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Abstract

Cascading link failures continue to imperil power grids, transport networks, and cyber-
physical systems, yet the relationship between a network’s robustness at the moment of
attack and its subsequent resiliency remains poorly understood. We introduce a dynamic
framework in which connectivity-based cascades and distributed self-healing act concur-
rently within each time-step. Failure is triggered when a node’s active-neighbor ratio falls
below a threshold φ; healing activates once the global fraction of inactive nodes exceeds
trigger T and is limited by budget B. Two real data sets—a 332-node U.S. airport graph
and a 1133-node university e-mail graph—serve as testbeds. For each graph we sweep
the parameter quartet (φ, B, T, attackmode) and record (i) immediate robustness R, (ii) 90%
recovery time T90, and (iii) cumulative average damage. Results show that targeted hub
removal is up to three times more damaging than random failure, but that prompt healing
with B ≥ 0.12 can halve T90. Scatter-plot analysis reveals a non-monotonic correlation:
high-R states recover quickly only when B and T are favorable, whereas low-R states
can rebound rapidly under ample budgets. A multiplicative fit T90 ∝ B−βg(T)h(R) (with
β ≈ 1) captures these interactions. The findings demonstrate that structural hardening
alone cannot guarantee fast recovery; resource-aware, early-triggered self-healing is the
decisive factor. The proposed model and data-driven insights provide a quantitative basis
for designing infrastructure that is both robust to failure and resilient in restoration.

Keywords: cascading failure; connectivity-based model; robustness–resiliency correlation;
self-healing networks; cybersecurity; recovery time; average damage; budget–trigger
trade-off; complex infrastructure networks

1. Introduction
Modern infrastructure, from transportation and power grids to digital communication

and finance, is increasingly organized as interacting networks. When a local fault occurs,
the disturbance can propagate through the web of inter-node dependencies, potentially
disabling a large fraction of the system. Two complementary performance concepts are
therefore central to design:

• Robustness is the ability of the system to withstand the initial disturbance; it is often
quantified by the fraction of components that remain functional immediately after the
shock [1].
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• Resiliency (or recovery) is the ability to return to acceptable performance after the
disturbance. It combines the depth of degradation with the speed and extent of
restoration [2].

Because many critical sectors now demand guarantees on both attributes [3,4], under-
standing how robustness and resiliency interact has become an urgent research topic.

Many real-world systems have been widely modeled as networked complex systems
such as communication networks [5], power grids [6,7], command and control systems [8,9],
and financial transaction systems [10]. Therefore, a better understanding of both terminolo-
gies and the interplay among them is essential in prolonging the performance sustainability
of modern society infrastructures.

1.1. State of the Art: Cascading Failures and Recovery

Cascading-failure models fall into two broad classes. Connectivity-based
models—pioneered by Watts [11]—assume a node becomes inactive when the fraction of
its active neighbors drops below a threshold. They have been used to study opinion shifts,
information diffusion, virus spreading and community effects [12]. Load-based models,
exemplified by Motter & Lai [13], track the redistribution of traffic or flow after a node
failure and disable any node whose new load exceeds its capacity. Each paradigm has
generated a large body of robustness studies, including targeted attacks on interdependent
networks [14], the influence of clustering [15], degree-distribution breadth [16], and optimal
interlinking strategies [17].

By contrast, few studies incorporate explicit recovery processes. Early work on net-
work “self-healing” proposed instantaneous re-wiring or capacity boosts [18–21], but did
not model the temporal competition between failure propagation and repair. Liu et al. [22]
introduced a concurrent self-healing rule for overload cascades, yet the literature still lacks
a systematic analysis of how recovery parameters modify the robustness–resiliency trade-
off. Metrics for post-disaster performance—resilience triangles [23], disruption cost [24],
agent-based restoration times [25]—have been proposed, but none link those metrics back
to the pre-failure robustness of the same network. Surveys of network repair strategies [26]
and comparisons of connectivity-versus-load-based cascade mechanisms [27] highlight this
research gap.

Recent work moves restoration from stylized to operations-aware formulations. Co-
optimization models now jointly schedule repair crews and dynamic network reconfigu-
ration, often with mobile resources (e.g., MESS/MPS) and road constraints, to maximize
critical-load pickup and shorten outages [28,29], with related logistics and pre-positioning
results extending to transportation–power couplings [28,30].

At the same time, learning-augmented restoration has matured from proofs-of-concept
to strong baselines: graph-based RL controllers and multi-agent RL (MARL) policies learn
switching and load-shedding actions that achieve near-real-time restoration on IEEE feeders
while respecting topology and operational limits [31–33].

On the theory and synthesis side, new results sharpen our understanding of critical
behavior in overload-induced cascades (universality, mixed-vs.-first-order transitions) [34],
while recent reviews organize failure dependence and real-world interdependence evi-
dence and lay out open problems for infrastructure resilience [35,36]. These complement
existing interdependence and self-healing references and motivate our multiplex, budget-
constrained self-healing model.
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In this study we use a connectivity-based cascade rule: a node fails when its degree
drops below threshold φ. This family of models is a standard baseline for large empirical
graphs and has been extensively used to study error/attack tolerance and percolation-
driven fragility [26,27]. We deliberately favor this class because (i) it does not require
domain-specific flow or capacity data and thus applies uniformly across our networks,
and (ii) repeatedly solving flow re-dispatch problems at every time step, as required
by load/flow-based cascade models, can dwarf the compute budget and confound the
budget–trigger signal we wish to quantify [13,37,38]. Our implementation is modular:
the same budget–trigger pipeline can be paired with alternative failure modules (e.g.,
overload-based), which we outline as a natural extension.

1.2. Objectives and Contributions of This Work

This paper focuses exclusively on the connectivity-based (link-breaking) cascade and
augments it with a dynamic self-healing mechanism that operates concurrently with failure
propagation. Building on that framework we make four contributions:

1. Concurrent cascade + self-healing model. We formulate two algorithms—one for link-
breaking failure and one for distributed healing—that act within the same simulation
step, controlled by a budget parameter B and a triggering threshold T.

2. Quantitative evaluation on real data. Using a U.S. airport network (332 nodes) [39]
and a university e-mail network (1133 nodes) we measure robustness R and two
resiliency metrics: 90% recovery time T90 and cumulative average damage.

3. Systematic exploration of parameter space. We vary the degree-loss threshold φ, the
attack mode (random vs. targeted), the healing budget and the trigger time, producing
a comprehensive map of robustness and resiliency responses.

4. First empirical correlation study. Scatter-plot analysis reveals that robustness and
resiliency are only weakly correlated unless the trigger is early and the budget ad-
equate; high robustness can coexist with slow or costly recovery and vice versa.
We summarize the relationship with a simple multiplicative fit and discuss design
implications.

1.3. Paper Organization

Section 2 introduces the connectivity-based model, the self-healing algorithm, and
the data sets. Section 3 presents robustness results, resiliency results, and their correlation.
Section 4 concludes and outlines directions for recovery-aware network design.

2. Description of Models and Methods
In this section we outline the mechanism used to model the cascading-failure (CF)

phenomenon that often arises in networked systems subjected to disruptions.

2.1. Connectivity-Based Failure and Healing

A connectivity-based (link-breaking) cascade proceeds as described in Algorithm 1. In
the original graph G, a set of nodes is initially attacked. Those attacked nodes, together
with all incident links, are removed and become inactive. The initial set can be chosen
randomly or by targeting high-degree hubs.

After the attack, the algorithm scans each remaining active node and computes
the ratio

φ =
current degree
original degree

(1)
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If φ falls below critical threshold φc, the node is scheduled to fail in the next step. The
failure–check cycle repeats until the graph reaches a steady state in which some (or all) of
the original nodes are inactive.

To restore functionality, we employ a self-healing (SH) scheme controlled by two
parameters: Budget B is defined as the maximum number of inactive nodes that can be
reactivated in a single time step and Triggering level T is defined as the fraction of nodes
that must be inactive (with respect to the original network size) before healing begins.

In the baseline implementation we use global trigger T: repairs begin when the system-
wide inactive fraction first exceeds T. Operationally, interventions are often regional. Our
code admits this directly by keeping local inactive fractions Ir(t) for regions/sectors r (e.g.,
geographic districts, asset clusters) and using per-region thresholds Tr (or rolling triggers)
so that repairs in region r start when Ir(t) ≥ Tr. This generalization changes only the
decision module; the failure/repair dynamics and budget accounting remain as in the
global-T case. The monotonic properties driving our findings (earlier triggers and larger
budgets cannot degrade recovery) hold region-wise as well. See also restoration discussions
in [40,41].

The healing stage comprises two sub-algorithms (Algorithms 2 and 3):

• Step 1—Decision (Algorithm 2).
All inactive nodes that still have at least one active neighbor are identified. Each
candidate node is assigned

1. A primary impact: the number of active neighbors that would be saved if the
node were reactivated (i.e., neighbors whose ratio φ would rise from φ < φc

to φ′).
2. A secondary impact: the average increase φ′ − φ of those neighbors. Nodes are

ranked first by primary impact and then, to break ties, by secondary impact.

• Step 2—Implementation (Algorithm 3).
Up to B highest-ranked inactive nodes are reactivated, and their original edges to
currently active neighbors are restored, all within the current step.

The combined procedure iteratively applies failure propagation (Algorithm 1) and,
once the trigger T is reached—healing (Algorithms 2 and 3) until no further changes occur.

Interpreting the degree-loss threshold φc. In our model a node becomes inactive
when the fraction of its incident functional connections falls below φc; degree is used as an
operational proxy for available service capacity. Two domain-based anchors motivate the
values we study. (i) Airport/transport analogy. Ground operations and schedule feasibility
depend on active gates/runways and staffing. Once an airport loses a majority of its usable
connections, it behaves as a spoke rather than a hub—schedules cannot be maintained, and
the airport is effectively “inactive” for the purpose of maintaining the giant component.
This places φc in the 0.4–0.6 range. (ii) E-mail/communication analogy. In enterprise
e-mail systems (or departmental communication graphs), the ability of a server/site to
relay messages and route around outages degrades sharply when about half of its peering
links or trusted relays are down; delivery latencies explode and the node ceases to keep the
organization connected. This motivates the same 0.4–0.6 range as a coarse, degree-based
surrogate for service loss. In Results we also vary φc ∈ {0.3, 0.5, 0.6, 0.7, 0.8} and observe
the same qualitative budget–trigger trade-off; thus, our conclusions are robust to the exact
threshold choice.
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Rationale for a local repair rule. In the baseline implementation we select repair targets
using a local, one-hop heuristic (neighbors of failed/high-impact nodes). We deliberately
favor this class of rules because (i) during the early stage of disruptive events, operators
typically act under limited global situational awareness, and (ii) repeatedly evaluating
global centrality metrics at each time step is computationally intensive. For example,
even the standard fast algorithm for exact betweenness centrality runs in O(nm) time
for unweighted graphs (with n nodes and m edges), and would need to be recomputed
as the topology evolves [42]; while dynamic/approximate methods exist, maintaining
betweenness on fully dynamic networks remains non-trivial [43]. As our objective is to
study budget–trigger timing trade-offs under cascading dynamics, rather than to optimize
the decision rule itself, we adopt a lightweight heuristic that is implementable with the
information and time budgets available in practice.

Modularity. The framework is model-agnostic with respect to the repair policy. The
code exposes a single function: target = chooseRepair (G, state, budget, t), so that any
scoring function (e.g., betweenness-, closeness-, or community-aware rules) can replace
the default. Thus, the trade-off curves reported in this work reflect the interaction between
resource timing and cascading dynamics; a different policy may shift absolute recovery
speed but does not alter the definition of the trade-offs we quantify.

Algorithm 1. Connectivity-Based CF

Input: G, attack, mode, φc // network, attack size, mode, threshold
Output: G_dmg // damaged graph after cascading failure

1 N ← all functional nodes in G
2 E ← all edges in G
3 active← degree(G) // original degrees of every node
4 idx← sort(active, descend) // high-degree first
5 IF mode = 0 THEN // random attack
6 rmodes ⊂ N← randomsample(N, attack)
7 ELSEIF mode = 1 THEN // targeted (highest-degree) attack
8 rmodes ⊂ N← idx(1: attack)
9 ENDIF

10 FOR each v ∈ rmodes DO // initial removals
11 remove v and all incident edges from G
12 ENDFOR

// -------- cascading failures until no new node violates φ < φc
13 REPEAT
14 fail ← degree(G) // current degrees
15 φ ← fail ./ active // element-wise ratio (0 ≤ φ ≤ 1)
16 needrmv← ( φ < φc ) // Boolean vector
17 cand ← nodes( needrmv = true )
18 FOR each u ∈ cand DO // remove newly failed nodes
19 remove u and all incident edges from G
20 ENDFOR
21 UNTIL cand = ∅ // stop when no additional failures
22 G_dmg← G
23 RETURN G_dmg
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Algorithm 2. Connectivity-Based SH-Decision

Input: G_dmg, // current damaged graph
G_orig, // original graph (before any failure)
φc // degree–loss threshold

Output: inAtv_ranked // inactive nodes ordered by healing impact
1 inAtv← all INACTIVE nodes in G_dmg
2 impact← zeros(|inAtv|) // primary-impact score for each inactive node

// ---------- Step 1: compute primary impact ------------
3 FOR k = 1 to |inAtv| DO
4 ii ← inAtv[k]
5 nbx ← active neighbors of ii in G_dmg
6 FOR each nb ∈ nbx DO
7 d_orig← degree of nb in G_orig
8 d_dmg ← degree of nb in G_dmg
9 φ ← d_dmg / d_orig

10 IF φ ≤ φc THEN // nb is currently endangered
11 drst← d_dmg + 1 // edge (ii, nb) would be restored
12 φ′ ← drst / d_orig // nb’s ratio *after* healing ii
13 IF φ′ > φc THEN
14 impact[k]← impact[k] + 1 // nb would be rescued
15 ENDIF
16 ENDIF
17 ENDFOR
18 ENDFOR

19 idx ← argsort(impact, ‘descend’) // indices in decreasing impact
20 inAtv1← inAtv[idx] // reordered list after primary sort

// ---------- Step 2: tie-break with average φ’−φ improvement ---------
21 d←−∞ · ones(|inAtv|) // secondary score (only for ties)
22 FOR m = 1 to |inAtv1| DO
23 ii← inAtv1[m]
24 if impact[m] = impact[1] THEN // compute only for nodes sharing max
25 nbx← active neighbors of ii in G_dmg
26 ∆φ_list← ∅
27 FOR each nb ∈ nbx DO
28 d_orig← degree of nb in G_orig
29 d_dmg ← degree of nb in G_dmg
30 φ ← d_dmg / d_orig
31 drst ← d_dmg + 1
32 φ′ ← drst / d_orig
33 ∆φ_list← ∆φ_list ∪ { φ′ − φ }
34 ENDFOR
35 IF |∆φ_list| > 0 THEN
36 d[m]←mean(∆φ_list) // average improvement
37 ENDIF
38 ENDIF
39 ENDFOR
40 idx2← lexicographic-sort(impact(desc), d(desc))
41 inAtv_ranked← inAtv[ idx2 ] // final ranking (impact, then ∆φ)
42 RETURN inAtv_ranked
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Algorithm 3. Connectivity-Based SH-Implement

Input: G_dmg, // current damaged graph
G_orig, // original graph
inAtv, // inactive nodes ranked by Algorithm 2
B // healing budget (number of nodes to reactivate)

Output: G_rec // graph after applying self-healing
1 healed← 0 // number of nodes already reactivated
2 FOR k = 1 to |inAtv| DO
3 IF healed = B THEN
4 BREAK // budget exhausted
5 ENDIF
6 ii ← inAtv[k] // next candidate to heal
7 IF ii is ACTIVE in G_dmg THEN
8 CONTINUE // node already healed by earlier iteration
9 ENDIF

10 nbx ← active neighbors of ii in G_dmg
11 IF nbx ̸= ∅ THEN
12 FOR each nb ∈ nbx DO
13 IF edge (ii, nb) ∈ E(G_orig) AND edge (ii, nb) /∈ E(G_dmg) THEN
14 add edge (ii, nb) to G_dmg
15 ENDIF
16 ENDFOR
17 mark ii as ACTIVE in G_dmg
18 healed← healed + 1
19 ENDIF // if nbx = ∅, skip without spending budget
20 ENDFOR
21 G_rec← G_dmg
22 RETURN G_rec

We simulate the system in discrete global time-steps t = 0,1,2,. . . Each step contains
two phases that are executed within the same step: (i) failure propagation (applying the
degree-loss rule and inter-layer dependencies to obtain the inactive set at time t), and
(ii) self-healing (applying the repair policy subject to the available budget B(t) and the
trigger condition). We refer to this as concurrent self-healing at the step level: both failure
and repair are completed before the clock advances from t to t + 1, and the resulting state
is then committed as x(t + 1). Internally the order is fail→ heal, but because both occur
within the same global step, repair decisions respond to the failures of that step. If finer
temporal inter-leaving is desired, the step can be subdivided into k ≥ 1 micro-iterations
(we use k = 1 in all reported results), which emulates tighter fail/heal alternation without
changing the modeling framework.

2.2. Robustness and Resiliency Metrics

For graphs with |G| > 0, robustness is quantified by the metric R defined as

R =
number o f active nodes immediately a f ter the damage

number o f nodes in the original network G
(2)

During the damage step, all nodes scheduled to fail in the current iteration are removed
simultaneously; subsequent propagation then follows the failure–heal cycle described in
Algorithms 1–3. Because every node is active at t = 0, the denominator equals |G|; thus
R ϵ [0, 1].
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Resiliency is evaluated with two complementary metrics:

1. Average Damage D over a predefined time window t = 1, . . . , tmax:

D =
1

tmax

tmax

∑
t=1

(1− a(t)) (3)

where a(t) is the fraction of nodes that are active at time t.
2. 90% Recovery time, T90.

T90 is the earliest time step at which at least 90% of the original nodes are active again.
If the fraction of inactive nodes never falls below 10% within the simulation horizon, we
set T90 = ∞; this indicates that the system is unable to recover to the 90% level.

These two metrics together capture both the depth of disruption D and the speed of
recovery T90.

2.3. Description of Data

Two real-world networks [28] are studied in this work. Figure 1 shows both datasets.
The first is a U.S. airport network with 332 nodes, where each node represents an airport
and each link indicates at least one direct flight between the corresponding airports. The
second is a university email network with 1133 nodes; the nodes represent email accounts
and the links indicate that at least one message was exchanged between the accounts.
Figure 1a uses randomly assigned node coordinates for visual clarity and therefore does
not reflect true airport locations. Figure 1c,d depict the degree histograms of the airport
and email networks, respectively.

  

(a) Airport Network (b) Email Network 

Figure 1. (a) A US airport network consisting of 332 nodes. (b) A university email network consisting
of 1133 nodes. (c) A degree histogram of the US airports network. (d) A degree histogram of the
university email network.
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We intentionally select the airport and e-mail graphs because they span two ends
of the density/heterogeneity spectrum. The airport network is a spatially embedded
transportation system with modest average degree and limited redundancy—sparse in
link density. By contrast, the university e-mail graph is an ICT network with heavy-tailed
degree distribution and hub nodes, remaining very sparse overall. This contrast is visible
in the degree histograms in Figure 1c,d. The pair therefore exercises our framework in
two qualitatively different regimes: (i) a low-redundancy, geographically constrained
network in which removing a few high-impact nodes can detach large regions (airport),
and (ii) a hub-dominated network that is a canonical test-bed for degree-targeted failures
(e-mail), consistent with the targeted-attack vulnerability of heterogeneous graphs. (As
in common practice, node coordinates in Figure 1a are schematic and do not represent
physical airport locations).

Applicability of the failure rule to both domains. Although our failure model is
connectivity-based, it is intended as an operational proxy: a node becomes inactive when
it loses a large fraction of its incident connections. In transportation systems, once an
airport loses many usable connections, flight schedules can no longer be maintained; in
departmental communication systems, the loss of peering links or trusted relays severely
limits message routing. Our degree-loss threshold φc therefore captures a common service-
loss condition in both domains.

3. Results and Discussion
To probe the connectivity-based (CB) cascade model, we evaluate nine initial-attack

fractions α = 0.10, 0.20, . . . , 0.90. For each α we run 500 Monte-Carlo trials of Algorithms
1–3 under random attack, where the attacked nodes are selected uniformly at random. In
the targeted-attack setting we also conduct 500 trials per α, but in each trial the attacked set
is chosen as the highest-degree hubs.

The remainder of this section is organized as follows: Section 3.1 presents robust-
ness patterns R(α, φ) for the two real-world networks (U.S. airports, university e-mail),
Section 3.2 analyses their resiliency metrics—average damage D and 90% recovery time T90,
and Section 3.4 examines the correlation between robustness and resiliency and discusses
topological drivers of the observed trends.

3.1. Robustness Patterns

We quantify robustness with the metric R (Section 2) and examine how it varies with
the degree-loss threshold φ. Figure 2 displays R for the U.S. airport network ((a) ran-
dom, (b) targeted) and for the university e-mail network ((c) random, (d) targeted). Each
curve is the mean of 500 Monte-Carlo runs. The x-axis lists the initial-attack fraction
α ∈ {0.1, . . . , 0.9}; nine threshold values φ = 0.1,. . .,0.9 are plotted.

The four panels in Figure 2 reveal three consistent trends.

First, targeted removal of high-degree hubs produces a markedly steeper drop in robustness
R than an equivalent random failure, as can be seen by comparing panels (b) and (d) with
panels (a) and (c).
Second, increasing the degree-loss threshold φ invariably postpones secondary cascades:
larger φ values preserve a greater fraction of nodes for every initial-attack fraction α,
whereas low thresholds allow the network to collapse rapidly.
Third, even under identical α− φ settings the U.S. airport graph retains a higher R than the
university e-mail graph; this difference aligns with simple topological descriptors—most
notably the airport network’s higher mean degree (12.8 versus 9.6) and its richer redundancy
among hubs.
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Taken together, these results confirm that the connectivity-based model reproduces intuitive
robustness dynamics and underscore the need for mitigation strategies that are tailored to
a network’s specific connectivity profile.

  

Figure 2. Robustness R as a function of initial-attack fraction α and degree-loss threshold φ: (a) U.S.
airport network, random attack; (b) U.S. airport network, targeted attack; (c) university e-mail
network, random attack; (d) university e-mail network, targeted attack. Curves show the mean of
500 simulations. Variance across 500 Monte-Carlo runs is below ±0.01 for all curves; error bands are
therefore omitted for visual clarity. Targeted attacks remove the top-k hubs (highest degree) at each
α, leading to markedly lower robustness than random attacks.

3.2. Resiliency Patterns

The resiliency study focuses on the worst-case, targeted-attack scenario and uses the
recovery-time metric T90—the number of simulation steps required for the network to
return to at least 90% active nodes. To provide an intuitive, easy-to-interpret benchmark,
we adopt 90% as the recovery target and define T90 as the first time step at which at least
90% of nodes are active again. This level is commonly used in practice-oriented studies
because it (i) indicates the system is largely functional from the user’s perspective while
(ii) still leaving head-room to discriminate between faster and slower recovery trajectories.
Figure 3 collects six panels that plot T90 against the healing budget B for three degree-loss
thresholds φ and three triggering levels (T). In every panel the same qualitative tendencies
appear but their quantitative expression differs between the two real-world graphs. While
absolute recovery speed can depend on the specific repair policy, the shape and location of
the budget–trigger trade-off are governed by when resources are deployed relative to the
cascade’s growth. This monotonic timing effect is not specific to targeted removal and is
expected under random failures as well; targeted attacks simply start from a more damaged
state [26,44].



Network 2025, 5, 35 11 of 20

Network 2025, 5, x FOR PEER REVIEW 11 of 20 
 

 

Across all panels, increasing the budget always shortens recovery time until a satu-

ration point is reached. For the airport graph that threshold is about 𝐵 = 0.12 at 𝜑 = 0.7; 

below it the system can oscillate between finite and infinite T90, while one incremental 

budget step above removes the bottleneck and halves T90. The same saturation effect ap-

pears in the e-mail graph, but it emerges at a lower budget fraction because that network 

is sparser—its nodes have fewer neighbors on average—so fewer reactivations are re-

quired to reconnect the giant component even though the graph contains more nodes 

overall. 

These observations confirm that the timely activation of self-healing and sufficient—

but not excessive—budget allocation are the dominant levers of resiliency. The airport 

network profits from its denser, more redundant topology; once 𝜑 exceeds 0.5 its recov-

ery speed is largely budget-limited and almost independent of the trigger. By contrast, the 

sparser e-mail network remains vulnerable to both late triggers and undersized budgets 

even at intermediate thresholds, while extreme thresholds (𝜑 = 0.3 𝑜𝑟 0.8) push it into re-

gimes where recovery is impossible. 
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Figure 3. Ninety-percent recovery time T90 as a function of the healing budget B for three triggering
levels T = 0.2, 0.5, 0.7/0.8. Panels (a–c) correspond to the U.S. airport network at degree-loss
thresholds φ = 0.3, 0.5, 0.7; panels (d–f) show the university e-mail network at φ = 0.5, 0.6, 0.8.
Solid, dashed and dash-dotted lines represent the three T-values, and curves terminate at T90 = ∞
where recovery never reaches the 90% level. In panels (b,c) the three T-curves are numerically
identical and therefore appear as a single line.

For the airport network the low-threshold case φ = 0.3 (Figure 3a) is highly sensitive
to the triggering level. When self-healing is postponed to T = 0.7 the network may need
more than 30 steps to regain 90% functionality, whereas an early start at T = 0.2 roughly
halves the recovery time. As φ rises to 0.5 and 0.7 (Figure 3b,c) the curves for the three
triggering levels converge; once the threshold is high enough the cascade dies out quickly
and T90 becomes almost independent of when healing begins. In every panel an initial
increase in the budget yields marked reductions in T90, but beyond a critical budget the
curves flatten, and additional resources no longer accelerate recovery.
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The e-mail network displays a different landscape. When the degree-loss threshold
is low (φ = 0.3, not shown) the network never reaches the 90% mark and T90 is infinite
for all T and B. At φ = 0.5 (Figure 3d) recovery becomes possible, yet the outcome
remains extremely sensitive to T: an early trigger restores the graph in fewer than ten
steps for moderate budgets, whereas a late trigger can still leave T90 infinite at the same
budget. Increasing φ to 0.6 (Figure 3e) widens the range of budgets that guarantee finite
recovery times, but the curves retain a pronounced separation by T. A further increase
to φ = 0.8 (Figure 3f) paradoxically brings the system back to fragility—delayed healing
never succeeds and even the earliest trigger needs large budgets to pull T90 below ten steps.
Thus the e-mail graph shows a non-monotonic relation between robustness (as measured
by φ) and resiliency: intermediate thresholds perform best, whereas very low or very high
thresholds lead to unrecoverable states.

Across all panels, increasing the budget always shortens recovery time until a satu-
ration point is reached. For the airport graph that threshold is about B = 0.12 at φ = 0.7;
below it the system can oscillate between finite and infinite T90, while one incremental
budget step above removes the bottleneck and halves T90. The same saturation effect
appears in the e-mail graph, but it emerges at a lower budget fraction because that network
is sparser—its nodes have fewer neighbors on average—so fewer reactivations are required
to reconnect the giant component even though the graph contains more nodes overall.

These observations confirm that the timely activation of self-healing and sufficient—but
not excessive—budget allocation are the dominant levers of resiliency. The airport network
profits from its denser, more redundant topology; once φ exceeds 0.5 its recovery speed
is largely budget-limited and almost independent of the trigger. By contrast, the sparser
e-mail network remains vulnerable to both late triggers and undersized budgets even at
intermediate thresholds, while extreme thresholds (φ = 0.3 or 0.8) push it into regimes
where recovery is impossible.

3.2.1. Budget Thresholds and Non-Linear Effects

A closer look at the airport data for φ = 0.7 illustrates how delicately recovery hinges
on budget near a critical point. At B = 0.10 the system still manages to heal, but slowly
(T90 = 26). Reducing the budget by a single percentage point to B = 0.11 drops the available
resources below the minimum needed to reactivate key hubs; cascading failures therefore
persist indefinitely and T90 diverges. Raising the budget again to B = 0.12 supplies just
enough edges to halt the cascade and T90 falls abruptly to 14. Such sharp transitions
emphasize that resource planning must account for non-linear gains: small increments
around the critical budget yield disproportionate improvements in resiliency.

3.2.2. Interplay Between Robustness and Resiliency

Because φ evolves during a cascade, robustness and resiliency are intertwined in a
non-linear fashion. In the airport graph intermediate thresholds (φ = 0.5− 0.6) strike
an effective balance: the network can withstand initial damage and still recover under
realistic budgets. Thresholds that are too low (φ = 0.3) or too high (φ = 0.8) push
the system into failure modes that are hard to reverse, producing the same qualitative
outcome—unbounded T90—for opposite structural reasons. The e-mail graph exhibits the
same pattern but with much narrower safe intervals; it remains acutely sensitive to trigger
times and budget sizes even at φ = 0.6.

3.2.3. Implications

Our work uses two real-world graphs (airport and e-mail) to isolate the budget–
trigger mechanism. Our conclusions are mechanism-level: recovery time behaves as
backlog at trigger divided by repair capacity. Earlier triggers accumulate less backlog;
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larger budgets increase capacity; both effects show diminishing returns once the giant
component is re-established. These properties are not domain-specific and are consistent
with observations across transport, power, and communication systems reported in the
cascading-failure/restoration literature. Nevertheless, the numerical thresholds depend on
topology and operational constraints; testing additional domains is an important avenue
for future work. We release code and scripts to facilitate replication on other networks.

We analyze budget–timing trade-offs using a single global trigger to expose the un-
derlying mechanism cleanly. In practice, operators often rely on regional or priority-based
activation. Our framework supports this by replacing T with per-region thresholds Tr (or
rolling triggers) that monitor local inactive fractions; this affects only when/where repairs
start, not the dynamics. Exploring policy design for Tr informed by operational constraints
is a valuable direction for future work; see the restoration surveys in [40].

The combined analysis of robustness and resiliency shows that network topology
dictates the feasible operating window. Dense, hub-rich infrastructures such as the airport
network can tolerate delayed healing once φ is moderate, whereas sparse peer-to-peer struc-
tures such as the e-mail network demand both early intervention and carefully calibrated
budgets. Beyond a network-specific saturation point additional resources bring diminish-
ing returns, so precise allocation at or just above the critical budget is more effective than
indiscriminate over-provisioning.

3.2.4. Average Damage as an Alternative Resiliency Metric

Because T90 cannot distinguish between partial-recovery and no-recovery trajectories
that both end with an “infinite” time, we complement it with the average-damage measure,
defined as the cumulative number of inactive nodes averaged over the observation window.
Whereas T90 is a timing metric, average damage reflects the severity and persistence of
cascade effects. Figure 4 plots this quantity for the two real-world graphs under the same
targeted-attack setting used in Section 3.2; each panel pairs a degree-loss threshold φ with
three triggering levels T = 0.2, 0.5, 0.8 and sweeps the healing budget B.

For the airport network the behavior changes markedly with φ. When φ = 0.3 average
damage falls rapidly as soon as the budget rises above a few percent of the node count, but
the final plateau depends on when recovery begins: early triggering (T = 0.2) stabilizes
below ten inactive nodes, an intermediate trigger (T = 0.5) settles near a dozen, and a
late trigger (T = 0.8) remains much higher. At the intermediate threshold φ = 0.5 those
three curves collapse onto one another; any trigger time is adequate, provided the budget
exceeds about five percent, emphasizing that resource availability rather than response
time controls performance in this regime. Raising the threshold to φ = 0.7 eliminates
temporal sensitivity: the three triggering levels collapse onto a single curve, so recovery
performance depends almost exclusively on whether the budget exceeds the critical value
of about twelve percent. A further increase to φ = 0.8 pushes the system beyond its tipping
point; the cumulative damage stays above two hundred inactive nodes for all budgets
and trigger times, revealing a paradox in which extreme structural robustness offers no
practical resiliency because the initial loss is already too large.

The e-mail network exhibits the same qualitative pattern but at different budget scales
and with steeper transitions. At φ = 0.3 the curves are flat: average damage hovers around
191 for every B and T, confirming that the graph never recovers. Moving to φ = 0.5
introduces strong dependence on both control parameters. An early trigger combined with
a budget above ten percent drives the average damage into double digits, but postponing
recovery by only three time-steps causes the cumulative loss to exceed six hundred nodes
unless the budget is very high. The threshold φ = 0.7 widens the window of successful
operation; early and intermediate triggers converge once B passes fifteen percent, yet a late
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trigger remains ineffective. At φ = 0.8 the network again collapses irrespective of budget:
the proportion of failures is simply too large to be reversed.

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4. Average damage as a function of healing budget B for three triggering levels T = 0.2
(dashed), T = 0.5 (solid), and T = 0.8 (dash-dot). Panels (a–c) correspond to the U.S. airport network
with φ = 0.3, 0.5, 0.7; panels (d–f) show the university e-mail network with φ = 0.3, 0.5, 0.7. Curves
that coincide—for example all three triggers in panel (b) and panel (d)—are plotted once; identical
legends are retained for completeness.

Across both graphs two conclusions emerge. First, average damage confirms the non-
monotonic link between robustness and resiliency inferred from T90: thresholds that are
either too low or too high leave the system in unrecoverable states, whereas an intermediate
range (φ ≈ 0.5− 0.7) minimizes cumulative loss. Second, budget and trigger time trade
off against each other only within that favorable range; outside it no realistic allocation
can compensate for an untimely response or overwhelming initial damage. These findings
suggest that effective recovery policy must identify the internal threshold regime where
additional resources still translate into tangible resiliency gains and must prioritize rapid
activation when the network operates near its tipping points.
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3.3. Limitations and Alternative Heuristics

Operational scope of the local rule. Our baseline repair policy is deliberately local
and one-hop to reflect the information and time constraints faced by operators during
fast-moving disruptions. Global-metric strategies (e.g., prioritizing nodes with high current
betweenness or community bridges) can reconnect large detached components faster
when reliable system-wide situational awareness and compute are available. We therefore
position the local rule as a baseline under operational constraints, not as uniquely optimal.

Modeling choice (connectivity vs. load) and attack model. Our degree-based failure rule
treats φc as a local service-loss proxy; flow-aware stress rules (capacity, queueing, or line-
loading) are compatible with the same simulation shell and are a natural extension for future
work. We stress-test timing and budget using adversarial (degree-targeted) attacks, which are
known to be more damaging than random failures in heterogeneous networks [26,44]; the
latter primarily shift recovery curves downward but do not change our ordering of trigger-
versus-budget in the scenarios we study. Comparisons with load-based cascade models—and
guidance on when each is appropriate—are reviewed in [45]. The pipeline is modular, so a
load-aware failure module can be substituted without changing the analysis.

3.4. Correlation Between Robustness and Resiliency (Airport Network, 10% Initial Attack)

Figure 5 brings together six scatter plots obtained from the airport network after a
fixed 10% targeted attack. Each marker represents one of the seven degree-loss thresholds
φ = 0.3, . . . , 0.7 and is colored by the healing-budget fraction B (blue 0.02, orange 0.05, gray
0.10, yellow 0.20). Robustness R measured immediately after the attack is shown on the
horizontal axis, while the vertical axis carries one of two resiliency indicators. Panels a, b,
c plot the recovery time T90; and panels d, e, f plot the cumulative average damage. All
panels correspond to the three triggering thresholds T = 0.2, 0.5, 0.8.
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Figure 5. Correlation between robustness and two resiliency measures for the airport network under
a 10% targeted attack. (a–c) T90 as a function of robustness for triggering thresholds T = 0.2, 0.5, 0.8.
(d–f) Cumulative average damage for the same three triggering levels. Marker colors denote budget
fractions B = 0.02 (blue), 0.05 (orange), 0.10 (gray), and 0.20 (yellow). Each point arises from one
degree-loss threshold φ = 0.3, . . . , 0.7. The scatter illustrates that robustness alone does not determine
resiliency: high-R states can recover slowly when B is small, whereas low-R states rebound quickly if
the budget and trigger are favorable.

3.4.1. Robustness Versus T90 (Panels a–c)

Early triggering (T = 0.2, panel a) produces an oblique cloud; high robustness com-
bined with a tiny budget (B = 0.02) still needs roughly thirty steps to reach 90% activity,
whereas ample funding (B = 0.20) lets even fragile states (R ≈ 0.10) recover in fewer
than ten steps. Panel b (T = 0.5) shifts every point upward by two–three time-steps but
preserves the same diagonal ordering, confirming that budget can compensate for limited
robustness when the trigger is not too late. In contrast, panel c (T = 0.8) shows nearly
horizontal bands: after a long delay the cascade has spent itself and T90 depends almost
solely on budget, with robustness contributing little additional leverage.

3.4.2. Robustness Versus Average Damage (Panels d–f)

The average-damage panels trace the same interplay in terms of damage magnitude.
With a prompt trigger (panel d) cumulative loss stays below fifty nodes whenever either
robustness or budget is high, but exceeds 250 nodes when both are low. A moderate delay
(panel e) widens the damage gap between low and high budgets, especially for fragile
states. Under the late trigger T = 0.8 (panel f) damage stratifies almost perfectly by budget:
blue markers (B = 0.02) cluster near 200 inactive nodes regardless of robustness, while
yellow markers (B = 0.20) cluster below fifty nodes, indicating that once intervention is
late, budget dominates and robustness ceases to influence cumulative loss.

3.4.3. Interpretation and Design Implications

Taken together, the six panels show that robustness and resiliency are related but
distinct. A configuration that survives the initial attack well can still recover slowly or
sustain heavy loss if resources are tight, whereas a fragile configuration can rebound
rapidly given timely and ample funding. Budget and trigger time trade off only when
intervention is early; once healing is substantially delayed, increasing robustness adds little
benefit. Empirically, the relationship can be approximated by a multiplicative form T90 ∝
B−βg(T)h(R) with β≈ 1 and a weak robustness factor h(R) when T is large—underscoring
that prompt, well-funded self-healing is more effective than structural hardening alone.

Validation of the multiplicative fit. The multiplicative ansatz T90 ∝ B−βg(T)h(R)
is supported by the collapse of the curves in Figure 5 after a two–step rescaling. First,
plotting T90 against budget on log–log axes reveals a nearly constant slope of −1 across
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all trigger levels, indicating β ≈ 1. Second, dividing each curve by B−1 aligns the data
for different budgets; the remaining vertical offsets depend only on the trigger threshold
and the pre-attack robustness, consistent with separable factors g(T) and h(R). Within
each trigger group, the residual spread is of the same order as the symbol size, and no
systematic pattern persists after normalization, implying that higher-order interactions are
negligible at the resolution of the study. Taken together, these observations confirm that
the proposed product form captures the dominant joint influence of budget, trigger timing,
and robustness on the 90%-recovery time.

4. Conclusions
This paper developed and analyzed a concurrent failure-and-healing framework for

connectivity-based cascades on real-world networks. The model couples a link-breaking
failure rule—activated when a node’s active-neighbor ratio drops below a threshold—with
a distributed self-healing rule that is governed by a triggering level T and a budget B. By
sweeping the four-dimensional parameter space (φ, B, T, attackmode) on a U.S. airport
graph and a university e-mail graph we obtained three main results.

1. Distinct robustness regimes. Robustness R declines smoothly under random attack
but collapses abruptly under targeted hub removal; increasing φ mitigates both effects,
although the airport network remains consistently more robust owing to its higher
mean degree and redundant hub set.

2. Budget-trigger trade-off in resiliency. Early activation with a modest budget outper-
forms late activation with a larger budget. A critical “saturation” budget exists—about
12% of nodes for the airport graph and 10% for the e-mail graph—beyond which
additional resources yield only marginal gains in T90 and average damage.

3. Weak correlation between robustness and resiliency. Scatter-plot analysis showed
that configurations with high robustness can still recover slowly when under-funded,
while low-robustness configurations can rebound rapidly if healing is timely and well
resourced. A simple multiplicative fit T90 ∝ B−βg(T)h(R) (with β ≈ 1) summarizes
this interaction.

4.1. Design Implications

Structural hardening alone is insufficient. Ensuring prompt, adequately funded self-
healing is equally, and sometimes more effective than raising the robustness threshold.
Resource allocation policies should therefore target the critical budget that precedes satura-
tion, and detection systems should minimize trigger delays.

4.2. Limitations and Future Work

We studied static budgets and single-layer networks. Extending the framework to
adaptive budgets, multi-layer interdependencies and spatially constrained repair crews
would bring the analysis closer to operational practice. Incorporating load-based dynamics
in the same concurrent setting is another important step, as is validating the model on
time-stamped failure-and-repair data from real infrastructures.

By quantifying both robustness and resiliency, and their subtle interplay, this work
provides a foundation for the recovery-aware design of complex networked systems.
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Abbreviations
The following abbreviations are used in this manuscript:

G Current graph
Gdmg Graph after the cascading-failure phase
Grec Graph returned after the healing phase
N List (or count) of currently functional nodes
E List of currently present edges
active Vector of original degrees
fail Vector of current degrees
φc Degree-loss threshold that triggers node failure
φ Ratio current degrees/original degrees for a node
needrmv Boolean vector marking nodes with φ < φc

cand Set of nodes that newly fail in the current sweep
idx Indices of nodes sorted by descending original degree
rmodes Initial attack set (random or targeted)
inAtv List of inactive nodes that still have ≥1 active neighbor

impact
Primary-impact score: # of endangered neighbors rescued by healing a
candidate node

d
Secondary score: mean improvement (φ′ − φ ) for neighbors rescued by that
candidate

nbx Set of active neighbors of a specific inactive node
d_orig Original degree of a neighbor
d_dmg Current degree of a neighbor
drst Degree neighbor would have after edge restoration
φ′ Updated degree ratio after hypothetical healing

idx2
Permutation that ranks inAtv lexicographically by primary and
secondary impact

inAtv_ranked Final ranked list of inactive nodes to heal
B Healing-budget cap: max # of nodes reactivated in a step
healed Counter for how many nodes have been reactivated so far
nb Individual active neighbor
T Triggering level: fraction of inactive nodes that starts healing
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