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Abstract: Biochar applications to soils may enhance soil quality, hydrological properties, and agro-
nomic productivity. Modification of biochar by activation via introduction of heteroatoms at different
pyrolysis conditions can alter physical and chemical characteristics, which may enhance soil prop-
erties, although the extent of this is unknown. The objective of this study was to investigate the
impacts of pyrolysis temperature (400, 500, 600, and 700 ◦C) on activated (activated with methanesul-
fonic acid) and unactivated biochar produced from poultry litter to identify optimum production
conditions for end use as a soil amendment. Physical, chemical, and surface properties of biochars
were determined using wet chemistry and spectroscopic analyses. Results showed that activation
with methanesulfonic acid increased biochars’ oxygen content, while decreasing its point of zero
charge and electrical conductivity. Conversion of raw poultry litter to activated and unactivated
biochar increased concentration of P (3-fold), K (1.8-fold), Ca (3-fold), Mg (2.3-fold), and S (4.8-fold),
with concentrations increasing with increasing temperatures (p < 0.05) except for C and N. Activated
biochar had lower recovery of C and N, but greater water-holding capacity than unactivated biochar.
Concentrations of NH4-N, NO3-N, and water-soluble P were greater in unactivated biochar (p < 0.05).
Among all biochars, activated biochar produced at 400 ◦C had the lowest bulk density, total P, K, Ca,
and Mg, and greatest water-holding capacity, water-soluble P, Ca, and Mg concentrations, thereby
suggesting improved soil amendment characteristics and subsequent soil health under poultry litter
biochars produced under these conditions.

Keywords: activated biochar; biochar; heteroatoms; poultry litter; pyrolysis; soil amendment

1. Introduction

With the production of over 9 billion broilers annually [1], poultry farming in the U.S.
generates more than 14 billion kg of poultry litter (PL: combination of manure, bedding
material, and feed) each year [2]. Currently, most of the litter produced by the poultry
industry is surface-applied to agricultural lands as a fertilizer source [3]. Raw PL typically
consists of approximately 3% nitrogen (N) and phosphorus (P), and applications based
on N crop needs can often lead to excessive application of P. Consequently, during land
application, N and P losses may occur via volatilization of ammonia from the litter, as well
as through runoff and leaching to nearby water bodies, thus causing eutrophication [3–5].
Therefore, it is critical to devise environmentally and economically sustainable management
strategies for not only reducing the disposal and subsequent non-point source pollution of
this important nutrient source, but also valorizing PL for ensuring the sustainability of the
poultry industry.

Conversion of PL to poultry litter biochar (PLB) can serve both purposes of reducing
the environmental concerns associated with the disposal of raw PL by targeting its nutrient
composition (reducing soluble P and increasing N) and converting it into useful value-
added product for use as a soil amendment. Biochar is a carbon (C)-rich solid material
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obtained by pyrolysis, i.e., slow heating of biomass at relatively low temperatures (<700 ◦C)
with little or no oxygen [6]. The thermochemical process during pyrolysis results in the
formation of biochar consisting of a highly porous structure with large surface area enriched
with stable organic carbon (OC), and thus, this has potential to provide various environ-
mental and agronomic benefits [7,8]. Addition of biochar to soil reportedly enhances a
range of soil physical and hydraulic properties such as total porosity, pore-size distribution,
water-holding capacity (WHC), and hydraulic conductivity [9–12], and improves soil fertil-
ity [13] and nutrient retention, thereby reducing nutrient leaching to the environment [14].
Additionally, due to the presence of stable OC in biochar, once applied to soils biochar may
increase soil OC levels [11,15]. Owing to the high porosity, large specific surface area, high
C content, and its adsorption to metal and organic substances, biochar is also beneficial for
soil and water contaminant remediation [16,17].

The response of a soil to biochar application can vary with biochar properties [9,18],
which are controlled by both feedstock characteristics and the thermal–chemical process
employed during production [18–21]. Generally, pyrolysis at lower temperatures (250 to
400 ◦C) yields greater amounts of biochar with overall greater recovery of OC from the
feedstock [21], and high volatile matter content and more functional groups, which impart
higher negative surface charge favoring nutrient exchange and microbial activity [18].
With increasing temperatures and/or residence time (400 to 700 ◦C), the conversion of
aliphatic-C to condensed aromatic-C structures reduces ion exchange functional groups and
the total surface charge, which potentially limits its usefulness in retaining soil nutrients,
although this may increase its potential to sequester carbon due to recalcitrant nature of the
condensed aromatic-C [18]. Increasing production temperatures has also been reported to
decrease hydrophobicity of biochar and biochar amended soil, with simultaneous increases
in specific surface area and porosity, thus enhancing soil WHC [22,23]. While the properties
of a biochar vary with pyrolysis conditions, the effect of biochar on soil quality and soil
hydrology is equally dependent on soil properties [24–26]. This means that to receive
maximum benefits from biochar, biochar should be tailored for its use to address a specific
soil issue taking into account soil type, climate, and management goals [18,27].

Recent studies have shown that the physical and especially chemical properties of
biochars can be altered by introducing heteroatoms (i.e., non-carbon atoms such as N, P,
oxygen (O), and sulfur (S)) in the C ring structure [28–30]. The production of heteroatom-
enriched or activated biochar is gaining attention for the potential use as energy storage
materials [31,32] and metal-free catalysts [33] because of the positive effects of doping
heteroatoms in increasing total pore volume, micropore volume, and specific surface area
as compared to undoped biochar [33–35]. Doping of heteroatoms in the C structure of chars
is achieved either by (1) multistep procedures involving the production of chars, followed
by heteroatom incorporation with the use of heteroatom-containing precursors at high
temperatures, or (2) in situ doping in which feedstocks with high heteroatom contents are
used [28]. Gao et al. [36] demonstrated that heteroatom-enriched biochar (O, N, and S)
produced using raw materials rich in heteroatoms has the potential to produce value-added
biochar with reduced production costs. Considering that PL is chemically equipped with
significant amounts of N and P, enrichment of PL biochar with doped N and P may have the
potential to add economic and environmental value through its use as a soil amendment
and a slow-release fertilizer (or a fertilizer containing a plant nutrient in a form that delays
its availability), which has not been explored to date.

In order to valorize litter into high-value products via pyrolysis, evaluation of best
production conditions and subsequent properties of carbonized PL is necessary. Therefore,
the objective of this study was to evaluate physical and chemical properties of PLB doped
with N and P under different production regimes (pyrolysis temperature and activation).
Through this study we intend to identify optimal pyrolysis temperatures for converting PL
to PLB (unactivated and activated) for use as a soil amendment. We hypothesize that the
amount of N and P doped in the carbon ring structure of biochar depends on the pyrolysis
temperature and activation, which in turn affects the quality of biochar as a soil quality
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enhancer. Quantitative comparison of physical and chemical properties of PLB is essential
for soil amendment characterization.

2. Materials and Methods
2.1. Preparation of Biochar and Activated Biochar

Selected litter properties are presented in Supplementary Table S1. A schematic
representation of the production process of unactivated biochar (UB) and activated biochar
(AB) from PL is presented in Figure 1. Poultry litter was placed in a stainless-steel container
and pyrolyzed in a furnace with a constant N flow of 2 L/min. Unactivated biochar
was obtained by carbonizing PL at 400, 500, 600, and 700 ◦C for 3 h at a heating rate of
10 ◦C/min. All pyrolysis experiments were performed in a 1215 cm3 custom-built stainless-
steel reactor. Typically, a predetermined mass of litter (225–477 g) was loaded in the reactor
and the reactor was placed in the furnace to initiate pyrolysis. Nitrogen was allowed to
flow through the stainless-steel container even after carbonization was completed, until the
temperature decreased to 150 ◦C. Subsequently, biochar was weighed to determine yield
(described in Section 2.2).
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Figure 1. Production process of unactivated biochar (UB) and activated biochar (AB) at temperatures
between 400–700 ◦C from poultry litter for their characterization.

Using biochar obtained at each temperature, AB was obtained by mixing 10 g of UB
with 20 mL of methanesulfonic acid (CH4O3S) and heating the mixture in the furnace at
the same temperature used for UB production (i.e., 400, 500, 600, and 700 ◦C) for 1 h at
a heating rate of 10 ◦C/min using a N flow rate of 2 L/min. After cooling, the AB was
soaked overnight in excess water to remove unreacted acid. Subsequently, the AB was
filtered, dried overnight at 105 ◦C in an oven, and weighed to calculate yield. Triplicate
samples of UB and duplicate samples of AB were obtained for each production setting
(i.e., n = 12 for AB and n = 12 for UB samples). Homogeneous subsamples were obtained
for determination of physical, chemical, and surface characteristics.

2.2. Physical and Chemical Properties of Biochars

Biochar (activated and unactivated) yield was calculated as the mass of biochar gener-
ated from a unit of dry mass of PL. The pH and electrical conductivity (EC) were measured
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in a suspension of dry and ground biochar (<2 mm) and deionized water (1:10 w/v)
following 1 h equilibrium after vigorously stirring using a pH and EC meter [37].

Total C and N in the biochar were determined by combustion using a Vario Max CN
analyzer (Elementar Americas Inc, Mount Laurel, NJ, USA). Recovery of C and N in the
biochars was calculated as the product of biochar yield and the ratio of C (or N) content in
biochar to that in PL. Nitrate-nitrogen (NO3-N) and ammonium-nitrogen (NH4-N) were
determined by colorimetric analysis on 1:10 biochar/water extraction following filtration
through a 0.45 µm filter paper [37] on a Skalar San++ autoanalyzer (Skalar, Analytical B.V,
North Brabant, Netherlands). NO3-N was analyzed by the Cd-reduction method according
to American Public Health Association Method 418-F [38] and NH4-N was analyzed by
the salicylate-nitroprusside USEPA Method 351.2 [39]. Total metals (Al, As, Ca, Cd, Co,
Cr, Fe, K, Mg, Mn, Mo, Na, Ni, P, Pb, S, Se, Ti, and Zn) were determined by inductively
coupled optical emission spectroscopy (ICP-OES) on an Agilent 5110 ICP-OES (Agilent
Technologies, Santa Clara, CA, USA) after digesting oven dried-biochar samples with
HNO3 and H2O2 [40]. Water-soluble metals (Al, As, Ca, Cd, Co, Cr, Fe, K, Mg, Mn, Mo,
Na, Ni, P, Pb, S, Se, Ti, and Zn) were extracted using biochar and a 1:10 (biochar/water)
extraction ratio [37] and analyzed by ICP-OES.

Bulk density of biochars was determined as described by Lima and Marshall [41] by
filling a 10 mL tube with oven-dried sample, about 1 mL at a time, capping and tapping to a
constant (minimum) volume. The density (g cm−3) was calculated as the ratio of oven-dry
weight and volume of packed biochar.

Water-holding capacity is a measure of water retention by adhesion and cohesion
forces. The WHC was determined following the procedure by Ashworth et al. [7]. Ground
and sieved (<2-mm) biochar samples were mixed uniformly, placed in PVC collars (about
100 cm3) and saturated, following which they were placed in a pressure plate extractor
(Soilmoisture Equip. Corp., Santa Barbara, CA, USA) under a pressure of 33 kPa for 2 to
3 days until a constant moisture content was obtained. The amount of moisture retained at
33 kPa per unit dry weight of biochar provided its WHC (g g−1).

The persistence of hydrophobicity/water repellency of biochar was tested with a water
droplet penetration time (WDPT) test. WDPT is an easy and rapid means of determining
water repellency. This method includes measuring the time a droplet of water retains on the
surface of biochar, which depends on the degree of biochar hydrophobicity. Three drops
of deionized water droplet (~0.5 mL) from a pipet (from a height <10 mm) were added to
2 g of ground and homogenized biochar and the time of penetration was recorded, which
provided an indication of water repellency [42]. The biochars were categorized into five
degrees of hydrophobicity as hydrophilic, slightly hydrophobic, strongly hydrophobic, very
strongly hydrophobic, and extremely hydrophobic based on the water droplet penetration
time of ≤5, 5–60, 60–600, 600–3600, ≥3600 s, respectively, as defined by Bisdom et al. [43].

2.3. Biochar Surface Characteristics

Point of zero charge (PZC), pH at which the surface of a material acquires a net neutral
charge, was determined using a series of 50 mL 0.01 M NaCl solution calibrated in a
pH range of 4–13 (pHinitial) using either 0.1 M HCl or 0.1 M NaOH in which 0.15 g of
biochar was added. The solution was stirred for 48 h, filtered, and the pH of the filtrate
(pHinitial) was recorded. The change in pH of the filtrate (pHfinal–pHinital) was plotted
against pHfinal and the pH value corresponding to the intersection of the curve with the
line, pHinitial = pHfinal [43,44].

2.4. Surface Characterization of Unactivated Biochar (UB) and Activated Biochar (AB)

Surface chemical features of UB and AB were analyzed by a Bruker Platinum ATR
spectrometer (Bruker, Billerica, MA, USA). Briefly, biochar samples were placed in a sample
compartment and the infrared (IR) data were recorded for a range of 400–4500 cm−1. The
SPECS X-Ray Photoelectron Spectroscopy (XPS) system (SPECS, Berlin, Germany) was
used to determine the elemental composition of biochar surface and the chemical speciation
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by using PHOIBOS 150 Analyzer (<1 eV resolution). Mg Kα radiation (1253.6 eV) was used
as the X-ray source under 3 × 10−10 mbar pressure. Additionally, X-Ray Diffraction (XRD)
studies of UB and AB were performed with PANalytical Empyrean (Malvern Panalytical,
Malvern, UK) to obtain information about their crystalline properties. Cu X-ray tube was
used as X-ray source and PIXcel 1D as a detector. The operating voltage was 40–45 kV and
the operating current was 20–40 mA.

2.5. Statistical Analysis

The effect of UB and AB and production temperature on physical, chemical, and
surface characteristics was determined by analysis of variance (ANOVA) using the mixed
model (MIXED) procedure in SAS version 9.4 (Cary, NC, USA) [45]. Biochar activation
(activated and unactivated) and pyrolysis temperature (400–700 ◦C) were the main effects,
with replication being a random effect. If main effect differences were found, means were
separated by Fisher’s least significant difference (LSD), at a probability level of 0.05 using
SAS macro ‘pdmix800’ [46]. The XRD and IR data were processed using Origin 2021b
software (version 2021, OriginLab Corporation, Northampton, MA, USA).

3. Results and Discussion
3.1. Biochar Yield and C and N Content

Biochar yield had a range of 37.5–52.8% for the UB and 24.9–40.5% for the AB (Table 1).
The loss of water and volatiles during the pyrolysis processes resulted in decreasing yield
with increasing temperatures.

Table 1. Production of biochar from poultry litter at different temperatures (n = 3).

Biochar 1 Yield 2 C N C:N Ratio

——————— % ———————
UB-400 52.79 a 3 44.49 a 3.07 b 14.5 c
UB-500 44.48 ab 41.17 b 2.34 d 17.6 b
UB-600 39.49 b 37.74 c 1.83 f 20.7 a
UB-700 37.50 b 38.19 c 2.11 e 18.14 b
AB-400 40.48 4 37.41 c 3.27 a 11.45 d
AB-500 35.68 37.68 c 2.67 c 14.13 c
AB-600 28.43 37.75 c 2.20 de 17.15 b
AB-700 24.89 31.57 d 1.84 f 17.2 b

1 Unactivated biochar (UB) and activated biochar (AB) produced at 400–700 ◦C. 2 % of dry poultry litter, C and N
are % of dry biochar. 3 Different letters along a column represent significant differences at p ≤ 0.05. 4 Statistical
analysis was not performed for activated biochar yield as only two replicates were available.

Total C in all biochars decreased from initial C content of litter (46.3%) to 37.74–44.49%
in UB and 31.57–37.68% in AB produced at 400 to 700 ◦C (Table 1). The recovery range of
C in raw biochar was 31–51% and much lower (p < 0.0001) in activated biochar, 17–33%
(Figure 2). The C content and recovery of C in UB decreased with increasing pyrolysis
temperature up to 600 ◦C, whereas in UB-600 and UB-700 both measures were not different
(p = 0.001). The C content of AB produced at 400–600 ◦C and UB produced at 600–700 ◦C
were similar, with a lower content for AB-700 ◦C. The recovery of C from the raw PL litter
decreased constantly with increasing temperatures (Figure 2).
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The total N content decreased from the initial N content in raw PL (3.54%) and with
increasing pyrolysis temperatures (p = 0.0001) in both the biochars, except for UB-700 with
greater N content than UB-600 (Table 1). Interestingly, the N content of AB was greater
(p < 0.0001) than UB produced at the same temperatures with the exception of UB-700 and
AB-700. Greatest N content was obtained in AB-400. Conversion of PL to UB resulted in loss
of 54–80% N and loss of 63–88% N in AB. The reduction in N content in biochar compared
to the feedstock, coupled with the high N-adsorption capacity, has often cited reduced N
availability for plant uptake and thus N-deficiency in plants where high rates of biochar are
applied without supplementary N fertilizer [47]. Immobilization of N following biochar
amendment can result especially with biochars with high C:N ratios [48]. The biochars
produced in this study had C:N ratios between 14.5 and 20.7 (Table 1). With the lower
C:N ratio and greater N content of PL biochars than most plant-derived biochars [18], N
immobilization with PL biochars should not be a concern when used as a soil amendment,
especially for AB with lower (p < 0.0001) C:N ratios than UB.

3.2. Physical and Chemical Properties
3.2.1. pH and EC

Biochar pH increased with increasing pyrolysis temperatures, with the highest pH for
UB-600 and UB-700 (Table 2). Activated biochar produced at 400 ◦C had pH lower than
PL (8.49), whereas at temperatures above 400 ◦C, pH was above 9. Increasing pyrolysis
temperature removes more volatile compounds, thus increasing the concentration of inor-
ganic elements, i.e., ash content and subsequently pH [49]. Because of the high pH values,
addition of PLB (2% w/w) would increase the pH of acidic soils [18], which suggests the
potential use of PLB as a liming agent to improve the quality of acidic soils.

The EC of UB was considerably greater (p < 0.0001) than AB and raw PL (6.74 mS cm−1).
In AB-400 ◦C, the EC values were lower compared to raw PL (Table 2). Activated biochar
produced between 500 and 700 ◦C had EC values close to that of PL, which could be
associated with the washing of inorganic elements (minerals) during soaking with excess
water to remove unreacted acid.
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Table 2. Properties of biochar obtained from poultry litter at different temperatures (n = 3).

Biochar 1 pH EC 2 Bulk
Density WHC Hydrophobicity

Class

mS cm−1 g cm−3 g g−1

UB-400 10.70 c 3 10.76 c 0.49 b 0.52 d Very strongly
hydrophobic

UB-500 11.38 b 10.59 c 0.40 c 0.67 c Hydrophilic
UB-600 12.71 a 21.40 a 0.48 b 0.64 c Hydrophilic
UB-700 12.65 a 20.87 b 0.44 bc 0.69 c Hydrophilic
AB-400 6.03 f 3.75 f 0.28 d 1.29 a Hydrophilic
AB-500 9.07 e 6.26 e 0.47 b 0.86 b Hydrophilic
AB-600 9.77 d 6.73 d 0.50 ab 0.84 b Hydrophilic

AB-700 9.07 e 6.41 de 0.56 a 0.89 b Slightly
hydrophobic

1 Unactivated biochar (UB) and activated biochar (AB) produced at 400–700 ◦C. 2 EC, electrical conductivity;
WHC, water holding capacity. 3 Different letters along a column represent significant differences at p ≤ 0.05.

3.2.2. Bulk Density, Water Holding Capacity, and Hydrophobicity

Both biochars had bulk density ranges between 0.28 and 0.56 g cm−3, with the lowest
bulk density occurring for AB-400 and the greatest bulk density for AB-700 (Table 2).
The biochars produced at all temperatures were considerably lower than those of typical
agricultural soils, indicating that application of biochar to soil has the potential to reduce
soil bulk density. Soil application of biochar at application rates as low as 5 g kg−1 has been
reported to significantly reduce soil bulk density of a loamy soil [11].

Water holding capacity of biochars was in the range of 0.52 (UB-400)–1.29 g g−1

(AB-400). WHC was affected by activation (p < 0.0001), with greater values in AB compared
to UB and temperature × activation (p < 0.0001) but not by temperature (p = 0.26). Among
the UB, lowest WHC was associated with UB-400, whereas for UB produced between 500
and 700 ◦C WHC was not different (p < 0.0001). Activated biochar produced at 400 ◦C
had higher WHC compared to the AB produced at higher temperatures, which could be
associated with the low density of AB (high porosity) generated at 400 ◦C.

Apart from UB produced at 400 ◦C, which was very strongly hydrophobic, and AB-700,
which showed slightly hydrophobic behavior, all biochars were hydrophilic in nature. Kin-
ney et al. [23] observed a decreasing pattern of biochar hydrophobicity with increasing
pyrolysis temperatures for three plant-derived biochars with the highest degree of hy-
drophobicity associated with biochars produced at 300 ◦C. The degree of hydrophobicity
was strongly correlated with the presence of aliphatic functional groups (C–H correspond-
ing to a peak area between 3000 and 2800 cm−1 in an FTIR spectra) on the surface of biochars
that were volatilized at temperatures greater than 400 ◦C. The strong hydrophobicity of
UB-400 may negatively impact soil hydraulic properties, which needs to be investigated as
a part of future field-based studies.

3.2.3. Nutrient Concentration

Raw PL used for biochar production contained 16.3, 33.0, 21.5, 6.6, and 5.5 g kg−1

of total P, K, Ca, Mg, and S, respectively. Conversion of PL to biochar increased the
concentrations of P (UB: 3-fold, AB: 3-fold), K (UB: 2.5-fold, AB: 1.1-fold), Ca (UB: 2.9-fold,
AB: 3.1-fold), Mg (UB: 2.5-fold, AB: 2.1-fold), and S (UB: 1.2-fold, AB: 8.4-fold) at all
temperatures except for AB-400, which had lower K and Mg contents than raw PL (Table 3).
The lowest concentration of P was obtained for AB-400. Concentrations of P, K, Ca, and
Mg increased with increasing pyrolysis temperatures for both biochars (p < 0.0001). The
activation process resulted in greater (p < 0.0001) Ca and S concentrations and lower
(p < 0.0001) concentrations of K and Mg in AB compared to UB, whereas the overall
P concentration was not different in the two biochars (p > 0.05). There was a drastic increase
in S concentration in AB compared to UB produced at 400–700 ◦C. Unlike in UB, the
S concentration in AB decreased with increasing pyrolysis temperatures. The increase in
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S content in AB compared to UB could be associated with the input of S due to the addition
of methanesulfonic acid (CH4O3S) during the generation of AB.

Table 3. Nutrient content (dry-weight basis) of biochar obtained from poultry litter at different
temperatures (n =3).

Biochar 1 NO3-N NH4-N P K Ca Mg S

Total nutrients (g kg−1)
UB-400 NA 2 NA 40.00 f 3 70.33 d 54.67 d 13.98 e 5.50 f
UB-500 NA NA 45.80 e 80.50 c 56.167 d 16.07 c 6.18 ef
UB-600 NA NA 51.33 cd 87.83 b 67.50 c 18.03 b 7.47 e
UB-700 NA NA 55.17 b 95.83 a 69.17 c 18.77 a 7.67 e
AB-400 NA NA 27.65 g 6.80 f 34.82 e 4.78 f 65.33 a
AB-500 NA NA 49.32 d 49.62 e 67.50 c 15.25 d 47.42 b
AB-600 NA NA 52.50 c 47.68 e 78.50 b 16.47 c 37.53 c
AB-700 NA NA 62.83 a 47.53 e 83.83 a 18.35 ab 35.28 d

Water-soluble nutrients (mg kg−1) Water-soluble nutrients (g kg−1)
UB-400 0.64 c 72.02 c 0.41 e 26.27 b 0.04 d 0.07 e 1.34 c
UB-500 2.45 c 85.93 b 0.82 c 27.57 b 0.01 h 0.03 f 1.24 c
UB-600 12.34 b 73.81 c 3.60 a 46.33 a 0.01 h <0.01 h 1.04 d
UB-700 60.75 a 102.12 a 1.76 b 48.26 a 0.02 f <0.01 h 0.70 e
AB-400 BDL 80.17 bc 3.57 a 6.02 e 1.76 a 1.90 a 6.77 b
AB-500 BDL 10.75 d 0.19 f 17.21 cd 0.20 c 0.19 c 13.02 a
AB-600 BDL 7.76 d 0.70 d 19.44 c 0.02 e 0.09 d 12.54 a
AB-700 1.71 c 8.16 d 0.08 g 16.55 d 0.43 b 0.38 b 11.39 a

1 Unactivated biochar (UB) and activated biochar (AB) produced at 400–700 ◦C. 2 NA, not available; BDL, below
detection limit. 3 Different letters along a column represent significant differences at p ≤ 0.05.

Water-soluble nutrients P, K, Ca, Mg, and S in both biochars constituted less than
8, 53, 0.6, 2, and 34% of the total biochar P, K, Ca, Mg, and S, respectively, except for
AB-400, in which the proportions of water-soluble P, K, Ca, Mg, and S were 13, 89, 5, 40,
and 10% of the respective total values. Water-soluble P, K Ca, Mg, and S concentrations
were affected by temperature × activation (p < 0.0001), temperature (p < 0.0001), and
activation (p < 0.0001). Water-soluble P in UB increased with pyrolysis temperatures, with
the greatest value occurring under UB-600, whereas no clear trend was observed for AB.
In UB-600, UB-700, and AB-400, water-soluble P contents were greater than that of raw
PL (1.29 g kg−1). Water-soluble Ca, Mg, and S contents in ABs were greater than in UBs
produced at the same pyrolysis temperatures, whereas water-soluble P and K were lower
for ABs except for water-soluble P content of AB-400 (Table 3). Though the concentrations
of nutrients (total and water-soluble) especially P, Ca, and Mg, were elevated in the biochars
compared to PL, it does not necessarily increase the risk of losses with leaching or runoff
when applied as soil amendment. Liang et al. [50] reported a much slower rate of P release
from dairy manure-derived biochar compared to that from raw manure due to formation
of less-soluble P forms, i.e., [(Ca, Mg)3(PO4)2]. Additionally, the slight increase in pH that
occurs after biochar application may stabilize the water-soluble P fraction in soil and thus
reduce P release [51,52]. This also means that biochar may act as a slow-release fertilizer
with oxidation of biochar surfaces with ageing [53]. However, various factors such as
biochar properties, inherent soil properties, and biochar application rate affect the behavior
of biochar P release and retention in soils [51].

Conversion of PL to PLB drastically decreased the biochar NH4-N concentration from
2630 mg kg−1 in PL to 8–102 mg kg−1 in the biochars (Table 3). Among all biochars,
UB-700 had the highest NH4-N content, yet the concentrations were only about 4% of the
raw PL. Interestingly, the NO3-N concentration of UB increased with increasing temper-
atures with greater NO3-N content in UB produced at 600 and 700 ◦C compared to the
PL (5.44 mg kg−1). NO3-N concentrations were below detection limit for Abs, except for
AB-700 with an average concentration of 1.71 mg kg−1.
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3.2.4. Concentration of Heavy Metals

Concentrations of As, Cr, Mo, Ni, Pb, Se, and Zn were affected by activation (p < 0.0001),
with greater concentrations in AB compared to UB except for Se, which was greater in UB.
Concentrations of Cu and Zn increased with increasing pyrolysis temperature (p < 0.0001)
in both biochars (Table 4), whereas there was no effect of temperature on As (p = 0.90) and
Se (p = 0.67) concentrations. The concentration of the 9 heavy metals (As, Cd, Cu, Cr, Mo,
Ni, Pb, Se, and Zn) for all biochars was much lower than the U.S. standards for concen-
tration limits in biosolids for land application, indicating that PLB can be safely applied
to agricultural lands as soil amendment [54]. However, long-term effects of repeated PLB
application on concentrations of heavy metals in soil is not clear and should be a subject of
future research. We therefore accept the hypothesis that doping biochar will likely affect
the soil amendment quality.

Table 4. Concentration of heavy metals (dry-weight basis) in biochars obtained from poultry litter at
different temperatures (n =3).

Biochar 1 As Cd Cu Cr Mo Ni Pb Se Zn

mg kg−1

UB-400 1.27 cd 2 0.63 c 1188 e 12.43 c 9.62 e 18.32 f 1.28 ns 2.27 ns 1407 f
UB-500 0.95 de 0.65 bc 1242 e 12.52 c 9.68 e 19.1 ef 1.18 ns 1.85 ns 1603 e
UB-600 1.10 de 0.15 d 1740 cd 12.55 c 11.03 c 19.53 ef 1.47 ns 2.05 ns 1943 c
UB-700 0.78 e BDL 3 1900 b 12.52 c 10.70 cd 20.7 e 0.68 ns 1.80 ns 1757 d
AB-400 1.53 bc 0.77 ab 1663 d 17.5 b 17.62 a 35.55 c 1.97 ns 1.22 ns 1258 g
AB-500 1.92 ab 0.85 a 1880 bc 17.98 b 11.35 bc 30.83 d 1.63 ns 1.20 ns 1993 bc
AB-600 1.90 ab 0.80 a 2012 b 33.38 a 12.12 b 49.18 a 1.82 ns 1.03 ns 2082 b
AB-700 2.13 a 0.18 d 2488 a 33.40 a 9.83 de 46.12 b 1.70 ns 1.52 ns 2395 a

Ceiling conc. limit 4 75 85 4300 3000 75 420 840 100 7500
1 Unactivated biochar (UB) and activated biochar (AB) produced at 400–700 ◦C. 2 Different letters along a column
represent significant differences at p ≤ 0.05. 3 Below detection limit. 4 Ceiling concentration limit of heavy metals
in biosolids for land application [54].

3.3. Biochar Surface Characteristics
3.3.1. Point of Zero Charge

Point of zero charge (PZC) is the pH at which the net surface charge is zero. A
negatively charged surface has PZC less than 7 and attracts cations, whereas surfaces with
PZC above 7 attracts anions in a solution. In this research, the unactivated biochar had
a PZC greater than 9, which indicates the surface was positively charged (Figure 3). It
also indicates that biochar has a high affinity to anions due to the high PZC, which may
contribute to the adsorption of phosphates, anionic-fertilizers, and soil organic matter [55].

3.3.2. Infrared Analysis

The IR data summarizing the effect of temperature and methanesulfonic acid on
the surface of the UB and AB are presented in Figure 4. The peak at 1034 cm−1 was
attributed to SO2– symmetric stretching, which became more pronounced in AB than UB
because of methanesulfonic acid [56,57]. The decrease of peak intensity with the increase of
temperature in UB and AB indicates a decrease in S concentration on the surface, which
was also reported by Zhang et al. (2019) [58]. The peak at 563 cm−1 was attributed to
the presence of sulfate and P-O bonds [59–61]. The peak at 1584 cm−1 was attributed to
N–H bending and aromatic C=C, which decreased with an increase in temperature in UB
and disappeared in AB [62,63]. The decrease and disappearance of N, S, and P peaks with
temperature rise and activation could have occurred due to oxidation and volatilization of
the biochar matrix as oxides of N, S, and P. The peak at 1419 cm−1 was from O-H bending of
carboxylic acid and alcohol, which became weaker with a subsequent temperature increase
in UB and AB [59]. The weakening of the O-H bond also indicated probable oxidation of
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S, P, and N. The weak peak at 2100 cm−1 was assigned to C≡C stretching and remained
unaltered with temperature change and methanesulfonic acid use.
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3.3.3. X-ray Diffraction Analysis

UB and AB were analyzed using XRD to identify the crystalline and/or amorphous
phases present (Figure 5). A strong peak at 2θ = 29.08◦ indicated the presence of inorganic
compounds such as KCl (sylvite) and K2SO4 [32,64]. The peak at 2θ = 41.45◦ was perhaps
due to Ca9MgNa(PO4)7 [63]. These properties are attributed to high ash fraction of poultry
litter arising from poultry feed [64,65]. The crystalline features of UB decreased with an
increase in temperature, as evident by the gradual fading away of the sharp peaks. The
XRD patterns of AB at higher temperatures contained noise, which created ambiguity with
temperature and the methanesulfonic acid effect. Wang et al. (2015) also reported noisy
XRD background of poultry litter-derived biochar [65]. Activated biochars XRD patterns at
lower temperatures such as AB-400 and AB-500 clearly depicted an increase of amorphous
nature after activation, which is in agreement with Pontiroli et al. (2019) [32]. The broad
and weak peak at 2θ = 20◦–35◦ was assigned to the graphitic C(002) plane, which indicated
the presence of amorphous C consisting of disordered aromatic C [66].
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3.3.4. X-ray Photoelectron Spectroscopy Analysis

XPS spectra of UB and AB were obtained to collect additional information on biochar
surface properties. Table 5 represents biochars’ atomic percentage (At%) before and after
activation with methanesulfonic acid. The UB and AB had different percentages of N, P,
and S, likely originating from poultry litter [66]. The activation process generally increased
the number of surface species. The UB N content gradually decreased with an increase
of temperature, which is supported by the gradual weakening of N-H bending with
temperature increase from FT-IR analysis. The appearance of N and P in AB, despite their
absences in UB, was likely owing to surfacing of N and P present within the biochar after
activation. The subsequent decrease of C with temperature increase might have been
due to the oxidation of C by trace amounts of oxygen in N that was flown through the
reactor during the carbonization and also the presence of sulfonic acid during activation.
These data also suggested that the oxygen content in activated biochar increased due to its
interaction with methanesulfonic acid, as was also reported by Fan et al. (2018) [67].

Table 5. Surface compositions of unactivated biochar (UB) and activated biochar (AB) obtained by
X-ray Photoelectron Spectroscopy.

Pyrolysis Conditions Elements UB (At%) AB (At%)

400 ◦C

C 64.6 32.1
N 7.1 0.9
S - 2.1
P 0.9 -
O 21.8 47.7

500 ◦C

C 36.8 35.2
N 2.3 -
S - -
P - 5.8
O 37.7 51.0

600 ◦C

C 22.4 32.4
N - 4.4
S 1.7 1.1
P 0.6 4.8
O 42.3 50.9

700 ◦C

C 25.6 26.9
N - 1.3
S - -
P - 3.7
O 47.2 56.1
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4. Conclusions

Unactivated (not treated with any chemicals) biochar and activated biochar (activated
with methanesulfonic acid) produced from poultry litter at pyrolysis temperatures between
400 and 700 ◦C were characterized for physical, chemical, and surface properties for
potential use as a soil amendment. Activation resulted in an overall decrease of biochars’
pH and electrical conductivity and an increase in oxygen content. Recovery of C and
N decreased with increased pyrolysis temperature and was lower in activated biochar
than unactivated biochar. The conversion of poultry litter to biochar increased its pH
and EC in unactivated biochar. Activated biochar had greater water-holding capacity
than raw biochar due to greater surface area and porosity of activated biochar. Nutrient
concentrations (P, K, Ca, Mg, and S) in both unactivated biochar and activated biochar were
elevated from poultry litter, with concentrations increasing with increasing temperatures.
Unactivated biochar produced at 600 and 700 ◦C had greater NO3-N concentrations than
poultry litter. Concentrations of heavy metals were lower than the U.S. standards for ceiling
concentration limits of heavy metals for land application.

Among the two types of biochars, activated biochar had greater total P, total Ca, total
S, water-soluble Ca, water-soluble Mg, and water-soluble S contents but lower NH4-N,
NO3-N, total K, total Mg, water-soluble P, and water-soluble K than unactivated biochar.
Among all biochars evaluated, activated biochar produced at 400 ◦C had the lowest bulk
density and greatest water-holding capacity, suggesting that this biochar has the greatest
potential to improve soil hydraulic properties. With the greatest concentration of N, water-
soluble P, Ca, and Mg in activated biochar produced at 400 ◦C, this biochar can readily
provide plant nutrients when used as a fertilizer. However, the potential losses of nutrients
in runoff and leaching from this biochar requires further investigation.
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