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Abstract: While conventional physical maps helped build most of the reference genomes we use today,
generating the maps was prohibitively expensive, and the technology was abandoned in favor of
whole-genome shotgun sequencing (WGS). However, genome assemblies generated using WGS data
are often less contiguous. We introduce Physlr, a tool that leverages long-range information provided
by some WGS technologies to construct next-generation physical maps. These maps have many
potential applications in genome assembly and analysis, including, but not limited to, scaffolding. In
this study, using experimental linked-read datasets from two humans, we used Physlr to construct
chromosome-scale physical maps (NGA50s of 52 Mbp and 70 Mbp). We also demonstrated how these
physical maps can help scaffold human genome assemblies generated using various sequencing
technologies and assembly tools. Across all experiments, Physlr substantially improved the contiguity
of baseline assemblies over state-of-the-art linked-read scaffolders.

Keywords: genome assembly; scaffolding; linked reads; barcode reuse; physical maps; sequenc-
ing technologies

1. Introduction

A genome contains genetic instructions for the development, functioning, growth,
and reproduction of any known living organism (or virus). Thus, a primary step for many
bioinformatics studies is to determine the order of nucleotides in the genome. Despite the
rapid technological advances of the past few years, sequencing instruments can generate
comparatively short sequence readouts (sequencing reads) redundantly sampled from
long target molecules. De novo genome assembly aims to reconstruct the entire genome
sequence from overlapping sequencing reads and enable a wide range of downstream
studies [1–3].

In the Sanger sequencing era, hierarchical shotgun sequencing was the dominant
approach for de novo sequencing and assembly of large genomes (Figure 1a). In this
approach, following the initial preparation of large-insert clones, an engineered collection
of restriction enzymes was used to cut these molecules into sequence fragments, generating
unique fingerprints for each. After measuring these fingerprints by gel electrophoresis,
overlaps between molecules were assessed, and a physical map of molecules was created.
The resulting map helped distribute the sequencing process and enabled the independent
assembly of each molecule. The structure of the physical map then guided the scaffolding
of the individually assembled pieces. Due to the use of clones in conventional physical
maps, this approach is also known as clone-by-clone or map-based sequencing [4–6].
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Figure 1. Genome sequencing and assembly paradigms. (a) Hierarchical shotgun sequencing uses
physical maps to independently sequence and assemble selected clones and scaffold those assemblies
to reconstruct the underlying genome. (b) Whole-genome shotgun sequencing involves a fast
and automated library preparation of DNA fragments (molecules) followed by high-throughput
sequencing. Physlr introduces next-generation physical maps to this domain and constructs a map
of molecules using reads. The resulting map enables various genomic data analyses, including
scaffolding of draft assemblies.

At the turn of the century, this approach facilitated the production of high-quality
reference genomes for several model organisms [7–10], enabling a broad range of studies
across multiple fields [11,12]. However, this method was labor-intensive, tedious, costly,
and time-consuming (13 years for the Human Genome Project [13]). Even in the earlier
days of the genomics era, to obtain more affordable human genome assemblies, Venter
and colleagues [14] employed whole-genome shotgun sequencing (WGS) [15]. WGS shears
the entire genome randomly and combines all the resulting DNA fragments (unordered)
for sequencing and assembly (Figure 1b top portion, excluding the Physlr insert). At
the crossroad of genome mapping and sequencing technologies, some bioinformatics
methodologies combined WGS and the long-range information provided by physical maps
to improve the contiguity of WGS genome assemblies at run time [16].

In line with the community’s demand for affordable technologies [17], WGS on high-
throughput sequencing platforms gradually replaced hierarchical sequencing [18]. While
this resulted in rapid growth in de novo sequencing studies, the resulting assemblies were
often highly fragmented. To compensate, a diverse range of sequencing technologies have
emerged to provide long-range genomics context to genome assemblies, including optical
maps [19,20], jumping (mate-pair) sequencing libraries [21], synthetic long reads [22],
linked reads [23], long reads [24], and genetic maps [25]. However, not all current pipelines
routinely achieve high contiguity [26,27].

This study focuses on leveraging the information content of linked reads for de novo
assembly. Linked-read sequencing improves upon short-read sequencing, tagging each
short read with a barcode identifier (Supplementary Figure S1). This barcode is identical for
all reads originating from the same long molecule (~100 kb), indicating that they come from
the same neighborhood in the genome. However, reads from multiple molecules may share
the same barcode (barcode reuse) and complicate downstream analyses. Another challenge
arises from the fact that molecules are typically sequenced partially (sub-1× coverage).
Therefore, the sequence of a single molecule cannot be reconstructed independently. It is
feasible, however, to decipher its underlying sequence with redundant molecule sampling.
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The error rate of linked reads is much lower than that of long sequencing reads and
linked-read molecules tend to span longer regions.

While an early implementation of the linked-read paradigm developed by 10x Ge-
nomics (10xG) has been discontinued, more recent developments by MGI (MGIEasy
stLFR [28]) and Universal Sequencing (TELL-Seq [29]) continue to offer great potential for
de novo sequencing projects. However, we note that barcode reuse remains a challenge for
all these platforms, albeit to varying degrees.

On the 31st anniversary of the Human Genome Project [10], we revisited the concept
of physical maps employed in that project. We introduce Physlr, a next-generation physical
mapping tool using whole-genome sequencing reads (Figure 1b, Physlr insert). Physlr uses
the long-range information provided by linked reads to infer a chromosome-scale physical
map represented by an overlap graph of the sequenced molecules. This physical map can
be used in downstream applications, such as genome assembly/scaffolding, misassembly
correction, structural variant detection, and haplotype phasing. Here, we demonstrate how
physical maps can be used to generate more contiguous assemblies compared with those
produced by the current state-of-the-art linked-read scaffolding tools.

2. Materials and Methods
2.1. Overview of the Pipeline

Physlr runs in two stages: (a) constructing a de novo physical map of DNA fragments
(molecules) from which linked reads are generated, and (b) scaffolding a draft genome
assembly using the physical map (Figure 2a). It accepts linked reads and a draft assembly
(from any sequencing technology) as input to its first and second stage, respectively.

Figure 2. Physlr pipeline. (a) Two stages of the Physlr workflow. (b–d) Physlr subgraphs/graphs
before (b/d) and after (c/e) deconvoluting molecules (NA24143 stLFR data); colors code the chro-
mosomes to which the elements best map. (b) Neighborhood subgraph (distance = 3) of a reused
barcode (central grey node, barcode 917_1405_905) connecting four distinct communities, indicating
that at least four molecules share this barcode. Other reused barcodes in each community also connect
communities from other genomic loci. (c) The neighborhood of the same barcode’s molecules post-
Physlr, deconvoluted into distinct linear graphs. (d) Genome-wide barcode overlap graph. (e) Long
linear graphs after deconvolution (one or a few per chromosome), confirming a chromosome-scale
physical map.
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In the first stage, Physlr builds a molecule overlap graph. However, linked reads
provide information about barcodes rather than molecules. Thus, Physlr first constructs a
barcode overlap graph, where a vertex represents a barcode and a weighted edge represents
sequence similarity between the reads of the two barcodes (weight being the number of
shared minimizers). The topology of communities (sets of vertices densely connected
internally and loosely connected externally) around each vertex harbors information about
the molecules associated with a given barcode (Figure 2b). We employ a novel algorithm
to detect communities and transform the barcode overlap graph into a molecule overlap
graph. Next, a representative path, a physical map akin to a golden path used in the Human
Genome Project [4,10], is computed and outputted. In the second stage, Physlr uses the
physical map to order and orient contigs of the input draft assembly into scaffolds.

2.2. Physlr Implementation, Stage 1: Constructing Physical Maps

In generating physical maps, Physlr transforms linked reads to a barcode graph, then
to a molecule graph, and finally to the output physical map (Figure 2a). To mask repetitive
sequences efficiently, Physlr first uses ntCard [30] to estimate the cardinality of k-mers
(subsequences of length k) of the input data and ntHits [31] to generate a Bloom filter of
repetitive k-mers. Subsequently, it generates k-mer minimizer sketches from the reads [32],
avoiding minimizers from repeat k-mers found in the ntHits Bloom filter (Figure 2a, index-
lr). Accordingly, each barcode is associated with a bag of k-mer minimizers derived from
reads of that barcode.

Physlr then constructs a barcode overlap graph wherein vertices represent barcodes
and edges connect barcodes sharing a minimum number of minimizers. In an ideal
scenario without barcode reuse or repeats, we expect this graph to be composed of multiple
connected components, one per chromosome (Figure 2e). We also expect each component
to be a long linear graph, or, in graph theory terminology, a graph with a small radius and
a large diameter, the former scaling with the average number of molecules covering each
base position on the target genome, and the latter scaling with the chromosome length
(Figure 2, panels c and e). However, in reality, the graph is more complex due to each set of
molecules sharing the same barcode being collapsed into a single vertex (Figure 2, panels b
and d).

To transform the barcode graph into a molecule graph, Physlr iterates over all vertices
and extracts a neighborhood subgraph for each barcode (Figure 2b). Molecules associated
with each barcode originate from independent genomic loci and overlap with different sets
of barcodes, thereby creating new communities for the subgraph. Physlr deconvolutes each
barcode into molecules using a novel community detection algorithm.

In summary, we randomly split the neighborhood subgraph of a barcode into bins
(Supplementary Figure S2). For each bin, we detect biconnected components, and for each
component, we calculate the cosine similarity between pairs of vertices. Edges connecting
less similar vertices are removed, and connected components of the subgraph are returned
as a community. To avoid over-splitting, we compare these communities and merge them
if they share enough edges. The algorithm is discussed in further detail in Section 3.

A small fraction of reused barcodes may remain unresolved. Because we expect a small
radius and large diameter for molecule overlap graphs, in a given maximum spanning
tree (MST) of such graphs, every vertex can possess many short branches and at most
two arms (long branches). However, unresolved barcodes convolute the graph, which
manifest as vertices with more than two arms in the MST. Physlr employs a linear-time
belief propagation algorithm [33] to inform all vertices in the MST on how many arms
they possess.
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In general, for a vertex-edge pair u and (u, v) in a given tree, this algorithm calculates
a belief b{u,(u,v)} = f

(
b{u}, b{u,(u,w)} f or all w 6= u

)
where, for a specific problem, b{u}

is a defined property of the vertex u, and f () is a function. The algorithm starts from
leaves in the tree and calculates a belief b{u,(u,v)} only when all beliefs required for the
calculation are given; then, it passes the belief to vertex v through edge (u, v). As a result,
all beliefs are calculated and propagated by passing two messages (beliefs) through each
edge of the tree. As the number of edges in a tree is in the same order as the number
of vertices, this algorithm runs in linear-time complexity. In our case, b{u} = 1 and
b{u,(u,v)} = b{u} + ∑all w 6= u b{u,(u,w)}.

After informing vertices about the size of their branches, Physlr flags those with more
than two arms as junctions. As they form only a small fraction of barcodes (hundreds out
of millions), Physlr reassesses them for community detection with increased sensitivity
without heavy computational cost. If unresolved barcodes remain, Physlr removes them
from the map. Finally, Physlr calculates an MST of the molecule graph as a representative
path (physical map or backbone). This backbone is comprised of ordered lists of molecules,
each containing a set of minimizers.

2.3. Physlr Implementation, Stage 2: Scaffolding Draft Assemblies

In the second stage, input draft assemblies are scaffolded using a minimizer-based
mapping to the backbone. Because minimizers still associate with barcodes rather than
backbone molecules, Physlr assigns barcode minimizers to their associated molecules by
selecting the common minimizers shared with neighboring molecules in the molecule
graph. We then map the input assembly to the backbone by comparing the minimizers of
each sequence to the molecule-assigned minimizers of each molecule.

Finally, we employ ARCS (in ARKS mode) [34,35] to order and orient the input
assembly contigs relative to the backbone. ARCS orients scaffold targets by tallying the
number of barcodes that share k-mers with both contig ends for each scaffold orientation
(head-head, head-tail, tail-head, and tail-tail) and selecting the orientation with the highest
number of supporting barcodes. Physlr also extracts distance estimations between scaffold
targets calculated by ARCS to report the number of undetermined bases in scaffold gaps.

2.4. Evaluations

We ran Physlr with stLFR sequencing data from two human (Homo sapiens) cell lines,
NA12878 and NA24143. Reads were downloaded from Genome in a Bottle (Supplementary
Table S1) and were reformatted to include barcodes in their headers (standard 10xG linked-
read format using BX:Z tag). Physlr provides default parameter settings for various linked-
read technologies with the “protocol” option, which controls percent edges (of lower-edge
weights) removed from the barcode overlap graph. For the test runs, we set protocol = stlfr
(removes 15% of weak overlaps) and used 48 threads.

Physlr builds physical maps de novo but can accept a reference genome to map the
minimizers associated with molecules and calculate the length of its physical map in
base-pair coordinates for evaluation purposes. This calibration enabled the generation of
ideograms (Figure 3) and calculation of NG50 values (maximum length that at least 50% of
the target assembly length is in pieces at least this length). In our tests, we used the human
genome build GRCh38 (excluding chromosome Y because both cell lines originated from
female individuals) as the reference.
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Figure 3. Physlr physical maps for a human genome (NA24143) mapped against the reference. Each
reference chromosome is a horizontal line ending in a small black square with a chromosome number
on the left. Each grey bar shows the mapping of a backbone piece, with alternating shades marking
the start of a new piece. Chromosomes 6, 13, 14, 15, and 22 are spanned by a single backbone, each
covering almost the entire chromosome.

We benchmarked Physlr against ARCS (setting the –arks option) and SLR-Superscaffolder
(SLR-SS) [36], two state-of-the-art linked-read scaffolding tools. Genomes of the two
cell lines (NA12878 and NA24143) were sequenced using four technologies: MGI stLFR,
Illumina paired-end and mate-pair (PE+MPET), Oxford Nanopore Technology (ONT), and
Pacific Biosciences (PacBio) (Supplementary Table S1). We assembled the stLFR data (same
data as in the first stage of Physlr) using Supernova [37] and the PE+MPET data using
ABySS 2 [38]. We used Shasta [39] assemblies of the ONT data and Falcon [40] assemblies
of the PacBio data, available from Genome in a Bottle (GIAB). We used QUAST [41]
to calculate quality metrics for the genome assemblies, from which we visualized the
number of misassemblies against the NGA50-NG50 range (NGA50: similar to NG50,
but considers alignment blocks instead of contig lengths) as proxies to correctness and
contiguity, respectively (showcased in Figure 4). We used GRCh38 as a reference for QUAST;
thus, some reported misassemblies were likely genome-specific structural variants for given
individuals. More information about assemblies, software versions, and parameters are
provided in Supplementary Tables S2–S4.

Genome assembly consistency (Jupiter) plots [42], based on Circos [43], enable a visual
evaluation of genome assemblies. The tool plots a draft assembly against a reference
assembly on a circle circumference and connects aligned blocks with ribbons. A high-
quality assembly results in well-ordered and well-oriented syntenic blocks, while large-
scale misassemblies are apparent as crossing ribbons. Figure 5 shows a set of Jupiter plots
for the NA12878 assemblies. Here, for each assembly, we calculated the N75 (maximum
length that at least 75% of the total assembly length is in pieces at least this length) and
L75 (number of scaffolds with length at least N75). Next, for each ternary comparison
(each row in Figure 5 comparing baseline, ARCS, and Physlr), we found the minimum of
L75s, min-L75, and we plotted only the top min-L75 longest scaffolds for all. For example,
Physlr minimized the L75 of all assemblies for the ONT (third row) at 37—hence, the
37 longest scaffolds for all ONT experiments were shown. In other words, we plotted
the same number of longest pieces for all assemblies in comparison, and thus a higher
proportion of the circle is covered with ribbons for an assembly with higher N75. In the
middle of each plot, we also show the percentage of the genome covered by the plotted
pieces. As a result, one can quickly compare the assemblies by considering (a) the ribbon
coverage, (b) the size of assembly pieces on the right side, and (c) the extent of crossing
ribbons (misassemblies) for each circle.
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Figure 4. Assembly quality metrics for scaffolding eight human assemblies. Each pair of horizontal
lines connected vertically shows a range for NGA50-NG50 of an assembly. Each column corre-
sponds to a sequencing technology (and genome assembly tool, indicated in parentheses) used to
generate the baseline assembly, and each row corresponds to a human individual. For each ex-
periment, we evaluated a baseline assembly against scaffolding outputs of Physlr, ARCS [34], and
SLR-Superscaffolder [36]. (MPET: Illumina mate-pair).
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Figure 5. Jupiter plot visualizations for NA12878 assemblies against reference. Each row contains
various assemblies (baseline, ARCS [34], and Physlr) for a specific technology and illustrates only a
certain number of top largest scaffolds: minimum L75 (min L75) of assemblies in the row (labelled
under Physlr, which had the minimum L75 for each row). Physlr consistently presented larger pieces
and higher ribbon coverage while keeping crossing ribbons at a low rate. We show ribbon coverage
(the percentage of reference covered with min L75 scaffold sequences) in the middle of each plot.
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3. Results
3.1. Constructing Physical Maps

We generated physical maps for two human cell lines using stLFR linked reads
(Section 2.4. Evaluations). A physical map of molecules comprises multiple connected
components—one per chromosome in the best-case scenario. In assessing the contiguity
of the maps, we found the minimum number of graph components that contained at
least 75% of the vertices (molecules) were 32 and 44 for NA12878 and NA24143, respec-
tively. This suggests that, at this length cutoff, Physlr produced nearly two components
per chromosome, on average. Next, we converted the coordinates to base pairs and cal-
culated the NGA50 values of the maps as 52.4 Mbp and 70.49 Mbp for NA12878 and
NA24143, respectively.

As seen in the ideograms generated from the NA24143 physical map (Figure 3), five
chromosomes were covered by a single piece, with the physical maps spanning over
centromeres for chromosomes 6 and 19. Nine other chromosomes were covered with
two backbone pieces each (one backbone per chromosome arm). The most fragmented
chromosome was chromosome 5, covered with five backbone pieces. Similar results were
observed for the physical map for NA12878, as shown in Supplementary Figure S3.

To demonstrate that Physlr is robust to changes in the linked-read technology, we also
built physical maps using 10xG Chromium data for NA24143. The resulting physical map
had an estimated NGA50 of over 70 Mbp (Supplementary Results).

3.2. Scaffolding Draft Assemblies

We evaluated the potential value of physical maps generated by Physlr in scaffolding
draft assemblies (Section 2.4. Evaluations). Physlr increased the NG50 and NGA50 across
all experiments (Figure 4). For example, it improved the NG50 and NGA50 values of two
short-read assemblies (PE+MPET) by over 45-fold and 12-fold, respectively, and increased
the number of misassemblies by less than 1-fold on average. In another example, Physlr
improved a long-read (ONT) assembly of NA12878: 7.9/2.8 -fold change (54.4/17.3 Mbp)
in NG/NGA50 with less than 0.3-fold increase in misassemblies. For the same experiment,
Physlr outperformed ARCS with a 2.1/1.2-fold change in NG/NGA50 values.

Overall, Physlr-scaffolded assemblies reached NGA50s of up to 21.7 Mbp and 22.3 Mbp
for NA12878 and NA24143, respectively. The NG50 improved consistently for all Physlr
assemblies and ranged between 54–60 Mbp, and 78–80 Mbp, respectively. However, the
NG50s of ARCS and SLR-SS scaffolded assemblies varied in wider ranges for different
technologies. While Physlr improved the contiguity of assemblies over other tools, the
number of misassemblies was either lower or marginally higher in respect to the substantial
increase in the contiguity. All tools only slightly enhanced the NGA50 of the Supernova
baseline assemblies; these baseline assemblies contained more errors compared to other
baseline assemblies.

To better visualize the metrics in Figure 4 for the NA12878 assemblies, we generated
Jupiter plots (Figure 5). Each row shows a baseline assembly, its scaffolding with Physlr, and
its scaffolding with ARCS. For all rows, Physlr achieved the lowest L75s, maximized the
ribbon coverage, contributed larger contigs, and produced only a few inconsistent ribbons,
all of which suggest a better performance as discussed above (Section 2.4. Evaluations).

We also successfully scaffolded the same set of baseline assemblies for NA24143 using
a physical map of 10x Genomics linked reads and presented outcomes in Supplementary
Results (Physlr for 10xG Chromium data) and Supplementary Table S6.

3.3. Deconvoluting Barcodes via Community Detection

Barcode reuse is a fundamental challenge for linked-read technologies. While all
other reference-free tools ignore barcode reuse (except for Minerva [44], only applicable
for metagenomics), Physlr uses long-range information aggregated in the graph to split
barcodes into molecules. Each vertex bi in the barcode graph comprises multiple hidden
molecules moli,1 to moli,M (Supplementary Figure S4). Each constituent molecule moli,m
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originates from a different region in the genome. Thus, each molecule tends to overlap
with a different set of molecules, all of which originate from the same genomic site. Conse-
quently, moli,m connects vertex bi to barcodes Ci,m, a set (community) of barcodes that are
highly connected internally because they contain molecules from the same genomic region.
In other words, Ci,m is a strong community of barcodes adjacent to bi through moli,1. Ulti-
mately, bi is connected to multiple communities Ci,1 to Ci,M, which are strongly connected
internally and weakly connected to one another, as each tends to originate from a different
region. Thus, we can deconvolute a barcode-vertex bi by detecting community patterns
(Ci,1 to Ci,M) in the neighborhood subgraph. Figure 2b illustrates one real-world example
of a barcode’s neighborhood in presence of barcode reuse; four distinct communities imply
the barcode contains at least four molecules.

Following this logic, Physlr iterates over all vertices and deconvolutes each barcode
into its constituent molecules one at a time (Supplementary Figure S5). To achieve this
deconvolution, we inspect each barcode’s neighborhood subgraph, the vertex-induced
subgraph of a barcode’s immediate neighbors. We expect this subgraph to contain multiple
communities, one per molecule (Figure 2b). Communities are detected (explained below),
and the focal barcode is split into multiple molecule vertices, one per community; we
connect each molecule-vertex to all vertices in its relative community.

Physlr detects communities in millions of subgraphs, each of which comprises hun-
dreds to thousands of vertices. Although community detection is a well-studied topic, cur-
rent state-of-the-art algorithms [45,46] failed to scale up for Physlr subgraphs
(Supplementary Table S8). Hence, we devised a novel algorithm for community detection.

First, we randomly split larger subgraphs into smaller (sub-)subgraphs (Supplemen-
tary Figure S2). Next, we detect biconnected components. For each component, we connect
every vertex to its second-order neighbors to increase communities’ interconnectivity, in-
creasing the signal-to-noise ratio. This is implemented by squaring the adjacency matrix.
We then calculate a 2-dimensional cosine similarity matrix CS of the adjacency matrix
(implemented in the same manner). The value of each element CSi,j reflects the extent of
shared neighbors between nodes i and j. We adopt a threshold to remove weak connections
and report connected components as subcommunities. Finally, we merge the resulting
subcommunities if the merging increases the modularity (measures the strength of division
of a network into modules) [47].

In summary, we use a divide and conquer approach: we divide the subgraphs, detect
the communities in each division, and re-join related communities. As a result, despite
processing millions of subgraphs, Physlr runs comparatively fast (Supplementary Figure S6
and Supplementary Tables S7 and S8).

Physlr also implements a divide-and-conquer version of other community detection
algorithms, including tri-connected components, k-clique percolation [45], and Louvain
community detection [46], and allows for a customized combination of all these choices in
an iterative manner. A performance comparison between some potential combinations is
provided in the Supplementary Results (Supplementary Table S8).

4. Discussion

Sequencing technologies are rapidly evolving, providing longer-range information.
However, it is not yet a routine task to achieve assemblies with contiguity comparable
to studies that benefit from the long-range information inherent in conventional physical
maps. We revived the concept and presented a tool, Physlr, that constructs next-generation
physical maps based on linked-read data. We showed that Physlr maps can almost cover
human chromosomes in 1–5 pieces (<2.5 pieces on average). Furthermore, we used these
generated physical maps to scaffold various draft human genomes assembled using four
different sequencing platforms, including short-, linked- and long-read technologies, and
showed substantial contiguity gains in each scenario. This suggests that Physlr can substan-
tially boost assembly projects with linked-read data. Physlr may also be used to improve
recently published linked-read genome assemblies [48–52] reusing the same data.
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While traditional maps were mainly used in genome assembly and scaffolding projects
(due to high mapping cost), their modern alternatives such as optical maps, long reads and,
more recently, linked reads are used in a broader range of applications: personal genome
assembly [53], structural variation and recombination detection [54–57], haplotyping as-
semblies and variants [23,58,59], assembly correction and evaluation [60,61], etc. In the
same manner, next-generation physical maps would be applicable to this analysis spectrum.
Physlr compiles long-range information from separated molecules into a unified physical
map, enabling “longer-range” more robust inference—as demonstrated for scaffolding.
Due to the high contiguity of Physlr physical maps, they have great potential to provide a
big picture of the genome structure and to serve various downstream genomic studies.

We based our work on linked reads since their molecules tend to span longer genomic
loci than long reads, and closer to molecules in conventional physical maps. Linked reads
are sequenced through short-read sequencing instruments and thus have a very low error
rate, which enables decent overlap detection in Physlr. As long-read technologies gradually
close in on short linked reads in terms of error-rate, cost, and especially molecule (fragment)
size, Physlr may be adapted to build a physical map of long reads.

The contiguity proxy NG50 can increase by solely introducing new misassemblies. To
validate that Physlr increases the contiguity, we also looked at NGA50 which considers
alignment blocks instead of contigs lengths and thus rules in the effect of misassemblies.
Additionally, Figure 5 visually confirms that the contiguity of Physlr scaffolds was not
due to large-scale misassemblies. Moreover, only a fraction of the joins that Physlr made
were flagged as QUAST misassemblies (some of which are likely individual-specific struc-
tural variants).

Physlr currently trusts the input assembly over its physical map where they contradict.
Thus, an initial assembly containing numerous misassemblies may restrain physical maps’
potential by preventing Physlr from correcting the assembly and making many potential
joins; in two of our experiments, Supernova generated numerous misassemblies in baseline
assemblies and Physlr (and other tools) increased the contiguity only slightly. Thus, in
devising an assembly pipeline, we suggest including an assembly correction tool like
Tigmint [61] prior to Physlr scaffolding. Sequencing technology-specific assemblers are
available to use upstream in the pipeline, as needed [37–39,62–64].

Physlr requires at least two physical map nodes (molecules) mapping to a contig of
the input assembly to anchor, orient, and scaffold the contig. Thus, we recommend that the
input assembly contains contigs larger than the size of one molecule (>100 kbp).

To the best of our knowledge, Physlr is the only scalable tool that can deconvolute
reused barcodes into their associated molecules de novo. For this purpose, we devised a
novel community detection algorithm based on a divide-and-conquer approach, cosine
similarity, and k-clique percolation, while its customizable pipeline works with other well-
known algorithms as well. The community detection algorithms’ performance heavily
relies on the topological nature of the network/graph [65]. Our algorithm outperformed
all others on our overlap graphs; thus, we promote it as a potential community detection
algorithm that would suit other studies.

5. Conclusions

With Physlr, we introduced next-generation physical maps based on linked reads and
demonstrated the potential of the physical maps to benefit genomic studies by showcasing
improvements in scaffolding genome assemblies. Physlr outperformed state-of-the-art
linked-read scaffolders and substantially increased the contiguity (both NG50 and NGA50,
for all eight human assemblies considered) while performing well in keeping misassemblies
comparatively low.

Physlr may be used to scaffold genome assemblies in linked-read or hybrid projects or
to generate physical maps and empower other downstream applications and studies.

Physlr is an open-source project and publicly available under GNU General Public
License v3.0 license at https://github.com/bcgsc/physlr (accessed on 6 June 2022).

https://github.com/bcgsc/physlr
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