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Abstract: Deep eutectic solvents (DES) are new ‘green’ solvents that have a high potential for biomass
processing because of their low cost, low toxicity, biodegradability, and easy recycling. When Loblolly
pine trees are harvested, their branches with needles are typically left in brush piles and decompose
very slowly. Exploring the effect of DES pretreatment on waste pine needles was the goal of the
present work. Loblolly pine needles were treated with three types of DES to prepare the biomass for
enzymatic hydrolysis to glucose, a subject not readily found in the literature. The resulting products
were analyzed by Fourier transform infrared spectroscopy, fiber analysis, and high-performance
liquid chromatography. Glucose yields after pretreatment and hydrolysis were found to be six
times that for untreated biomass with two of the DES. Fiber analysis indicated removal of lignin,
hemicellulose, and ash from the needle biomass. Enhanced glucose yield was due to removal of
lignin and disruption of biomass structure during pretreatment, so that the pretreated biomass was
rich in cellulosic content. Based on the results shown in this study, among the three types of DES,
formic acid:choline chloride and acetic acid:choline chloride pretreatment had better potential for
biomass pretreatment compared to lactic acid:choline chloride.
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1. Introduction

Environmentally sustainable sources that provide tangible fuels and materials rather
than electricity are needed in the world economy. Comprised of biopolymers of cellu-
lose, hemicellulose, and lignin, lignocellulosic biomass have the potential to be such a
resource [1]. Production of biofuels is feasible by fermenting cellulose and hemicellulose
(polysaccharides) into ethanol or butanol, provided that an optimized pretreatment of the
biomass to separate out lignin has occurred [2]. Biofuels made from biomass provides
unique environmental and economic strategic benefits, and it can be considered a safe and
clean liquid fuel alternative to fossil fuels [3]. Nevertheless, the biomass must be subjected
to pretreatment processes to liberate the sugars needed for fermentation. Lignin removed
by pretreatment can also be used for various industrial and biomedical applications, in-
cluding biofuels, chemicals and polymers, and the development of nanomaterials for drug
delivery [4].

Loblolly pine (Pinus taeda), also known as southern yellow pine, has a rapid growth
rate and is one of the most abundant species in the United States [5]. It has significant
commercial importance in the pulp and paper industry, as well as for construction. When
harvested, branches with their needles are typically left in brush piles, while the tree trunks
are transported for use. The needles are thus left as a waste product. The needles have
a significantly different structure and lignin content compared to the wood and do not
readily compost into the soil [6]. If these needles were harvested, they could constitute a
resource for producing biofuel or other bioproducts that do not require extensive grinding.
Dilute acid pretreatment for pine needles has been studied by Slathia et al. [7]. A contin-
uous pyrolysis of pine needles at 500 ◦C was successfully proven to produce bio-oil by
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Mandal et al. [8]. However, a “green” low-temperature pretreatment method for processing
them prior to hydrolysis is needed. If safe and simple enough, such a method could
possibly be implemented at a local depot, prior to shipping to a biorefinery. If performed
near the harvesting site, the volume of material to be transported would be reduced.

Some ecofriendly alternative solvents for pretreatment are called deep eutectic sol-
vents (DES). DES have low volatility, non-flammability, a wide liquid range, non-toxicity,
biocompatibility, and biodegradability [9]. They can be simply prepared at high purities
from readily obtainable materials. In addition, DES are valuable in biofuel processing
because they do not typically inactivate enzymes [10]. They are less sensitive to water
content than some solvents, such as ionic liquids, which makes their use more practical
with the wet biomass that is generally present at field sites [9]. They are an alternative
to the most common method for the separation of cellulose and lignin in biomass, the
Kraft process. The Kraft process is not particularly environmental-friendly, since it releases
sulfur-containing volatile organic compounds into the atmosphere [11].

The present work investigated the pretreatment of Loblolly pine needles with different
DES solvents for separation of lignin and cellulosic components of the biomass, charac-
terizing the products. In this study, mass yield from the pretreatment was calculated and
the Fourier transform infrared spectroscopy (FTIR) spectra of the two solid products from
the separation analyzed. Enzymatic hydrolysis was performed to find the glucose yield
from the pretreated biomass. Fiber analysis was also completed to find the composition
of samples before and after pretreatment, using a National Renewable Energy Laboratory
(NREL) compositional analysis procedure. High-performance liquid chromatography
(HPLC) analysis of carbohydrates and insoluble lignin analysis using ultraviolet-visible
(UV) spectroscopy were also used to characterize the samples. Work on DES pretreatment
on pine needles, which have a structure quite different from pine wood, is not available in
the literature.

2. Materials and Methods
2.1. Raw Materials and Chemicals

Loblolly pine needles were collected from the branches of 28-year-old Loblolly pine
trees that had been harvested in Ruston, LA, USA, with the help of Weyerhauser, Inc.,
employees and then refrigerated. Fiber analysis indicated that the untreated pine needles
consisted of 26.2% cellulose, 19.4% hemicellulose, 39.6% lignin, 12.0% extractives and
2.7% ash (inorganics). Choline chloride powder (BioReagent, suitable for cell culture,
≥98%), formic acid (reagent grade, ≥95%), acetic acid (reagent grade, ≥99.7%), lactic acid
solution (reagent grade, ≥85%), sulfuric acid (reagent grade, 95–98, cellulase (powder) from
Trichoderma reesei ATCC 26921, hemicellulase (powder) from Aspergillus niger, and cellobiase
(liquid) from Aspergillus niger, were purchased from Millipore Sigma (St. Louis, MO, USA).
Sodium azide, 99% min, and sodium citrate dehydrate, 99.0% min, were purchased from
Alfa Aesar (Ward Hill, MA, USA). Denatured ethanol (90.5%) was purchased from Duda
Energy (Decatur, AL, USA). Nylon membrane discs size 0.45 µm were bought from Foxx
Life Sciences (Salem, NH, USA).

2.2. Synthesis of DES

Three types of DES solvent were prepared for pretreatment of pine needle biomass.
These were chosen on the basis of their non-toxicity and likelihood for effectiveness in
pretreatment [10]. The formic acid:choline chloride DES (FA:CC) was prepared by mixing
the formic acid (hydrogen bond donor) and choline chloride (hydrogen bond acceptor) in
the mole ratio of 2:1; lactic acid:choline chloride DES (LA:CC) was prepared by mixing
lactic acid with choline chloride in the mole ratio of 10:1; and acetic acid:choline chloride
(AA:CC) in the mole ratio of 2:1. After mixing the two components, mixtures of the solvents
were placed in an orbital shaker at 200 RPM at 60 ◦C for 20 min, and were kept for 20 min
more if necessary, until the solution was clear. The clear DES solvents were then stored at
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room temperature and remained transparent and liquid for several weeks until they were
used. In addition, the pHs of the three DES were measured (Table 1).

Table 1. Deep eutectic solvents and their pH values.

Hydrogen Bond
Donor

Hydrogen Bond
Acceptor

Molar Ratio of
DES pH of DES pH of DES Diluted

10% with Water
pH of DES Diluted

90% with Water

Formic acid Choline chloride 2:1 −0.92 0.70 1.24

Lactic acid Choline chloride 10:1 −0.60 0.54 1.91

Acetic acid Choline chloride 2:1 0.47 1.01 1.84

2.3. Preparation of Biomass for Pretreatment

Pine needles were dried at 60 ◦C for 24 h, prior to milling. Milled biomass was sieved
with numbers 14 and 25 mesh filters to obtain the appropriate size (~1 mm diameter
particles) for pretreatment and stored in a closed plastic bag until use.

2.4. Pretreatment of Pine Needles Using DES

Dried and sieved biomass of a mass of 3 g was mixed with 30 g of each of the three
types of DES: FA:CC (2:1 ratio), LA:CC (10:1 ratio), AA:CC (2:1 ratio) in separate flasks
with a magnetic stirrer for continuous stirring and kept in the preheated oil bath for 1 h at
125 ◦C. Time and temperature were chosen as the minima found to be effective in prior
work [12]. The flask with this solution mixture was connected to a condenser to collect
liquid from the vapor of the slightly volatile DES in order to maintain the solvent volume
constant. Standard errors for the results were found from triplicates of the samples that
were pretreated at 125 ◦C for 1 h.

2.5. Separation of Biomass and DES
2.5.1. Filtration

Once the pretreated biomass was cooled, biomass was separated from the DES solution
using nylon membrane filters (0.44 mm) and a mesh filter membrane. Initially, nylon
membrane filters and mesh filters were dried in a drying oven for 30 min and stored in a
desiccator. A filtration unit was set up by connecting a Buchner funnel with a filter and
a filtration flask to a vacuum pump. Pretreated biomass with the solvent was allowed to
pass through the mesh filter; filter cake (filtride) from the filtration was rinsed with 25 mL
of ethyl alcohol to wash away any remaining DES on the residues by magnetically stirring
for 20 min and filtering with the same mesh filter.

The filtride (biomass) from the above filtration was rinsed with 75 mL of deionized
water by magnetically stirring at 50 ◦C for 20 min. Rinsing with deionized water was
undertaken three times to remove DES left on the biomass. Finally, rinsing with deionized
water was repeated for another 24 h at 50 ◦C to obtain biomass without any DES. A 0.44 mm
nylon filter was used to separate the rinsed biomass with deionized water using a vacuum
pump. Filtered biomass was dried at 105 ◦C for 24 h prior to weighing, to ensure all
moisture was removed.

2.5.2. Lignin Precipitation

Filtrate from the vacuum filtration, which was expected to have lignin, DES, and ethyl
alcohol was collected into a flask, then 175 mL of deionized water was added to precipitate
lignin and separate it from DES, ethyl alcohol and deionized water. Precipitated biomass
was separated using a nylon membrane filter and a vacuum pump. After separation,
precipitate was dried at 105 ◦C for 24 h prior to weighing. All the procedures were repeated
three times to get triplicates to provide details on measurement error.
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2.6. Fourier Transform Infrared Spectroscopy (FTIR)

A Mattson Genesis II FTIR (Mattson Technology, Fremont, CA, USA) was used to ob-
tain the spectra of pretreated biomass samples. This third-generation infrared spectrometer
has a high signal-to-noise ratio, high accuracy for wave numbers, and an error range less
than 0.01 cm−1. As the standard method to prepare solid samples for FTIR spectrometry
is to use KBr pellets, 1 mg of sample was mixed with 100 mg of KBr and a pellet was
made with a pellet holder press by applying pressure. Single beam spectra of the samples
were collected by running 32 scans with resolution 2 cm−1 from wave number 3000 to
800 cm−1. FTIR analysis was performed on both the raw biomass, pretreated biomass,
and precipitated biomass. Data analysis of obtained spectra was performed using OMNIC
software to allow accessing the spectra and calculating peak areas. Table 2 shows the vibra-
tions specifically used to evaluate cellulose and lignin content of the samples. Cellulose
vibrations used were 1160 cm−1 and 1425 cm−1 for type I/type II amorphous stretching
and crystalline cellulose, respectively. The lignin vibration used was at 1515 cm−1.

Table 2. Wavenumber vibration assignments and references.

Wavenumber (cm−1) Band Assignment Reference

1160 Amorphous stretching of cellulose
type I and type II (Shi and Li, 2012) [13]

1425 Crystalline cellulose (Raj et al., 2015) [14]

1515 Lignin aromatic ring skeletal sketch (Raj et al., 2015) [14]

2.7. Enzymatic Hydrolysis

NREL’s enzymatic saccharification of the lignocellulosic biomass LAP 009 protocol
was followed to understand the saccharification of cellulose from pretreated biomass in
order to determine the maximum digestibility possible [15]. Biomass after pretreatment
was dried at 105 ◦C in a drying oven for 24 h. A sample of 0.1 g of ground biomass was
mixed with 5 mL of sodium citrate buffer of pH 5.05, and 100 µL of 2% sodium azide
solution. The total volume was brought to 10 mL by adding an appropriate amount of
deionized water as described in the NREL protocol. Subsequently, cellulase, hemicellulase,
and cellobiase were added at a concentration of 5, 14 and 50 units per 0.1 g of sample,
respectively. The mixture of biomass, buffer, sodium azide, and enzyme cocktail was
placed in the orbital shaker set at 200 RPM at 50 ◦C. As per the NREL protocol, samples
were collected at 24 h, 48 h, and 72 h prior to filtering through a 0.45 µm syringe filter and
stored in the refrigerator at 4 ◦C prior to HPLC analysis. Glucose yield is calculated as a
fraction of cellulose present in biomass that was recovered as glucose. The glucose yield
was obtained using Equation (1).

% glucose yield =
0.9 ∗ 10 mL volume hydrolysis ∗ glucose concentration g

mL (corrected with blanks)
g pretreated substrate ∗ f raction cellulose in pine ∗ mass yield pretreatment

(1)

The correction factor that accounts for the conversion from the biopolymer cellulose
to the monomer glucose is 0.9.

2.8. Carbohydrate Analysis Using High-Performance Liquid Chromatography (HPLC)

The cellulose, hemicellulose, and lignin content of all the raw and pretreated samples
were determined by quantitative saccharification with acid hydrolysis and subsequent
HPLC analysis, using NREL protocols LAP/TP-510-426 18 through 22 [16]. For raw
biomass, ethanol extraction was carried out to remove the non-structural components of
the biomass prior to acid hydrolysis and thus the biomass fraction regarded as extractives
was removed from the raw biomass. For pretreated samples, the extractives component
was assumed to have been removed during the pretreatment process, so that these samples
directly progressed to acid hydrolysis for compositional analysis.
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The concentrations of glucose, xylose, arabinose, galactose, and mannose were quanti-
fied using an HPLC (ThermoFisher Scientific, Waltham, MA, USA) equipped with refractive
index detector and an Aminex HPX-87P column 300 × 7.8 mm, (Bio-Rad Laboratories, Inc.,
Hercules, CA, USA). The column temperature was maintained at 80 ◦C and the flow rate
was 0.6 mL min−1 (DI water). Each experiment was performed in triplicate. Total cellulose
release upon acid hydrolysis was determined as the sum of cellobiose and glucose and the
total hemicellulose release was determined as the sum of xylose, galactose, arabinose, and
mannose. The sum of acid insoluble and acid soluble lignin was represented as total lignin
content available in each sample.

2.9. Acid Soluble Lignin Analysis

The NREL fiber analysis procedure was followed to measure acid soluble lignin
from the biomass after acid hydrolysis [16]. A UV-2401PC spectrophotometer (Shimadzu
Corporation, Kyoto, Japan) was used to analyze acid soluble lignin in the biomass. Once
the biomass was pretreated it was hydrolyzed with 70% H2SO4 and, with the hydrolysis,
lignin in the sample was dissolved. Subsequently, 3000 µL of this sample was measured
and diluted 10 times with deionized water. With deionized water as a blank, analytes
(lignin) in the sample were measured by absorbance at a wavelength of 260 nm.

2.10. Soxhlet Extraction

Non-structural materials from the biomass must be removed from the biomass prior
to compositional analysis to prevent any obstructions in later analytical procedures. Water
soluble and ethanol soluble extractives in the biomass were removed by Soxhlet extraction.
Biomass of weight 3 g was placed in a thimble and 200 mL of ethyl alcohol transferred into
a conical flask. The thimble with biomass was inserted carefully into a Soxhlet siphon tube
and kept above the conical flask with ethyl alcohol. The whole setup was kept in an oil
bath at 80 ◦C for 24 h, and after 24 h biomass from the thimble was taken out and the loss
of biomass measured. The percentage of extractives removed was then calculated.

3. Results and Discussion
3.1. Mass Yield from Deep Eutectic Solvents (DES) Pretreatment

When Loblolly pine needles were treated with the DES acetic acid:choline chloride
3:1 molar ratio (AA:CC), the percentage of mass yield for the biomass was 61.25%, with a
standard error of 2.63%. This mass yield was high when compared to the biomass yields
for pretreatment with lactic acid:choline chloride 10:1 molar ratio (LA:CC) and formic
acid:choline chloride 2:1 molar ratio (FA:CC) (Figure 1). Average mass yield with LA:CC
was lower than FA:CC at 49.55%, however the standard error for LA:CC was 8.32%, so no
difference can be confirmed. Mass yield for FA:CC was low because more of the solids
were solubilized, leading to a higher mass of the precipitate from the filtrate. Heat required
was 0.31 kW-h for the pretreatment process, which is relatively low as more energy can be
produced with resultant glucose concentration [17].

When the biomass was treated with glycerol as a control, no reaction was observed
and the biomass remained the same as raw biomass. This result made it clear that the heat
treatment alone (1 h at 125 ◦C) had no effects on biomass, unlike the pretreatment with
DES. Extractives in the biomass were removed using the Soxhlet extraction procedure from
NREL and were found to be about 26.10% of raw biomass.

After the separation of biomass filtrate was precipitated by the addition of deionized
water, the mass of precipitated biomass (lignin precipitate) was higher when the biomass
was treated with FA:CC, at 31.56% with a standard error of 1.75%. It was 20% with a
standard error of 2.87% in the case of LA:CC and 17.51% with a standard error of 0.76%
with AA:CC. Thus, larger amounts of lignin can be separated from the biomass when
it is pretreated with FA:CC and LA:CC compared to AA: CC. A visual inspection of the
pine needles treated with FA:CC and LA:CC appeared to show a greater extent of biomass
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breakdown compared to AA:CC. FA:CC pretreatment may be more effective because it has
a lower pKa value than the other DES [12].

1 
 

 

Figure 1. Mass yield and precipitated biomass with 3 types of deep eutectic solvent (DES).

3.2. Fourier Transform Infrared (FTIR) Analysis of Pretreated Loblolly Pine Needles and
Precipitate from Deionized Water

FTIR analysis of raw and pretreated biomass elucidated the transformation in biomass
composition and structure in the process of DES pretreatment. FTIR spectra of raw and
pretreated biomass are shown in Figure S1. The resulting spectra show more pronounced
vibrations for the pretreated samples at 1425 cm−1 (native type 1 cellulose) and 1160 cm−1

(amorphous stretching of cellulose type I and type II) indicating the pretreated biomass
contained considerable amounts of crystalline and disordered cellulose (Figure S1). These
findings suggest that the structure of the pretreated biomass was altered, possibly leading
to improved enzymatic saccharification. The intensity of the vibration at 1515 cm−1, from
the lignin aromatic ring skeletal stretch, appears to have decreased somewhat, suggesting
that some lignin may have been removed.

3.3. Enzymatic Hydrolysis

To evaluate the efficiency of the DES pretreatment to enhance the cellulose accessibility
to hydrolytic enzymes, the rates of conversion of cellulose into glucose during enzymatic
hydrolysis of raw and pretreated biomass were measured. The glucose yields (the ratio of
glucose liberated by enzymatic hydrolysis to glucose that exists as cellulose in the raw or
pretreated biomass) as a function of hydrolysis time for pine needles are shown in Figure 2.
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Glucose yield versus enzymatic hydrolysis time is shown in Figure 2, for samples after
pretreatment in various DES for 1 h at 125 ◦C, as well as for raw biomass. Little difference
can be seen among the glucose yields from the samples pretreated with different DES, but
a low concentration of glucose was liberated for the pine needles that did not undergo
any DES pretreatment. This result indicates the necessity of pretreatment preceding
enzymatic hydrolysis to change some structural characteristics of pine needles and to
increase cellulose accessibility to hydrolytic enzymes in order to provide high sugar yield,
due to the recalcitrant lignocellulosic structure of the biomass. Time of hydrolysis did
not make a substantial difference in glucose yield, suggesting that a short hydrolysis time
would suffice or possibly that a lower concentration of enzyme could have been used.
The glucose yield for the LA:CC pretreatment was slightly lower than those for the other
pretreatments. The chromatograms from HPLC analysis of the sugars from enzymatic
hydrolysis (Figure 3) illustrates the increased sugar concentration in the pretreated biomass.

An enzymatic hydrolysis time of 24 h was investigated by Oh et al. (2020) for similar
DES used in pretreatment of pine wood powder [18]. In this study, LA:CC and FA:CC
were found to be quite effective in releasing sugars, but AA:CC to be less so. Differences
between the types of biomass structures may account for the ineffectiveness of AA:CC
for pretreatment of powdered wood. Oh et al. (2020) reported slightly lower β basicity
solvatochromic parameters for the more effective DES, which may also influence their
usefulness [18].

3.4. Fiber Analysis

Figure 4 shows the results for fiber analysis for raw and DES pretreated pine needles.
In each case, a higher proportion of cellulose exists in the pretreated biomass than in the
raw. The ratio of cellulose to lignin for the pretreated biomass is greater than or equal
to that for the raw biomass. Lignin tends to impede enzymatic hydrolysis of biomass,
both by blocking enzyme access to cellulose and by inhibiting the enzyme [19]. Thus, the
pretreated biomass with a higher cellulose content should be more suitable for obtaining
sugar from the enzymatic hydrolysis process, as indeed was seen in the previous sections’
results. A lower proportion of hemicellulose (comprising for untreated pine needles
21% xylose, 62% galactose, 0% arabinose, and 17% mannose) was found in the DES
pretreated biomass. This effect can be seen in the smaller amounts of xylose in the enzymatic
hydrolysis liquid from DES pretreated biomass, as shown in Figure 3. All extractives were
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removed by the pretreatment, and their impeding of hydrolysis may have a minor effect
on sugars produced.
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In addition, the pretreated biomass has less ash (inorganics) compared to the raw
pine needles. These findings suggest that in addition to removal of extractives, the lig-
nocellulosic structure was disrupted, with a portion of the lignin and hemicellulose no
longer shielding the cellulose in the biomass. For rice husks, beech wood, loblolly pine,
tree heather, and gum rockrose, other researchers have reported lignin removal with DES
pretreatment [10,20–22]. Lignin has also been reported to be effectively removed from
maritime pine wood sawdust and pine wood powder [18,23]. However, the wood particles
in sawdust are very different in structure compared to pine needles. Data on pine needle
DES pretreatment is not available in the literature, making the present study unique.

4. Conclusions

Despite its recalcitrance, pine needle biomass had the potential to act as a substrate for
pretreatment with DES. From the mass yields and fiber analysis results obtained it was clear
that the extractives and some portion of the lignin, hemicellulose, and ash were removed
from the samples with DES pretreatment. Enzymatic hydrolysis data showed that DES
pretreatment enhanced the glucose yields significantly after enzymatic saccharification
compared to the untreated pine needles. FTIR analysis of DES-pretreated biomass samples
suggested that the enhanced glucose yield was due to removal of lignin and disruption
of the biomass structure during pretreatment, so that the pretreated biomass was rich in
cellulosic content. Based on the results shown in this study, among the three types of DES,
FA:CC and AA:CC pre-treatment had better potential for biomass pretreatment compared
to LA:CC.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biomass1010001/s1, Figure S1: FTIR transmission spectra of raw and FA:CC, LA:CC and
AA:CC pretreated biomass.

Author Contributions: Conceptualization, J.G.L.; methodology, J.G.L. and P.G.; formal analysis P.G.
and N.K.; investigation, P.G. and N.K.; resources, J.G.L.; data curation, P.G., J.G.L. and N.K.; writing—
original draft preparation, P.G.; writing—review and editing, P.G., J.G.L. and N.K.; visualization, P.G.
and N.K.; supervision, J.G.L.; project administration, J.G.L.; funding acquisition, J.G.L. All authors
have read and agreed to the published version of the manuscript.

Funding: The authors want to sincerely acknowledge the Region 6 U.S. Environmental Protection
Agency P2 grants [Grant numbers NP-01F55301–0 and 01F86601] for support of this project.

Data Availability Statement: Data are available from the corresponding author.

Acknowledgments: The authors acknowledge the help of Jalia Payne, Landry Tucker, and Sven
Eklund of Louisiana Tech University.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Malaeke, H.; Housaindokht, M.R.; Monhemi, H.; Izadyar, M. Deep eutectic solvent as an efficient molecular liquid for lignin

solubilization and wood delignification. J. Mol. Liq. 2018, 263, 193–199. [CrossRef]
2. Lee, J. Biological conversion of lignocellulosic biomass to ethanol. J. Biotechnol. 1997, 56, 1–24. [CrossRef]
3. Panwar, N.L.; Kaushik, S.C.; Kothari, S. Role of renewable energy sources in environmental protection: A review. Renew. Sustain.

Energy Rev. 2011, 15, 1513–1524. [CrossRef]
4. Figueiredo, P.; Lintinen, K.; Hirvonen, J.T.; Kostiainen, M.A.; Santos, H.A. Properties and chemical modifications of lignin:

Towards lignin-based nanomaterials for biomedical applications. Prog. Mater. Sci. 2018, 93, 233–269. [CrossRef]
5. Nix, S. Loblolly Pine, an Important Tree in North America. Available online: https://www.thoughtco.com/loblolly-pine-

important-tree-north-america-1342788 (accessed on 23 November 2020).
6. Lange, B.M.; Catherine, L.; Heinrich Sandermann, J. Elicitor-Induced Spruce Stress Lignin: Structural Similarity to Early

Developmental Lignins. Plant Physiol. 1995, 108, 1277–1287. [CrossRef]
7. Slathia, P.S.; Raina, N.; Kiran, A.; Kour, R.; Bhagat, D.; Sharma, P. Dilute acid pretreatment of pine needles of Pinus roxburghii by

response surface methodology for bioethanol production by separate hydrolysis and fermentation. Biomass Convers. Biorefinery
2020, 10, 95–106. [CrossRef]

https://www.mdpi.com/article/10.3390/biomass1010001/s1
https://www.mdpi.com/article/10.3390/biomass1010001/s1
http://doi.org/10.1016/j.molliq.2018.05.001
http://doi.org/10.1016/S0168-1656(97)00073-4
http://doi.org/10.1016/j.rser.2010.11.037
http://doi.org/10.1016/j.pmatsci.2017.12.001
https://www.thoughtco.com/loblolly-pine-important-tree-north-america-1342788
https://www.thoughtco.com/loblolly-pine-important-tree-north-america-1342788
http://doi.org/10.1104/pp.108.3.1277
http://doi.org/10.1007/s13399-019-00433-1


Biomass 2021, 1 10

8. Mandal, S.; Bhattacharya, T.K.; Haydary, J.; Husar, J.; Tanna, H.R.; Haz, A. Valorization of Pine Needles by Thermal Conversion
to Solid, Liquid and Gaseous Fuels in a Screw Reactor. Waste Biomass Valorization 2019, 10, 3587–3599. [CrossRef]

9. Francisco, M.; van den Bruinhorst, A.; Kroon, M.C. New natural and renewable low transition temperature mixtures (LTTMs):
Screening as solvents for lignocellulosic biomass processing. Green Chem. 2012, 14, 2153–2157. [CrossRef]

10. Lynam, J.G.; Kumar, N.; Wong, M.J. Deep eutectic solvents’ ability to solubilize lignin, cellulose, and hemicellulose; thermal
stability; and density. Bioresour. Technol. 2017, 238, 684–689. [CrossRef]

11. Catalan, L.J.J.; Liang, V.; Jia, C.Q.; Walton, C. Effects of process changes on concentrations of individual malodorous sulphur
compounds in ambient air near a Kraft pulp plant in Thunder Bay, Ontario, Canada. Wit Trans. Ecol. Environ. 2007, 101,
437–447. [CrossRef]

12. Kumar, N.; Gautam, R.; Stallings, J.D.; Coty, G.G.; Lynam, J.G. Secondary Agriculture Residues Pretreatment Using Deep Eutectic
Solvents. Waste Biomass Valorization 2020, 12, 2259–2269. [CrossRef]

13. Shi, J.T.; Li, J. Metabolites and chemical group changes in the wood-forming tissue of pinus koraiensisunder inclided conditions.
Bioresources 2012, 7, 3463–3475.

14. Raj, T.; Kapoor, M.; Gaur, R.; Christopher, J.; Lamba, B.; Tuli, D.K.; Kumar, R. Physical and Chemical Characterization of Various
Indian Agriculture Residues for Biofuels Production. Energy Fuels 2015, 29, 3111–3118. [CrossRef]

15. Selig, M.W.N.; Ji, Y. Enzymatic Saccharification of Lignocellulosic Biomass, LAP-009 NREL Analytical Procedure; Technical Report
NREL/TP-510-42629; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2008.

16. Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of structural carbohydrates and
lignin in biomass. Lab. Anal. Proced. 2008, 1617, 1–16.

17. Kumar, N.; Muley, P.D.; Boldor, D.; Coty, I.V.G.G.; Lynam, J.G. Pretreatment of waste biomass in deep eutectic solvents: Conductive
heating versus microwave heating. Ind. Crop. Prod. 2019, 142, 111865. [CrossRef]

18. Oh, Y.; Park, S.; Jung, D.; Oh, K.K.; Lee, S.H. Effect of hydrogen bond donor on the choline chloride-based deep eutectic
solvent-mediated extraction of lignin from pine wood. Int. J. Biol. Macromol. 2020, 165, 187–197. [CrossRef]

19. Brandt, A.; Gräsvik, J.; Hallett, J.P.; Welton, T. Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem. 2013, 15,
550–583. [CrossRef]

20. Okur, M.; Eslek Koyuncu, D.D. Investigation of pretreatment parameters in the delignification of paddy husks with deep eutectic
solvents. Biomass Bioenergy 2020, 142, 105811. [CrossRef]

21. Mamilla, J.L.K.; Novak, U.; Grilc, M.; Likozar, B. Natural deep eutectic solvents (DES) for fractionation of waste lignocellulosic
biomass and its cascade conversion to value-added bio-based chemicals. Biomass Bioenergy 2019, 120, 417–425. [CrossRef]

22. Carrión-Prieto, P.; Hernández-Navarro, S.; Sánchez-Sastre, L.F.; Marcos-Robles, J.L.; Martín-Gil, J.; Martín-Ramos, P. Furfural,
5-HMF, acid-soluble lignin and sugar contents in C. ladanifer and E. arborea lignocellulosic biomass hydrolysates obtained from
microwave-assisted treatments in different solvents. Biomass Bioenergy 2018, 119, 135–143. [CrossRef]

23. Fernandes, C.; Melro, E.; Magalhães, S.; Alves, L.; Craveiro, R.; Filipe, A.; Valente, A.J.M.; Martins, G.; Antunes, F.E.;
Romano, A.; et al. New deep eutectic solvent assisted extraction of highly pure lignin from maritime pine sawdust (Pinus
pinaster Ait.). Int. J. Biol. Macromol. 2021, 177, 294–305. [CrossRef] [PubMed]

http://doi.org/10.1007/s12649-018-0386-7
http://doi.org/10.1039/c2gc35660k
http://doi.org/10.1016/j.biortech.2017.04.079
http://doi.org/10.2495/air070431
http://doi.org/10.1007/s12649-020-01176-1
http://doi.org/10.1021/ef5027373
http://doi.org/10.1016/j.indcrop.2019.111865
http://doi.org/10.1016/j.ijbiomac.2020.09.145
http://doi.org/10.1039/c2gc36364j
http://doi.org/10.1016/j.biombioe.2020.105811
http://doi.org/10.1016/j.biombioe.2018.12.002
http://doi.org/10.1016/j.biombioe.2018.09.023
http://doi.org/10.1016/j.ijbiomac.2021.02.088
http://www.ncbi.nlm.nih.gov/pubmed/33607141

	Introduction 
	Materials and Methods 
	Raw Materials and Chemicals 
	Synthesis of DES 
	Preparation of Biomass for Pretreatment 
	Pretreatment of Pine Needles Using DES 
	Separation of Biomass and DES 
	Filtration 
	Lignin Precipitation 

	Fourier Transform Infrared Spectroscopy (FTIR) 
	Enzymatic Hydrolysis 
	Carbohydrate Analysis Using High-Performance Liquid Chromatography (HPLC) 
	Acid Soluble Lignin Analysis 
	Soxhlet Extraction 

	Results and Discussion 
	Mass Yield from Deep Eutectic Solvents (DES) Pretreatment 
	Fourier Transform Infrared (FTIR) Analysis of Pretreated Loblolly Pine Needles and Precipitate from Deionized Water 
	Enzymatic Hydrolysis 
	Fiber Analysis 

	Conclusions 
	References

