µM, (F) L-tryptophan 100 µM + H2O2 132 µM.

Analyzing the obtained results, we can conclude that L-tryptophan, at all the tested
concentrations, was able to alleviate the decrease in the cellular viability caused by H2O2,
especially notorious in SH-SY5Y cells (Figures 13A and 14D–F). Regarding HT-22 cells,
this effect was not so pronounced such as in SH-SY5Y cells. Nevertheless, it is possi-
ble to observe a tendency of stress alleviation by L-tryptophan, especially evidenced in
Figure 14A–C. Together, these results evidence that L-tryptophan is a good candidate to
counteract the harmful effects of H2O2 on the cells, especially SH-SY5Y cells.

3.8. Effect of L-Tryptophan Combined with Corticosterone on SH-SY5Y and HT-22
Cellular Viability

To understand the effect of the combination of L-tryptophan with corticosterone on
SH-SY5Y and HT-22 cell viability, this amino acid was added to the cells in concentrations
of 0.1 nM–100. Corticosterone was added to both cell lines in a fixed concentration of
322 µM for SH-SY5Y cells and 35 µM for HT-22 cells (representing the mean of the obtained
IC50 values for SH-SY5Y cells and HT-22 cells, respectively), for a period of 48 h. Cellular
viability results were obtained by MTT assay (Figure 15). Both compounds were added to
the cells simultaneously. Morphological evaluation was also carried out (Figure 16).

Our results reveal that L-tryptophan was not able to alleviate the harmful effects
of corticosterone. Indeed, for SH-SY5Y cells, such as what was observed with mirtazap-
ine, the combination of L-tryptophan and corticosterone led to even more cell viability
decrease, compared to corticosterone alone (Figures 15A and 16D–F). Regarding HT-22
cells, L-tryptophan was also not able to counteract the harmful effects of corticosterone
(Figures 15B and 16A–C). However, in HT-22 cells, the effects of the combination of L-
tryptophan with corticosterone did not differ from corticosterone alone, contrasting with
SH-SY5Y cells. These results are identical to those observed with mirtazapine in combina-
tion with corticosterone. Together, these results evidence that L-tryptophan was not able to
counteract the effects of corticosterone on the cells.
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Figure 15. Effect of 48 h-incubation of (A) 322 μM of corticosterone and (B) 35 μM of corticosterone, 
in combination with 0.1 nM-100 μM of L-tryptophan, determined by MTT assay. The results repre-
sent the mean ± SEM of 3–6 independent experiments, expressed as the percentage of the vehicle 
(100%). Statistically significant. **** p < 0.0001 vs. vehicle. 

 
Figure 16. Representative images (100 × total magnification) of HT-22 and SH-SY5Y cells after incu-
bation of corticosterone in combination with L-tryptophan. Cells were treated with (A,D) vehicle 
(0.1% Methanol/1%sterilized water), (B) L-tryptophan 10 nM + corticosterone 35 μM, (C) L-trypto-
phan 100 μM + corticosterone 35 μM, (E) L-tryptophan 0.1 nM + corticosterone 322 μM, (F) L-tryp-
tophan 100 μM + corticosterone 322 μM. 

Our results reveal that L-tryptophan was not able to alleviate the harmful effects of 
corticosterone. Indeed, for SH-SY5Y cells, such as what was observed with mirtazapine, 
the combination of L-tryptophan and corticosterone led to even more cell viability de-
crease, compared to corticosterone alone (Figures 15A and 16D–F). Regarding HT-22 cells, 
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Figure 15. Effect of 48 h-incubation of (A) 322 µM of corticosterone and (B) 35 µM of corticosterone,

in combination with 0.1 nM-100 µM of L-tryptophan, determined by MTT assay. The results represent
the mean ± SEM of 3–6 independent experiments, expressed as the percentage of the vehicle (100%).
Statistically significant. **** p < 0.0001 vs. vehicle.
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Figure 16. Representative images (100 × total magnification) of HT-22 and SH-SY5Y cells af-
ter incubation of corticosterone in combination with L-tryptophan. Cells were treated with
(A,D) vehicle (0.1% Methanol/1%sterilized water), (B) L-tryptophan 10 nM + corticosterone 35 µM,
(C) L-tryptophan 100 µM + corticosterone 35 µM, (E) L-tryptophan 0.1 nM + corticosterone 322 µM,
(F) L-tryptophan 100 µM + corticosterone 322 µM.

3.9. Effect of Mirtazapine Combined with H2O2 and Corticosterone on SH-SY5Y and HT-22
ROS Production

To understand the effect of H2O2, corticosterone and mirtazapine alone, as well as
the combination of mirtazapine with H2O2 (Figure 17) and corticosterone (Figure 18) on
SH-SY5Y and HT-22 cells ROS production, mirtazapine was applied to both cell lines in two
concentrations: 0.01 µM and 20 µM, that represent both extreme tested concentrations in the
cell viability studies. H2O2 was added to SH-SY5Y and HT-22 cells at a fixed concentration
of 132 µM and 105 µM, respectively (mean IC50 values for both cell lines), and corticosterone
was added to SH-SY5Y cells at a concentration of 322 µM and at a concentration of 35 µM
for HT-22 cells (mean IC50 values) for periods of 1 h, 3 h, 6 h, 24 h, and 48 h. The percentage
of ROS production (versus each vehicle, for each time) was obtained by DCFDA assay. Both
compounds were added to the cells simultaneously. Figure 19 represents the comparison
between the two cell lines for the time point of 48 h.
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Figure 17. Effect on ROS production of 1 h, 3 h, 6 h, 24 h, and 48 h-incubation of (A) 132 μM of H2O2, 
0.01 μM/20 μM of mirtazapine and 132 μM of H2O2 + 0.01 μM/20 μM of mirtazapine (SH-SY5Y cells) 
and (B) 105 μM of H2O2, 0.01 μM/20 μM of mirtazapine and 105 μM of H2O2 + 0.01 μM/20 μM of 
mirtazapine (HT-22 cells), determined by DCFDA assay. The results represent the mean ± SEM of 
2–6 independent experiments, expressed as the percentage of each vehicle (100%) for each period. 
Statistically significant * p < 0.05, *** p < 0.001, and **** p < 0.0001 vs. vehicle, for each time. 

Figure 17. Effect on ROS production of 1 h, 3 h, 6 h, 24 h, and 48 h-incubation of (A) 132 µM of H2O2,
0.01 µM/20 µM of mirtazapine and 132 µM of H2O2 + 0.01 µM/20 µM of mirtazapine (SH-SY5Y cells)
and (B) 105 µM of H2O2, 0.01 µM/20 µM of mirtazapine and 105 µM of H2O2 + 0.01 µM/20 µM of
mirtazapine (HT-22 cells), determined by DCFDA assay. The results represent the mean ± SEM of
2–6 independent experiments, expressed as the percentage of each vehicle (100%) for each period.
Statistically significant * p < 0.05, *** p < 0.001, and **** p < 0.0001 vs. vehicle, for each time.
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Figure 18. Effect on ROS production of 1 h, 3 h, 6 h, 24 h, and 48 h-incubation of (A) 322 μM of 
corticosterone, 0.01 μM/20 μM of mirtazapine and 322 μM of corticosterone + 0.01 μM/20 μM of 
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Figure 18. Effect on ROS production of 1 h, 3 h, 6 h, 24 h, and 48 h-incubation of (A) 322 µM of
corticosterone, 0.01 µM/20 µM of mirtazapine and 322 µM of corticosterone + 0.01 µM/20 µM of
mirtazapine (SH-SY5Y cells) and (B) 35 µM of corticosterone, 0.01 µM/20 µM of mirtazapine and
35 µM of corticosterone + 0.01 µM/20 µM of mirtazapine (HT-22 cells), determined by DCFDA assay.
The results represent the mean ± SEM of 2–6 independent experiments, expressed as the percentage
of each vehicle (100%) for each period. Statistically significant * p < 0.05, ** p < 0.01, *** p < 0.001, and
**** p < 0.0001 vs. vehicle, for each time.
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Figure 19. Comparison of SH-SY5Y and HT-22 cells regarding ROS production, for 48 h-incubation of
(A) 105/132 µM of H2O2, 0.01 µM/20 µM of mirtazapine and 105/132 µM of H2O2 + 0.01 µM/20 µM
of mirtazapine (HT-22 and SH-SY5Y cells, respectively) and (B) 35/322 µM of corticosterone,
0.01 µM/20 µM of mirtazapine and 35/322 µM of corticosterone + 0.01 µM/20 µM of mirtazap-
ine (HT-22 and SH-SY5Y cells, respectively), determined by DCFDA assay. The results represent the
mean ± SEM of 2–6 independent experiments, expressed as the percentage of each vehicle (100%).
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Proceeding to the analysis of the results, it is possible to conclude that mirtazapine
alone led to similar DCFDA fluorescence compared to the vehicle, for all time points.
However, the concentration of 20 µM led to a slight increase in ROS production, especially
at 48 h. Nevertheless, H2O2 led to clearly higher levels of DCFDA fluorescence, reflecting
higher ROS production. In both HT-22 and SH-SY5Y cells, the combination of mirtazapine
with H2O2 decreased DCFDA fluorescence, compared to H2O2 alone (Figures 17 and 19A).
This highlights that mirtazapine is a good agent to counteract the harmful effects of H2O2,
consistent with the cell viability assays. On the other hand, overall, corticosterone led
to similar DCFDA fluorescence compared to the vehicle. However, for 24 and 48 h of
incubation, it was possible to note a slight increase in DCFDA fluorescence compared to
the vehicle.

In both HT-22 and SH-SY5Y cells, the combination of mirtazapine with corticosterone
did not significantly change DCFDA fluorescence (Figures 18 and 19B), consistent with cell
viability assays. Taken together, these results highlight that mirtazapine is a potential drug
to attenuate the effects of H2O2 but not the effects of corticosterone.

3.10. Effect of L-Tryptophan Combined with H2O2 and Corticosterone on SH-SY5Y and HT-22
ROS Production

Finally, to evaluate the effect of L-tryptophan alone, as well as the combination of
L-tryptophan with H2O2 (Figure 20) and corticosterone (Figure 21) on SH-SY5Y and HT-22
cells’ ROS production, this amino acid was added to both cells in the concentrations of
0.1 nM and 100 µM, that represent both extreme tested concentrations in the previous
cell viability studies. Once again, H2O2 was added to both cells in a fixed concentration
of 132 µM and 105 µM, respectively, and corticosterone was added to SH-SY5Y cells in
a concentration of 322 µM and in a concentration of 35 µM for HT-22 cells for periods
of 1 h–48 h. The percentage of ROS production (versus each vehicle, for time point) was
obtained by DCFDA assay. Figure 22 represents the comparison between the two cell lines
for 48 h.

Our results reveal that L-tryptophan alone led to similar DCFDA fluorescence com-
pared to the vehicle, for all time points. However, the concentration of 100 µM led to a
slight increase in ROS production, especially at 48 h for SH-SY5Y cells, and the concen-
tration of 0.1 nM also led to a slight increase in ROS production, especially at 48 h for
HT-22 cells. Nevertheless, in both cell lines, the combination of L-tryptophan with H2O2
decreased DCFDA fluorescence, compared to H2O2 alone (Figures 20 and 22A). These
results demonstrate that L-tryptophan is a good agent to counteract the harmful effects of
H2O2, also consistent with the cell viability assays. On the other hand, in both HT-22 and
SH-SY5Y cells, the combination of L-tryptophan with corticosterone did not significantly
change DCFDA fluorescence (Figures 21 and 22B), also consistent with cell viability assays.
Taken together, these results highlight that L-tryptophan, such as mirtazapine, is a potential
compound to attenuate the effects of H2O2 but not the effects of corticosterone.
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Figure 20. Effect on ROS production of 1 h, 3 h, 6 h, 24 h, and 48 h-incubation of (A) 132 µM of H2O2,
0.01 µM/100 µM of L-tryptophan and 132 µM of H2O2 + 0.1 nM/100 µM of L-tryptophan (SH-SY5Y
cells) and (B) 105 µM of H2O2, 0.1 nM/100 µM of L-tryptophan and 105 µM of H2O2 + 0.1 nM/100 µM
of L-tryptophan (HT-22 cells), determined by DCFDA assay. The results represent the mean ± SEM
of 2–6 independent experiments, expressed as the percentage of each vehicle (100%) for each period.
Statistically significant * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001 vs. vehicle, for each time.
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Figure 21. Effect on ROS production of 1 h, 3 h, 6 h, 24 h, and 48 h-incubation of (A) 322 µM of
corticosterone, 0.1 nM/100 µM of L-tryptophan and 322 µM of corticosterone + 0.1 nM/100 µM of L-
tryptophan (SH-SY5Y cells) and (B) 35 µM of corticosterone, 0.1 nM/100 µM of L-tryptophan and 35 µM
of corticosterone + 0.1 µM/100 µM of L-tryptophan (HT-22 cells), determined by DCFDA assay. The
results represent the mean± SEM of 2–6 independent experiments, expressed as the percentage of each
vehicle (100%) for each period. Statistically significant * p < 0.05, and ** p < 0.01 vs. vehicle, for each time.
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Figure 22. Comparison of SH-SY5Y and HT-22 cells regarding ROS production, for 48 h incubation of
(A) 105/132 µM of H2O2, 0.1 nM/100 µM of L-tryptophan and 105/132 µM of H2O2 + 0.1 nM/100 µM
of L-tryptophan (HT-22 and SH-SY5Y cells, respectively) and (B) 35/322 µM of corticosterone,
0.1 nM/100µM of L-tryptophan and 35/322 µM of corticosterone + 0.1 nM/100 µM of L-tryptophan
(HT-22 and SH-SY5Y cells, respectively), determined by DCFDA assay. The results represent the
mean ± SEM of 2–6 independent experiments, expressed as the percentage of each vehicle (100%).
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4. Discussion

Depression is a very prevalent and debilitating disease. Globally, this condition
represents an important healthcare problem. New therapies, new strategies of study,
and new insights about this complex disease are urgent to be developed [2]. Thus, this
work aimed to study this disease using different cell lines (SH-SY5Y and HT-22 cells) and
focusing on different mechanisms, particularly cellular viability and ROS production by
the cells, avoiding animal models. To do that, we used well-characterized inducers of
stress (corticosterone and H2O2), related to the pathophysiology of depression, as well
as the potential stress reversers mirtazapine (a clinically characterized antidepressant)
and L-tryptophan (precursor of 5-HT synthesis), as described in the Section 1. Previously,
we developed a cellular model of depression in SH-SY5Y cells, with H2O2 as a stress
inducer and mirtazapine as a stress reverser [22]. Now, using the same principle, we
tested this model in HT-22 cells, but now including the assessment of intracellular ROS
production by the cells. Additionally, we also tested corticosterone as another stress
inducer and L-tryptophan as another stress reverser. Indeed, our results revealed that
H2O2 led to cellular damage in both SH-SY5Y and HT-22 cells, as well as high levels of ROS
production, consistent with the previous literature reports [17,18,30]. Overall, this damage
was attenuated, in the two cell lines, with the application of both mirtazapine and L-
tryptophan, suggesting that serotonergic pathways might be involved in fighting oxidative
stress in depression. This hypothesis is highlighted by the fact that both mirtazapine and L-
tryptophan did not significantly attenuate cell damage caused by corticosterone in both cells,
but only attenuated the damage caused by H2O2, characterized by being a potent inducer of
oxidative stress. Indeed, studies report that mirtazapine may have antioxidant capabilities,
protecting cells against oxidative stress and DNA damage [19,31,32]. Additionally, other
studies demonstrated that dietary tryptophan can attenuate the oxidative stress in the liver,
reflecting some antioxidant capability [33]. Indeed, other studies also demonstrate that
serotonergic pathways are involved in antioxidant mechanisms in depression, attenuating
hippocampal oxidative damage induced by 5-HT depletion in mice [34].

Regarding corticosterone, this compound also led to cellular damage in both SH-SY5Y
and HT-22 cells, consistent with the literature reports [35,36]. Additionally, regarding
ROS production, overall, corticosterone led to low levels of production compared to H2O2.
The effect of cellular damage by corticosterone was more pronounced on HT-22 cells,
explained by the fact that these are mice cells, responding in a better way to corticosterone
(primary adrenal corticosteroid in rodents [37]). However, the results obtained with the
use of corticosterone in combination with mirtazapine and L-tryptophan revealed that
overall, neither agent alleviated the stress induced by corticosterone, opposing to the effects
observed with H2O2. Indeed, in HT-22 cells, there were no significant differences between
corticosterone alone and corticosterone combined with mirtazapine or L-tryptophan. On
the other side, in SH-SY5Y cells, the combination of mirtazapine or L-tryptophan with
corticosterone led to more cell viability decrease, compared to corticosterone alone. There
are some explanations that may be plausible to explain these findings, particularly the
differences between the two cell lines. Indeed, HT-22 cells are hippocampal, mice, and
non-tumoral cells [38], whereas SH-SY5Y are human neuroblastoma cells [39]. Additionally,
because corticosterone is the main corticosteroid hormone in mice [37], HT-22 cells may be
more responsive to corticosterone than SH-SY5Y cells, which may have more difficulty in
metabolizing/ responding to this agent. Possibly, in SH-SY5Y cells, due to the difficulty
in metabolization, corticosterone may accumulate in combination with mirtazapine or
L-tryptophan, leading to the observed synergic effects. Nevertheless, both mirtazapine and
L-tryptophan did not counteract the effects caused by corticosterone and one explanation
may be the role of these agents in oxidative stress, which was not significantly present in
the cells exposed to corticosterone. Future studies to explore the reason for mirtazapine
and L-tryptophan’s lack of efficiency in reverting corticosterone-induced cellular stress
may be important and relevant.
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Taken together, our main findings demonstrate that H2O2 is a good stress inducer for
both HT-22 and SH-SY5Y cells. Both mirtazapine and L-tryptophan can counteract the
harmful effects of this agent, revealing that these agents may have an important role in
oxidative stress relief. It is important to note that mirtazapine and L-tryptophan are agents
that interact with serotonergic pathways, highlighting the role of serotonin in the oxidative
stress present in depression. On the other hand, the corticosterone-induced stress to both
cell lines was not alleviated by mirtazapine or L-tryptophan, supporting the hypothesis
that these two agents are important mainly in the regulation of oxidative stress in cells.
Figure 23 represents a summary of the findings of this work.
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Figure 23. Schematic illustration of the main findings of this work. Created with Biorender.com [40].

This work allows us the study depression in a molecular, faster, simplified, and
reproducible way, leading to the possibility of a future screening of compounds that may be
used in the treatment of depression by, for example, reducing oxidative stress. Nevertheless,
it is important to note that depression is an extremely complex behavioral disease and
several studies, including animal studies, are necessary to be performed, particularly in
more advanced stages of investigation.
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