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Abstract: There are growing numbers of infants and children living with single-ventricle congenital
heart disease (SV). However, cardiac dysfunction and, ultimately, heart failure (HF) are common in
the SV population and the ability to predict the progression to HF in SV patients has been limited,
primarily due to an incomplete understanding of the disease pathogenesis. Here, we tested the
hypothesis that non-invasive circulating metabolomic profiles can serve as novel biomarkers in
the SV population. We performed systematic metabolomic and pathway analyses on a subset
of pediatric SV non-failing (SVNF) and failing (SVHF) serum samples, compared with samples
from biventricular non-failing (BVNF) controls. We determined that serum metabolite panels were
sufficient to discriminate SVHF subjects from BVNF subjects, as well as SVHF subjects from SVNF
subjects. Many of the identified significantly dysregulated metabolites were amino acids, energetic
intermediates and nucleotides. Specifically, we identified pyruvate, palmitoylcarnitine, 2-oxoglutarate
and GTP as promising circulating biomarkers that could be used for SV risk stratification, monitoring
response to therapy and even as novel targets of therapeutic intervention in a population with few
other options.
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1. Introduction

Due to enhanced surgical interventions, better long-term care and improved treatment
of late sequelae, the population of children and young adults living with congenital heart
disease (CHD) is on the rise. The survival benefit is most striking in patients with complex
lesions, such as those with single-ventricle congenital heart disease (SV), and it is estimated
that there are about 1.6 per 10,000 children and young adults living with SV physiology
today [1]. CHD with SV physiology encompasses a group of severe abnormalities in the
cardiac structure, characterized by underdevelopment of one side of the heart, resulting in a
univentricular circulation. SV patients have a higher risk of mortality than patients with any
other CHD and patients with a systemic right ventricle (RV) in particular, such as those with
hypoplastic left heart syndrome (HLHS), represent the most common SV sub-type and tend
to have worse outcomes [2–11]. However, while survival of SV has improved, progressive
ventricular dysfunction and ultimate heart failure remain both a common cause of death and
indication for cardiac transplantation in this population [12–15]. Moreover, the increased
survival of infants and children with SV results in a growing number of patients at risk
for this atypical form of heart failure (HF) and prototypical pharmacological HF therapies
have been largely ineffective in mitigating the need for cardiac transplantation [1–4]. In
fact, SV patients are the most rapidly growing group of young patients presenting for heart
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transplantation in the recent era [16]. Unfortunately, however, the ability to predict HF in
SV patients has been limited, primarily due to an incomplete understanding of the disease
pathogenesis. Therefore, there is an unmet need to identify predictive and prognostic
biomarkers that can provide both a rational basis for treatment and a better understanding
of risk stratification and HF progression in the SV population.

Metabolites are small molecules that represent biological processes and can influence
cell responses locally or systemically. Additionally, metabolites may provide important in-
sights into the mechanisms that underlie disease-related processes and disease progression.
The global systematic quantification of metabolites, known as metabolomics, is an emerging
-omic technology that has received more attention after the development of transcriptomics,
proteomics and genomics [17]. A metabolomic analysis provides a detailed characterization
of metabolic phenotypes that can enable the identification of metabolic derangements asso-
ciated with disease, discovery of new therapeutic targets and identification of biomarkers
that may be used for diagnostic purposes or to monitor response to therapy. Additionally,
metabolites have the potential to be used individually (i.e., specific metabolites) or in
combination to provide a metabolic signature of the disease. However, while metabolomics
methods have been applied to an increasing number of disease etiologies with prognostic
implications, there is only limited application of this technology in patients with SV [18,19]
and even fewer in high-risk young patients with a systemic RV [20].

Because the adaptations of the RV are not tailored to support the high-pressure sys-
temic circulation, patients with SV of RV morphology are at particularly increased risk of
morbidity and mortality [2–11] and may be uniquely vulnerable to metabolic changes in
energy generation and utilization. In fact, patients with SV have significantly decreased
exercise tolerance [21], further suggesting their inability to modulate metabolic demand
appropriately. Therefore, patients with a systemic RV in particular are the focus of this
study. We performed an untargeted metabolomic analysis on serum from a cohort of
non-failing SV subjects (SVNF; n = 5) and SV subjects with heart failure (HF) (SVHF; n = 5),
compared with normal biventricular non-failing controls (BVNF; n = 5). We determined
that distinct circulating metabolite profiles discriminated SVNF and SVHF subjects from
the controls. Moreover, based on a statistical biomarker assessment, we determined that
circulating serum metabolites could be a viable non-invasive tool with potential predictive
diagnostic and prognostic value. These findings may assist in the risk stratification of SV
patients, may serve as valuable measures in response to therapy/intervention and may
help identify novel therapeutic targets for the treatment of SVHF.

2. Materials and Methods
2.1. Study Cohort

The subjects or guardians of subjects less than 18 years of age included in this study
gave written informed consent prior to inclusion in the study and donated their hearts to
the Institutional Review Board-approved pediatric biobank at the University of Colorado
Denver-Anschutz Medical Campus. The subjects included in this study were males and
females of all ethnic backgrounds, less than 18 years of age. Samples from BVNF sub-
jects originated from normal NF patients with preserved cardiac structure and function
(EF > 50%). All SV subjects had single-ventricle hearts of right ventricular morphology.
Non-failing SV subjects included in this study were patients with SV with normal car-
diac function and free from any overt HF symptoms. Failing SV subjects included in this
study were patients with overt systolic HF, defined as decreased RV systolic function on
transthoracic echocardiogram.

2.2. Blood Processing

Between 3 and 5mL of whole blood was collected in a Red-Top anticoagulant-free
tube (Fisher Scientific, Waltham, MA, USA). The samples were incubated for 30 min at
room temperature and centrifuged at 600× g, at 4 ◦C for 20 min to separate serum. Freshly
isolated sera were snap-frozen and stored at −80 ◦C for future analyses.
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2.3. Metabolomic Analyses

Serum samples were used for untargeted metabolomics performed by University of Col-
orado Metabolomics Core Facility via ultra-high pressure liquid chromatography coupled to
online mass spectrometry (UHPLC-MS), as described previously [22,23]. Briefly, samples were
extracted in ice-cold lysis/extraction buffer (methanol:acetonitrile:water 5:3:2) at 1:25 dilution.
Samples were then agitated at 4 ◦C for 30 min and then centrifuged at 10,000 g for 15 min
at 4 ◦C. Protein and lipid pellets were discarded, while supernatants were stored at −80 ◦C
prior to metabolomic analyses. Sample extracts were injected into a UPLC system (Ultimate
3000; Thermo, San Jose, CA, USA) and run on a Kinetex XB-C18 column (150 × 2.1 mm
and 1.7 µm particle size; Phenomenex, Torrance, CA, USA) at 250 µL/min (mobile phase,
5% acetonitrile; Sigma-Aldrich, St. Louis, MO, USA), 95% 18 mΩ H2O (Sigma-Aldrich,
St. Louis, MO, USA) and 0.1% formic acid (Sigma-Aldrich, St. Louis, MO, USA). The UPLC
system was coupled online with a QExactive system (Thermo, San Jose, CA, USA), scanning
in Full MS mode (2 µscans) at a 70,000 resolution in the 60–900 m/z range, 4 kV spray
voltage, 15 sheath gases and 5 auxiliary gases, operated in negative- and then positive-ion
mode (separate runs). Calibration was performed before each analysis against positive- or
negative-ion mode calibration mixes (Piercenet; Thermo Fisher, Rockford, IL, USA) to en-
sure subparts per million error of the intact mass. Metabolite assignments were performed
using Maven software [5] (Princeton, NJ, USA), upon conversion of .raw files into .mzXML
format through MassMatrix (Cleveland, OH, USA). Such software allows peak picking,
feature detection and metabolite assignment against the KEGG pathway database to be
conducted. Assignments were further confirmed against chemical formula determination
(as gleaned from isotopic patterns and accurate intact mass) and retention times against
an in-house validated standard library (>650 compounds, including various metabolites,
amino acids and acylcarnitines) (Sigma-Aldrich, St. Louis, MO, USA; MLSMS, IROATech,
Bolton, MA, USA). Relative quantitation was performed by exporting integrated peak area
values into Excel (Microsoft, Redmond, CA, USA) for statistical analyses.

2.4. Data Integration and Statistical Analyses

Significant changes in metabolite expression between any two groups were calculated
using Welch’s t-test, p < 0.05. Data integration, statistical analyses and visualization
were carried out using the R-based platform, MetaboAnalyst 5.0 [24–26]. Differentially
regulated metabolites were subjected to canonical pathway and network analyses using
MetaboAnalyst 5.0 [24–26]. Given the small sample size, adjusted p-values were not used.

Both classical univariate receiver operating characteristic (ROC) analyses and mul-
tivariate exploratory ROC analyses were performed using MetaboAnalyst 5.0 [24–26].
Classical univariate ROC curve analyses were used to generate ROC curves and to calculate
the area under the ROC curve (AUROC), as well as their 95% confidence intervals for indi-
vidual biomarkers. For the multivariate analysis, ROC curves were generated by Monte
Carlo cross-validation (MCCV) using balanced sub-sampling. In each MCCV, two-thirds
(2/3) of the samples were used to evaluate the feature importance. The top 2, 3, 5, 10 . . .
100 (max) important features were then used to build classification models, which were
validated on the 1/3 of samples that was left out. The procedure was repeated multiple
times to calculate the performance and confidence interval of each model. A linear support
vector machine (SVM) was used for classification, while features were ranked based on
the T-statistic.

3. Results
3.1. Patient Characteristics

The aggregate characteristics for patients included in this study are listed in Table 1.
This study included five young patients with normal cardiac structure and function (BVNF;
n = 5), five young SV patients with no symptoms of heart failure (SVNF; n = 5) and five
young SV patients with systolic heart failure and required transplant (SVHF; n = 5). The
BVNF group had a median age of 5.4 years, an interquartile range (IQR) of 4.1–5.6 and 80%
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were male. The SVNF group had a median age of 0.6 years, an IQR of 0.3–1.8 and 40% were
male. The SVHF tissue group had a median age of 3.9 years, an IQR of 2.8–12.3 and 40%
were male. There were no significant differences in age in the BVNF vs. the SVHF groups
(p > 0.99) or the SVNF vs. the SVHF groups (p = 0.15); however, the SVNF patients were
significantly younger than the BVNF cohort (p = 0.02).

Table 1. Patient characteristics.

Age
(years) Sex PDE3i PDE5i Non-PDEi

Inotrope Digoxin ACEi β-Blocker Diuretic Last Surgical
Palliation

Indication for
Blood Draw

Biventricular Non-Failing Control Subjects (BVNF)

5.4 M N N N N N N N - control
4.1 M N N N N N N N - control
5.6 F N N N N N N N - control
4.1 M N N N N N N N - control
12.6 M N N N N N N N - control

Non-Failing Single Ventricle Subjects (SVNF)

1.8 F N N N N N N N Glenn/Hemi-Fontan SVNF
0.011 F N N N N N N N Norwood SVNF
0.3 M N N N N N N N Norwood SVNF
2.9 F N N N N N N Y Glenn SVNF
0.6 M N N N Y N N Y Norwood SVNF

Failing Single Ventricle Subjects (SVHF)

3.85 F Y Y Y Y Y N Y Fontan SV Systolic HF
0.99 F Y N N Y Y N Y Norwood SV Systolic HF
12.26 M N N N Y Y N N Glenn/Hemi-Fontan SV Systolic HF
2.84 F Y N N Y Y N Y Glenn SV Systolic HF
14.8 M N Y N Y Y N Y Fontan SV Systolic HF

PDEi, phosphodiesterase inhibitors; ACEi, Angiotensin-converting-enzyme inhibitors; M, male; F, female; N, no;
Y, yes.

3.2. Metabolomic Profiling of Serum Circulating Factors Identified Dysregulated Amino Acid
Metabolism in SVNF Subjects

The metabolomic analysis on serum from BVNF controls and from SVNF patients
identified 196 metabolites in total (Supplementary Table S1). The unsupervised principal
component analysis (PCA) and hierarchical clustering segregated the BVNF and SVNF
groups based on all circulating metabolites (Figure 1A,D). Among these 196 metabolites,
16 were significantly differentially expressed between BVNF and SVNF serum samples
(p < 0.05) (Figure 1B,C). Of the 16 differentially expressed metabolites, 10 were significantly
downregulated and 6 were significantly upregulated (Figure 1C,D).

We next sought to determine the specific metabolomic pathways altered between
BVNF and SVNF serum samples. The 16 significantly dysregulated metabolites are listed in
Table 2, classified by the implicated pathway. We observed a total of 12 metabolic pathways
significantly altered between BVNF and SVNF sera (Figure 2A and Table 2). The most
prominent differences were found in the pathways involved in riboflavin metabolism
(Figure 2B), arginine and proline metabolism (Figure 2C) and phenylalanine metabolism
(Figure 2D). Together, these results indicate that SVNF subjects displayed altered circulating
levels of amino acid and vitamin B2 metabolites compared to BVNF controls.
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5) serum samples. Each sample is represented by a single column. The higher the intensity of the 
red color, the higher the abundance of the metabolite. 
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Figure 1. Serum metabolite profiling identified significant changes in non-failing SV subjects. (A) Prin-
cipal component analysis of all identified metabolites segregated BVNF (n = 5) and SVNF (n = 5)
serum samples. (B) Volcano plot representation of all the 196 metabolites detected by mass spectrom-
etry as the log2 fold-change in expression (x-axis) and the log odds of a gene being differentially
expressed (y-axis), highlighting the 16 metabolites that were significantly differentially expressed
between BVNF and SVNF sera (above dotted line). (C) Significant and non-significant changes in
serum metabolite expression in SVNF vs. BVNF. (D) Heatmap of the 16 significantly differentially
expressed metabolites. Unsupervised hierarchical clustering separated BVNF (n = 5) and SVNF
(n = 5) serum samples. Each sample is represented by a single column. The higher the intensity of the
red color, the higher the abundance of the metabolite.
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Table 2. List of all differentially expressed metabolites in BVNF versus SVNF sera, classified by each
implicated pathway.

Metabolite Fold Change p-Value

Alcohols and polyols
Inositol 1-2-3-5-6-pentakisphosphate −1.749 0.026

Amino acids
arginine −1.677 0.002

5-Aminopentanoate −1.802 0.002
phenylalanine −2.053 0.025

Aminosugars
N-Acetylneuraminate 2.135 0.015

Arginine and proline metabolism
4-Acetamidobutanoate 2.009 0.023

Carbohydrates and carbohydrate conjugates
Ferric gluconate −17.737 0.000

Carnitine and fatty acid metabolism
Carnitine −1.373 0.031

Essential fatty acids
Docosapentaenoic acid −2.455 0.014

GSH homeostasis
S-Glutathionycysteine −2.463 0.022

Organosulfur compounds
Diallyl sulfide −1.432 0.049

Panthothenate metabolism
Pantothenol 4.590 0.022

Phosphates
Phosphate 1.585 0.014

Pteridines and derivatives
Riboflavin 4.032 0.047

Serine biosynthesis and one-carbon metabolism
Dimethylglycine −2.004 0.037

TCA cycle
Succinate 2.590 0.033

3.3. Metabolomic Profiling of Serum Circulating Factors Identified Dysregulated Amino Acid,
Pyruvate and Antioxidant Metabolism in SVHF Subjects

Next, we compared serum metabolomic profiles from BVNF controls and SVHF sub-
jects. We identified 196 metabolites in total (Supplementary Table S2). The unsupervised
principal component analysis (PCA) and hierarchical clustering segregated the BVNF and
SVHF groups based on all circulating metabolites (Figure 3A,D). Among these 196 metabo-
lites, 34 were significantly differentially expressed between BVNF and SVHF serum samples
(p < 0.05) (Figure 3B,C). Of the 34 differentially expressed metabolites, 9 were significantly
downregulated and 25 were significantly upregulated (Figure 3C,D).
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Figure 2. Primary affected metabolic pathways identified in SVNF serum samples. (A) The x-axis
and size of circles represent impact of differential metabolites within the pathway. The y-axis
and color of circles represent statistical significance of the overall metabolic changes within the
pathway. (B–D) Schematic representation of the top three dysregulated pathways between BVNF
and SVNF serum samples. (B) Riboflavin metabolic pathway. (C) Arginine and proline metabolic
pathway. (D) Phenylalanine metabolic pathway. Metabolites highlighted in red boxes are among the
16 metabolites differentially expressed between BVNF and SVNF serum samples.
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The 34 significantly dysregulated metabolites are listed in Table 3, classified by their 
respective implicated pathway. Further, we conducted a pathway analysis on the signifi-
cantly differentially expressed metabolites and observed a total of 18 metabolic pathways 
significantly altered in SVHF serum (Figure 4A and Table 3). The most prominent differ-
ences were found in the pathways involved in antioxidant defense (glutathione 

Figure 3. SVHF serum elicited significant metabolite changes compared to BVNF serum. (A) Dendro-
gram of metabolites separated between BVNF (n = 5) and SVNF (n = 5) serum samples. (B) Volcano
plot representation of all the 196 metabolites detected by mass spectrometry as the log2 fold-changes
in expression (x-axis) and the log odds of a gene being differentially expressed (y-axis), highlighting
the 34 metabolites that were significantly differentially expressed between BVNF versus SVHF sera
(above dotted line). (C) Significant and non-significant changes in serum metabolite expression in
SVHF vs. BVNF. (D) Heat map of the 34 significant metabolites. Unsupervised hierarchical clustering
separated BVNF (n = 5) and SVHF (n = 5) serum samples. Each sample is represented by a single
column. The higher the intensity of the red color, the higher the abundance of the metabolite.

The 34 significantly dysregulated metabolites are listed in Table 3, classified by their re-
spective implicated pathway. Further, we conducted a pathway analysis on the significantly
differentially expressed metabolites and observed a total of 18 metabolic pathways signifi-
cantly altered in SVHF serum (Figure 4A and Table 3). The most prominent differences were
found in the pathways involved in antioxidant defense (glutathione metabolism; Figure 4B),
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arginine and proline metabolism (Figure 4D) and pyruvate metabolism (Figure 4C). To-
gether, these results indicate that the metabolite composition of SVHF serum differs from
the circulating metabolite profile of SVNF patients. While amino acid metabolism was com-
monly dysregulated in all SV subjects, SVHF subjects displayed altered circulating levels
of energetic metabolites (e.g., pyruvate, lactate) and dysregulated glutathione metabolism
(e.g., glutathione dysulfide, 5-oxoproline), suggesting metabolically distinct profiles be-
tween SVNF and SVHF circulating metabolites.

Table 3. List of all differentially expressed metabolites in BVNF versus SVHF sera, classified by each
implicated pathway.

Metabolite Fold Change p-Value

Amino acids
arginine −5.000 0.000

N-Acetycitrulline −1.510 0.006
2′-3′-Cyclic CMP −1.656 0.007

glutamate 7.232 0.008
2S-5S-Methionine sulfoximine 14.341 0.019

1-Pyrroline-3-hydroxy-5-carboxylate 2.927 0.020

Arginine and proline metabolism
4-Acetamidobutanoate 1.925 0.002

Azoles
(S)(+)-Allantoin 1.850 0.034

Carbohydrates and carbohydrate conjugates
Ferric gluconate −6.264 0.001

Carnitine and fatty acid metabolism
butanoycarnitine 3.836 0.043

Palmitoylcarnitine 2.060 0.044
O-dodecanoycarnitine 5.895 0.047

Carnitine 1.963 0.050

Coumarins and derivatives
Triacanthine 1.884 0.030

Essential fatty acids
(5Z-8Z-11Z-14Z-17Z)-Icosapentaenoic acid −2.378 0.040

Glycerophospholipid biosynthesis
Choline 2.072 0.006

Ethanolamine phosphate 1.587 0.041

Glycolysis
Pyruvate 4.872 0.004
Lactate 4.311 0.012

GSH homeostasis
Ascorbate −51.419 0.011

5-Oxoproline 2.925 0.012

Indoles and derivatives
Indole-3-acetaldehyde −4.636 0.032

Indole-3-acetate 1.982 0.037

Nucleotides
GTP 4.337 0.005

Allantoate 3.513 0.027

Panthothenate metabolism
Pantetheine −5.727 0.050

Poly-unsaturated Fatty Acids
beta-D-Glucuronoside 2.764 0.018
Eicosapentaenoic acid −2.378 0.040
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Table 3. Cont.

Metabolite Fold Change p-Value

Pteridines and derivatives
Riboflavin 5.492 0.035

Pyrimidines and pyrimidine derivatives
6-Thioxanthine 5–monophosphate 4.433 0.034

Saturated Fatty acids
Hexanoic acid (caproate) 1.656 0.001
Octanoic acid (caprylate) 2.809 0.036

Sulfur metabolism
Taurine 1.859 0.026

Urea cycle
Ornithine 3.459 0.049

3.4. Metabolomic Profiling of Serum Circulating Factors Discriminated between SVNF and
SVHF Subjects

There were five significantly dysregulated metabolites between the SVNF and the
SVHF subjects, including ferric gluconate, arginine, acetamidobutanoate, carnitine and
riboflavin (Figure 5A,B), suggesting that these circulating metabolites are associated with
SV regardless of HF status. However, significantly increased levels of glutamate were seen
specifically in SVHF subjects and the level of glutamate correlated inversely with the level
of arginine; the levels appeared to be related to disease progression based on the clustering
of each group together on the correlation curve (Figure 5C).

3.5. Metabolomics Profiling as a Diagnostic, Prognostic, or Monitoring Tool

The potential use of serum circulating metabolites as sensitive and specific biomarkers
was evaluated by both multivariate exploratory receiver operating characteristic (ROC) anal-
yses and classical univariate ROC analyses. The multivariate ROC analysis demonstrated
the ability of metabolite panels to serve as potential diagnostic biomarkers
(Figures 6A and 7A). The ability to discriminate between controls and SVHF patients
is shown in Figure 6A–C. Using as little as 10 features, the area under the curve (AUC)
equals 0.99, suggesting an excellent ability of circulating metabolite panels to distinguish
BVNF from SVHF subjects (Figure 6A,C). The top 10 features based on frequency using this
model are shown in Figure 6D. Additionally, the multivariate ROC analysis demonstrated
the ability to discriminate between SVNF and SVHF subjects based on metabolite panels
(Figure 7A–C). Using between 15 and 50 features, AUC ≥ 0.8, suggesting an acceptable-to-
excellent ability of circulating metabolite panels to distinguish SVNF from SVHF subjects
(Figure 7A,C). The top 15 features based on frequency using this model with 50 features are
shown in Figure 7D.
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Figure 4. Primary affected metabolic pathways identified in SVHF serum samples. (A) The x-axis
and size of circles represent impact of differential metabolites within the pathway. The y-axis and
color of circles represent statistical significance of the overall metabolic changes within the pathway.
(B–D) Schematic representation of the top three dysregulated pathways between BVNF and SVHF
serum samples. (B) Glutathione metabolism pathway. (C) Pyruvate metabolic pathway. (D) Arginine
and proline metabolic pathway. Metabolites mentioned in red boxes are among the 34 metabolites
differentially expressed between BVNF and SVNF serum samples.
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of differentially expressed metabolites in each group. (B) Abundance of serum circulating arginine
and glutamate in BVNF, SVNF and SVHF subjects. For all groups, bar equals mean ± SEM; each
point represents individual patient values (n = 5 BVNF, n = 5 SVNF and n = 5 SVHF subjects);
p-values as indicated based on a one-way ANOVA (Welch’s) and Tukey’s multiple comparison test.
(C) Correlation analysis between circulating levels of glutamate and arginine for all groups; dotted
line is the 95% confidence interval; R2 and p-value as indicated based on goodness of fit (solid line,
R2) and simple linear regression (p-value).
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features, based on frequency, used for the predictive model (Model 2).
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The classical univariate ROC curve analysis demonstrated the ability of single, specific
circulating serum metabolites to serve as potential diagnostic biomarkers (Figure 8). The
most significant individual metabolites to discriminate between either BVNF and SVHF
or SVNF and SVHF groups were pyruvate, palmitoylcarnitine, 2-oxoglutarate and GTP,
suggesting that these metabolites may be valuable prognostic and/or monitoring tools in
the failing SV population.
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Figure 8. Univariate analysis-based diagnostic potential of individual metabolites to distinguish
BVNF from SVHF or SVNF from SVHF. (A–D) univariate ROC curves demonstrating the AUC and
95% confidence interval (CI) and bar graphs demonstrating metabolite abundance for each of the
top scoring specific metabolites. (A) Pyruvate. (B) Palmitoylcarnitine. (C) 2-Oxoglutarate. (D) GTP.
For all groups, bar equals mean ± SEM; each point represents individual patient values (n = 5 BVNF,
n = 5 SVNF and n = 5 SVHF subjects); p-values as indicated based on a one-way ANOVA (Welch’s)
and Tukey’s multiple comparison test.
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4. Discussion

There is a significant and growing body of literature where metabolomic analyses
have been performed in adult HF subjects [27–30]. To our knowledge, there exist only two
reports of metabolomic analyses of the myocardium of SV subjects, including one in adult
non-failing SV patients with a systemic LV [18,19] and one in young SVNF and SVHF pa-
tients with a systemic RV [20]. The lack of comprehensive studies evaluating metabolomic
changes in the pediatric SV heart leads to a major gap in knowledge related to the potential
use of specific metabolite changes that occur during the progression to HF in SV patients.
Moreover, it remains a significant challenge to predict which SV patients will develop clini-
cally significant HF and the prototypical established biomarkers of HF progression, such
as brain natriuretic peptide (BNP), are not consistent in the SV population. In this current
study, we performed a similar pilot study to O’Connell et al.’s, where we characterized
circulating metabolites associated with HF in young SV subjects and corroborated some of
the suggested potential metabolomic biomarkers of SV HF progression. Our metabolomic
analysis revealed that serum circulating metabolite profiles and pathways differentiated
SVHF subjects from BVNF subjects, as well as SVHF subjects from SVNF subjects, including
pathways related to specific amino acids, energetic intermediates and nucleotides.

Amino acids (AAs) are important as substrates for signaling molecules regulating
metabolism or protein synthesis, as well as a source of energy [31]. Alterations in the circu-
lating levels of AAs could be indicative of alterations in protein synthesis and degradation,
as well as altered amino acid catabolism. Studies of adult non-failing SV subjects [18,19]
and SVHF subjects [20] found decreased circulating (plasma) concentrations of asparagine,
histidine and threonine and an increase in glutamate compared with controls. Similar to
what has been seen in prior SV metabolomic studies, we identified significant alterations
in AA metabolism. Intriguingly, in our study, we observed a decrease in arginine and
phenylalanine. These AAs can be important sources of energy production, as they induce
fat catabolism and ketone body utilization [32]. Moreover, we observed that the inverse
relationship between arginine and glutamate, specifically, is highly correlated with the
progression of HF in SV, suggesting a potential role for these specific circulating AAs as
novel prognostic biomarkers of disease progression and response to therapy. Together,
these data also suggest that amino acid dysregulation in the setting of SV may be indicative
of a unique vulnerability of SV patients to metabolic changes and increased energetic
demand. In addition to their use as diagnostic tools, understanding the role of AAs in
cellular energetics in the SV population could lead to novel therapeutic interventions.

Oxidative phosphorylation is the primary metabolic pathway used for energy genera-
tion and requires the input of reducing equivalents from fatty acid beta-oxidation, pyruvate
oxidation and the tricarboxylic acid (TCA) cycle. Therefore, the integration of specific
metabolic pathways is important for necessary and sufficient ATP synthesis. Consistent
with the hypothesis that the SV heart is vulnerable to changes in myocardial energy supply
and demand, a number of circulating metabolites associated with energy metabolism was
significantly altered. Here, we show that both non-failing and failing SV subjects had
significantly altered levels of circulating carnitine (L-carnitine). Interestingly, we observed
a significant decrease in SVNF subjects and a significant increase in SVHF subjects rel-
ative to BVNF controls. Circulating palmitoylcarnitine (a long-chain acylcarnitine), on
the other hand, was significantly elevated specifically in SVHF subjects. Previous studies
have demonstrated that a worse New York Heart Association class was associated with
elevated plasma palmitoylcarnitine levels in the setting of pulmonary hypertension and
RV dysfunction [33]. These data further suggest the failing SV heart is typified by signifi-
cant alterations in energy metabolism, which may serve as both a biomarker panel of HF
progression and as a novel target of therapy. Moreover, pyruvate is an integral metabolite
critical for a number of various metabolic functions. Pyruvate, for example, is the end
product of glycolysis, is derived from several additional sources in cells and is ultimately
destined for transport into the mitochondria, where it is the master fuel source supporting
the TCA cycle flux [34]. Thus, disruptions in pyruvate metabolism can be related to disease
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progression, particularly in tissues with a high energetic demand. Here, we demonstrate
that significantly elevated levels of circulating pyruvate were associated with SVHF, which
may be indicative of greater mitochondrial metabolic perturbations in this population.
Intriguingly, recent evidence hypothesized that pyruvate could be a potential therapeutic
candidate (reviewed in [35]). Moreover, it has been previously demonstrated that increased
serum 2-oxoglutarate was associated with high myocardial energy expenditure and poor
prognosis in adult chronic heart failure patients [36]. Therefore, 2-oxoglutarate may serve
as a valuable biomarker of dwindling myocardial energy supply and can reflect clinical
severity and outcomes of both adult biventricular HF patients and in SVHF patients.

Study Limitations

It is important to note that this is a small-scale pilot study consisting of a total of
15 pediatric subjects (5 in each group). SV is a relatively rare disease; therefore, access to a
homogenous age- and sex-matched pediatric study population can be difficult. Moreover,
because of the relative rarity of SV, it is not possible for us to determine the influence
of age, prior surgical procedures, duration of HF, degree of cyanosis, gestational age,
current diet, or the role of specific medications in this study. Nevertheless, even in this
small-scale metabolomics study, we address an important gap in knowledge, providing
additional insight into the potential use of metabolomic panels and specific metabolites
as diagnostic, prognostic, or monitoring tools in a population with few other options.
Further, we corroborate the few global metabolomic studies that do exist in the SV pop-
ulation. Metabolomic profiling in SV patients deserves further study given the absence
of evidence-based biomarkers in this growing population. Additional and larger studies
would be necessary to further validate the use of specific metabolite panels as biomarkers
in this population.

5. Conclusions

In summary, an unbiased metabolomic analysis suggests that the serum circulating
metabolite milieu in SV patients varies depending on the presence of HF symptoms. The
healthy and failing SV circulating metabolomes were typified by alterations in amino
acid metabolism, while the failing SV circulating metabolome was further characterized
by alterations in specific energetic-related metabolites. We specifically identified pyru-
vate, palmitoylcarnitine, 2-oxoglutarate and GTP as promising circulating biomarkers that
could be used for SV risk stratification, to monitor response to therapy and even as novel
therapeutic targets.
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